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Introduction 

Here we present logic modeling as an approach to understand deregulation of signal 
transduction in disease and to characterize a drug’s mode of action. We discuss how to build 

a logic model from literature and experimental data and how to analyze the resulting model 
to obtain insights of relevance for systems pharmacology. Our workflow uses the free tools 
OmniPath (network reconstruction from literature), CellNOpt (model fit to experimental data), 
MaBoSS (model analysis), and Cytoscape (visualization). 
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Finding effective drugs and understanding how they work still pose considerable challenges 
with profound effects on human health. Several options exist to find compounds that could 
be used to treat a specific disease, such as target-based or phenotypic screening 
approaches.1 More recent developments in experimental techniques such as shRNA2  and 
CRISPR-Cas93  or microfluidics4,5 promise to ease the discovery of new targets and drugs 
by increasing the number of targets that can be tested at once and decreasing the amount of 
biological material necessary to perform the experiments. However, a target discovered with 
such techniques may not be necessarily actionable in the clinical setting.6,7 A compound that 
showed promising results in the laboratory may fail to be effective on patients. 
Understanding how a drug acts at the systems level is key to increasing the likelihood of 
success. Likewise, understanding the molecular basis driving a disease can be of great help 
in the search for its cure. 
 
Mechanistic models can help to better understand a drug’s mode of action and predict the 

behavior of a biological system in response to drugs. The nascent field of Quantitative 
Systems Pharmacology aims to address these challenges by combining mechanistic models 
with pharmacokinetic modeling.8–10 It is known that many diseases involve alterations in the 
signaling pathways used by cells to interpret the cues from their environment.11–14 Likewise, 
many drugs are designed to target components of these signaling pathways. These different 
pathways are not merely linear signaling conduits activated by different stimuli, but are also 
interconnected via crosstalk mechanisms to regulate each other, giving rise to signaling 
networks.  
 
Regulatory Networks 

The structure and function of signaling networks are complex, and they are differently 
deregulated in different biological contexts in non-trivial ways. Previous clinical studies have 
showed that inhibiting the same oncogenes can vary in efficacy, depending on the patient. 
The best example is the treatment of BRAF mutations in melanoma compared to colon 
carcinomas. In melanoma, a particular BRAF activating mutation, V600E, leads to the 
activation of signaling pathways involved in proliferation. Treatments targeting specifically 
the mutation, such as vemurafenib, show an efficient immediate response in melanomas. 
However, colon cancer patients with the same mutation do not respond to the treatment.15 
The difference between these two responses to the drug is due to different cellular contexts. 
Only present in colon cancer, a feedback loop on EGFR activation leading to the activation 
of the mitogen-activated protein kinases (MAPK) pathway, through RAS, may be responsible 
for the poor outcome. This example highlights the importance of accurately describing the 
networks regulating these signaling pathways and their crosstalks. To ensure efficiency of 
the drug treatments, a good knowledge of these complex interactions and how patient 
mutations affect the cellular fate is necessary. 
 
The regulatory networks used in these models are generally extracted from databases and 
literature. These sources represent the current knowledge available about interactions 
involving the proteins of interest. However, little information is known about which 
regulations are specific to a given cell type or a particular biological context. This information 
is important to highlight the specific mechanisms of regulation in different contexts. For 
example, comparing signaling pathways of healthy and diseased cells allows investigating 
which mechanisms are deregulated as a cause or an effect of the disease.16,17 Similarly the 
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comparison of pathway activity in different cells from the same cancer type allows 
investigating mechanism of resistance to drugs, which can be exploited to suggest 
personalized therapies.18–20 If experimental data are available, optimization procedures can 
be used to refine the initial networks to be cell line or context specific. 
 
Basics of Logic Modeling 
Mathematical modeling can help to decipher these complex mechanisms.18 Several 
modeling formalisms exist to deal with complex gene regulatory and signaling network 
structures.11,21,22 Because models can also provide insights into a drug’s mode of action, 

scientists are also working towards building bridges between drug design and network 
modeling techniques.23–25 
 
Among the modeling techniques, logic(al) modeling has proven to be very versatile and able 
to provide useful biological insights.26–28 It has been applied for studying several biological 
phenomena (e.g. developmental processes,29 haematopoiesis30 or cell fate decision31) but 
primarily used in signaling and gene regulation.27 Compared to other modeling techniques 
commonly used to describe biological systems, such as ordinary differential equations based 
on chemical kinetics, logic models are better suited to describe medium or large scale 
networks, where detailed biological knowledge is often incomplete and where a more 
schematic representation of the system can improve the overall interpretability of the results. 
However, it is necessary to keep in mind that the formulation of logic rules implies a 
simplification of the described biological system and might not be able to fully capture the 
complexity of the underlying system.32  
 
Within the logic formalism, signaling networks are modeled by defining a signed and directed 
causal regulatory network as well as rules to update the state of its components.22,26,28 The 
sign of the interaction depends on whether it is an activation or an inhibition, and the 
direction indicates which node acts over another one (e.g. in a kinase-substrate interaction 
where the kinase activates its substrate, the edge will go from the kinase to the substrate 
and its sign will be positive). In these networks, proteins are represented by nodes and 
interactions between proteins are represented by edges. The state of a node can represent 
its activation status. This way, the nodes can take different values: 0 (False) or 1 (True), in 
the case of Boolean models; or discrete values: 0, 1, 2 or higher, in the case of multi-valued 
models for representing distinct activation states. These states are updated following defined 
update rules, which take into account the state of input nodes and the type of interaction 
(positive or negative). Several different variations have been developed ranging from Petri 
nets33 to logic-based Ordinary Differential Equations (ODEs).34 An overview on some of the 
different formalisms available to model signaling networks (interaction graphs, logical models 
and logic-based ordinary differential equations - ODE - models) and the types of analyses 
that can be achieved with them is reviewed elsewhere.35 By including nodes corresponding 
to the targets of different drugs in these models, their values can be manipulated in the 
simulations to find out what would be the effect of these compounds when applied to the 
system. 
 
Biological Applications of Logic Modeling  
The examples where logic modeling has been applied to understand biological mechanisms 
are numerous and go from the study of T-cell receptor signaling36,37 to cell-fate decision,38 
mammalian cell cycle39 or host immune response.40 In particular, cancer research has 
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motivated many of the applications of logic modeling and fostered several methodological 
developments, because it requires to study large signaling and regulatory networks.41 For 
example, discrete logical modeling has been used to describe the DNA damage response 
signal transduction network in human epithelial cells and predict candidate target proteins for 
sensitization of carcinomas to DNA-damaging agents.41 Also, the ErbB network was 
explored with a model built from prior knowledge and protein phosphorylation data to 
understand the drug resistance mechanisms of breast cancer cell lines.42 Logic modeling 
was applied to bladder cancer to investigate the effects of gene alterations leading to 
invasiveness.43 However, the use of logic modeling tools is not limited to cancer applications, 
and research in other diseases also benefit from these techniques. For instance, Boolean 
modeling was applied to the study of Systemic Lupus Erythematosus, to stratify patients and 
find the best matching treatment.44 It has also been used to study the immunological 
response to infections,45 or to understand apoptosis given its relevance in diseases like 
Alzheimer and Parkinson.31 These and other examples46,47 illustrate the value of logic 
modeling to enhance our understanding of the systemic effect of therapies. The models 
provide a formal tool to quickly evaluate in-silico the effect of targeting one specific 
component of the model or explore the effects of possible drug combinations.20,48–50 It is also 
possible to assess how changes in the network (e.g. missing or inactive receptor, etc.) may 
affect the effect of a drug. 
 
In this tutorial, we show the different steps involved in logic modeling on a prostate cancer 
example that involves some of the key phosphorylation pathways of this malignancy, and 
that we use to predict cell survival in different conditions (Fig 1). The steps include the 
building of the signaling network, its improvement using available data and its simulation and 
analysis geared towards obtaining useful biological insights and predictions. We also present 
several tools that are useful for such a workflow, namely Omnipath51 to construct the 
signaling network, CellNOpt52 to build a model trained to data, MaBoSS53 to simulate and 
predict treatment response, and Cytoscape54 to visualize some results of the simulations. It 
should be noted that many other excellent tools to model and analyze signaling networks 
exist, such as BoolSim,55 BoolNet,56 GINsim,57 etc. Many of these are compatible via the 
SBML-qual format,58 and their development is coordinated by the CoLoMoTo initiative.59 
 
Selection of a system to study 

The decision to use logic models is usually spurred by the wish to gain a mechanistic 
understanding of a biological system for which the size, the lack of knowledge, or both, 
precludes more refined approaches such as reaction-based modeling. The system of study 
might be a specific pathway, a cell line or a disease, for example. The available data and 
publications related to the chosen system are usually a starting point for the following 
steps.43 In other cases, new experiments are designed and carried out to provide the 
necessary data for modeling.16 For this tutorial, we decided to study a small signaling 
network in prostate cancer, and do so using published data describing the phosphorylation 
response of key proteins in prostate cancer cell lines in response to the addition of several 
ligands and inhibitors.60 
 
The study providing the data used in this tutorial60 takes a data-driven approach based on 
multivariate regression analysis to predict prostate cancer cell survival from the 
phosphorylation levels of 14 key proteins. These proteins are related to core signaling 
pathways that drive cell growth in three prostate cancer cell lines in response to various 
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treatments by ligands or kinase inhibitors. The study focuses on the MAPK (Mitogen-
activated protein kinases), PI3K and IKK pathways.  Correlations between phosphoproteins 
and cell survival were discussed in relation with their known roles in signaling pathways, with 
the goal of studying the sources of castration resistance between the cell lines. The results 
suggest that, in prostate cancer, androgen-independent growth and androgen-mediated 
signaling are largely driven via MAPK and PI3K signaling. 
We aim to study this system with a modeling approach, focusing on the data measured in 
LNCaP cell line.  
 
Construction of a regulatory network  

Constructing a regulatory network is the first step in the modeling process. A first network, 
commonly referred to as Prior Knowledge Network (PKN), gathers the biological knowledge 
already known for the main components involved in the process being studied as a signed 
and directed graph. The PKN is then used for downstream modeling. 
 
When building a PKN, it is critical to know what the essential elements that should be 
included in the model are. The nodes often describe primarily proteins, but they can be 
considered as other  types of elements such as genes that affect protein functionality. 
Elements to include in a cancer model comprise proteins related to the most frequently 
mutated genes, differentially expressed genes, drug targets, and phenotypic read-outs (e.g., 
cyclins for cell cycle, caspases for apoptosis, EMT regulators for EMT, etc.). Many of these 
usually surface during the explorative data analysis preceding the mechanistic modeling. 
The major players of signaling pathways known to be deregulated, such as EGFR, RAS, 
MEK for the MAPK pathway, or TP53, MDM2, CASP8, or/and CASP3 for the apoptosis 
pathway, also need to be considered. Finally, input nodes that account for the 
microenvironment (presence or absence of growth factors, nutrients or ligands, hypoxia 
conditions, etc.) or for the treatments performed in the experiments and used for the 
modeling have to be added. The list of nodes can, of course, evolve throughout the 
construction of the network, through the exploration of published experiments where new 
genes or proteins are identified as playing an important role, or the inclusion of intermediary 
nodes required to link two processes. 
  
Once defined, the selected nodes are linked with edges that represent direct interactions or 
indirect regulations, identified in the literature. When available, the representation of detailed 
mechanisms is however challenged by the requirement to keep a reasonable size for the 
network, and as a consequence a reduced computation cost for simulations. A good balance 
has to be found between detailed mechanistic descriptions of the key signaling components 
and more schematic representations for less important processes reduced to the necessary 
players. This process often requires careful consideration of the mechanisms defined as 
essential for the question at hand. In addition, some simplification can be done once the 
model is built in an automatic manner. Automatic reduction tools exist to help the process 
while preserving the dynamics in the logic formalism,50,61 such as removing intermediary 
nodes in linear pathways. 
  
Another complementary approach to sketching the network from literature knowledge is to 
use database information. There exist some pathway databases that depict, in great details, 
literature curated signaling pathways. Among these databases, KEGG,62 Reactome,63,64 
BioCarta,65 Wikipathways,66 Signor,67 Signalink,68 ACSN,69 etc. can be cited. Retrieving 
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information from them is faster than the tedious process of reviewing the literature. However, 
the modeler should keep in mind the limits of such resources: because they are not always 
up-to-date, specific but important information not included in the databases might be missed. 
To facilitate the retrieval of information from all these databases, we use Omnipath,51 a 
comprehensive collection of existing manually curated pathway databases. Omnipath comes 
with a Python tool called pypath, developed to query its content, manipulate and filter it 
easily. This allows us to extract the interactions that concern only the predefined list of 
proteins, and execute complex queries such as retrieving all possible paths between two 
proteins. 
 
There are different ways in which the network can be represented.70 For simplicity, we 
present our example with a type of diagrams referred to as ‘entity relations’ in the standard 

format SBGN,71 where nodes correspond to genes, proteins, modified proteins, complexes, 
or phenotypes, and edges are directed arrows representing activation or inhibition of one 
node over the other. This representation provides a simplified mechanistic view of the 
processes involved in the disease where the details of the reactions (degradation, synthesis, 
phosphorylation, etc.) are not explicitly represented but rather pictured as each node having 
a positive or a negative influence onto other nodes of the network. 
 
In our case study, we build a simple network representing the signaling cascades involved in 
the survival of prostate cancer cells (Fig 2). We aim at validating the network discussed in 
the initial publication of the data60 where two versions are provided. The first one is an 
undirected map containing the proteins whose phosphorylation status are measured in 
response to treatment with ligands and inhibitors (Erk1, Erk2, Akt1, Akt2, Akt3, RPS6, 
GSK3α, GSk3β, p38, JNK1, JNK2, JNK3, HSP27, Stat3), the ligands (EGF, IGF1, IL6, TNFα 

and DHT) that we select as inputs, and key components of the PI3K/mTOR and MAPK 
pathways (PI3K, mTOR, RPS6, β-Catenin, Jak, RAS, MEK, Rac and IKK). The second 
network suggests some possible links between the androgen receptor (AR) and the PI3K 
signaling pathway, RPS6 or cell cycle targets. 
 
Using Omnipath signed interactions between the complete list of proteins used in the two 
initial networks were retrieved in order to connect them into a single network. 
For instance, the query related to an interaction between PI3K (PIK3CA) and AKT (AKT1) in 
Omnipath returns an activation of AKT1 by PIK3CA from four databases (SignaLink3, 
Laudanna_effects, Wang, Signor), and an inhibition of AKT1 by PIK3CA from one database 
(Laudanna_effects). We can therefore include in the network an activation of AKT by PI3K 
as the most confident interaction. Looking back at the four literature references associated 
with the interaction also confirms the sign and direction. A detailed description of the network 
is reported in Supplementary Materials, with the python code used with pypath. 
In general, one or more phenotypes of interest will be modeled as additional nodes (e.g. 
survival, apoptosis, proliferation, etc.) and linked to the rest of the network by appropriate 
edges, to facilitate model predictions. In our case study, we predict cell survival, available 
along with phosphorylation data,60 as a phenotypic outcome of the model. Therefore, the 
resulting network was extended to describe roughly the regulation of the cell cycle and the 
apoptotic pathway, both of which influence an output node called “Survival”. Aiming at 

simplicity for this tutorial, we chose a few prominent components among the high number of 
possible apoptotic and proliferative factors that could be included in the PKN. Thus, Caspase 
8, p53 and Caspase 9 represent the possible modes of activation of the apoptotic pathway, 
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whereas the proliferative pathways are depicted by MYC and a generic node named 
Cell_cycle. For more information on this extension, see Supplementary Materials. 
 
The resulting PKN is displayed in Fig 2. Complex crosstalks exist between pathways and 
are usually taken into account in the detailed model. For instance, the apoptotic regulation 
modeled in another work38 integrates three highly intertwined pathways activated by death 
receptors. For this tutorial, however, the network is kept simple to focus on core signaling 
cascades. 
 
Translation into a logic model  

As shown on Fig 1, the PKN, or interaction graph, can be directly studied with structural 
analysis, or translated into a logic model to extend the scope of the analysis. Structural 
analysis include topological analyses such as degree and centrality measures, pathway 
searches, feedback and feedforward loop identification or characterization of minimal cut 
and intervention sets.72 Cytoscape54 is a graph visualization and analysis tool that provides 
access to many of these methods. The translation of the interaction graph into a logic model 
allows to formally study how signaling information flows through the network and how 
perturbations of its components affect this flow.35 
 
In a logic model, nodes of the regulatory network are assigned a state: active/true or 
inactive/false in the case of Boolean models. A set of logic rules are assigned to the edges, 
that determine how the state of each node will be updated as a function of the state of the 
nodes that influence them. When a node has two upstream activators, if its activation 
depends on the simultaneous presence of its two upstream nodes, the two inputs will be 
linked by an AND gate. If its activation depends on either of the two upstream nodes, the two 
input nodes will be linked by an OR gate. Inhibition of a node by an upstream node is 
described with a NOT gate. Combining AND, OR and NOT gates, we can express any 
logical function as sum of products, also known as disjunctive normal form. 
 
In some cases, when a node has several upstream regulators, it may be unclear if they act 
in combination or alone. In other words, they may act through any combination of logic 
gates. In those cases, we can instantiate the different possible rules and use experimental 
data to find the appropriate representation of the interaction.73 It is thus possible to find an 
appropriate translation of the regulatory network to a logic model that can be used for 
simulation purposes.  
 
An example of a complex logic rule (Fig 2B) in our case is the one regulating the “Survival” 

node. The upstream nodes for “Survival” are “Cell cycle”, “MYC”, “Caspase8” and 

“Caspase9” nodes. To activate “Survival”, the “Cell cycle” node needs to be active, but the 

presence of either caspase 8 or caspase 9 can inhibit survival. However, if MYC is also 
active, both caspases need to be active in order to inhibit survival. 
This can be written in the following way: 
Survival =1 if (Cell_cycle AND ((NOT Caspase8 AND NOT Caspase9) OR ( MYC AND (NOT 
Caspase8 OR NOT Caspase9))) 
 
Altered variants (often referred as ‘mutants’) of the model can then be generated by 

replacing the logic rule defining the regulation of a component by a constant (0 or 1 in the 
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Boolean case), to model inhibiting or activating perturbations, such as drug treatments or 
gene mutations. 
  
The Boolean version of logic modeling might be somewhat restrictive in terms of the 
scenarios it can represent due to its limitation to binary states. Extensions have been 
developed to overcome this limitation. In this tutorial, we will show two of these alternatives 
with two selected tools: CellNOpt,52 which implements logic-based ODEs, and MaBoSS,53 a 
tool for continuous time Boolean modeling. 
 
The logic-based ODE approach deals with the conversion of logic functions that only accept 
binary inputs to continuous functions that replicate their behavior. By allowing continuous 
values for state and time, quantitative time course data can be matched. There are several 
approaches to build such ODEs,34,55 and we use here the one of Wittman and colleagues.34 
Because the number of variables and parameters for a given system is much smaller than 
ODE systems derived from a mechanistic (biochemical) description, logic-based ODE 
models can include a larger number of biological components. Therefore, logic-based ODEs 
are particularly useful when dealing with: 1) medium-scale network where only a qualitative 
biological knowledge of the system under investigation is available, which can be easily 
interpreted with the logic formalism, and 2) quantitative (and possibly time-course) data 
resulting from experiments which can be well described with the ODE formalism. The 
software CellNOpt 52 provides the necessary tools to transform a logic model into a logic-
based ODE model and find a set of good parameters by fitting the model to the available 
data. 
 
MaBoSS is a C++ software that simulates continuous time Markov processes on a Boolean 
network.53 In contrast to deterministic continuous approaches such as logic-based ODEs, 
this formalism handles the asynchronous updates of the states of the nodes in a stochastic 
way and generates a population of trajectories as sequences of Boolean states. Transition 
rates can be associated with each node, and probabilities of network states can be 
estimated given a set of initial probabilities (see Fig 4). The main result consists in the 
Boolean state distribution after reaching an asymptotic behavior, and the implicit time 
provided by sequences steps allows to consider transient dynamics. The size of the 
population of trajectories can be adapted to the scale of the network, under the control of 
probability errors, which makes MaBoSS useful even for very large networks. 
  
In the next section, we take the regulatory network built previously, with the logic gates 
already selected based on literature information, and we use some of the available 
experimental data to find the appropriate weights for an ODE version of the logic model. 
These weights will also be used as some of the transition rates of the continuous time 
Markov process model. 
 
Training with data  
The purpose of using data to train a network is to obtain a better representation of our 
system, since information available in the literature and databases may be incomplete, and 
specify a generic model to a particular biological system. For example, different cell types 
may share the same signaling networks but with some differences in their wiring, and this 
may not be reported in the literature. That way, networks can be refined to be cell line or 
context specific by comparing model simulations with experimental data and refining model 
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parameters until simulations are able to reproduce the measurements. This process is 
named model training and corresponds to solving an optimization problem where an 
objective function that captures how well the model can describe the data is minimized. This 
optimization can be performed automatically using different algorithms.  
 
The most useful data to train a model are measurements of the states of model variables 
under different conditions, if possible tracing their dynamic behavior. In networks, nodes 
typically represent proteins or complexes and a commonly used measurable proxy of their 
activation or deactivation are post-translational modifications such as phosphorylation. 
Perturbations of the system by stimulating the pathway with ligands and/or inhibiting the 
proteins with targeted drugs or antibodies, provide information about the dynamics, which is 
not available from static data. 
  
Protein phosphorylation upon perturbation is commonly measured using mass-spectrometry 
or antibody-based techniques. For a detailed description of the advantages and 
disadvantages of these techniques, we refer to Saez-Rodrigues et al.11 Briefly, with 
antibody-based techniques, only a maximum of few dozen phosphorylation sites can be 
measured at the same time. Additionally, antibodies are selected to be specific for a 
phosphosite, which implies making assumptions on which phosphorylation site represents 
the activity of each node. With mass-spectrometry techniques, this issue is overcome by the 
possibility of measuring thousands of phosphorylation sites at the same time. However, the 
application of mass-spectrometry to the investigation of dynamic signaling pathways has 
been so far limited by the relatively low number of experimental conditions, due to the 
expensive and laborious nature of this technology when compared with antibody-based 
techniques. Accordingly, modeling efforts with this type of data have been scarce,74 but this 
is likely to change in the close future with the rapid development of the technology.75  
 
In the data considered for our example60 the LNCaP prostate cancer cell line was perturbed 
with combinations of ligands (EGF, IGF1, IL6, TNF, DHT – in green in Fig 2) and kinase 
inhibitors targeting nodes in the network (PI3K, MEK, IKK, mTOR, p38 – in red in Fig 2) for a 
total of 44 different conditions. The study also included data from perturbation with 
Docetaxel, which we did not consider as little variation in the phosphoproteome was reported 
in Docetaxel condition as compared to controls. Docetaxel is known to target β-Tubulin 
which is related to the cytoskeleton and has no clear effect on our network of interest. 
However, it is known that cytotoxic treatments can also rewire cell signaling networks.76 
More measurements in docetaxel condition could allow to study cell signaling rewiring with 
logic models through network optimization. 
 
Data were measured at three time points (30 min, 4 hours and 24 hours) using an antibody-
based technique to measure key phosphosites of 8 proteins in the network (AKT, RPS6, 
GSK3, ERK, AKT, p38, JNK, HSP27, Stat3 – in blue in Fig 2). Since the antibody used for 
GSK3 measures an inhibitory site, the sign of the regulatory interactions to and from GSK3 
were inverted. We choose to consider only the first two time points (30 min and 4 hours) as 
signaling through phosphorylation changes works on a fast time scale (affecting a wide part 
of the cell in the order of minutes) and is expected to reach a semi-steady state within the 
first few hours. Considering a longer time scale might also require taking into account slower 
effects, such as transcription regulation, that would lead to changes in the levels of proteins 
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and thereby to a rewiring of the network. We use these data to train cell line and context-
specific logic model as detailed in the next paragraphs. 
 
Training the logic-based ODE model with CellNOpt  
First, the PKN is interpreted as a logic-based ODE as described in Wittmann et al.34 and 
implemented in the R package CellNOptR.52 The dynamic of each node is described by an 
ODE as function of its regulators. For example, for the rate of change of the variable 
representing AKT activity the corresponding ODE is: 
 

 
 
where parameter τAKT represents the life-time of the node AKT. When τAKT = 0, dAKT/dt will 
also be =0, meaning that AKT remains at the basal value, i.e. its initial condition. The 

transfer function f(PI3K, kPI3K → AKT) represents the regulation exerted by PI3K, and is a 

monotonically increasing sigmoid in the variable PI3K (in the range {0,1}). The increase rate 
depends on the parameter kPI3K → AKT defining the strength of the regulatory interaction. When 

kPI3K → AKT=0 the dynamic of AKT is independent from PI3K.20  

 
Second, some of the nodes and edges in the logic model are not identifiable (i.e. 
corresponding parameters cannot be precisely estimated) based on the available 
experimental data and are automatically compressed, as described in Saez-Rodriguez et 
al.73 and implemented in CellNOptR52, in order to reduce the size of the model. These 
include the so-called non-controllable elements which are the ones that are not affected by 
any of the perturbed or measured species (e.g. the node “Stress” and its regulation to Rac) 

and the non-observable elements which are the ones downstream of all the measured or 
perturbed nodes (e.g. the node “Caspase8” and its regulation by TNFR).  
 
Third, data are stored using the MIDAS format77 (see Supplementary Materials) and then 
normalized between 0 and 1 to be in the same range of model simulations. Here, the 
normalization is performed separately for each measured species (different antibodies can 
have different affinities and corresponding data should therefore in general be normalized 
separately), by computing the log2 of the fold change of each perturbed condition with 
respect to the basal (unperturbed) state, and then linearly scaling the resulting values 
between 0 and 1 with 0.5 corresponding to the basal state (i.e., the 0 in the log2 fold 
change). In this way, all initial conditions are set to 0.5 (which is the basal state, or the state 
at time 0) and data at time 30 min and 4 hours can remain at the unperturbed state or show 
an increased or a decreased activity. More complex normalization procedures, involving 
saturation effects are implemented in CellNOptR and can be used, for example, in case of 
strong outliers in the data which would otherwise mask smaller effects.  
 
Fourth, the model is trained to the experimental data by looking for the parameter set which 
minimizes the discrepancy between model simulation and experimental data in terms of sum 
of squares of the difference between measured and simulated data (namely RSS, residual 
sum of squares). We assume that the wave of activation of signaling pathways upon 
stimulation reaches semi-steady state within the first few hours. Hence, an additional term 
(SSpenalty) is included to penalize simulations that do not reach steady-state within the time 
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range observed in the experimental data. The resulting optimized cost function (Q) can be 
schematically written as: 
 

 
 
This optimization problem (code available as Supplementary Materials) is solved using a 
global population-based optimization method based on enhanced scatter search, as  
implemented in the MEIGO software.78 As the optimization problem is non-convex, we 
solved the problem 10 times with different initial random guesses for the parameter values in 
order to further reduce our chances of ending the solution process in a bad local optimum 
(the local minima reached were actually very similar; coefficient of variation across the 10 
runs = 0.009).  
 
Fifth, we consider as the best model the one that better fits the experimental data in terms of 
minimum RSS across the 10 runs (Fig 3A) and verify that experimental data are well 
described (Fig 3B) (best model is available as Supplementary Materials). If the fit is not 
good, the initial PKN has to be refined as there might be missing interactions that are 
supported by the experimental data. This refinement can be performed with a revision of 
information from literature or databases, or using a combination of data-driven approaches.79 
After refinement of the PKN, model training must be repeated. In our case, the fit is good, as 
shown in Fig 3 B-C, where measured values are plotted against model simulations showing 
a good agreement for most of the measured conditions. Importantly, the model is able to 
represent in the simulations most of the conditions where data show a strong increase or 
decrease with respect to the basal value (i.e., 0.5).  
 
Additionally, we performed bootstrapping to assess the variability of the optimal model when 
the optimization is repeated (300 times) using for training the data resampled with 
replacement. In order to assess the statistical significance of the trained models, we also 
repeated the optimization in two types of randomized conditions: 1. data randomization (data 
shuffling across all time points, measured species and conditions), while keeping as scaffold 
the network derived from prior knowledge (repeated 300 times), 2. network randomization 
(using BiRewire80 to preserve network properties), while maintaining for training the 
measured data (repeated 100 times). As shown in Fig 3D, both randomizations showed a 
significant (p-values, one-sided t-test < 10-26) decrease in performance when compared to 
the bootstrapped distribution or to the best model, regardless of the metric used for 
comparison (mean squared error, MSE=RSS/N with N size of the training data; coefficient of 
determination, COD=1-SSres/SStot, where SSres is the residual sum of squares and SStot is 
the total sum of squares; Pearson Correlation, r). Thus these results prove that experimental 
data and the prior knowledge network are indeed informative and that our best model 
performs significantly better than random. The results of bootstrap analysis can also be used 
to assess the variability of the optimized parameters, highlighting which parameters or parts 
of the network are not well constrained, and possibly suggesting new targeted experiments 
which would better constrain the problem. Other approaches to address this problem consist 
in the use of regularization techniques to induce sparsity of the network, thus improving the 
identifiability of essential parameters.20 
 
After assessing the quality of our optimized model, we can use it for further analyses. One 
thing we observe is that IGF1-R, TNFR and IKK are associated with null τ parameters, which 
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means that they become independent from their regulator activities. The system therefore 
does not depend on the inputs IGF-1 and TNFa. Moreover, IL6-R is associated with a very 
small value for τIL6-R, suggesting that the dynamics of the system will predominantly depend 
on pathways activated by EGF. 
 
Simulation of a logical model in different conditions  
We have just shown how it is possible to use experimental data to train and refine our PKN 
modeled using logic-based ODEs. Some nodes and interactions, however, were omitted 
because no data was available to determine their underlying parameters. In this section, we 
will use continuous time Markov processes on a Boolean network to predict the effect of 
perturbations in a semi-quantitative manner, including those that we could not include in the 
logic-based ODE model. In particular, we will focus on the probability of survival that can be 
predicted and compared to experimental observations.  
 
We use the software MaBoSS53 to compute time trajectories in this graph: continuous time 
Markov processes generate a population of sequences (1000 in this case) of asynchronous 
transitions between states of the system. Such stochastic simulations can exploit continuous 
values in addition to the Boolean formalism: the proportion of trajectories found in a state 
represents the probability of reaching this state, and converges toward an asymptotic value. 
Initial probabilities of inputs (values between 0 and 1) represent environmental conditions 
and ligand treatments. The relative probability needed to reach the activated output node 
“Survival” in a perturbed condition compared to the unperturbed condition can be related to 

the relative proportion of surviving cells after treatment compared to the control experiment.  
 
Moreover, as previously mentioned, MaBoSS allows us to associate transition rates with 
each variable activation or inactivation. Although we keep the inactivation transition rates to 
the default value of 1, we can assign the values given by the parameters τ obtained in the 
optimized logic-based ODE model to the transition rates associated with node activations. 
Interactions associated with a null strength, an extreme situation, can be removed from the 
model: it is the case for the activation of JNK by Rac and the activation of AR by AKT whose 
strengths are close to 0 (kRac → JNK=6.7e-05, kAKT → AR=8.4e-04). Finally, treatment with 

targeted inhibitors can be encoded as alterations of the model variables. In the next section, 
these alterations will be refined to take into account dose-response. 
 
To validate the model, we first aim at verifying the main experimental observations reported 
in Lescarbeau and Kaplan60 on the global behaviors of LNCaP cells across the different 
treatments conditions,60 indicated on the first row of Table 1. For this purpose, the model is 
simulated until an asymptotic state is reached. Initial states are random for all nodes, 
including inputs, with the exception of “Stress” which is not related to the treatments and is 

therefore kept at the value of 0. We introduce several perturbations to the model to 
reproduce the effect of drug treatments. These simulations are explained below. Fig 4 
details the simulation outputs for the unperturbed model (control condition) and the final 
survival probabilities in different conditions are summarized in Table 1. MaBoSS also 
computes an error associated with each probability, which remains smaller than 0.016 in 
each condition, showing that the differences between results in different conditions are 
statistically significant. Detailed simulations with probability errors are given in 
Supplementary Materials. 
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Androgen treatment with DHT was experimentally shown to cause a 38% increase in 
survival as compared to the control condition. This survival advantage was essentially 
abrogated when treated in combination with the PI3K inhibitor: the slightly decreased 
survival caused by PI3K inhibitor treatment was only increased by 25% with the addition of 
DHT. To show that the model is able to reproduce experimental results, we run simulations 
with an initial probability of 0.5 for the control, or 1 for the DHT input, and with or without an 
inhibition of PI3K. Initial values for other inputs are kept random. We compare the survival 
probability when the system has reached asymptotic solutions. We find a survival probability 
of 0.68 for the control condition (unperturbed trained model, random values for inputs 
including DHT), and an increase of probability in the condition DHT=1 (probability of survival 
is 0.87). We also observe a decrease of survival probability with respect to control when the 
model is perturbed with a complete inhibition of PI3K (survival probability: 0.33). Consistent 
with experimental observations, the survival probability in this condition is slightly increased 
with the addition of DHT (survival probability: 0.63), but is not reestablished to the control 
value. 
 
Interestingly, performing the same simulations on the Boolean model derived from the prior 
knowledge network shows no survival advantage induced by DHT on the untrained model, 
suggesting that there is an advantage in training the model to experimental data. 
The decreased survival probability for the trained model with inhibited PI3K in the condition 
of random DHT (the probability of survival is 0.33) compared to the condition DHT=1 (the 
probability of survival is 0.63) suggests a greater dependency of androgen-independent 
survival to the PI3K pathway rather than the MAPK pathway in the trained model. This can 
be verified by simulating the model with inhibited PI3K in the condition DHT=0. In that case 
the survival probability is very low (probability 0.06). Therefore, androgen-independent 
survival is dependent on PI3K pathway, while androgen-mediated growth also relies on the 
MAPK pathway. 
 
The experimentally observed effect of mTOR inhibitor treatment on survival was lower than 
that of PI3K inhibitor treatment, with a relative increase of cell survival between these two 
conditions of 31%. Our simulations with the trained model reproduce this trend, with a higher 
survival probability (0.53) predicted when the model is perturbed with a mTOR knock-out. In 
contrast, inhibiting PI3K or mTOR has the same effect on survival probability with the 
untrained model. 
 
Finally, the relative survival measured in experiments in androgen depleted conditions was 
reported to represent more than 50% of the one in normal growth media condition (control). 
Here again, simulating the model with DHT=0 confirms this observation with a predicted 
survival probability of 0.53, 76% of the probability in the unperturbed model. 
 
We have seen in the previous section that although the PKN encompasses the different 
pathways discussed in the work by Lescarbeau and Kaplan,60 training the model on the 
experimental data points toward a predominant role for the pathways activated by EGFR. 
This finding is validated by the stochastic simulations of the trained model. Indeed, 
simulations in different conditions predict survival probabilities that reproduce the main 
dynamical observations reported on LNCaP cells.60 
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Simulations of drug treatments and application to patient data  

Beyond the validation of mechanistic hypotheses, the model can be used to predict the 
effect of new inhibitions, which can suggest new drug treatments or combinations of drugs. 
The simulation of partial inhibitions that can be related to dose-response data can be 
encoded with the introduction of new nodes inhibiting directly possible drug targets in the 
model. For instance, the inhibition of PI3K can be enforced with a new input node 
“Anti_PI3K” which inhibits PI3K. The probability chosen for “Anti_PI3K” represents the 

strength of inhibition on PI3K. It allows us to assess the effect of low concentrations of 
inhibitors. 
 
We compare the survival probability predicted by simulations of the model with random input 
values when inhibiting each node of the model separately, with three levels of inhibition: 0.1, 
0.5 and 1 (full inhibition). The results are displayed on Fig 5. As expected, the inhibitions of 
MYC, PI3K or AKT have the most effect on survival for each inhibition level.  
 
We note that the inhibition of p38 is predicted to increase survival, consistent with 
experimental observations.60,81,82 However, the observation that Erk and Stat3 have an 
important role in LNCaP cells60 is not verified, as it has no influence on survival in the model. 
This suggests that the network should be further extended with a description of the effect of 
Stat3 on downstream proteins in order to account for this experimental observation. 
 
Beyond single drug predictions, predicting efficacy and specificity of drug treatments and 
drug combinations within specific tumor contexts and for individual patients is a major 
challenge, especially for diseases characterized by a high heterogeneity, such as prostate 
cancer.83 Multiple perturbations are easily introduced in logic models and can address this 
problem. 
 
As a possible first step in this direction, we suggest to systematically compare the effect 
between single and double perturbations.84 A drug-drug interaction denoting synergy or 
antagonism is found when the phenotypic quantitative effect of a double perturbation 
deviates from the effect predicted by the simple linear additive combination of single 
perturbations, and can suggest candidate targets for drug combinations. Each interaction is 
thus associated with a score: 

  
where  and  are phenotype  (here survival) fitness values (asymptotic probabilities) of 

single perturbations,  is the phenotype fitness of the double perturbation, and  is the 
phenotype fitness of the unperturbed model.  
The synergistic or antagonistic interactions associated with the highest score (absolute value 
higher than 2.3), are represented as a graph on Fig 6, and the table of synergistic scores is 
available in Supplementary Materials. 
 

Blue interactions denote a negative effect on survival (synergy) and predict efficient drug 
combinations, while antagonistic interactions (in green) have a positive effect on survival and 
show possible resistance. 
The intensity of the color is proportional to the score value. Non-symmetric interactions are 
represented by an arrow. In that case, the source node is responsible for the predominant 
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effect: it is the most efficient single treatment in synergistic interactions, and it confers the 
resistance in antagonistic interactions. 
 
Computational predictions of drug-drug interactions is especially useful for larger networks, 
since they can be used to inform high-throughput screenings thereby decreasing the scope 
and hence cost of experiments.  
Here, the graph contains several synergistic interactions between loss-of-function 
perturbations on the Ras and PI3K pathways, which characterize their parallel influence on 
the survival probability and predict that combinations of drugs targeting both pathways have 
a major impact on cell survival. 
 
Moreover, such interactions can also be interpreted as genetic interactions between 
mutations (knock-out or over-expression), associated with epistasis scores. Genetic 
interactions provide insights into relationships between different biological functions, and 
highlight mutation properties such as sensitivity or resistance predicted by the model. Patient 
genetic profiles can then be exploited to predict resistance mechanisms and identify 
personalized treatments. For example, Fig 6 shows that an activating mutation of RAS 
induces a sensitivity to p53 targeting. In contrast, a gain-of-function mutation of AKT 
provides a resistance to PI3K-targeted treatment. 
 
Conclusion 
In this tutorial, we outline a methodology using logic modeling to better understand and 
predict the way a system responds to different perturbations. The workflow we present is 
generic and flexible enough to be adapted to many different other cases. Once we have 
chosen a system to model, the first step is to build a network based on what is known about 
the system (PKN). Here, public databases and resources like Omnipath help to gather and 
relate known information. When appropriate experimental data are available, they can be 
used to refine the PKN. Tools like CellNOpt help us in this process. Finally, with a functional 
model, using tools like MaBoSS, we can simulate different cellular and experimental 
conditions and predict the effect of pharmacological interventions.  
In all these processes, the construction of the network is crucial in accurately predicting drug 
effects. 
 
Although not all the tools used here work under the same programming environment, the 
use of standard formats, in particular SBML-qual,85 facilitate the  communication between 
them. To get the most out of Omnipath, the use of its related Pypath python package is 
recommended. While the advanced features of CellNOpt are available in R (a wrapper for 
python is also available), MaBoSS is a command line software and Cytoscape is mainly a 
standalone application.  
  
To help with finding the correct network structures, experimental data coming from 
technology such as antibody-based arrays and/or mass spectrometry is of invaluable help. 
But having access to these data is not always feasible. Both of these approaches require a 
high amount of cell material, which is not a problem when dealing with cell lines or patient 
material available in large amount (e.g. blood samples), but becomes a limiting factor when 
only a small amount of cells are available such as in the case of biopsies or resections from 
solid tumors. Approaches for functional ex vivo screening of patient samples are currently 
being developed and recent works focus in particular on the investigation of new fast 
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reporters86 and microfluidic-based technologies that exploit small volumes to test a large 
number of drug combinations.87 These methods are so far limited to the investigation of the 
activity of only one node in the network. On the other hand, single time point omics data 
measured on patient samples provide constraints on many nodes for model training, with 
mutations integrated as perturbations and expression data as initial conditions or steady 
state goals. 
 

While new technology is being developed to predict drug response in patients, cell lines and 
in silico systems are being successfully exploited to show how differential responses to 
drugs can derive from a different wiring of the signaling network and how systems 
pharmacology approaches provide useful tools for personalized medicine. In particular, a 
number of recent studies have successfully studied logic models to investigate signaling 
pathways and suggest effective drug combinations which were then validated in vitro and/or 
in vivo.18,20,46,48 Mathematical models calibrated using cell lines have also been proved 
effective in predicting clinical patient outcomes.88 
 

Overall, network-based models allow us to formalize this reasoning into a mechanistic 
computational model, and infer conclusions about drug’s effects from quantitative 

simulations in a principled manner. For this purpose, logic modeling is a useful approach to 
capture biological mechanisms in a simplified manner.23 While this simplicity can render 
models unable to accurately describe important molecular mechanisms,89 it allows us to 
model larger signaling networks than more detailed approaches such as reaction-based 
differential equations. Due to this scalability, we expect logic modeling to become an 
increasingly used approach in systems pharmacology to gain valuable insights, powered by 
new developments in data acquisition techniques. 
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Supplementary materials 

Supplementary materials can be found on GitHub at 
https://github.com/saezlab/CPT_QSPtutorial 
 
Supplementary files include: model files, codes for CellNOptR and for pypath, results of 
analyses (logic-based ODE parameters, MaBoSS simulations and genetic interactions), and 
a description of a step-by-step model extension using pypath. 
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Figure Legends 

 

Fig 1. Workflow suggested when applying logic modeling to the study of a biological question. In this 
tutorial we use Omnipath

51 for signaling database mining, CellNOpt
52 for model fitting, MaBoSS

53 for 
simulations and Cytoscape

54 for visualization and network analysis. Different steps of the pipeline 
include (1) selecting a system and a question of interest and building a first version of the network, (2) 
choosing a modeling formalism and improving the model with data and (3) analyzing the model, 
making predictions and comparing them to experimental data. The dashed arrow indicates a 
comparison between the results of the analysis and the experimental data. Dotted arrows represent 
feedback of the results into the modeling pipeline. Rounded boxes represent elements that can be 
considered part of the different types of the analysis. PKN: Prior Knowledge Network. 
 
Fig 2. A. Prior knowledge network (PKN) derived from public resources, including interactions 
connecting nodes which are measured (in blue) or perturbed (stimulated in green and inhibited in red) 
in the experimental data.60 The network was further expanded to include more components from the 
apoptotic pathway (p53, Caspase8 and Caspase 9) and Myc for the cell cycle activation and their 
regulation of Survival. Network layout is generated with Cytoscape.54 B. Examples of logic rules used 
to convert the network to a logic model. All other nodes in the model with more than one input edge 
are modeled with a simple OR gate. 
 
Fig 3. A. Optimized model with node and edge parameter values represented in grayscale. Dotted 
lines correspond to compressed nodes and edges which are removed before training the model, as 
not identifiable from the experimental data. B. Top panels show four examples of fit of optimal model 
simulation to experimental values. For each measured phosphoprotein in each experimental 
condition, colour scale is used to represent the mean squared error (MSE). C. Scatter plot of 
simulations using the optimal model with respect to experimental data, showing good correlation. D. 
Comparison of best model with the results of model optimization after bootstrap (repeated 300 times), 
network randomization (100 times) and data randomization (300 times) using different scoring 
metrics, i.e. MSE, coefficient of determination (COD), Pearson correlation (r). 
 
Fig 4. Outputs of MaBoSS simulations with random initial states. A. Time trajectories of unperturbed 
model (WT) or model treated with PI3K inhibitor (iPI3K) and mTOR inhibitor (imTOR), with arbitrary 
time units. B. Barplot of final state distribution for the unperturbed model. The probability of 7 final 
model states are shown (Caspase 8-Myc state means that the two variables are present, all the 
others are 0). 
 
Fig 5. Probability of the node “Survival” predicted by the model for different node inhibitions. Survival 

probability in the control case (unperturbed model) is marked with a grey line. 
 
Fig 6. Network of synergistic and antagonistic interactions computed for the trained model, with 
random initial conditions (except for Stress=0), with Survival as quantitative phenotype. Red triangles 
represent gain of function alterations and green glyphs represent loss of function alterations. Edges 
between two alterations show that a combined alteration has a drastic decreasing (in blue) or 
increasing (in green) effect on the Survival probability when compared to single alterations.  
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Table 1. Comparison between experimental data and model simulations for both untrained and 
trained model.  

 Control DHT=1 
DHT=1 

and PI3Ki PI3Ki mTORi 

Androgen 

depleted 

(DHT=0) 
DHT=0 and 

PI3Ki 

Experimental 

observations 
1.00 1.38 0.75 0.60 0.78 0.50 NA 

Survival 

probability, 

untrained model 

0.86 0.86 0.61 0.61 0.59 0.74 0.59 

Survival 

probability, trained 

model 

0.68 0.86 0.63 0.33 0.53 0.53 0.06 

First row: proportion of surviving cells measured in the data60 (NA: not available). Second row: 
Survival probabilities for simulations in different conditions, with random inputs, with the untrained 
model (model derived from PKN). Third row: Survival probabilities for the same simulations with the 
trained model. 
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