Inferring network statistics from high-dimensional
undersampled time-course data
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1. Motivation

4. Gaussian likelihood sub-network

7. Simulation results

Reconstructing networks from current high-dimensional datasets is a
notoriously ill-posed problem. For this reason we want to focus on
more general statistical properties, as finding the degree distribution
or sparsity.

We consider sub-systems of continuously valued random variables
embedded in a larger hidden system. In this scenario, also referred to
as undersampling, the dynamics of the sub-systems are influenced by
the hidden system. With increasing number of connections between
sub-system and hidden system these effects can be treated statisti-
cally. Analysing these effects then allows for inference of statistical
properties of the hidden system.

2. Setting

An observed network (red) with couplings between nodes K;;. Artificial couplings
are mediated through a hidden network (grey) which we will model by mean-field

coloured noise B(t, t").

Consider a dynamic network of random variables with continuous de-
grees of freedom. We now assume that only some parts of the net-
work have been observed. This defines a sub-network and a bulk.
We consider dynamics described by Langevin dynamics:

X = f(x)+¢E.

X is a vector of the continuous variables of interest, which for example
can describe a concentration. These are then coupled by f(x) and
driven by external gaussian noise & which is assumed to be delta-
correlated.
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Only a fraction of nodes can actually be observed(blue, red). The others are

hidden (grey).

Gaussian integral can then be solved casting the likelihood into a sim-

ple analytic form
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*S =06X,6X] and |T| as the number of observed time points.

* 5X g = X (t+A)—x,(t)+AAx(t)—Amy(t)—A D, xp(£)Kpq

» 9,m,(t) = —Amgy(t) + (K*)x,(t) + O((K)?)

Closed system of equations entirely determined by data and network

statistics!

5. Mean-field noise

3. Second order mean-field approximation

Mean-field approximation for dynamical equations with continuous de-
grees of freedom subject to stochastic noise.

* Probability of this system realising a specific trajectory as a a so-
called Martin-Siggia-Rose-Janssen-De Dominicis (MSRJD) func-
tional integral

p(x) = (2m) "2 f [ Jar(oer 4y,

with the action

F[X,X] = Z (X(£)2{X(t) = froca(x(t)) — afin(x(t)) — S(1)}.

t

* Expanding w.r.t. a and simultaneously fixing the moments

,LL(t) — (xi(t»a

a(t) = (x;(0)),
Ci(t,t) = (x;()x;(t)),
Ri(t,t") = —i{x;(t)x;(t)),
B;(t, t") = —{x,()%;(t")) 4,

by extremizing with respect to the appropriate constraints.
yields an effective gaussian and local approximation.

This

For a more in-depth discussion we refer the reader to [1, 2].

Model the hidden network as Erdos-Renyi graph (edge inclusion with

probability p) with gaussian couplings and zero mean.

* B(t, t") only depends on the networks spectral density o (k).

* Spectral density can then be expressed through a semi-circle law

[3]

=
p(k)=1" 77 if |k SZ\/?.
LO else

with a sparsity parameter y = Np(1 —p)o=.

At[A]

Comparison of mean-field coloured noise with coloured noise averaged from the
data for different parameters (i) : [A =1,y =0.16], (ii) : [A =1,y = 0.09],
(iii) : [A =2,y =0.09].

6. MLE network

To make the mean-field approximation of close to infinite neighbours
viable for sparse graphs, we have to consider large undersampled

sub-systems. We thus have to first infer the sub-network first.
e Assume local relaxation rates A are known.

» Maximisation of likelihood yields MLE K:

D, :AZB(t, t)Q50/i(t, ")
t,t/
1
Q) =5 2 Bt )Xy (0)d; () + X5 (£)dox,(1)]
t,t/

*Q; ;(t,t") is the empirical covariance matrix in space and time

Q =x(t)x(t")" and dx;(t) = x;(t + A) —x;(t) + Adx;(t).

* Note that for insufficient data a Laplace prior distribution still yields

a maximum a-posteriori.

Fully observed networks

» Coloured noise is absent (B(t,t") = 6, /) we can, by comparing

with the original linear model lower-bound the error

||IA<] —Kj|| = VAE(L),

* We recover the expected simple regression model of the naive ap-

proach.
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Comparison of naive MLE (blue) and our method (red) with the true graph, for 40
observed nodes in contact with 1000 hidden nodes. The graph is generated as an
Erdos-Renyi graph with sparsity parameter y = 0.09. We used 2000 trajectories

each consisting of 10 time points with time steps A = .1/2..
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AUC for edge detection improves for conducted experiments (40 observed 400
hidden nodes).

022
0.07 1
02r
0.065 [

0.06 | 018

9 o
03 0.05
E 0.045 -

0.04 -

0.16 -

0.14

0121

0.1

0.035

0.08 -
0.03

0.06 1

0.025¢

002 1 1 | | | | 1 | 004 1 1 1 1 1 1 1 1 1 I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 20 40 60 80 100 120 140 160 180 200

p M
Setting: 40 observed nodes in contact with 160 hidden nodes. Naive MLE(blue)
and our method(red). Left: MSE for different sparsities. We used 400 trajectories
each consisting of 10 time points with time steps A = .1/X Right:MSE for different
number of samples for p = 0.6. The bias of the bulk can only partly be removed

using our method.

8. Towards inference of network statistics

It is well-known that real networks are in general only badly described
by Erdos-Renyi graphs[3]. To infer the true network statistics it is
therefore necessary to use more sophisticated models for the bulk
network. We are aiming at finding a general sampling scheme em-
ploying our sub-network likelihood over general statistical graph mod-
els and then identifying the best fit by scoring.
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