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1. Motivation
Reconstructing networks from current high-dimensional datasets is a
notoriously ill-posed problem. For this reason we want to focus on
more general statistical properties, as finding the degree distribution
or sparsity.

We consider sub-systems of continuously valued random variables
embedded in a larger hidden system. In this scenario, also referred to
as undersampling, the dynamics of the sub-systems are influenced by
the hidden system. With increasing number of connections between
sub-system and hidden system these effects can be treated statisti-
cally. Analysing these effects then allows for inference of statistical
properties of the hidden system.

2. Setting
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An observed network (red) with couplings between nodes Ki j. Artificial couplings

are mediated through a hidden network (grey) which we will model by mean-field

coloured noise B(t, t ′).

Consider a dynamic network of random variables with continuous de-
grees of freedom. We now assume that only some parts of the net-
work have been observed. This defines a sub-network and a bulk.
We consider dynamics described by Langevin dynamics:

ẋ= f (x) + ξ.

x is a vector of the continuous variables of interest, which for example
can describe a concentration. These are then coupled by f (x) and
driven by external gaussian noise ξ which is assumed to be delta-
correlated.
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Only a fraction of nodes can actually be observed(blue, red). The others are

hidden (grey).

3. Second order mean-field approximation
Mean-field approximation for dynamical equations with continuous de-
grees of freedom subject to stochastic noise.

• Probability of this system realising a specific trajectory as a a so-
called Martin-Siggia-Rose-Janssen-De Dominicis (MSRJD) func-
tional integral

p(x) = (2π)−n/2

∫ ∞

−∞

∏

t

dx̂(t)〈eH [x,x̂]〉ξ,

with the action

H [x, x̂] =
∑

t

ix̂(t)D {ẋ(t)− flocal(x(t))−α fint(x(t))− ξ(t)} .

• Expanding w.r.t. α and simultaneously fixing the moments

µ(t) = 〈x i(t)〉α
µ̂(t) = 〈 x̂ i(t)〉α

Ci(t, t ′) = 〈x i(t)x i(t
′)〉α

Ri(t, t ′) = −i〈 x̂ i(t)x i(t
′)〉α

Bi(t, t ′) = −〈 x̂ i(t) x̂ i(t
′)〉α,

by extremizing with respect to the appropriate constraints. This
yields an effective gaussian and local approximation.

For a more in-depth discussion we refer the reader to [1, 2].

4. Gaussian likelihood sub-network

Gaussian integral can then be solved casting the likelihood into a sim-
ple analytic form

P(~xa|B, K) =
(2π)|T |/2

|B|1/2
exp[−

1

2(∆Σ)2
Tr{SB}],

• S = δ~xaδ~x
T
a and |T | as the number of observed time points.

• δ~xa = xa(t+∆)−xa(t)+∆λxa(t)−∆ma(t)−∆
∑

b xb(t)Kba

• ∂tma(t) = −λma(t) + 〈K2〉xa(t) +O (〈K〉2)

Closed system of equations entirely determined by data and network
statistics!

5. Mean-field noise

Model the hidden network as Erdos-Renyi graph (edge inclusion with
probability p) with gaussian couplings and zero mean.

• B(t, t ′) only depends on the networks spectral density ρ(k).

• Spectral density can then be expressed through a semi-circle law
[3]

ρ(k) =

(p
4−k2/γ
p
γ if |k| ≤ 2

p
γ

0 else
.

with a sparsity parameter γ= N p(1− p)σ2.
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Comparison of mean-field coloured noise with coloured noise averaged from the

data for different parameters (i) : [λ= 1,γ= 0.16], (ii) : [λ= 1,γ= 0.09],
(iii) : [λ= 2,γ= 0.09].

6. MLE network

To make the mean-field approximation of close to infinite neighbours
viable for sparse graphs, we have to consider large undersampled
sub-systems. We thus have to first infer the sub-network first.

• Assume local relaxation rates λ are known.

• Maximisation of likelihood yields MLE K̂ :

K̂ j =D−1
j q j.

Dj =∆
∑

t,t′
B(t, t ′)Ω•/ j,•/ j(t, t ′)

q j =
1
2

∑

t,t′
B(t, t ′)[x•/ j(t)d x j(t

′) + x•/ j(t
′)d x j(t)]

•Ωi, j(t, t ′) is the empirical covariance matrix in space and time
Ω= x(t)x(t ′)T and d x j(t) = x j(t +∆)− x j(t) +∆λx j(t).

• Note that for insufficient data a Laplace prior distribution still yields
a maximum a-posteriori.

Fully observed networks

• Coloured noise is absent (B(t, t ′) = δt,t′) we can, by comparing
with the original linear model lower-bound the error

||K̂ j −K j||=
p
∆ξ(t),

• We recover the expected simple regression model of the naive ap-
proach.

7. Simulation results
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Comparison of naive MLE (blue) and our method (red) with the true graph, for 40

observed nodes in contact with 1000 hidden nodes. The graph is generated as an

Erdos-Renyi graph with sparsity parameter γ= 0.09. We used 2000 trajectories

each consisting of 10 time points with time steps∆= .1/Σ.
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AUC for edge detection improves for conducted experiments (40 observed 400

hidden nodes).
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Setting: 40 observed nodes in contact with 160 hidden nodes. Naive MLE(blue)

and our method(red). Left: MSE for different sparsities. We used 400 trajectories

each consisting of 10 time points with time steps∆= .1/Σ Right:MSE for different

number of samples for p = 0.6. The bias of the bulk can only partly be removed

using our method.

8. Towards inference of network statistics
It is well-known that real networks are in general only badly described
by Erdos-Renyi graphs[3]. To infer the true network statistics it is
therefore necessary to use more sophisticated models for the bulk
network. We are aiming at finding a general sampling scheme em-
ploying our sub-network likelihood over general statistical graph mod-
els and then identifying the best fit by scoring.
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