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1. Introduction

20272 1r(n)

: 2 2
with o = PT(27)

Vp; 0“: magnitude parameter.

Time-course data observed under the perturbation of biolog- Example:

ical systems contain rich information about the salient struc-
ture of interconnectivity among the entities of the network

underlying the system.

sparse structure search.

Challenges: few noisy high-dimensional measurements at
non-uniformly-spaced intervals; missing data; and compu-
tational complexity of inference, parameter estimation, and

J

2. Approach

Linear Time-invariant Stochastic Differential Equa-

tion Model

Consider an undirected network of P entities described by ad-
jacency matrix A, with trajectories x(t), ..., xp(t):

dx(t)

d™x(t) 3 d™ x(t)

n—1

dtn den—1

+...+B,

-x(6) = [x1(8),...,xp(D)]".

-2(t) = [2,(t),...,2,(t)]", mutually independent zero-mean

o

-B,, = [bgfﬁ)], n=0,1,...,n—1; k,{ =1,...,P: coupling

white Gaussian noise processes with powers {a

dt

Z,

+ Byx (t) = 2(t)

matrices. Assumption: supp(B,/) = supp(A+1) Vn'.

State-space Representation:

dx(t)
dt

Multivariate Gaussian Process Covariance Functions
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For decoupled entities, Matérn covariance function:
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where A = ~—; v = n— 3, [: smoothness and length-scale

parameters, respectively. Consider then the following design:
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Auto/Cross-Covariance Functions
(time lag 7 in seconds)
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Weighted Interactions

Consider Q = [w,, ] that is symmetric, strictly diagonally dom-
inant, with w;, = 1 if £ = k, and O if entities k, £ are discon-
nected.

—> If the system is stable under B, it is also stable under
Bo=Bo(Q®1,,,). The corresponding trajectories are then

described by

= z(t)

d"x(t) = d"x(t)
e > By —
n'=0
Discrete-time State-space Model
For measurement time t;, i =0,...,N —1, x; = x(t;).
Process Equation:

X1 = Fix; +q;

-k = eXP(BQAtHl): Aty =ty — t;.
- temporally independent process noise q; ~ A(0,Q);):

Atit T
Qi = f eXP[BQ(AtiH—T)]LZzLT eXP[BQ(AtiH_T)] dt
0
with 2, = 0'31 :
-xo ~ A(0,I1), where II, solves the continuous Lya-
punov equation of the continuous-time process model.

Measurement Equation:
y; =Hx; + ¢&;

where H selects {xp(tl-)} from x(t;), and {¢;} are i.i.d. mea-
surement noise, ~ A(0, 0?1 ), independent of process noise.

Structure Scoring
Structure candidates are scored according to their a posteriori
probability in terms of the conditional data likelihood:

P(}’o:N—1 |A,é) = H]iV:_OlJV(J’i;Hffi|i—1,HPi|i—1HT + CT?I)

where X;;_, and P;;,_; are discrete-time Kalman filter a
posteriori ith state mean and covariance matrices, respec-
tively, given the structure candidate A and the estimated (hy-
per)parameters ©.

Unknown (hyper)parameters © (interaction weights, noise
variances, and covariance function parameters) are estimated
jointly with the Kalman filter procedure in either a maximum-
likelihood or a maximum a posteriori sense.

Structure Search and Prior Network Information

- Greedy (local hill-climbing) structure search algorithm vari-

_, antsare used to find a locally optimal structure.

- The availability of a sparsity prior and/or a prior network
drawn from literature databases can help inform the choice

of initial structures, as well as guide the neighbor search.

3. Results and Discussion

Synthetic Experiment

- network size P =10

- stochastic differential equation degree n = 2

- smoothness parameter A = 5, magnitude parameter % = 1

- true network structure: 0.3-edge probability

- binary interactions

- measurement noise variance O'? — 10~

- greedy structure search algorithm with 0.3-edge probability
initialization
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