Fast Biological Network Reconstruction from High-dimensional Time-course Perturbation Data Using Sparse Multivariate Gaussian Processes

*Department of Electrical Engineering and [†]Department of Biology, Technische Universität Darmstadt, Germany

1. Introduction

Time-course data observed under the perturbation of biological systems contain rich information about the salient structure of interconnectivity among the entities of the network underlying the system.

with $\sigma_{\gamma}^2 = \frac{2\sigma^2 \sqrt{\pi} \lambda^{2n-1} \Gamma(n)}{P \Gamma(2\nu)} \forall p; \sigma^2$: magnitude parameter.

Example: 0 1 0 0 1 $1 \ 0 \ 1 \ 1 \ 1$

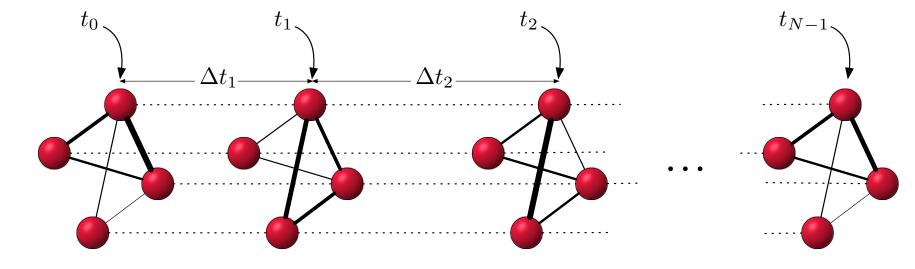
3. Results and Discussion

Synthetic Experiment

- network size P = 10

- stochastic differential equation degree n = 2

- smoothness parameter $\lambda = 5$, magnitude parameter $\sigma^2 = 1$



Challenges: few noisy high-dimensional measurements at non-uniformly-spaced intervals; missing data; and computational complexity of inference, parameter estimation, and sparse structure search.

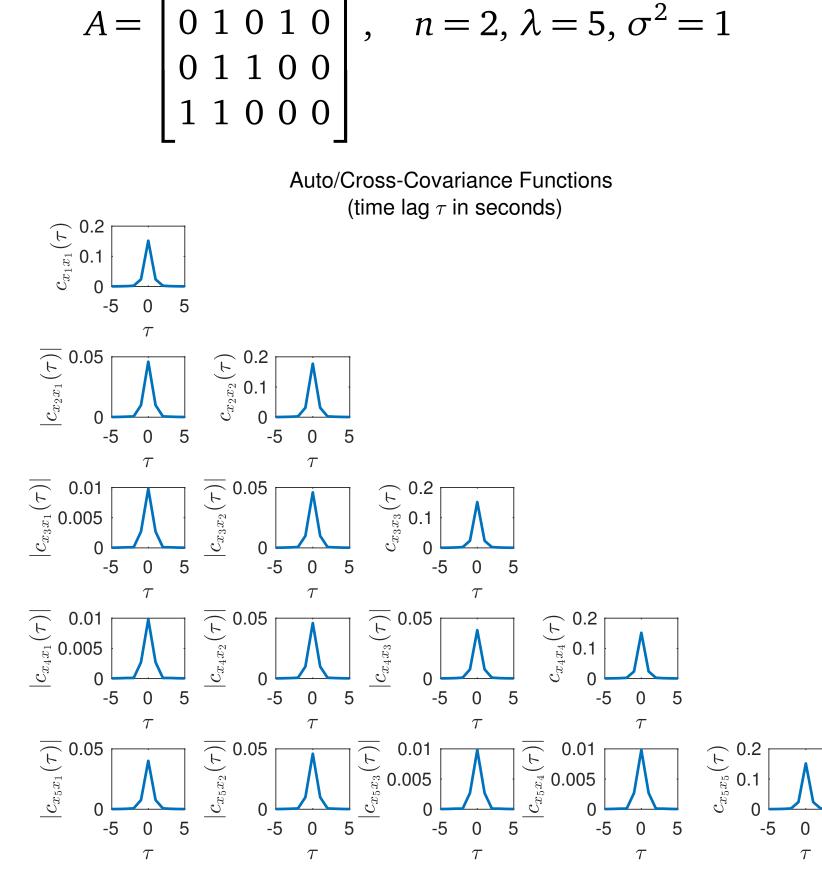
2. Approach

Linear Time-invariant Stochastic Differential Equation Model

Consider an undirected network of *P* entities described by adjacency matrix A, with trajectories $x_1(t), \ldots, x_p(t)$:

 $\frac{d^{n}x(t)}{dt^{n}} + B_{n-1}\frac{d^{n-1}x(t)}{dt^{n-1}} + \dots + B_{1}\frac{dx(t)}{dt} + B_{0}x(t) = z(t)$ $-\mathbf{x}(t) \triangleq [x_1(t), \ldots, x_p(t)]^T.$ $-\mathbf{z}(t) \triangleq [z_1(t), \dots, z_p(t)]^T$, mutually independent zero-mean white Gaussian noise processes with powers $\{\sigma_{z,p}^2\}$. $-B_{n'} = \left[b_{n'}^{(k\ell)} \right], n' = 0, 1, \dots, n-1; k, \ell = 1, \dots, P:$ coupling matrices. Assumption: $supp(B_{n'}) = supp(A+I) \forall n'$.

State-space Representation:



Weighted Interactions

Consider $\Omega = [w_{k\ell}]$ that is symmetric, strictly diagonally dominant, with $w_{k\ell} = 1$ if $\ell = k$, and 0 if entities k, ℓ are disconnected.

 \implies If the system is stable under \tilde{B} , it is also stable under $\tilde{B}_{\Omega} \triangleq \tilde{B} \odot (\Omega \otimes \mathbb{1}_{n \times n})$. The corresponding trajectories are then described by

 $\frac{d^n \mathbf{x}(t)}{dt^n} + \Omega \odot \sum_{n'=0}^{n-1} B_{n'} \frac{d^{n'} \mathbf{x}(t)}{dt^{n'}} = \mathbf{z}(t)$

TECHNISCHE

UNIVERSITÄT

DARMSTADT

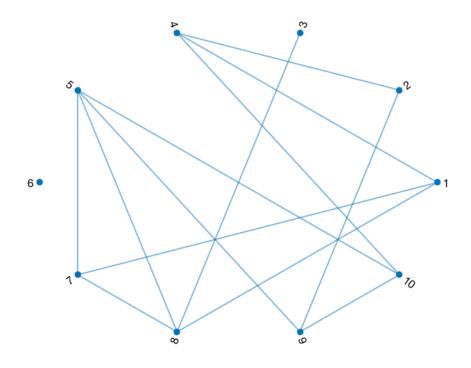
- true network structure: 0.3-edge probability

- binary interactions

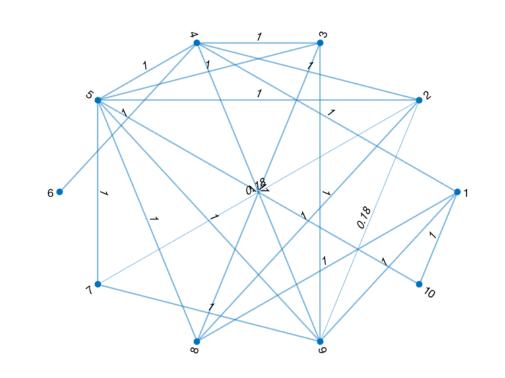
- measurement noise variance $\sigma_{\epsilon}^2 = 10^{-4}$

- greedy structure search algorithm with 0.3-edge probability initialization

True Network

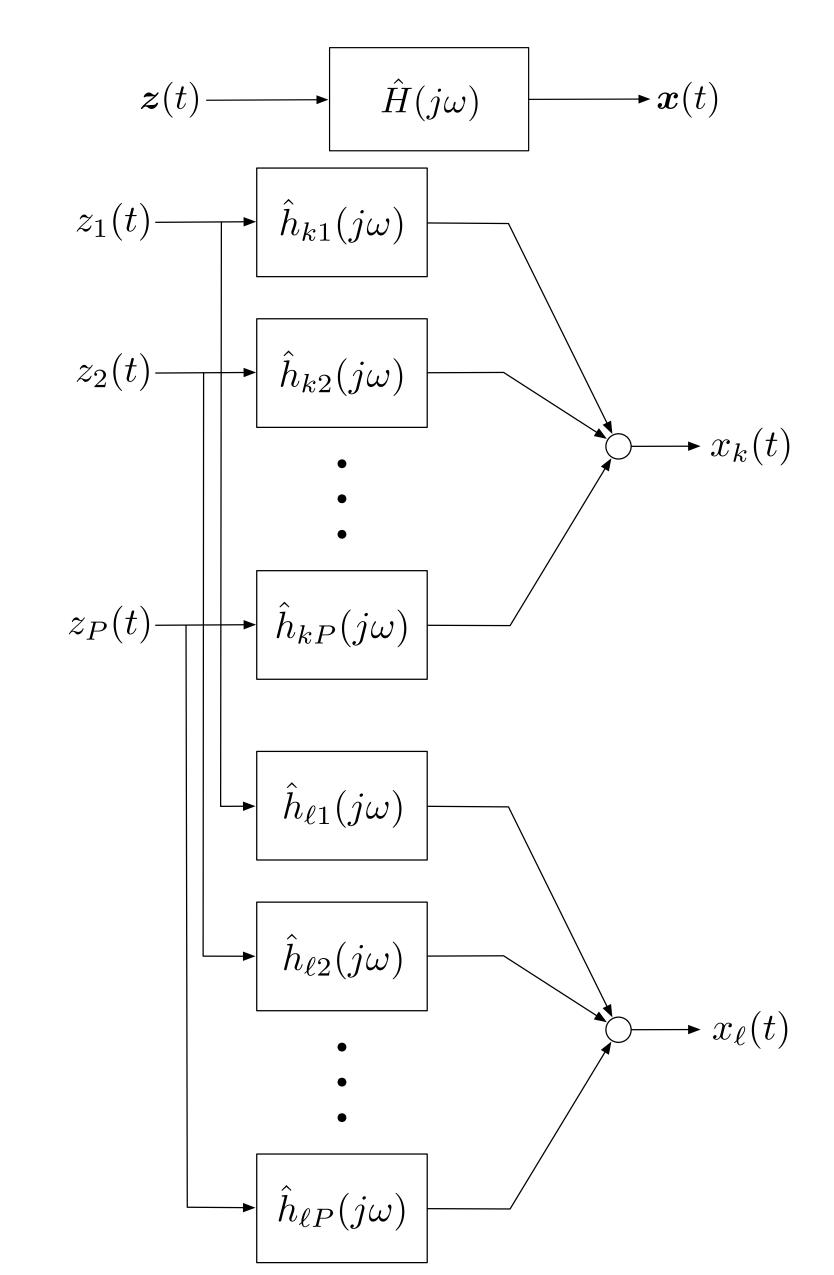


Inferred Weighted Network



$$\frac{d\tilde{\boldsymbol{x}}(t)}{dt} = \tilde{B}\tilde{\boldsymbol{x}}(t) + L\boldsymbol{z}(t)$$

Multivariate Gaussian Process Covariance Functions



Discrete-time State-space Model For measurement time t_i , i = 0, ..., N - 1, $x_i \equiv \tilde{x}(t_i)$. **Process Equation:**

 $\boldsymbol{x}_{i+1} = F_i \boldsymbol{x}_i + \boldsymbol{q}_i$

 $-F_{i} = \exp\left(\tilde{B}_{\Omega}\Delta t_{i+1}\right), \Delta t_{i+1} \triangleq t_{i+1} - t_{i}.$ - temporally independent process noise $q_i \sim \mathcal{N}(\mathbf{0}, Q_i)$: $Q_{i} = \int_{0}^{\Delta t_{i+1}} \exp \left[\tilde{B}_{\Omega} (\Delta t_{i+1} - \tau) \right] L \Sigma_{z} L^{T} \exp \left[\tilde{B}_{\Omega} (\Delta t_{i+1} - \tau) \right]^{T} d\tau$ with $\Sigma_z = \sigma_z^2 I$.

 $-x_0 \sim \mathcal{N}(0, \Pi_{\infty})$, where Π_{∞} solves the continuous Lyapunov equation of the continuous-time process model. **Measurement Equation:**

 $\mathbf{y}_i = H\mathbf{x}_i + \boldsymbol{\varepsilon}_i$

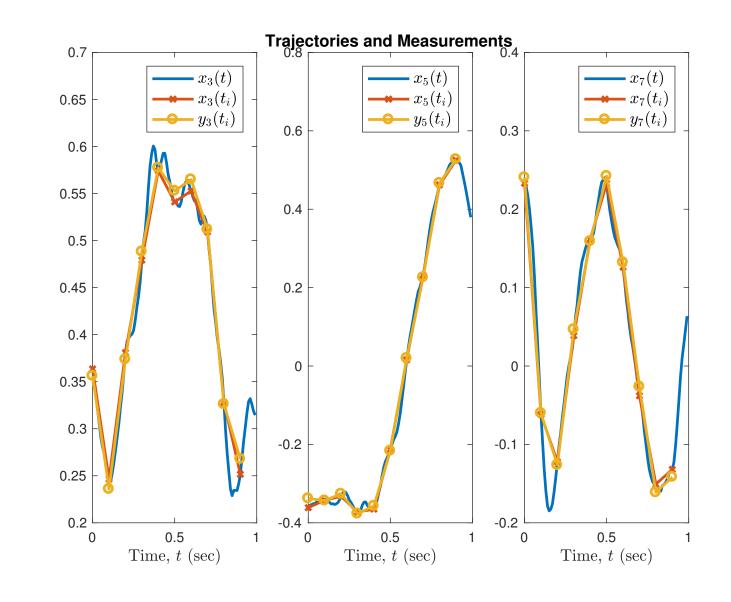
where H selects $\{x_p(t_i)\}$ from $\tilde{x}(t_i)$, and $\{\varepsilon_i\}$ are i.i.d. measurement noise, ~ $\mathcal{N}(\mathbf{0}, \sigma_s^2 I)$, independent of process noise.

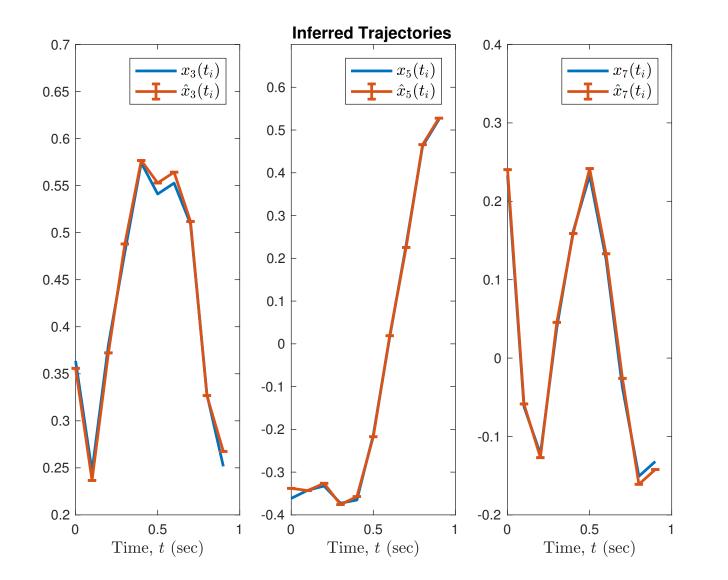
Structure Scoring

-1

Structure candidates are scored according to their *a posteriori* probability in terms of the conditional data likelihood:

Threshold $\rho \mid \text{TP} \mid \text{FP}$ $0 \le \rho < 0.18$ 0.69 0.38 $0.18 \le \rho < 1$ 0.62 0.34





For decoupled entities, Matérn covariance function:

 $\hat{h}_{k\ell}(j\omega) = \begin{cases} \frac{1}{b_0^{(k\ell)} + b_1^{(k\ell)}(j\omega) + \dots + b_{n-1}^{(k\ell)}(j\omega)^{n-1} + (j\omega)^n} \stackrel{!}{=} \frac{1}{(\lambda + j\omega)^n} , \ \ell = k \\ 0 , \ \text{o.w.} \end{cases}$

where $\lambda \triangleq \frac{\sqrt{2\nu}}{l}$; $\nu \triangleq n - \frac{1}{2}$, *l*: smoothness and length-scale parameters, respectively. Consider then the following design:

$$\hat{H}(j\omega) = \left(\begin{bmatrix} (\lambda + j\omega)^n & (\lambda + j\omega)^{n-1} & \dots \\ (\lambda + j\omega)^{n-1} & \ddots & \\ \vdots & (\lambda + j\omega)^n \end{bmatrix} \odot (A+I) \right)$$

 $p(\mathbf{y}_{0:N-1} | A, \hat{\Theta}) = \prod_{i=0}^{N-1} \mathcal{N}(\mathbf{y}_i; H\hat{\mathbf{x}}_{i|i-1}, HP_{i|i-1}H^T + \sigma_{\varepsilon}^2 I)$

where $\hat{x}_{i|i-1}$ and $P_{i|i-1}$ are discrete-time Kalman filter a posteriori ith state mean and covariance matrices, respectively, given the structure candidate A and the estimated (hyper)parameters Θ .

Unknown (hyper)parameters Θ (interaction weights, noise variances, and covariance function parameters) are estimated jointly with the Kalman filter procedure in either a maximumlikelihood or a maximum a posteriori sense.

Structure Search and Prior Network Information

- Greedy (local hill-climbing) structure search algorithm variants are used to find a locally optimal structure.

- The availability of a sparsity prior and/or a prior network drawn from literature databases can help inform the choice of initial structures, as well as guide the neighbor search.

MOPrECISE

This work was funded by the European Union's Horizon 2020 research and innovation programme under grant agreement 668858.