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1. Introduction
Time-course data observed under the perturbation of biolog-
ical systems contain rich information about the salient struc-
ture of interconnectivity among the entities of the network
underlying the system.
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Challenges: few noisy high-dimensional measurements at
non-uniformly–spaced intervals; missing data; and compu-
tational complexity of inference, parameter estimation, and
sparse structure search.

2. Approach
Linear Time-invariant Stochastic Differential Equa-
tion Model
Consider an undirected network of P entities described by ad-
jacency matrix A, with trajectories x1(t), . . . , xP(t):

dnx (t)
d tn

+ Bn−1
dn−1x (t)

d tn−1
+ . . .+ B1

dx (t)
d t

+ B0x (t) = z(t)

- x (t)¬ [x1(t), . . . , xP(t)]
T .

- z(t) ¬ [z1(t), . . . , zP(t)]
T , mutually independent zero-mean

white Gaussian noise processes with powers
¦
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z,p
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- Bn′ =
�

b(k`)n′
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, n′ = 0, 1, . . . , n − 1; k,` = 1, . . . , P: coupling
matrices. Assumption: supp (Bn′) = supp (A+ I) ∀n′.

State-space Representation:

d x̃ (t)
d t

= B̃ x̃ (t) + Lz(t)

Multivariate Gaussian Process Covariance Functions
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For decoupled entities, Matérn covariance function:

ĥk`( jω) =

(

1

b(k`)0 +b(k`)1 ( jω)+...+b(k`)n−1( jω)
n−1+( jω)n

!
= 1
(λ+ jω)n , `= k

0 , o.w.

where λ ¬
p

2ν
l ; ν ¬ n − 1

2, l: smoothness and length-scale
parameters, respectively. Consider then the following design:
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with σ2
z =

2σ2pπλ2n−1Γ (n)
PΓ (2ν) ∀p; σ2: magnitude parameter.

Example:

A=













0 1 0 0 1
1 0 1 1 1
0 1 0 1 0
0 1 1 0 0
1 1 0 0 0













, n= 2, λ= 5, σ2 = 1
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Auto/Cross-Covariance Functions

(time lag  in seconds)

Weighted Interactions
Consider Ω= [wk`] that is symmetric, strictly diagonally dom-
inant, with wk` = 1 if ` = k, and 0 if entities k, ` are discon-
nected.
=⇒ If the system is stable under B̃, it is also stable under
B̃Ω ¬ B̃ � (Ω⊗ 1n×n). The corresponding trajectories are then
described by

dnx (t)
d tn

+Ω�
n−1
∑

n′=0

Bn′
dn′x (t)

d tn′
= z(t)

Discrete-time State-space Model
For measurement time t i, i = 0, . . . , N − 1, x i ≡ x̃ (t i).
Process Equation:

x i+1 = Fix i + qi

- Fi = exp
�

B̃Ω∆t i+1

�

, ∆t i+1 ¬ t i+1− t i.

- temporally independent process noise qi ∼N (0,Q i):

Q i =

∫ ∆ti+1

0

exp
�

B̃Ω(∆t i+1−τ)
�

LΣz LT exp
�

B̃Ω(∆t i+1−τ)
�T

dτ

with Σz = σ2
z I .

- x0 ∼ N (0,Π∞), where Π∞ solves the continuous Lya-
punov equation of the continuous-time process model.

Measurement Equation:

yi = Hx i + εi

where H selects
�

xp(t i)
	

from x̃ (t i), and {εi} are i.i.d. mea-
surement noise, ∼N (0,σ2

ε I), independent of process noise.

Structure Scoring
Structure candidates are scored according to their a posteriori
probability in terms of the conditional data likelihood:

p
�

y0:N−1 | A, Θ̂
�

= ΠN−1
i=0 N (yi; H x̂ i|i−1, HPi|i−1HT +σ2

ε I)

where x̂ i|i−1 and Pi|i−1 are discrete-time Kalman filter a
posteriori ith state mean and covariance matrices, respec-
tively, given the structure candidate A and the estimated (hy-
per)parameters Θ.
Unknown (hyper)parameters Θ (interaction weights, noise
variances, and covariance function parameters) are estimated
jointly with the Kalman filter procedure in either a maximum-
likelihood or a maximum a posteriori sense.

Structure Search and Prior Network Information
- Greedy (local hill-climbing) structure search algorithm vari-
ants are used to find a locally optimal structure.

- The availability of a sparsity prior and/or a prior network
drawn from literature databases can help inform the choice
of initial structures, as well as guide the neighbor search.

3. Results and Discussion
Synthetic Experiment
- network size P = 10

- stochastic differential equation degree n= 2

- smoothness parameter λ= 5, magnitude parameter σ2 = 1

- true network structure: 0.3-edge probability

- binary interactions

- measurement noise variance σ2
ε = 10−4

- greedy structure search algorithm with 0.3-edge probability
initialization

Threshold ρ TP FP
0≤ ρ < 0.18 0.69 0.38
0.18≤ ρ < 1 0.62 0.34
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