Jet Tomography of the Proton and Its Enabling Technologies

Miguel Arratia

FPD Seminar, SLAC, October 3th 2023

Outline

- Quantum tomography in QCD.
- Future prospects at the Electron-Ion Collider (EIC).
- An EIC pathfinder program with HERA data.
- Enabling technology (high-granularity calorimeters).

HERA: the first electron-proton collider

Operated at Hamburg, Germany from 92 to 2007

Deep-inelastic scattering

HERA Legacy: precision QCD

Evolution Equations at the core or parton-distribution functions (PDF) extractions:

"Quantum tomography" of the proton involves measuring its Wigner function, which can be generalized from:

$$\mathcal{W}(x,k) = \int \frac{dx'}{2\pi} e^{i\,k\,x'} \psi^* \left(x + \frac{x'}{2}\right) \psi \left(x - \frac{x'}{2}\right)$$
$$\left\langle O \right\rangle = \int dx\,dk\,O(x,k)\,\mathcal{W}(x,k)$$

From it one can derive:

- Orbital angular momentum of quarks, gluons
- Spin-orbit and spin-spin correlations, etc
- Input to calculate Energy Momentum Tensor

Goal: measure "projections" of the quantum-phase density in either position or momentum space ("GPDs" or "TMDs")

These functions follow a more complex set QCD of evolution equations

The Electron-Ion Collider

high luminosity
high beam polarization
(electron, protons, and light ions)
Wide range of nuclear beams
Variable center of mass up to
140 GeV

EIC: the first polarized ep collider

EIC: the first eA collider

The National Academies of SCIENCES • ENGINEERING • MEDICINE

CONSENSUS STUDY REPORT

AN ASSESSMENT OF U.S.-BASED ELECTRON-ION COLLIDER SCIENCE

The EIC seeks to answer:

- How does the spin of the proton arise?
- How does the mass of the proton arise?
- What are the emerging properties of dense system of gluons?

The EIC, a jet factory, will make the first jets in hadron-polarized DIS and nuclear DIS

What is a jet? Output of a jet algorithm

Why are jets useful?

- Proxies to quark and gluons
- their substructure encodes rich & useful info

Back-to-back topology probes quark TMDs

Liu et al. PRL. 122, 192003, Gutierrez et al. PRL. 121, 162001

Spin-orbit correlations lead to azimuthal asymmetries

Transversely-polarized proton

The asymmetry strength reflects a correlation between proton spin and quark momentum, "Sivers function"

$x f_1(x, k_T, S_T)$

17

Projection for Lepton-jet Sivers asymmetry

$$q_T = |\vec{p}_T^e + \vec{p}_T^{\text{jet}}|$$

Arratia et al. PRD 102 (2020) 7, 074015

Jets in charged-current DIS offer complementarity in flavour sensitivity and chiral structure

"Neutrino-tagged jets at the EIC", M. Arratia et al. PRD 107 (2023) 9, 094036 "Charm jets as a probe for strangeness at the future EIC", M. Arratia et al. PRD 103 (2021) 7, 074023

Jets have rich substructure, which encodes rich TMD info such fragmentation, TMD evolution, and access to TMDs

"Hadron-in-jet asymmetries" will yield a wealth of information

φ_H jet

Simultaneous measurement of electron, hadron and jet provides powerful tool to unravel TMD effects

Arratia et al. PRD 102 (2020) 7, 074015

21

Some examples of jet substructure for TMDs

"Jet Charge: A Flavor Prism for Spin Asymmetries at the EIC", Z. Kang PRL 125, 242003 (2020)

Unveiling Nucleon 3D Chiral-Odd Structure with Jet Axes, Lai et al. arXiv:2205.04570

How to do jet clustering in the Breit Frame ("brick wall frame")?

Centauro Jet Algorithm

$$d_{ij} = (\bar{\eta}_i - \bar{\eta}_j)^2 + 2\bar{\eta}_i\bar{\eta}_j(1 - \cos(\phi_i - \phi_j))$$
$$\bar{\eta}_i \equiv -\frac{2Q}{\bar{n} \cdot q} \frac{p_i^{\perp}}{n \cdot p_i}$$

- Longitudinally invariant like kT but it can cluster struck-quark jet.
- First asymmetric clustering metric ever

M. Arratia et al. PRD 104, 034005 (2021)²⁴

We can actually explore the feasibility of these measurements and test the TMD calculations with the unpolarized data taken at HERA

EIC

Unfolding with Omnifold (via machine-learning).

Andreassen et al. PRL 124, 182001 (2020)

Omnifold allowed us to do a simultaneous, unbinned unfolding in 8D (probably a record)

"This measurement also represents a milestone in the use of ML techniques..."

H1 Collaboration, PRL 128 (2022) 13, 132002

Lepton-jet correlation

Textbook example of "matching" between collinear and TMD frameworks <u>First time seen in DIS!</u>

Follow up analysis: lepton-jet azimuthal modulations

Same data, same unfolding as first lepton-jet paper

Novel observable Promising for TMD studies But sensitive to gluon radiation as well

PRD 104 (2021) 5, 054037, *PRL*. 126 (2021) 14, 142001

Credit to Fernando Torales-Acosta (LBNL)

H1 Collaboration PRL 128, 132002

was the first baby step towards unbinned cross-sections...

First-ever real measurement using **unbinned** unfolding, **unbinned** acceptance & efficiency corr.

But we reported **Binned** cross-sections...

Next step is **unbinned** all the way, see community paper: JINST 17 (2022) 01, P01024

Idealized EIC central detector

A key requirement is to have "as large coverage as technically possible", up to $|\eta|=4.0$

Figure source: EIC YR

z

I will describe 3 sub-detectors that my group has conceived

Forward HCAL "insert", 3<η<4
 NIMA 1047 (2023) 167866 (design)
 JINST 18 (2023) 05, P05045 (benchtop R&D)
 arXiv:2309.00818 (test beam)

Zero Degree Calorimeter (ZDC) η>6

arXiv:2308.06939 arXiv:2310XXXX (TBD) (design & algorithm) (design)

• Few degree Calorimeter (FDC) -4.6<η<-3.6 arXiv:2307.12531 (design)

Enabling Technology: "SiPM-on-Tile"

Developed for HEP (ILC, LHC), it offers flexibility, cost-effectiveness and high-performance and for EIC

M. Arratia et al. NIMA 1047 (2023) 167866

Jet spectra in DIS at the EIC

Ongoing and planned R&D

Options to concretize SiPM-on-tile Calorimeter Insert

Optical Cross-talk

50

100

reflective paint only reflective paint+black ink Photoelectrons in neighbor cell LED scan LED scan LED scan fit: slope=0.027 fit: slope=0.104

150 50 100 150 0 Photoelectrons in main cell Photoelectrons in main cell

50

0

0.1 MIP

150

100

Photoelectrons in main cell

Miguel Arratia et al 2023 JINST 18 P05045

3D printed frames painted with reflective paint.

Sandwich of specular reflector foils

Time Resolution

Machining Scintillator tiles

First beam test with positron beam at JLab (Jan 2023)

Measured energy spectra per layer (4 GeV positron)

"Beam Test of the First Prototype of SiPM-on-Tile Calorimeter Insert for the EIC Using 4 GeV Positrons at JLab" M. Arratia et al. (arXiv:2309.00818)

Planned test at BNL

Brookhaven National Laboratory

STAR detector at RHIC

We plan to mount of detector here

During the last RHIC run (200 GeV pp collisions) in 2024

Zero Degree Calorimeter (ZDC)

Goal: to measure angle and energy of neutrons at small angles

The EIC central detector is "a small" part of a highly integrated accelerator/detector complex

Position resolution improved through staggering

Staggering leads to partial overlap that can be used to define "subcells". Algorithms can estimate subcell energy according to neighbour info

HEXPLIT Algorithm

 $W_i = \prod^{N-1} \max(E_j, \delta),$

Product over overlapping cells, *j*, in neighboring layers

$$E_i = E_{\text{tile}} W_i / \sum_j W_j$$
. Energy in a given subcell, *i*

ed Staggered

Unstaggered

A factor of 2 improvement over unstaggered design

Energy reconstruction with Graph-Neural Network

M. Arratia et al. arXiv:2307.12531

Highly granular shower shapes can yield standalone electron tagging

56

ePIC with FDC

Summary

Jets will provide us with an exciting new tool for the quest of "Quantum Tomography" at the EIC

High-granularity calorimetry will enable key measurements in key kinematic regions at the EIC

Radiation damage test at LBNL

SiPM-on-tile light-yield measurements

Sr-90

