
1

Learning Linear Temporal Properties for
Autonomous Robotic Systems

Enrico Ghiorzi1, Michele Colledanchise1, Gianluca Piquet2, Stefano Bernagozzi1,2, Armando Tacchella2,2, and
Lorenzo Natale1

Abstract—The problem of passive learning of linear temporal
logic formulae consists in finding the best explanation for how
two sets of execution traces differ, in the form of the shortest
formula that separates the two sets. We approach the problem
by implementing an exhaustive search algorithm optimized
for execution speed. We apply it to the use-case of a robot
moving in an unstructured environment as its battery discharges,
both in simulation and in the real world. The results of our
experiments confirm that our approach can learn temporal
formulas explaining task failures in a case of practical interest.

Index Terms—Formal Methods in Robotics and Automation,
Autonomous Agents, Failure Detection and Recovery

I . I N T R O D U C T I O N

AUTONOMOUS robotic systems must accomplish tasks
outside strictly controlled environments and minimizing

the need for human intervention. In this context and in spite of
the efforts made by system developers, not all reasons leading
to a failure can be foreseen and accounted for. Understanding
the root issue of a task failure is difficult, especially if no
human operator is observing the task execution and the cause
of the failure has to be figured out from the execution logs.
Thus, it is useful to employ learning techniques that, by
examining execution logs of both successful and unsuccessful
executions, can learn the reason why the system has failed. The
problem is known as passive learning of temporal properties.

We approach the learning problem by employing linear tem-
poral logic (LTL) formulae as learning target, assuming that sys-
tem executions produce Boolean traces labeled as either success-
ful or unsuccessful. The goal is to find a LTL formula that is sat-
isfied by all the traces produced by successful executions, and
by none of the traces produced by unsuccessful ones. Thus, the
formula encodes the reason why some executions are successful
and some are not. The level of generality and clarity of the
formula is linked to its size: the shorter the formula, the more

Please cite this paper as: E. Ghiorzi, M. Colledanchise, G. Piquet, A.
Tacchella, and L. Natale, “Learning linear temporal properties for autonomous
robotic systems,” IEEE Robotics and Automation Letters, Vol. 8, no. 5, 2023,
doi:10.1109/LRA.2023.3263368.

This work received funding from the European Union’s Horizon Europe
research and innovation program under GrantAgreement No. 101070227
(CONVINCE).

This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/, authors
retained Copyright of the material.

1Enrico Ghiorzi, Michele Colledanchise, Stefano Bernagozzi and Lorenzo
Natale are with Istituto Italiano di Tecnologia, Genoa, Italy. lorenzo.
natale@iit.it

2Gianluca Piquet, Stefano Bernagozzi and Armando Tacchella are with DIB-
RIS, Università degli Studi di Genova, Genoa, Italy. armando.tacchella@
unige.it

general and clear it is as an explanation of the issue the system
incurs into. Thus, our goal is to find the shortest such formula.

We recall some background in section III and stating the prob-
lem formulation in section IV. Then we develop a learning algo-
rithm based on exhaustive search, described in section V and op-
timized with various techniques detailed in sections V-A to V-C.
In section VI we evaluate the theoretical guarantees of the algo-
rithm. In section VII we discuss the concrete implementation
of the algorithm. In section VIII we compare the performances
of our approach against those of the reference solvers proposed
in [1]–[4]. Finally, in section IX we apply the learning algorithm
to the concrete use-case of an autonomous robot trying to grasp
a token and take it to destination, while preventing its battery
from draining and possibly replenishing it at a charging station.
We implement such experiment as two distinct simulations
(sections IX-A and IX-B) and in the real world (section IX-C).

I I . R E L AT E D W O R K

The problem of learning temporal properties has been studied
extensively, with various kinds of underlying logic, semantics,
and learning strategy. Some basic theory of the complexity
of learning LTL formulae from examples is presented in [5]
together with the proof that the problem is NP-hard (at least
for some choice of logical and temporal operators).

In the literature, a common approach to learning formulae
from examples is to search through some subset of formulae
matching templates while optimizing some metric [6]–[13].
As we want to make no assumption about the shape of the
solution, we cannot use this approach.

Another common approach is to reduce the learning problem
to a satisfiability problem, searching in order of increasing
size of the formulae [1]–[3], [14]–[17]. In [1], the problem
is reduced to a Boolean satisfiability problem and then a
solution in the form of a syntax directed acyclic diagram (DAG)
is found with the assistance of a SAT-solver. The overhead
this approach introduces makes it unsuitable to solve large
samples arising from real-world data. The work in [1] has been
extended by searching for approximate solutions to noisy data
via a Max-SAT solver and employing finite-trace semantics
(which we adopt too) [2], [3], while [15] extends it to the
property specification language temporal logic (PSL). The work
of [1], [2] has also been extended to signal temporal logic
(STL), using SMT solvers instead of SAT solvers [3], [16].
Listing exhaustively all DAGs and then solving the Boolean
satisfiability problem for each DAG, [14] refines the work in [1],
obtaining a speed-up compared to the original method. Finally,

lorenzo.natale@iit.it
lorenzo.natale@iit.it
armando.tacchella@unige.it
armando.tacchella@unige.it

2

[17] uses a SAT-solver to learn LTL formulae encoded as
alternating finite automata as opposed to the syntax DAGs used
by [1]. These learning algorithms have been applied to robotics.
For example, [18]–[20] use the learning algorithm from [1], [2].

Genetic algorithms perform well but have to allow for some
misclassification and cannot guarantee minimality [21].

Finally, there are exhaustive enumeration algorithms [4], [22].
SySLite,1 a state-of-the-art solver based on an enumerative
algorithm, encodes the problem as a bit-vector function
synthesis problem [4] to be solved by CVC4, a Syntax-Guided
Synthesis engine, via an optimized exhaustive search.

In this work we present an algorithm based on exhaustive
search and featuring domain-specific optimizations, with the
goal of finding complex solutions on large samples with many
variables. We verify that, for practical applications in robotics,
our approach is more efficient than the already available tools.
To obtain such performances, though, we have to limit our
search to LTL formulae, instead of learning STL formulae as
other works do [6], [7], [9]–[11], [13], [16], [21]–[24].

I I I . B A C K G R O U N D

Linear Temporal Logic (LTL) is an extension of Boolean
logic with temporal operators. LTL describes not just the state
of a system characterized by Boolean variables, but also its
evolution through time. For example, it can express concepts
such as “P will be true in the next time step”, “P is always
true”, “P will eventually be true”, or “P is going to be true until
Q becomes true”, where P and Q are Boolean propositions.

A. Syntax

We give the syntax for LTL formulae via an inductive
definition. Let Var be a non-empty finite set of Boolean
variables (which we usually denote as p, q, r. . .).

Definition 1. A well-formed LTL formula over Var is defined
inductively as

p | ¬ϕ | ϕ ∨ ψ | Xϕ | ϕU ψ

where p ∈ Var and ϕ, ψ are well-formed LTL formulae. The
temporal operators extending Boolean logic are the neXt
operator X and the Until operator U. The size of a formula
is given by the number of symbols it contains (not counting
the parenthesis).

Derived operators can be defined from the base ones:

⊤ = p ∨ ¬p
⊥ = ¬⊤

ϕ ∧ ψ = ¬((¬ϕ) ∨ (¬ψ))
ϕ =⇒ ψ = ψ ∨ (¬ϕ)

Fϕ = ⊤U ϕ

Gϕ = ¬(F(¬ϕ))
ϕ R ψ = ¬((¬ϕ) U (¬ψ))

Aside from the usual derived logical operators, we have the
derived temporal operators Finally (F), always or Globally

1https://github.com/CLC-UIowa/SySLite

(G), and Release (R). Notice that ⊤ is defined by a choice
of variable p ∈ Var, and thus uses the hypothesis that Var is
non-empty. Moreover, the definition of ⊤ assumes the use of
the excluded middle, which is fine as we are working in the
context of classical logic.

In the implementation of the algorithm described in the
rest of the section, we use formulae including some derived
operators in addition to the primitive ones, as some derived
operators are particularly useful in practice. Specifically, we
include G, F, and ∧.

B. Semantics

While Boolean formulae are interpreted over Boolean
evaluations, LTL formulae are interpreted over infinite traces,
i.e., infinite sequences of Boolean evaluations (this semantics
is used in [1]). We consider evaluation of LTL formulas on
finite traces instead [25], but we omit any qualification (e.g.,
LTLf for LTL over finite traces) as in the context of this paper
there is no potential for confusion.

Definition 2. A Boolean valuation is a mapping Var → Bool,
and a trace t = (ti)i=0,...,l is a finite sequence of Boolean
valuations. An LTL formula ϕ is interpreted over a trace t at a
given moment in time i where 0 ≤ i ≤ l. We inductively define
that t satisfies ϕ at time i, and we write t, i ⊨ ϕ, as follows:

t, i ⊨ p iff ti(p)

t, i ⊨ ¬ϕ iff t, i ⊭ ϕ
t, i ⊨ ϕ ∨ ψ iff t, i ⊨ ϕ or t, i ⊨ ψ

t, i ⊨ Xϕ iff i < l and t, i+ 1 ⊨ ϕ

t, i ⊨ ϕU ψ iff ∃i≤j≤l s.t. t, j ⊨ ψ and ∀i≤k<j t, k ⊨ ϕ

If t, 0 ⊨ ϕ, we say that t satisfies ϕ, and we write t ⊨ ϕ.

Intuitively, we interpret an atomic Boolean variable by the
corresponding Boolean value provided by the 0-th Boolean
valuation in the trace (or, leveraging the temporal paradigm, we
can also say “provided by the trace at time 0”), and the logical
operators are interpreted as usual. The temporal operator X
moves the time forward onto the next time step. Finally, the U
operator states that, at some point, its right-hand-side argument
must become true, and that until that moment its left-hand-side
argument holds true.

I V. P R O B L E M F O R M U L AT I O N

Consider an autonomous system repeatedly executing a task.
Assuming that truth assignments to Boolean variables are
sufficient to characterize the state of the system, during each
execution the system produces a trace. Traces corresponding
to successful executions are labeled as “positive,” whereas
traces corresponding to unsuccessful executions are labeled as
“negative.” This leads to the following definition.

Definition 3. A sample S = (P,N) is given by two sets of
traces, the positive traces P and the negative traces N . A
formula ϕ is consistent with a sample S = (P,N) if

• t ⊨ ϕ for all t ∈ P , and
• t ⊭ ϕ for all t ∈ N .

https://github.com/CLC-UIowa/SySLite

GHIORZI et al.: LEARNING LINEAR TEMPORAL PROPERTIES FOR AUTONOMOUS ROBOTIC SYSTEMS 3

In other words, a formula is consistent with a sample if it
satisfies all of its positive traces and none of the negative ones.

Intuitively, a formula that is consistent with a sample
provides an explanation of what causes some traces in the
sample to be positive and others to be negative. From a
philosophical point of view, the Occam’s Razor claims that
the best explanation of a phenomenon (that is, the one that is
most likely to be correct and extend to further examples) is the
shortest one. Moreover, “small formulas are easier for humans
to comprehend than large ones” [1]. Thus, the problem of
passive learning of LTL formulae consists in finding a LTL
formula of minimal size consistent with the sample [1].

Assuming that P and N are disjoint, the problem of passive
learning always admits a solution. Indeed, all we need to show
is the existence of a formula consistent with the sample. If
that is the case, a solution of minimal size exists (although not
necessarily unique) by the well-ordering of the natural numbers
(the property that any non-empty set of natural numbers has a
least element). We prove the existence of such a formula with
the following lemma.

Lemma 1. If P and N are disjoint sets of traces, then there
exists a formula satisfying the sample S = (P,N).

Proof. Consider traces t ∈ P and s ∈ N . Since, by hypothesis,
t ̸= s, there exist a time instant i and an atomic variable p
such that ti(p) ̸= si(p). Let ϕt,s be the formula Xi p if ti(p)
is true, and ¬Xi p otherwise (where Xi is the next operator
repeated i-many times) so that t ⊨ ϕt,s and s ⊭ ϕt,s. Then the
formula

ϕ :=
∨
t∈P

∧
s∈N

ϕt,s

is such that t ⊨ ϕ for every t ∈ P and, s ⊭ ϕ for every s ∈ N ,
i.e., it satisfies the sample S.

In spite of the theoretical significance, the formula produced
by lemma 1 is of little practical use, since it overfits the sample
and it is generally way too long to be understood intuitively.

V. P R O P O S E D S O L U T I O N

We propose that a practical approach to the learning
problem is simply by exhaustive search. Indeed, it is possible
to recursively generate all LTL formulae of a given size by
starting the recursive construction from the atomic propositions
and then combining unary and binary operators with formulae
of (suitably chosen) smaller size. Storing all the generated
formulae is memory-expensive, so we develop an algorithm,
detailed in section V-A, to produce them in small batches. We
then generate all LTL formulae in order of increasing size,
and test each of them against the sample until one is found to
be consistent with it. Furthermore, it is possible to make the
exhaustive search more efficient through some optimizations,
which we discuss in sections V-B and V-C.

A. Generating formulae via skeleton trees

As a matter of fact, the memory required to store all of
the generated formulae quickly exceeds availability. It thus
becomes necessary to partition the generation of formulae

into smaller subsets. We do so by first generating “skeleton”
formula trees, i.e., formula trees without labels for the nodes,
thus only carrying information about the arity of their nodes.
In other words, a skeleton tree represents a general “shape”
for a formula, but does not specify the operators and atomic
propositions in it. We will then generate all possible formula
trees from a skeleton tree by “fleshing it out”, i.e., by adding
suitable operators and variables as labels to its nodes.

Formally, the grammar of such skeleton trees is

L | U t | t B t′

where L represents a leaf node, U a unary node, and B a binary
node, and t and t′ are subtrees.

Given an LTL formula, we can compute its underlying
skeleton tree by removing the labels from all the nodes. We
define such operation T as follows:

T (p) = L (1)
T (¬t | X t) = U T (t) (2)

T (t ∨ t′ | tU t′) = T (t) B T (t′) (3)

Skeleton trees, just like formulae, have a size given by the
total number of nodes and leaves. We can generate all trees of
a given size by using again a recursive algorithm, and then, for
each tree t, we generate all the formulae ϕ such that T (ϕ) = t
by recursively replacing L with atomic propositions, U with
unary operators ¬ and X, and B with binary operators ∨ and
U. We proceed testing each generated formula for consistency
with the sample, as before.

This updated algorithm, compared to the original one,
presents the advantage that formulae are generated in small
batches, checked and discarded before the next batch of for-
mulae is generated, thus preventing the computer from running
out of memory. As the great majority of computational time
is spent evaluating formulae, rather than generating them, the
increased complexity of the generating portion of the algorithm
does not result in a noticeable degradation of performances.

B. Curbing logically equivalent formulae

Even with skeleton-tree optimization, the formula search
algorithm could still be too slow for practical applications.
Indeed, while lemma 1 guarantees that a solution to the passive
learning problem exists, the size of such solution might be
quite large, and the number of generated formulae grows
exponentially with their size. To mitigate this issue, there
are two viable solutions: to somehow reduce the number of
formulae to check, and to speed up the process of checking if
a formula is consistent with the given sample.

We now discuss a technique to implement the former
solution. It is a standard mathematical fact that two formulae
ϕ and ψ can be logically equivalent, i.e., such that for
every trace t we have t ⊨ ϕ if and only if t ⊨ ψ. Logical
equivalence is an equivalence relation over the set of formulae,
and logically equivalent formulae are all consistent with the
same samples, so it is sufficient to check for consistency
relative to the sample a single formula out of each equivalence
class. Unfortunately, verifying whether two LTL formulae are
logically equivalent is a PSPACE-complete problem [26], [27].

4

A different perspective would be to provide a confluent
term rewriting system, and consider only irreducible formulae.
Such a rewriting system exists for Boolean logic, and can be
derived from the axioms for Boolean ring via the Knuth-Bendix
reduction algorithm [28], [29]. The temporal operators U, G
and F of LTL, though, are fixed point operators, as they can
be defined as the smallest operators such that the following
equivalences hold [30].

ϕU ψ ≡ ψ ∨ (ϕ ∧X(ϕU ψ)) (4)
Gϕ ≡ ϕ ∧XGϕ (5)
Fϕ ≡ ϕ ∨XFϕ (6)

Unfortunately, we know of no technique to extend the Knuth-
Bendix reduction algorithm to recursive operators.

Nonetheless, there are many known notable equivalences we
can use to filter out at least some formulae, such as the excluded
middle, ϕ ∨ (¬ϕ) ≡ ⊤, and the duality of temporal operators,
e.g., ¬(Fϕ) ≡ G(¬ϕ). We apply these equivalences, with no
claim to exhaustivity, to the generation of the list of formulae:
whenever a generated formula is known, via pattern-matching,
to be equivalent to a shorter one, we discard it as we know that
the equivalent formula has already been generated and tested.
Since the formula-generation algorithm is recursive and the
number of generated formulae grows exponentially with size,
discarding even a few formulae of a given size results in way
fewer formulae generated at larger sizes. Special care is further
required to deal with the associativity, commutativity and
idempotency properties of logical conjunction and disjunction.
The former is dealt with by conventionally choosing to always
associate on the left. The latter two are dealt with by imposing
an (arbitrary) total ordering ⪯ on the set of formulae, and
discarding all formulae ϕ ∧ ψ and ϕ ∨ ψ such that ψ ⪯ ϕ.

From a computational complexity point-of-view, the
formulae-curbing operation does not change the fact that the
number of generated formulae is exponential with respect to
the size of the formulae, but it allows us to lower the base
of such exponential. Thanks to the curbing of formulae, we
obtain a ∼2× speed-up on the sample used in section IX, and
we expect such speed-up to grow exponentially as the size of
the learned formulae increases.

C. Interleaving traces

A further ∼2× speed-up is obtained by observing that,
informally speaking, some formulae tend to be more likely than
others to satisfy a random trace. For example, by definition
tautologies are satisfied by every trace, and contradictions are
satisfied by no trace. This means that checking a formula
against all positive traces first, and then against all negative
traces later, is inefficient if the formula tends to be easily
satisfied (such as a tautology); conversely, checking a formula
against all negative traces first, and then against all positive
traces later, is inefficient if the formula tends to be rarely
satisfied (such as a contradiction). Thus, instead of testing a
formula on a sample by first checking if the formula satisfies
all positive traces and then if it fails to satisfy all negative
traces, it is generally more convenient to interleave positive

and negative traces, thus alternating between checking the ones
and checking the others.

V I . T H E O R E T I C A L E VA L U AT I O N

We need to ensure that the proposed learning algorithm is
sound, complete, and it has the minimality property. Here,
sound means that the algorithm does not provide a wrong
answer, i.e., a formula inconsistent with the sample; complete
means that no potential solution is ignored; and the minimality
property means that the solution has minimal size among all
formulae consistent with the sample.

By design, the proposed algorithm is sound, in that the
produced formula is checked directly for consistency with
the sample, and so it is guaranteed to satisfy the consistency
requirement.

If the algorithm generates and tests all possible formulae,
then it must also be complete, as it cannot miss a solution to the
learning problem. The curbing of equivalent formulae described
in section V-B has the effect of skipping some formulae, both
in checking them against the sample and in inductively using
them as subformulae to construct formulae of larger size.
Still, consistency of a formula with a sample is a semantic-
equivalence invariant problem, so as long as we only exclude
formulae that are equivalent to other formulae that we check
for consistency and use as subformulae of larger formulae, we
are not going to miss any solution (up to equivalence).

Finally, since the algorithm generates formulae of increasing
size, the first solution it finds must also be a minimal one.
Again, the curbing of equivalent formulae does not break this
property, because the curbed formula is always of size greater
or equal than the retained equivalent one.

V I I . I M P L E M E N TAT I O N D E TA I L S

We implemented the algorithm presented in section V in the
Rust programming language.2 The solver is provided with a
sample encoded as a text file in either json or ron format, and
the first formula that is verified to satisfy the sample is printed
out as output.

Profiling, using tools like hyperfine,3 perf ,4 inferno5 and
cargo-flamegraph,6 shows that the vast majority of the execution
time is spent evaluating the formulae on the traces, whereas
memory usage is mostly due to the storing of all the generated
formulae. By contrast, generating the formulae takes relatively
little time, and evaluating them on the traces does not require
significant memory usage.

The algorithm we propose is highly parallelizable. Indeed,
testing whether a formula is consistent with the given sample
can be done independently from the testing of the other
formulae. Thus, parallelizing the algorithm via multi-threading
on the CPU is trivial, and, while on small samples with
solutions of small size the overhead of parallelism outweigh its
benefits, on large samples with solutions of large size it yields a

2https://github.com/EnricoGhiorzi/learn ltl
3https://github.com/sharkdp/hyperfine
4https://perf.wiki.kernel.org/index.php/Main Page
5https://github.com/jonhoo/inferno
6https://github.com/flamegraph-rs/flamegraph

https://github.com/EnricoGhiorzi/learn_ltl
https://github.com/sharkdp/hyperfine
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/jonhoo/inferno
https://github.com/flamegraph-rs/flamegraph

GHIORZI et al.: LEARNING LINEAR TEMPORAL PROPERTIES FOR AUTONOMOUS ROBOTIC SYSTEMS 5

speed-up directly proportional to the number of available cores.
This has also been experimentally tested on a high-performance
computer cluster with up to 40 CPUs.

An implementation of a CUDA version of the algorithm
has also been attempted. A kernel has been written to evaluate
a formula on a trace, so that, after generating all formulae
of a given size, these are evaluated in parallel to find one
that is consistent with the sample. Unfortunately, experiments
show that this approach does not yield improved performances
compared to the CPU implementation, neither on a personal
computer nor on a computer cluster with multiple GPUs. We
conjecture that the operation of evaluating a formula on a trace
is, intrinsically, a poor fit for the GPU, as it makes essential
use of loops and branching, and thus it does not conform to
the “single instruction, multiple data” paradigm.

V I I I . C O M PA R I S O N W I T H S TAT E - O F - T H E - A R T

We developed our own algorithm to solve the passive learning
problem because we want to learn linear temporal properties
with large samples (such as those produced by autonomous
robotic systems, which we expect to have up to a dozen
variables and tens of traces of hundreds of time-steps of length,
for a total of tens or hundreds of thousands of Boolean values)
and we need to compute them fast (if we want a response in
near-real-time) or on limited hardware (if the computation is
done on the on-board hardware of a robotic system).

No off-the-shelf tool seems to offer the combination of
features and performances we seek. We substantiate such
statement by providing a comparative performance analysis
of our tool pitted against two state-of-the-art solvers, which
implement, respectively, the constraint-based approach and the
enumerative approach. Although there exist other approaches
to learn LTL formulae, we are not interested in comparing
with those that use approximate methods, such as those that
search among a restricted class of formulae, that use templates,
or that use stochastic methods, as these search for sub-optimal
(i.e., non-minimal) solutions in exchange for increased speed.

Finally, it is worth noting that all of the examples in this
section are relatively easy to solve, and so our tool is able
to produce a solution in a short time and with minimal
memory footprint (a few MB at most). Still, since the
computational complexity of the problem is exponential, it
is easy to find samples that either cause the solver to run out
of memory or that take a prohibitively long time to solve.
For example, searching among formulae of size greater than
12–14 (depending also on the number of Boolean variables) is
usually enough to crash the solver because of lack of memory.

A. Comparison with SAT approach

Our main references on the problem of passive learning of
LTL formulae propose an algorithm based on SAT solvers [1],
[2]. In a nutshell, given a sample S and a positive integer n,
the algorithm defines a Boolean formula ϕS,n whose potential
models, found by a SAT solver, induce an LTL formula of size
n that is consistent with S. Notice that the notion of “size” in
this paper differs from the one in [1], [2], but for the practical
purposes of the performance comparison it does not make a

Samples Cumulative search time (s)

samples2LTL (SAT) our tool s.t. our tool m.t.

universality 10 660 0.2057 0.0941

absence 43 194 0.1783 0.1123

Table I: Benchmark comparison with SAT solver.

qualitative difference, especially since on short formulae the
two notions tend to agree. Unfortunately, the algorithm has, in
the worst case, exponential complexity not only on the size of
the formulae that are being searched, but also on the size of
the sample (meaning the cumulative length of all the traces
in the sample). Indeed, the number of variables in ϕS,n is
proportional to n and to the size of S (see [1, remark 1]), and
in the worst case a SAT solver has exponential complexity in
the number of variables in the input formula. This makes the
algorithm unsuitable to deal with large samples, even though
the solution might be a short formula.

The work in [1], [2] comes with an implementation of
the proposed SAT-based algorithm, to which our tool aims
to be a competitive alternative. Thus, we compare our tool,
benchmarked with the aforementioned hyperfine tool, with
the the SAT-based algorithm presented in [2],7 passing the
--test_sat_method option (the direct comparison with
[1] is more problematic because it uses an infinite-traces
sematics). We use the same sets of synthetically generated
samples “absence” and “universality” used in [2],8 and report
the cumulative time to solve all samples in the sets. We
repeat the experiment for both the single- and multi-thread
implementations of our algorithm, keeping in mind that, while
the former is deterministic, the latter is not and thus the results
are subject to larger experimental error. The benchmarks in
table I, which we run on a laptop PC,9 show that our approach is
faster by 5 orders of magnitude. Thus, in spite of the limitations
in comparing different algorithms solving the passive learning
problem, we claim that our approach is overall significantly
faster and more capable than the one proposed in [1], [2]. On the
one hand, the optimizations we applied to the exhaustive search
algorithm and described in sections V-B and V-C leverage
specific domain knowledge about LTL which would be harder
to apply to SAT-based algorithms, as these have to rely on a
third-party SAT solver which works as a black box. On the other
hand, those optimizations account for a speed up of only one
order of magnitude, so this shows that even a naive exhaustive
search would be significantly faster than any SAT-based algo-
rithm currently proposed in the literature, as those are all within
a margin of one order of magnitude faster then those in [1], [2].

B. Comparison with SySLite

We now compare our tool with SySLite. We consider a set
of samples from the SySLite repository, which have also been
used in [4] to perform a performance comparison with the

7https://github.com/cryhot/samples2LTL
8https://github.com/cryhot/samples2LTL/tree/master/traces/finite/perfect

class
9Dell Inc. XPS 15 9500 with 16.0 GiB RAM, Intel® Core™ i7-10750H

CPU @ 2.60 GHz × 12 cores, and GeForce GTX 1650 Ti Mobile.

https://github.com/cryhot/samples2LTL
https://github.com/cryhot/samples2LTL/tree/master/traces/finite/perfect_class
https://github.com/cryhot/samples2LTL/tree/master/traces/finite/perfect_class

6

Sample (1250 traces) Search time (s)

SySLite our tool s.t. our tool m.t.

bank transaction 3.144 0.0072 0.0068

chinese wall policy 31.568 0.0076 0.0067

dynamic separation of duty 44.725 0.0097 0.0080

financial institute 53.318 0.0320 0.0134

glba 6802 24.214 0.0164 0.0100

hippa 16450a2 23.840 0.0161 0.0097

hippa 16450a3 3.151 0.0072 0.0080

Table II: Benchmark comparison with SySLite.

algorithm from [1], [2]. Other than converting the sample files
from the original format to our own, we reverse the order of
the valuations in each trace to account for the fact that SySLite
uses past-time LTL [4], so that the solutions found by the
two tools match (up to renaming of the temporal operators).
The benchmark results are reported in table II, from which
we see that our implementation is significantly faster than
SySLite. Moreover, SySLite only searches among formulae
starting with a G operator, while our tool is not subject to
such restriction and thus has to search among a larger set of
formulae. We conjecture that our tool performs better because,
unlike SySLite, it hard-codes the learning problem instead of
relying on an external, more general solver.

I X . E X P E R I M E N TA L VA L I D AT I O N

To validate the application of passive learning of LTL
formulae in the context of autonomous systems and the
computational viability of the proposed learning algorithm, we
performed experiments in which the R1 robot [31] attempts to
grasp an item handed from a user and carry it to a destination
point. There is also a charging station where the robot can
recharge its battery. Potential issues which can prevent R1
from completing its task include running out of battery, finding
a physical obstacle blocking the way, and incurring into an
uncooperative user who refuses to hand the item.

The log produced during the execution of the simulation
provides us with the following data:

• Whether R1 is grasping an object, as a Boolean value.
• Battery level, as a floating-point percentage.
• Spatial coordinates x and y as floating-point numbers in

the ranges [x0, x1] and [y0, y1], respectively.
For every new log message we consider the updated state of the
system, translate all data into Boolean variables, and append a
new Boolean valuation to the trace. Boolean variables, such
as the one determined by the grasping status, translate directly
into the trace. Numerical variables, such as battery level or
spatial coordinates, require choosing some sort of encoding.

We encode a floating-point numerical variable x in a range
[x0, x1) using a chosen number n of Booleans X1, . . . , Xn

by dividing the range in 2n-many sub-intervals and using the
Boolean variables to encode the binary representation of the
index of the interval within which x is found.

We proceed as follows:

• We normalize the interval by letting x̄ = 2n x−x0

x1−x0
, so

that x̄ ∈ [0, 2n).
• We take the integer part of x̄ and we consider its binary

representation b1, . . . , bn (n bits are sufficient).
• We let Xi be true if and only if bi = 1.

Notice that this algorithm requires the upper bound of the
interval to be open. Pragmatically, when dealing with a closed
interval [x0, x1], we consider the upper bound x1 as belonging
to the last interval.

A further issue is given by the length of the traces: since
variables are sampled frequently, if we add a time-step to the
trace at every variable sampling, we can end up with traces
that are very long, while containing the same values repeated
multiple times. This issue is exacerbated by the above encoding
of numerical variables: even when the value of a numerical
variable changes, its Boolean encoding might remain the same.
The extreme size a sample with these kind of traces can reach
actually provides an example of a sample on which our tool
takes a prohibitive amount of time to terminate, although it does
not run out of memory (we finally halted such an experiment
after 16 hours of computation still yield no solution).

In principle, repeated and consecutive occurrences of the
same variable evaluation in a trace are significative: the traces
(in one variable) [true] and [true, true] are different
and they do not satisfy the same LTL formulae. In practice
though, the number of repeated occurrences of the variable
evaluations are quite irrelevant: indeed, we make no assumption
on the frequency or even regularity of the sampling, so that no
reliable temporal information can be deduced from the number
of repetitions. The traces from the example above might be
produced by identical executions, where in the second trace
the sampling just happens to have increased frequency. Thus,
to reduce the length of the traces, and consequently speed up
the execution of the learning algorithm, we deduplicate all
consecutive repeated occurrences of the variable evaluations,
obtaining a data compression ratio of up to 86.

From the execution logs we extract the following variables:

• IsGrasping is true if the robot is grasping an object.
• B_1dd, B_d1d and B_dd1 encode battery level as a

three-bit binary number, where 1 means that the bit in
that position is 1 if the variable is true and 0 otherwise,
and d that we “don’t care” about that bit.

• X_1ddd, X_d1dd, X_dd1d and X_ddd1 encode the
spatial coordinate on the x axis as a four-bit binary
number, with the same notation used for the battery level.

• Y_1ddd, Y_d1dd, Y_dd1d and Y_ddd1 encode the
spatial coordinate on the y axis as a four-bit binary
number, with the same notation used for the battery level.

We repeat the experiments in both simulators and the real
world, with different scenarios and increasing complexity. All
of the obtained data is available at https://github.com/piquet8/
masterThesisProject-Piquet. All of the following computations
are executed run on the same laptop used for the benchmarks
in section VIII, but without using multi-threading to make the
results deterministic and more easily reproducible.

https://github.com/piquet8/masterThesisProject-Piquet
https://github.com/piquet8/masterThesisProject-Piquet

GHIORZI et al.: LEARNING LINEAR TEMPORAL PROPERTIES FOR AUTONOMOUS ROBOTIC SYSTEMS 7

A. YARP simulation

The YARP simulation10 used in [32] takes place in the
IIT open space and “kitchen” area (see fig. 1a). In this 2D
simulation, it is not possible to place obstacles in the scenario,
and the grasping of the item will always succeed, but all the
other features of the experiment, notably battery discharging
and recharging, are implemented.

Consider the sample RAL1.json obtained from this exper-
iment. The learning algorithm solves the sample and yields the
formula F(¬(X_d1dd ∨ X_ddd1)). This means that R1
successfully completes the task only when eventually reaches
an area approximately corresponding to the destination point.

The previous solution to the learning problem correctly
identifies the destination area, but it’s slightly disappointing
in that it disregards the battery level. We run the learning
algorithm after manually disabling the variables X_d1dd and
X_ddd1, in the sense that the learning algorithm will disregard
them and only consider the remaining variables to search for
a solution. We then get the formula

F(X_dd1d ∧ X(Y_1ddd ∧ (B_1dd ∨ B_d1d)))

in about 32 s and using around 200 MB (this is the only exper-
iment in this section using significant resources). This means
that eventually R1 needs to be in the kitchen area (although with
greater approximation than the first solution). Moreover, the
subformula X(B_1dd ∨ B_d1d) forces the robot to have
at least a 25% charge the moment after entering the kitchen,
which gives the robot sufficient battery charge to reach the
destination. This solution correctly satisfies the negative trace
corresponding to the execution in which R1 enters the kitchen
without enough charge to reach the destination.

B. Tour Guide Robot (in Gazebo Simulator)

The Tour Guide Robot11,12 takes place in a museum, simu-
lated in 3D in the Gazebo Simulator (see fig. 1b). Compared
to the simulator in section IX-A, we can also place obstacles
to block the way of R1 to either the user, the charging station
or the destination (still placed in a room conventionally called
“kitchen”). We first execute some successful executions by
not blocking any passage. Then, we block a single passage,
execute some failures, and run our solver on the obtained
sample. Blocking access to the user (sample_w2.json)
we get F(Grasp), meaning that R1 has to eventually grasp
the item. Blocking the kitchen (sample_w3.json) we get
F(G X_d1dd), meaning that R1 has to eventually enter and
remain in an area approximately corresponding to the kitchen.
Block the charging station (sample_w4.json) we get again
F(G X_d1dd). If we disable the variable X_d1dd, though,
we get that F(G(¬X_1ddd)), meaning that R1 should not
go towards the charging station and remain there (evidently,
stuck in front of the closed passage until its charge runs out).

10https://github.com/SCOPE-ROBMOSYS/Verification-experiments
11https://github.com/piquet8/tour-guide-robot
12https://www.youtube.com/watch?v=8L 4tDIS1Gs

Kitchen

Charging station

R1 Grasping

(a) The YARP simulation
scenario.

(b) The Tour Guide Robot sim-
ulation scenario.

Figure 1: Various scenarios. The grid reflects the binary
encoding of the spacial coordinates.

C. Real-world experiments

For real-world experiments we used the actual R1 humanoid
robot in the Robot Arena at IIT’s center CRIS.13 We verified
that the results obtained in simulation in sections IX-A
and IX-B can be replicated in the new, real-world scenario.
Moreover, we had an uncooperative human user refuse to hand
the item. This occurs in sample_grasp.json, which yields
F(Grasp), as expected.

X . C O N C L U S I O N S A N D F U R T H E R W O R K

We have shown that a robust and optimized implementation
of exhaustive search provides a practical approach to the
problem of passive learning of LTL properties in the context
of autonomous robotic systems, and it allows us to learn the
root cause of failure of such a system in a realistic scenario.

In future work, we shall explore further strategies to optimize
the learning algorithm. One improvement would be to develop
a rigorous framework to curb equivalent formulae, instead
of using a hand-picked library of notable equivalences as
we currently do. Another improvement might be to evaluate
the semantic of a formula on a trace by using bit-vectors
computations [33], similar to SySLite. Finally, while the
formulae cannot all be generated at the same time due to
memory limitations, it might be worth using memoization
techniques and precompute the semantic interpretation of at
least some of the smaller formulae, so that it can be looked up
when the formula is found as a subformula of a larger formula,
instead of recomputing it every time.

Another area of research is to either extend or restrict the
logical language. For example, restricting the language to a
subset of LTL, such as the subsets of syntactically (co)safe
formulae, could yield more useful results, and possibly improve
performances of the learning algorithm too.

Expanding the area of research into system monitoring, we
could extract online monitors from the learned formulae and
use these to detect anomalies in the execution of the system.
An even more ambitious goal would be to use these techniques
not just to detect anomalies once these have occurred already,
but to actively try to predict and prevent them.

13https://www.youtube.com/watch?v=qedEZL8t7cs

https://github.com/SCOPE-ROBMOSYS/Verification-experiments
https://github.com/piquet8/tour-guide-robot
https://www.youtube.com/watch?v=8L_4tDIS1Gs
https://www.youtube.com/watch?v=qedEZL8t7cs

8

R E F E R E N C E S

[1] D. Neider and I. Gavran, “Learning linear temporal properties,” in 2018
Formal Methods in Computer Aided Design (FMCAD), 2018, pp. 1–10.

[2] J.-R. Gaglione, D. Neider, R. Roy, U. Topcu, and Z. Xu, “Learning
linear temporal properties from noisy data: A maxsat-based approach,”
in Automated Technology for Verification and Analysis, Z. Hou and
V. Ganesh, Eds. Cham: Springer International Publishing, 2021, pp.
74–90.

[3] ——, “Maxsat-based temporal logic inference from noisy data,” Innova-
tions in Systems and Software Engineering, 2022.

[4] M. F. Arif, D. Larraz, M. Echeverria, A. Reynolds, O. Chowdhury, and
C. Tinelli, “Syslite: syntax-guided synthesis of pltl formulas from finite
traces,” in Proceedings of the 20th Conference on Formal Methods in
Computer-Aided Design – FMCAD 2020, ser. Conference Series: Formal
Methods in Computer-Aided Design, A. Ivrii and O. Strichman, Eds.,
vol. 1. TU Wien Academic Press, 2020, pp. 93–103.

[5] N. Fijalkow and G. Lagarde, “The complexity of learning linear temporal
formulas from examples,” in Proceedings of the Fifteenth International
Conference on Grammatical Inference, ser. Proceedings of Machine
Learning Research, J. Chandlee, R. Eyraud, J. Heinz, A. Jardine, and
M. van Zaanen, Eds., vol. 153. PMLR, 8 2021, pp. 237–250. [Online].
Available: https://proceedings.mlr.press/v153/fijalkow21a.html

[6] Z. Kong, A. Jones, A. Medina Ayala, E. Aydin Gol, and C. Belta,
“Temporal logic inference for classification and prediction from data,” in
Proceedings of the 17th International Conference on Hybrid Systems:
Computation and Control, ser. HSCC ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 273–282. [Online].
Available: https://doi.org/10.1145/2562059.2562146

[7] Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning and
detection of anomalous behavior,” IEEE Transactions on Automatic
Control, vol. 62, no. 3, pp. 1210–1222, 2017.

[8] J. Kim, C. Muise, A. Shah, S. Agarwal, and J. Shah, “Bayesian inference
of linear temporal logic specifications for contrastive explanations,” in
Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19. International Joint Conferences on
Artificial Intelligence Organization, 7 2019, pp. 5591–5598. [Online].
Available: https://doi.org/10.24963/ijcai.2019/776

[9] G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A
decision tree approach to data classification using signal temporal
logic,” in Proceedings of the 19th International Conference on Hybrid
Systems: Computation and Control, ser. HSCC ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 1–10. [Online].
Available: https://doi.org/10.1145/2883817.2883843

[10] G. Bombara, “Learning temporal logic formulae from data,” Ph.D.
dissertation, Boston University, 2020.

[11] G. Bombara and C. Belta, “Offline and online learning of signal temporal
logic formulae using decision trees,” ACM Trans. Cyber-Phys. Syst.,
vol. 5, no. 3, 3 2021. [Online]. Available: https://doi.org/10.1145/3433994

[12] Z. Xu, M. Ornik, A. A. Julius, and U. Topcu, “Information-guided
temporal logic inference with prior knowledge,” in 2019 American
Control Conference (ACC), 2019, pp. 1891–1897.

[13] G. Chen, M. Liu, and Z. Kong, “Temporal-logic-based semantic fault
diagnosis with time-series data from industrial internet of things,” IEEE
Transactions on Industrial Electronics, vol. 68, no. 5, pp. 4393–4403,
2021.

[14] H. Riener, “Exact synthesis of ltl properties from traces.” New York:
IEEE, 2019. [Online]. Available: http://infoscience.epfl.ch/record/280073

[15] R. Roy, D. Fisman, and D. Neider, “Learning interpretable models in
the property specification language,” in Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, ser. IJCAI’20,
2021.

[16] N. Baharisangari, J.-R. Gaglione, D. Neider, U. Topcu, and Z. Xu,
“Uncertainty-aware signal temporal logic inference,” in Software Verifica-
tion, R. Bloem, R. Dimitrova, C. Fan, and N. Sharygina, Eds. Cham:
Springer International Publishing, 2022, pp. 61–85.

[17] A. Camacho and S. A. McIlraith, “Learning interpretable models
expressed in linear temporal logic,” Proceedings of the International
Conference on Automated Planning and Scheduling, vol. 29, no. 1,
pp. 621–630, 5 2021. [Online]. Available: https://ojs.aaai.org/index.php/
ICAPS/article/view/3529

[18] I. Gavran, E. Darulova, and R. Majumdar, “Interactive synthesis of
temporal specifications from examples and natural language,” Proc. ACM
Program. Lang., vol. 4, no. OOPSLA, 11 2020. [Online]. Available:
https://doi.org/10.1145/3428269

[19] G. Chou, N. Ozay, and D. Berenson, “Explaining multi-stage tasks
by learning temporal logic formulas from suboptimal demonstrations,”
in Robotics science and systems, 2020. [Online]. Available: http:
//www.roboticsproceedings.org/rss16/p097.pdf

[20] ——, “Learning temporal logic formulas from suboptimal demonstrations:
theory and experiments,” vol. 46, pp. 149–174, 1 2022.

[21] L. Nenzi, S. Silvetti, E. Bartocci, and L. Bortolussi, “A robust genetic
algorithm for learning temporal specifications from data,” in Quantitative
Evaluation of Systems, A. McIver and A. Horvath, Eds. Cham: Springer
International Publishing, 2018, pp. 323–338.

[22] S. Mohammadinejad, J. V. Deshmukh, A. G. Puranic, M. Vazquez-
Chanlatte, and A. Donzé, “Interpretable classification of time-series data
using efficient enumerative techniques,” in Proceedings of the 23rd
International Conference on Hybrid Systems: Computation and Control,
ser. HSCC ’20. New York, NY, USA: Association for Computing
Machinery, 2020. [Online]. Available: https://doi.org/10.1145/3365365.
3382218

[23] E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric identifica-
tion of temporal properties,” in Runtime Verification, S. Khurshid and
K. Sen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.
147–160.

[24] P. Vaidyanathan, R. Ivison, G. Bombara, N. A. DeLateur, R. Weiss,
D. Densmore, and C. Belta, “Grid-based temporal logic inference,” in
2017 IEEE 56th Annual Conference on Decision and Control (CDC),
2017, pp. 5354–5359.

[25] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in IJCAI’13 Proceedings of the Twenty-
Third international joint conference on Artificial Intelligence. Association
for Computing Machinery, 2013, pp. 854–860.

[26] A. P. Sistla and E. M. Clarke Jr., “The complexity of propositional
linear temporal logics,” J. ACM, vol. 32, no. 3, p. 733–749, 7 1985.
[Online]. Available: https://doi.org/10.1145/3828.3837

[27] M. Y. Vardi, An automata-theoretic approach to linear temporal logic.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 238–266.
[Online]. Available: https://doi.org/10.1007/3-540-60915-6 6

[28] D. E. Knuth and P. B. Bendix, Simple Word Problems in Universal
Algebras. Berlin, Heidelberg: Springer Berlin Heidelberg, 1983, pp. 342–
376. [Online]. Available: https://doi.org/10.1007/978-3-642-81955-1 23

[29] J. Hsiang and N. Dershowitz, “Rewrite methods for clausal and non-
clausal theorem proving,” in Automata, Languages and Programming,
J. Diaz, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1983, pp.
331–346.

[30] C. Baier and J.-P. Katoen, Principles of model checking. MIT press, 4
2008.

[31] A. Parmiggiani, L. Fiorio, A. Scalzo, A. V. Sureshbabu, M. Randazzo,
M. Maggiali, U. Pattacini, H. Lehmann, V. Tikhanoff, D. Domenichelli,
A. Cardellino, P. Congiu, A. Pagnin, R. Cingolani, L. Natale, and
G. Metta, “The design and validation of the r1 personal humanoid,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017, pp. 674–680.

[32] M. Colledanchise, G. Cicala, D. E. Domenichelli, L. Natale, and
A. Tacchella, “Formalizing the execution context of behavior trees
for runtime verification of deliberative policies,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2021, pp. 9841–9848.

[33] L. Baresi, M. M. Pourhashem Kallehbasti, and M. Rossi, “Efficient
scalable verification of ltl specifications,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol. 1, 2015, pp.
711–721.

https://proceedings.mlr.press/v153/fijalkow21a.html
https://doi.org/10.1145/2562059.2562146
https://doi.org/10.24963/ijcai.2019/776
https://doi.org/10.1145/2883817.2883843
https://doi.org/10.1145/3433994
http://infoscience.epfl.ch/record/280073
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://doi.org/10.1145/3428269
http://www.roboticsproceedings.org/rss16/p097.pdf
http://www.roboticsproceedings.org/rss16/p097.pdf
https://doi.org/10.1145/3365365.3382218
https://doi.org/10.1145/3365365.3382218
https://doi.org/10.1145/3828.3837
https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1007/978-3-642-81955-1_23

	Introduction
	Related work
	Background
	Syntax
	Semantics

	Problem formulation
	Proposed solution
	Generating formulae via skeleton trees
	Curbing logically equivalent formulae
	Interleaving traces

	Theoretical evaluation
	Implementation details
	Comparison with state-of-the-art
	Comparison with SAT approach
	Comparison with SySLite

	Experimental validation
	YARP simulation
	Tour Guide Robot (in Gazebo Simulator)
	Real-world experiments

	Conclusions and further work
	References

