

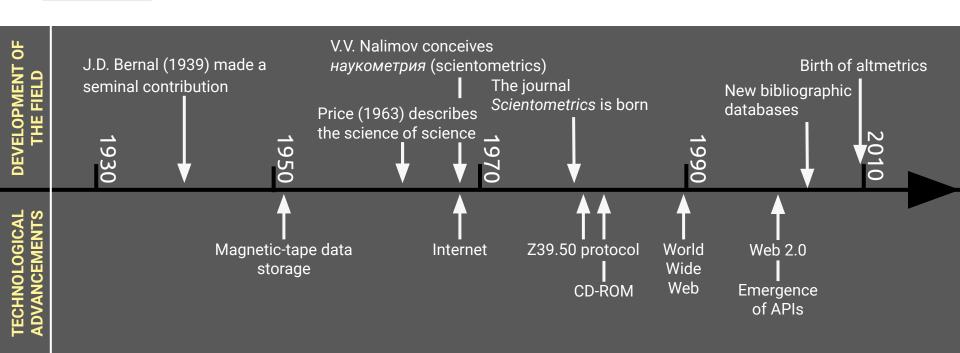
BIG DATA TECHNIQUES APPLIED TO THE STUDY AND CHARACTERISATION OF SCIENTIFIC ACTIVITY ON SOCIAL MEDIA

by Wenceslao Arroyo Machado PhD Advisors Enrique Herrera Viedma & Daniel Torres Salinas

CONTENTS

- 1. ■INTRODUCTION
- 2. LITERATURE REVIEW
- **3.** ■OBJECTIVES
- 4. METHODOLOGY
- 5. SUMMARY
- 6. DISCUSSION OF RESULTS
- 7. CONCLUDING REMARKS

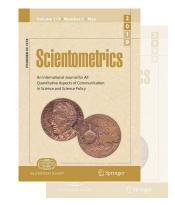
WENCESLAO ARROYO MACHADO

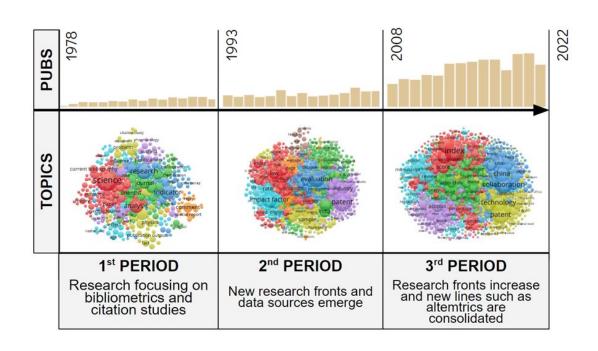

Big data techniques applied to

the study and characterisation of scientific activity on social media

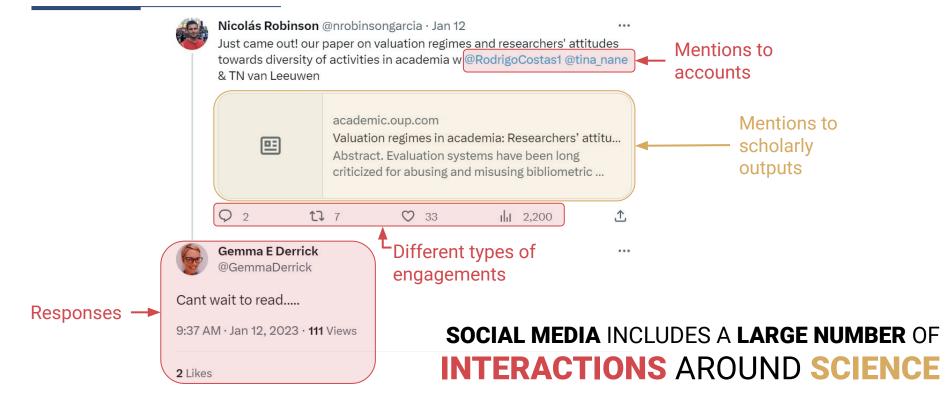
The birth of scientometrics

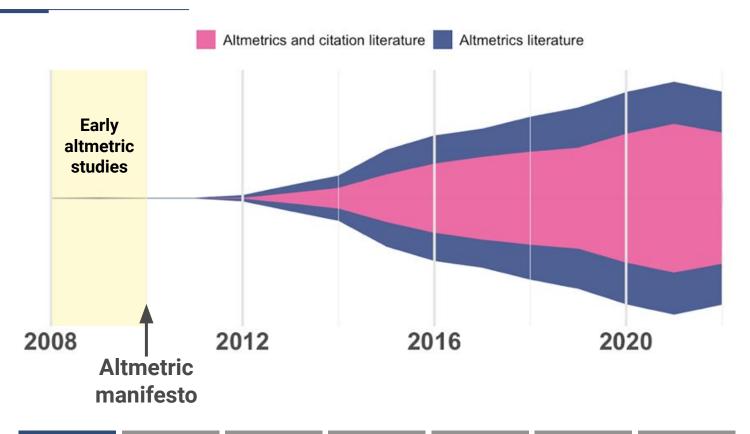
REFERENCES


Bernal, J. D. (1939). The social function of science. *The Social Function of Science*. Price, D. J. D. S. (1963). *Little Science*, *Big Science*. Columbia University Press. https://doi.org/10.7312/pric91844

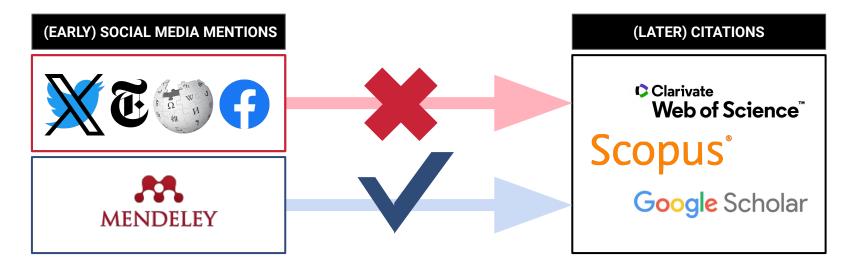

Introduction

The development of scientometrics


The evolution of the journal **Scientometrics** reflects the evolution of the field



The birth of altmetrics

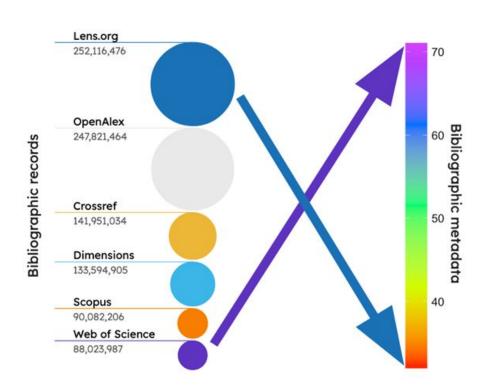


The birth of altmetrics

Towards a new generation of altmetrics

The lack of correlation between (almost all) altmetrics and citations gives rise to research focused on understanding this phenomenon and the context of mentions

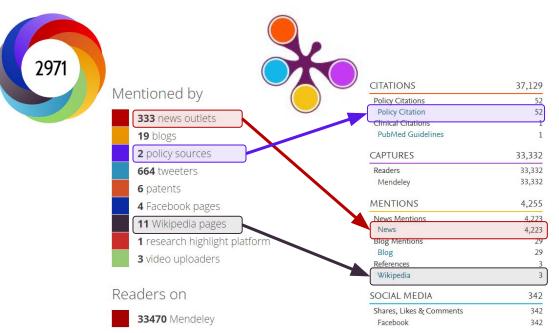
Major challenges identified altmetric research


A large data Lack of landscape of scientometric social interactions **methods** that around science exploit social that remain media data unexplored

Major challenges in bibliographic data

The bibliographic universe has undergone an **avalanche** of databases, metadata and records

There is a noticeable gap between the **quantity** and **quality** of data



Major challenges in social media data

Global Cancer Statistics 2020

GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

In altmetrics, data aggregators show important differences that can determine the direction of the research

Aggregators only include the main and most **popular metrics**

MAIN CHALLENGES

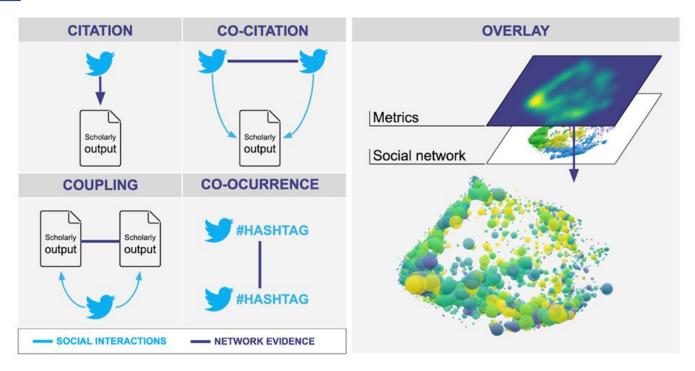
Social media data collecting and processing

- 1. Dependence on data provided by aggregators
 - 2. Lack of source exploration

Applying classic scientometrics

Scientometrics offers a wide range of methods that have demonstrated their **usefulness** in **quantitative analysis** of science through bibliographic records

Many are based on the analysis of citation relationships and patterns


a je i ite je se p je	TABLE I											
	Total	1921-1925	1916-1920	1911-1915	1906-1910	1901-1905	1896-1900	1891-1895	1886-1890	1881-1885	1876-1880	1871-1875
Ber.	686	78	30	67	115	79	64	60	56	53	44	33
J. Chem. Soc.		122	37	60	45	47	21	20	5	2	1	
Ann.		26	8	37	33	23	22	21	19	18	13	
Z. physik. Chem.		53	6	21	29	19	28	16	6			***
Compt. rend.		26	3	23	15	23	15	21	7	9	8	
J. Phys. Chem.		42	13	13	5	1	1				-	
Ann. Physik		18	4	28	13	6	. 0	0	6	5	2	
J. Biol. Chem.		41	16	14	7				0		_	
Am. Chem. J.		TI	10	9	21	20	14	. 8	4	2	1	
Z. anorg, Chem.		21	11	5	8	11	6	2		_	-	
Ann. Chim.		5	0	6	9	7	3	5	1	8	4	•
Bull, Soc. Chim.		16	3	4	7	10	4	4	3	4	2	
Proc. Roy. Soc.		30	5	4	8	5	1	0	1	-		
J. Ind. Eng. Chem.		33	10	5	1	-	_		-	******		
Z. Phys.		41	5			******				******		
Monatsch.		2	1	21	5	9	3	2	5	3		
J. prakt. Chem.		6	1	2	2	6	3	12	6	6	2	
Phil. Mag.	1 2 2	17	14	4	2	3	3	1	ĭ	0	0	
Gazz. chim. ital.		10	6	2	6	4	8	4	3	0	1	
Phus. Rev.	7.77	23	8	3	5	4						
Physik, Zeit,		26	0	7	. 3							
Z. Elektrochem.		11	13	4	4	4	1					
Biochem, Z.		18	2	9	10							
Rec. trav. chim.		14	5	2	2	2	5	4	1	1		
SCIENCE		22	3	-		-			-			
Trans. Far. Soc.		18	0	1	0	1						-
Proc. Nat'l Acad.		19	0	_		_						
Nature		13	5	1								- 7

The abbreviations used above and in the tables to follow are those accepted by Chemical Abstracts and may be found in their list of periodicals abstracted, issued October 20, 1926.

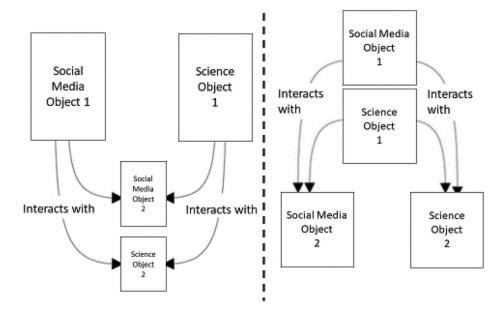
Gross, P. L. K., & Gross, E. M. (1927). College libraries and chemical education. Science, 66(1713), 385-389. https://doi.org/10.1126/science.66.1713.385

Applying classic scientometrics

Many of these classic methods have been successfully adapted to Twitter

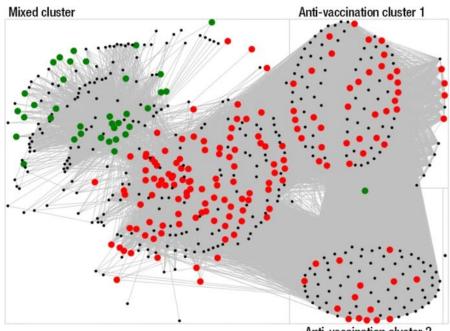
MAIN CHALLENGES

Adapting
standard
scientometrics
methods in
altmetrics
research


- **1.** Absence of approaches applying these methods to sources other than **Twitter**
- 2. Lack of **comparisons** between the social and scientific perspective of scientific knowledge

Towards New Horizons

Beyond classic methods, **new methods** are needed that truly leverage the rich context and environment in which interactions around science occur


Evidence from different sources are also not combined

Costas, R., De Rijcke, S., & Marres, N. (2021). "Heterogeneous couplings": Operationalizing network perspectives to study science-society interactions through social media metrics. Journal of the Association for Information Science and Technology, 72(5), 595-610. https://doi.org/10.1002/asi.24427

Towards New Horizons

Anti-vaccination cluster 2

pro-science anti-vaccination Van Schalkwyk, F., Dudek, J., & Costas, R. (2020). Communities of shared interests and cognitive bridges: The case of the anti-vaccination movement on Twitter. Scientometrics, 125(2), 1499-1516. https://doi.org/10.1007/s11192-020-03551-0

There is great potential in studying engagement around academic objects to better understand science-society interactions

MAIN CHALLENGES

Many opportunities and possibilities

- 1. Many unexplored opportunities in science maps and social network analysis
 - 2. Updated research required due to the ever-changing social media landscape

Main objectives

To explore challenges in processing large OBJECTIVE bibliographic and social media data, with a focus on combining them for altmetric studies

Providing tools and curated datasets for altmetric research

OBJECTIVE

To adapt **scientometric methods** for social media, aiming to create science maps from Wikipedia that reflect social attention

Map the science structure through the lens of Wikipedia

OBJECTIVE

To develop novel methodologies for scientific mapping by combining social and semantic data from diverse sources

Implementation of **innovative** methodologies that integrate interactions and interests

Traditional scientific method

OBSERVATION

Exploration and mapping of the interaction between science and society on social media

CONTRASTING 4 THE HYPOTHESIS

Comparison of the acquired results with those published by other novel related proposals

HYPOTHESIS FORMULATION

Adaptation of traditional scientometric methods to fit social media environments

HYPOTHESIS 5 VALIDATION OR REFUSAL

Validation of the hypothesis through the conducted experiments and results

OBSERVATION ³ GATHERING

Using results from applied methods to social media and validating with indicators from social network analysis

6

SCIENTIFIC THESIS

Extraction, redaction and acceptance of the conclusions

Main contributions

OBJECTIVE DESCRIPTION

APPROACHES

RESULTING PAPERS

OBJECTIVE

Addressing large-scale data analysis from literature and social media

EXPLORING NEW SOURCES

SCIE - Q2

PROVIDE CURATED DATA

oss

ESCI - 01

Scientometrics

OBJECTIVE

Adapting **scientometrics** methods to map science through the social media prism

ADAPTING CO-CITATION TO WIKIPEDIA

MAPPING WIKIPEDIA

J. of Informetrics SCIE - Q1

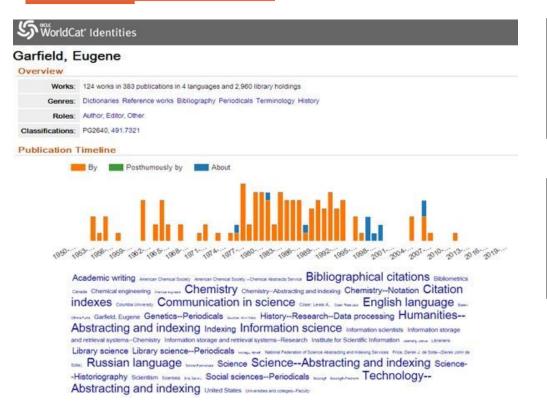
PLOS ONE SCIE - 02

OBJECTIVE

Proposing scientific mapping methods combining social and semantic information

ADAPTING OVERLAY MAPS

SOCIO-SEMANTIC MAPS


FEMS Mic. Letter SCIE - Q3

Scientometrics SCIE - 02

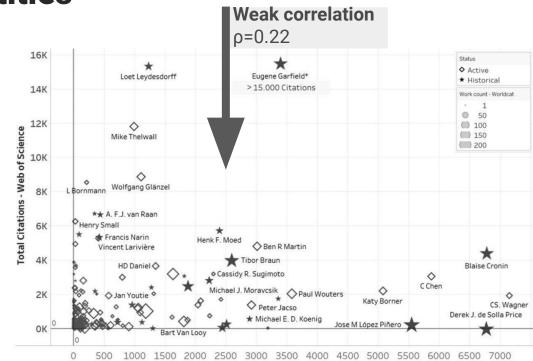
Exploring WorldCat Identities

CONTEXT

OCLC conducted an experimental project, WorldCat Identities, in which it generated author profiles from the WorldCat catalog with various indicators

OBJECTIVE

To **explore** WorldCat Identities as an information source and conduct a **case study** with scientometrics authors

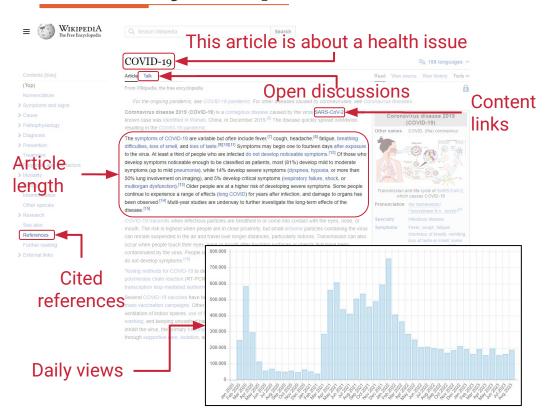


Exploring WorldCat Identities

A python package was built to retrieve author profiles and their metadata.

After retrieving data on scientometricians, we compared the library holdings with the citations

Despite the **disambiguation issues**, it proved useful as an altmetric tool, offering a **new dimension of influence** distinct from that of citations



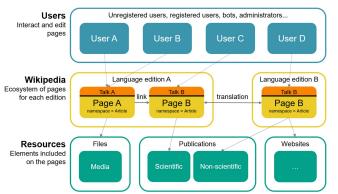
Total Holding Inclusions - Worldcat Identities

objective
Contribution

The analytical possibilities of Wikipedia

CONTEXT

Wikipedia conceals an intricate, unexplored infometric ecosystem with vast potential to capture various social interactions


OBJECTIVES

To establish a **framework** for Wikipedia, create a large open knowledge graph based on it, and conduct a **descriptive quantitative study** of Wikipedia

The analytical possibilities of Wikipedia

Wikimedia Downloads

Wikimedia API

zenodo

Page properties
page_property rife | 28,967,070 x 3

Additional page metadata

base

Metadata of all English
Wikipedia pages
base

Links to categories
page_category file | 165,501,704 x 3

Links between pages and categories
intermediate

Links to websites
page_unt file | 56,564,992 x 3

Links between pages and referenced publications
intermediate

Categories
category file | 2,179,622 x 5

Wikipedia categories
(including hidden ones)
base

Publications
pub file | 2,967,548 x 21

Publications
pub file | 2,967,548 x 21

External websites linked on the pages
base

Dase

External websites linked on the pages
base
base

Dase

Wikipedia Knowledge Graph, dataset and description free at: 10.5281/zenodo.6346899

Identification of elements involved in Wikipedia activity

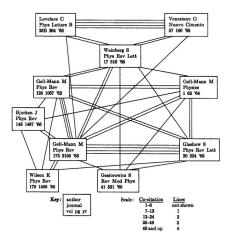
Data processing

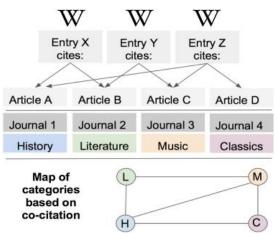
Developing of Open Wikipedia Knowledge Graph

The analytical possibilities of Wikipedia

Using **data science** methods, heterogeneous data from the English Wikipedia was retrieved and processed to construct a **knowledge graph**

Wikipedia has valuable metrics that capture different dimensions of **social attention** that contribute to contextualising **how science is consumed by society**


	All articles	Featured articles	Featured lists	Α	Good	В	С	List	Start	Stub
N. of articles → Wiki Metrics ↓	6,328,134	5945	3816	958	34,004	109,019	394,065	253,066	1,818,356	3,079,778
Editors	48.38	516.93	179.13	176.80	275.71	297.62	165.36	56.27	63.13	22.85
Edits	101.92	1491.35	593.61	564.91	724.13	705.41	369.89	159.80	129.52	40.23
Linked	80.53	725.25	175.84	202.01	330.18	417.00	234.08	107.34	93.03	55.70
Links	87.77	329.68	270.16	236.56	224.88	233.87	164.23	174.78	101.28	69.90
Age	9.59	14.33	11.52	12.74	12.06	12.47	10.92	9.13	10.45	9.20
Length	7844.68	61,248	51,549	43,329	39,444	35,009	21,676	18,202	10,033	3748
Talkers	5.38	66.17	16.62	27.90	29.64	28.16	15.03	4.98	6.56	3.64
Talks	9.19	258.40	42.36	92.21	88.56	88.35	35.32	9.07	9.69	4.32
Views	3345.07	64,801	26,685	16,011	29,229	30,359	15,829	3777	4094	710
References	4.6	53.95	55.49	31.76	38.87	26.51	15.40	9.20	5.79	1.84
Pub. Ref.	0.59	14.27	2.34	8.51	5.83	4.77	2.37	0.53	0.69	0.22
URLs	10.33	58.03	67.32	33.32	46.10	40.31	25.95	22.82	12.90	6.09


The **quality** of the articles is linked to metrics such as **page views** or **references**

Adapting co-citations to Wikipedia

Proof of concept

CONTEXT

Wikipedia articles engage with literature in a similar way to scientific publications, providing a good environment for adapting classic scientometric techniques

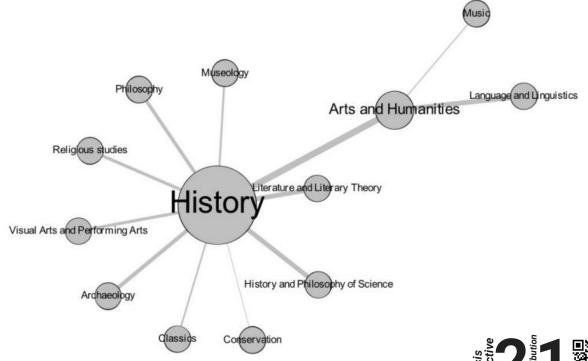
BJECTIVES

To transfer co-citation methodology to Wikipedia and test the method by mapping the structure of the Humanities

From paper co-citations

Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. *Journal of the American Society for Information Science*, 24(4), 265-269. https://doi.org/10.1002/asi.4630240406

to Wikipedia co-citations



Adapting co-citations to Wikipedia

Proof of concept

Pathfinder networks (PFNETs)

Due to the characteristics of these networks, in which there is a high degree of connectivity between all the nodes in the network, it was decided to apply the **Pathfinder algorithm** to eliminate weak links

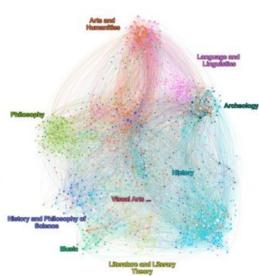
Adapting co-citations to Wikipedia

Proof of concept

From Wikipedia references, **relationships between publications** are established that
can be **aggregated** by journals and
scientific disciplines

The case study **validates** the adaptation of the co-citation method to Wikipedia and demonstrates its relevance by **exposing differences** between the academic and social realms

Language & Linguistics

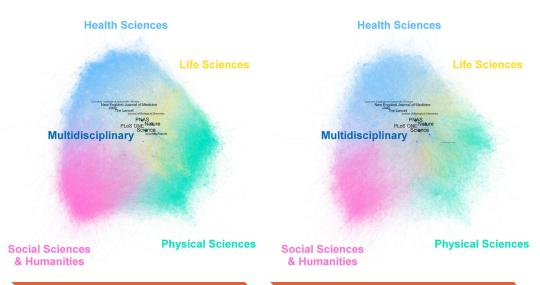

Music
Literature
& Literary Theory

Visual Arts
& Performing Arts
History

Religious Studies

Scopus perspective

Richardson, M. (2013). Mapping the multidisciplinarity of the Arts & Humanities. Research Trends, 1(32), 5. https://www.researchtrends.com/cgi/viewcontent.cgi?article=1145&context=researchtrends


Wikipedia perspective

Contribution 2 certification

Adapting co-citations to Wikipedia

Large-scale mapping

CONTEXT

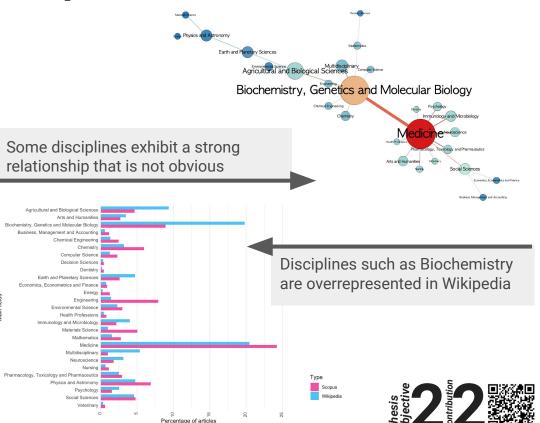
After validating the co-citation method on Wikipedia, the ambition was to apply it on a **large scale** and to make a comprehensive analysis of the science

OBJECTIVES

Mapping the structure of science and offering a general **portrait** of science through the English Wikipedia

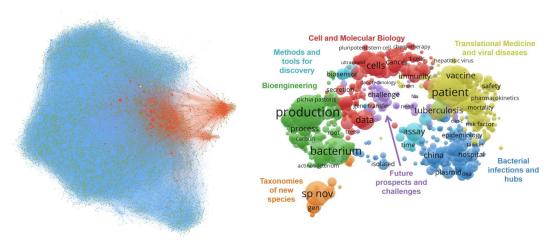
Full network

Pathfinder



Adapting co-citations to Wikipedia

Large-scale mapping


A **co-citation** methodology was adapted to generate **Pathfinder networks (PFNET)** from all references in the English Wikipedia articles

Regarding the scientific realm, discrepancies were detected in the attention to certain disciplines and a shared interest in high-impact publications

Developing new methodologies

Shared interests

Although the topics that capture the attention of a discipline in social media have been studied, potential differences in interests between different media have not been delimited

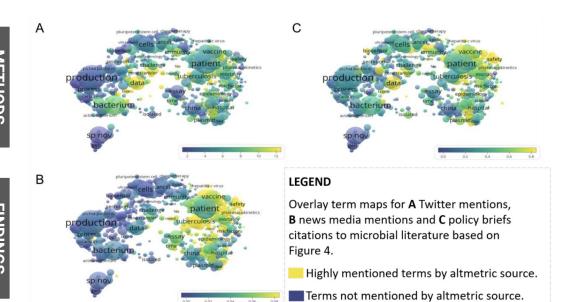
OBJECTIVES

To visualize **key social interest topics** in Microbiology identified via altmetric data

Social mentions
from Twitter, news outlets, and policy documents

Thematic landscape

from publications' titles

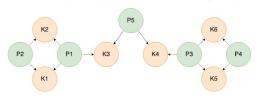


Developing new methodologies

Shared interests

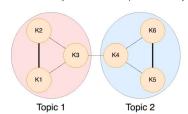
The **overlay maps** have been adapted to the altmetrics to identify the **topics of interest** of each source

Not only have **differences in interests** among the various studied social media been highlighted, but also **peaks of attention** over time

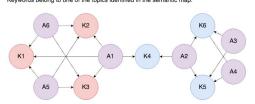


Developing new methodologies

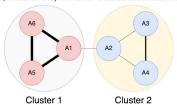
Socio-semantic networks


1. Publication-keyword network

Network of scientific publications (Pn) and their Web of Science author keywords (Kn).


2. Semantic map

Network of author keyword co-occurrence. Topics are identified by community detection.


3. Actor-keyword network

Network of social actors (An) that mention keywords, based on the papers mentioned. Keywords belong to one of the topics identified in the semantic map.

4. Socio-semantic network

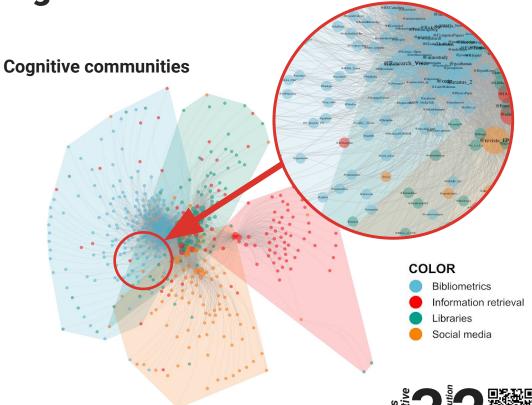
Network of co-occurrence of actors combined with the semantic map. Each actor belongs to a topic based on its keyword mention. Clusters of actors are identified by community detection.

CONTEXT

Altmetrics allow exploring and profiling social actors who discuss and share scientific literature, but it is a challenge to **identify** and **characterize communities**

OBJECTIVES

To develop and validate a new method for **profiling social media users** based on their interest on research topics



Developing new methodologies

Socio-semantic networks

A proposal for **socio-semantic networks** has been developed through a package in and applied to IS&LS and Microbiology

The proposed socio-semantic network can visually simplify social relations and thematic interests, illustrating whether they align or differ

Primary findings

OBJECTIVE 1

WorldCat Identities offers unique insights for author analyses but requires careful data validation due to various challenges

Wikipedia has untapped altmetric potential; our framework and metrics highlight its value but emphasize the need for intensive data processing

OBJECTIVE 2

Wikipedia's citation analysis in the Humanities reveals History as a dominant topic, but Humanities citations are just 5% of Wikipedia citations

A broad co-citation analysis mapped
Wikipedia's perspectives on science,
emphasizing areas like Biochemistry, and
showing unique citation patterns, with
only 13% to OA journals

овјестіче 3

Overlay maps revealed distinct Microbiology interests across platforms, shedding light on how such attention is generated

Our socio-semantic approach identified genuine scientific interests on social media, hinting at its broader applicability

Social media & science interactions

- 1. Pioneering exploration of social media to study science-society relations
- 2. Applied social data mining for data extraction and processing in altmetrics
- 3. Wikipedia: a significant, yet underutilized, platform for altmetrics
- 4. Adapted scientometric methods to map science through social media's lens
- 5. Proposed new methods merging social and semantic data
- 6. Emphasized the vast and varied ways science and society engage on social platforms

This thesis reveals the transformative role of social data mining for science communication research

BIG DATA TECHNIQUES APPLIED TO THE STUDY AND CHARACTERISATION OF SCIENTIFIC ACTIVITY ON SOCIAL MEDIA

by Wenceslao Arroyo Machado PhD Advisors Enrique Herrera Viedma & Daniel Torres Salinas

