

Evaluation of characterisation
tools

Part 1: Identification

Authors
Person Role Partner Contribution
Johan van der Knijff KB
Carl Wilson BL

Distribution
Person Role Partner

ii

Revision History
Version Status Author Date Changes
0.1 Johan van der Knijff 2011-04-28 DROID 6
0.2 Johan van der Knijff 2011-06-14 Fido
0.25 Johan van der Knijff 2011-06-16 Fido updated

0.3 Carl Wilson/Johan van der
Knijff 2011-06-24 Unix File Utility

0.4 Johan van der Knijff 2011-07-12 FITS

0.45 Johan van der Knijff 2011-07-26
Incorporated feedback Andrea
Goethals on FITS + layout
changes

0.5 Johan van der Knijff 2011-08-15 FITS 2 + additional tests one-file-
at-a-time scenario for all tools

1.0 Johan van der Knijff 2011-09-21

Incorporated feedback Stephen
Abrams on JHOVE2, Maurice de
Rooij on FIDO, added
introduction, concluding chapter

iii

Table of Contents

1 Introduction .. 1

1.1 Scope of this document ... 1

1.2 Outline ... 1

2 Evaluation framework ... 3

2.1 Tool interface .. 3

2.2 License type ... 3

2.3 Language ... 3

2.4 Platform dependencies ... 3

2.5 Coverage of file formats .. 3

2.6 Extendibility ... 3

2.7 Output format ... 3

2.8 Unique output identifiers .. 3

2.9 Granularity of output .. 3

2.10 Accuracy of reported results ... 4

2.11 Comprehensiveness and completeness of reported results 4

2.12 Fit to needs of preservation community ... 4

2.13 Ability to deal with nested objects .. 4

2.14 Ability to deal with composite objects .. 4

2.15 User documentation .. 4

2.16 Computational performance ... 4

2.17 Stability .. 5

2.18 Error handling and reporting ... 5

2.19 Provision of event information .. 5

2.20 Maturity and development stage .. 5

2.21 Development activity ... 5

2.22 Existing experience .. 5

3 Data set and test environment ... 7

3.1 KB Scientific Journals set ... 7

iv

3.2 KB Large set ... 8

3.3 Test environment .. 8

4 DROID 6.0 ... 11

4.1 Overview ... 11

4.2 Tool interface .. 11

4.3 License type ... 11

4.4 Language ... 11

4.5 Platform dependencies ... 11

4.6 Coverage of file formats .. 11

4.7 Extendibility ... 11

4.8 Output format ... 12

4.9 Unique output identifiers .. 12

4.10 Granularity of output ... 12

4.11 Accuracy of reported results ... 12

4.12 Comprehensiveness and completeness of reported results 12

4.13 Fit to needs of preservation community ... 13

4.14 Ability to deal with nested objects .. 13

4.15 Ability to deal with composite objects .. 13

4.16 User documentation .. 13

4.17 Computational performance: one file at a time ... 14
4.17.1 KB Scientific Journals data set ... 14
4.17.2 KB Large data set ... 16

4.18 Computational performance: many files at a time .. 17

4.19 Stability .. 17

4.20 Error handling and reporting ... 17

4.21 Provision of event information .. 17

4.22 Maturity and development stage .. 18

4.23 Development activity ... 18

4.24 Existing experience .. 18

4.25 Unidentified files ... 18

4.26 Conclusions .. 19

v

5 Fido 0.9 ... 21

5.1 Overview ... 21

5.2 Tool interface .. 21
5.2.1 Python version ... 21
5.2.2 Jython version ... 21

5.3 License type ... 21

5.4 Language ... 21

5.5 Platform dependencies ... 21
5.5.1 Python version ... 21
5.5.2 Jython version ... 22

5.6 Coverage of file formats .. 22

5.7 Extendibility ... 22

5.8 Output format ... 22

5.9 Unique output identifiers .. 22

5.10 Granularity of output ... 22

5.11 Accuracy of reported results ... 22

5.12 Comprehensiveness and completeness of reported results 23

5.13 Fit to needs of preservation community ... 23

5.14 Ability to deal with nested objects .. 23
5.14.1 Python version ... 23
5.14.2 Jython version ... 23

5.15 Ability to deal with composite objects .. 23

5.16 User documentation .. 24
5.16.1 Python version ... 24
5.16.2 Jython version ... 24

5.17 Computational performance: one file at a time (Python version) 25
5.17.1 KB Scientific Journals data set ... 25
5.17.2 KB Large data set ... 26

5.18 Computational performance: one file at a time (Jython version) 27

5.19 Computational performance: many files at a time .. 27
5.19.1 Python version ... 27
5.19.2 Jython version ... 28

vi

5.20 Stability .. 29
5.20.1 Python version ... 29
5.20.2 Jython version ... 29

5.21 Error handling and reporting ... 29

5.22 Provision of event information .. 29

5.23 Maturity and development stage .. 29

5.24 Development activity ... 29

5.25 Existing experience .. 30

5.26 Unidentified files ... 30

5.27 Conclusions .. 30

6 Unix File Utility .. 33

6.1 Overview ... 33

6.2 Tool interface .. 33

6.3 License type ... 33

6.4 Language ... 33

6.5 Platform dependencies ... 33

6.6 Coverage of file formats .. 34

6.7 Extendibility ... 34

6.8 Output format ... 34

6.9 Unique output identifiers .. 34

6.10 Granularity of output ... 34

6.11 Accuracy of reported results ... 34

6.12 Comprehensiveness and completeness of reported results 34

6.13 Fit to needs of preservation community ... 35

6.14 Ability to deal with nested objects .. 35

6.15 Ability to deal with composite objects .. 35

6.16 User documentation .. 35

6.17 Computational performance: one file at a time ... 36
6.17.1 KB Scientific Journals data set ... 36
6.17.2 KB Large data set ... 37

6.18 Computational performance: many files at a time .. 38

vii

6.19 Stability .. 38

6.20 Error handling and reporting ... 38

6.21 Provision of event information .. 39

6.22 Maturity and development stage .. 39

6.23 Development activity ... 39

6.24 Existing experience .. 39

6.25 Unidentified files ... 39

6.26 Conclusions .. 39

7 FITS (File Information Toolset) 0.5 .. 41

7.1 Overview ... 41

7.2 Tool interface .. 41

7.3 License type ... 41

7.4 Language ... 41

7.5 Platform dependencies ... 41

7.6 Coverage of file formats .. 41

7.7 Extendibility ... 42

7.8 Output format ... 42

7.9 Unique output identifiers .. 42

7.10 Granularity of output ... 42

7.11 Accuracy of reported results ... 42

7.12 Comprehensiveness and completeness of reported results 42

7.13 Fit to needs of preservation community ... 42

7.14 Ability to deal with nested objects .. 42

7.15 Ability to deal with composite objects .. 42

7.16 User documentation .. 43

7.17 Computational performance: one file at a time ... 44
7.17.1 KB Scientific Journals data set ... 44
7.17.2 KB Large data set ... 46
7.17.3 Additional tests on influence of FITS configuration .. 47

7.18 Computational performance: many files at a time .. 48

7.19 Stability .. 48

viii

7.20 Error handling and reporting ... 48

7.21 Provision of event information .. 48

7.22 Maturity and development stage .. 48

7.23 Development activity ... 49

7.24 Existing experience .. 49

7.25 Unidentified files ... 49

7.26 Conclusions .. 49

8 JHOVE2 ... 51

8.1 Overview ... 51

8.2 Tool interface .. 51

8.3 License type ... 51

8.4 Language ... 51

8.5 Platform dependencies ... 51

8.6 Coverage of file formats .. 51

8.7 Extendibility ... 52

8.8 Output format ... 52

8.9 Unique output identifiers .. 52

8.10 Granularity of output ... 54

8.11 Accuracy of reported results ... 54

8.12 Comprehensiveness and completeness of reported results 54

8.13 Fit to needs of preservation community ... 54

8.14 Ability to deal with nested objects .. 54

8.15 Ability to deal with composite objects .. 55

8.16 User documentation .. 55

8.17 Computational performance: one file at a time ... 55
8.17.1 KB Scientific Journals data set ... 55
8.17.2 KB Large data set ... 57
8.17.3 Additional tests on influence of file type and size .. 58

8.18 Computational performance: many files at a time .. 59
8.18.1 Additional note on treatment of source units in JHOVE2 ... 60

8.19 Stability .. 61
8.19.1 JHOVE2 ‘hangs up’ on EPUB/ZIP file .. 61

ix

8.19.2 Default location for writing memory objects .. 61
8.19.3 JHOVE2 doesn’t clean up its temporary files .. 61

8.20 Error handling and reporting ... 61

8.21 Provision of event information .. 61

8.22 Maturity and development stage .. 61

8.23 Development activity ... 62

8.24 Existing experience .. 62

8.25 Unidentified files ... 62

8.26 Conclusions .. 62

9 Concluding observations and suggestions for further work 65

9.1 Performance of Java-based tools .. 65

9.2 Identification of text-based formats ... 65

9.3 Extensions to Unix File?... 66

Acknowledgements .. 67

References ... 69

1

1 Introduction
This report is part of SCAPE Work Package 9 – Characterisation Components. The overall objective of
this work package is the development of a technical infrastructure that enables large scale
characterisation of digital objects in a distributed architecture. A first step towards this end is an
analysis of existing tools. What tools are available, what are they capable of, and to what extent can
they be deployed in the envisaged architecture?

1.1 Scope of this document
In practice the term “characterisation” is often used to indicate quite different things. To avoid any
confusion, this document follows the terminology used in the JHOVE2 project. Here, characterisation
is loosely defined as the process of deriving information about a digital object that describes its
character or significant nature1. This process is subdivided into four aspects:

• identification - the process of determining the presumptive format of a digital object;
• feature extraction - the process of reporting the intrinsic properties of a digital object that

are significant to preservation planning and action;
• validation - the process of determining the level of conformance of a digital object to the

normative syntactic and semantic rules defined by the authoritative specification of the
object's format;

• assessment - the process of determining the level of acceptability of a digital object for a
specific purpose on the basis of locally-defined policy rules.

Although the characterisation work in SCAPE will eventually cover all the above aspects of
characterisation, the scope of this document is limited to identification only. The selection of tools is
based on an inventory that is covered in detail in a separate document (van der Knijff et al., 2011b).

1.2 Outline
The evaluation of the identification tools is based on an evaluation framework. Chapter 2 gives a
brief explanation of the evaluation criteria. A detailed description of the evaluation framework is
given in a separate document (van der Knijff et al., 2011a).

Chapter 3 gives a description of the data sets that were used for the evaluation, and of the technical
environment in which the tests were run.

The actual tool evaluations are covered in Chapters 4 to 8. The currently evaluated tools are:

• DROID 6.0
• Fido 0.9
• Unix File tool
• FITS 0.5
• JHOVE2

1 JHOVE2 actually uses 2 separate definitions: “(1) Information about a digital object that describes its character
or significant nature that can function as an surrogate for the object itself for purposes of much preservation
analysis and decision making. (2) The process of deriving this information. This process has four important
aspects: identification, feature extraction, validation, and assessment.”

2

Note that some of these tool offer functionality that extends well beyond identification. This applies
in particular to FITS and JHOVE 2, which can also be used for feature extraction, validation and
assessment. However, the scope of the current report is limited to identification only, and these
additional functionalities were not included in the evaluation.

An important limitation of the current work is that the quality of the identification results has not
been taken into account, even though this is part of the evaluation framework. The main reason for
this is the lack of a reliable test corpus, in which the ‘true’ format of each file is unambiguously
known. This is something that should be addressed in follow-up work on this.

Finally, Chapter 9 summarises some concluding observations, and suggests some possible routes for
further work.

3

2 Evaluation framework

The tools were evaluated against the criteria that are defined in “WP 9: evaluation framework for
characterisation tools”. The full list of criteria is:

2.1 Tool interface
This relates to how a tool can be invoked. Examples are: command-line interface, Java API, SOAP. It is
mainly relevant to the usability within a distributed architecture (e.g. tools that can only be invoked
through a graphical user interface cannot be incorporated in an automated workflow without
modification).

2.2 License type
If a tool is available under an open source license, it may be adapted or optimised to a distributed
architecture. For closed-source tools this isn’t usually an option (unless some agreement can be set
up with the license holder).

2.3 Language
Open source tools may need to be adapted or optimised to the SCAPE architecture. However, if a
tool is written in a language for which none of the involved SCAPE partners have sufficient
experience, this may not be a viable option.

2.4 Platform dependencies
Some tools are only available for specific platforms (e.g. Windows XP). Such platform dependencies
may make it difficult or even impossible to use such tools in other (e.g. Linux-based) environments.

2.5 Coverage of file formats
The selection of tools should take into account the file formats in which we are really interested (i.e.
the formats that are prevalent in the collections of the SCAPE partners).

2.6 Extendibility
This relates to the degree to which it is possible to extend a tool to include new file formats, or
update or improve the characterisation of existing formats. An example is DROID, for which the
coverage of file formats can be extended by adding new format entries to an external signature file.

2.7 Output format
The incorporation into an automated workflow requires that tools report their output in a format
that can be easily interpreted. XML formats that are properly defined by a schema are preferable.

2.8 Unique output identifiers
Tools may be using identifiers or tags that are different from the ones used in the format registry. An
example: BitsPerComponent and BitsPerSample both refer to the same property of a JP2 image. The
first is reported by ExifTool, the second by JHOVE1. This means that the output of individual tools will
have to be normalised by mapping the properties to unique property instances in many cases.

2.9 Granularity of output
In addition to this, different tools may be using different levels of granularity. For instance, DROID
reports its identification results as PUIDs, whereas the Unix File command uses MIME types instead.

4

As an example, any PDF file (irrespective of version) will return MIME type ‘/application/pdf’ with the
Unix File command, whereas DROID’s PUID classification uses a separate PUID for each PDF version
(and PDF profile). The tool evaluation should therefore take into account the required granularity,
and the degree to which a tool’s output can be mapped back to the used file format registry.

2.10 Accuracy of reported results
The information that is provided by a tool may not always be accurate. An example: ImageMagick’s
‘identify’ tool reports the presence of embedded ICC profiles in JP2 images that do not contain an ICC
profile at all.

2.11 Comprehensiveness and completeness of reported results
Candidate tools should also be evaluated for the completeness of the reported results. Another JPEG
2000 example to illustrate this: if a JPEG 2000 (JP2 or JPX) image contains an embedded ICC profile,
JHOVE1 will report the used colour specification method (‘Restricted ICC’ or ‘Any ICC’), which is
important for preservation. However, it does not provide any information on the ICC profile itself.
ExifTool on the other hand gives some very detailed output on the ICC profile, but it doesn’t give any
information on the colour specification method. So tools may be complementary to each other.

2.12 Fit to needs of preservation community
Many characterisation tools were not originally developed with the digital preservation community
in mind. An example is ExifTool, which is more aimed at photographers. This is not necessarily a
problem, but the evaluation should address to what extent tools meet the specific needs for
preservation.

2.13 Ability to deal with nested objects
Not all tools are able to deal with nested objects. With the rise of formats such as EPUB and the
Open Document Format, which all use the ZIP format as a physical container, dealing with such
objects in a meaningful way is getting increasingly important.

2.14 Ability to deal with composite objects
Not all tools are able to deal with composite objects. Examples are (again) EPUB and the Open
Document Format (where the constitute parts are held together by a physical ZIP container), and
HTML.

2.15 User documentation
Tools that are used in an operational workflow should be supported by user documentation of
sufficient quality. This should cover all aspects that are relevant to using the tool: system
requirements, dependencies, limitations, installation, use (including options), and the interpretation
of its output.

2.16 Computational performance
The computational performance of the tools should meet some minimal requirements. These are
mainly related to speed and memory usage. If a tool is very slow, this may make its deployment in a
large-scale automated workflow problematic. The same applies to a tool that consumes excessive
amounts of system resources. For practical reasons, it is useful to make a distinction between the
following two use cases:

1. Performance while working on 1 object at a time
2. Performance while working on a (very) large number of objects.

5

The reason for this is that many tools (especially the ones that are written in Java) suffer from slow
initialisation after their invocation (due to slow startup of the Java Virtual Machine and the need to
load large signature files). However, if such tools are able to perform many characterisations in one
run, the average performance per object may still be very good. However, this may imply some
specific requirements for the SCAPE framework. Conversely, in some cases the performance of tools
that are designed to process only one object at a time may be improved by enabling the processing
of many objects in one run.

2.17 Stability
The stability of the tools should meet some minimal requirements (also related to error handling and
development stage, see below).

2.18 Error handling and reporting
The handling and reporting of errors should meet some minimal requirements. Any input/output
errors and unexpected exceptions should not lead to system crashes, but they should be handled by
the tool. The tool should also be able to report back any errors in such a way that they can be
handled properly by the workflow management system.

2.19 Provision of event information
In addition to error handling and reporting, tools should ideally also provide information about each
individual characterisation event, such as:

• Version number of the tool
• Version number of the signature file (in case of identification tools that are based on external

signature files)
• Outcome: did the tool succeed, fail, or something in between? For identification tools this

could include information on whether a tool was able to come up with a positive match for a
specific file format, a tentative one, or no match at all.

2.20 Maturity and development stage
We may have reason to have more confidence in tools that have already seen a number of stable
releases than in tools that are still in alpha or beta status. However, there are examples to the
contrary, and the very nature of SCAPE as a research project implies that we shouldn’t overlook
‘new’ tools that show promise.

2.21 Development activity
Attempts to include or modify tools that show no signs of recent active development may turn out to
be a waste of time and effort in the long run (lack of support, updates and user base). (There may be
exceptions where SCAPE could potentially act as a trigger to re-activate dormant development
efforts; the Open Planets Foundation could play an important role here.)

2.22 Existing experience
If we already have some experience with a tool, and are familiar with its use, chances are we are
already aware of its strengths, weaknesses and limitations.

6

7

3 Data set and test environment

3.1 KB Scientific Journals set
This is a set of mostly scientific publications that were extracted from the KB’s e-Depot repository.
The data set comprises 7796 archival packages, containing a total of 11892 file objects (including
both content and associated metadata files). Its total (uncompressed) size is about 1.15 GB. The
materials in the data set originate from a wide variety of publishers. It has the following general
structure, where each AIP is represented by a directory, which results in the following directory tree:

+---prdrm_1289223594188
| \---unpacked
| +---Original metadata
| \---OriginalEpublication
|
+---prdrm_1289223611485
| \---unpacked
| +---Original metadata
| \---OriginalEpublication
|
+--- etc.

The above example shows 2 AIPs. For each, the ‘OriginalEpublication’ directory contains the content
files, and metadata are stored in the ‘Original metadata’ directory. Table 3-1 and Figure 3-1 give an
overview of the data set’s file size distribution. The Figure shows a marked peak around file of about
1 KB; this peak is mostly made up of small metadata files that are part of the archival packages. In
general, large files appear to be somewhat underrepresented. For this reason, for some of the tests
in this report an additional data set of (very) large files was used.

Table 3-1 Summary file size statistics of KB Scientific Journals data set (expressed in bytes). N=number of files;
q1, median and q3 are 1st , 2nd and 3rd quantiles, respectively.

N min q1 median mean q3 max
11,892 11 955 4,737 104,650 43,177 25,495,289

8

Figure 3-1 Distribution of file size in KB Scientific Journals data set. Note logarithmic scale on horizontal axis.

3.2 KB Large set
This is a data set that consists of 8 large files. Table 3-2 below lists its main characteristics.

Table 3-2 Main characteristics of KB Large data set

File name File type Size (bytes)
dpo_tonal_00990.tiff TIFF image 36,420,900
IMAGE000060_lossless_colour.jp2 JP2 image 49,818,414
IMAGE000060.TIF TIFF image 114,664,502
SGD_19451955_0000002_ID371.pdf PDF 1.4 325,101,508
DipAsset6984444754559678047.tar TAR archive 534,968,320
KBDVD.iso ISO image 683,180,032
KBDVD17062011.img ISO image 693,993,472
DNEPABOstg.PST MS Outlook email folder 1,895,515,136

3.3 Test environment
All tests were run on a single desktop PC running Microsoft Windows XP Professional. The test
dataset was stored on an external USB drive. Table 3-3 below summarises the most important
system characteristics.

9

Table 3-3 Main characteristics of test environment
Processor x86 Family 15 Model 6 Stepping 5 GenuineIntel ~2992

Mhz (32 bits)
Total Physical Memory 999 MB
Maximum virtual memory 2,048 MB
Operating System Microsoft Windows XP Professional
OS Version 5.1.2600 Service Pack 3 Build 2600
Hard drive LaCie Grand 1 TB USB 2.0 External
Java Runtime Environment java version "1.6.0_26"

Java(TM) SE Runtime Environment (build 1.6.0_26-
b03)
Java HotSpot(TM) Client VM (build 20.1-b02, mixed
mode, sharing)

For the performance tests, two tools were used for measuring processing time:

1. For single tool invocations (e.g. processing of one single file, or processing of whole directory
tree using a single invocation of a tool) we used Microsoft’s ‘timeit’ utility. It is part of the
Windows Server 2003 Resource Kit Tools2.

2. Some of the tests involved a recursive traversal of the whole directory tree, where all 11892
file objects were processed using 11892 separate tool invocations. This was automated with
a custom-made Python script called ‘treeLaunch’, which runs a user-defined command as a
sub-process on all file objects in a directory tree. The script includes a built-in timer which
measures the amount of time between the start and completion of each sub-process. For
each file/sub-process, the script reports the file path of the corresponding file object, its
MIME type3, its size and the duration of the subprocess.

Manual tests on a limited number of tool / file combinations revealed no noticeable differences
between the results of both tools.

2 More info here: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=9d467a69-57ff-4ae7-96ee-
b18c4790cffd&displaylang=en
3 MIME type here is guessed based on file extension only Python’s built-in ‘mimetypes’ module

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=9d467a69-57ff-4ae7-96ee-b18c4790cffd&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=9d467a69-57ff-4ae7-96ee-b18c4790cffd&displaylang=en

10

11

4 DROID 6.0

4.1 Overview
DROID (Digital Record Object Identification) is a tool that identifies digital objects using PRONOM
format signatures (‘magic numbers’) and/or known file extensions. The identification results are
reported as PRONOM-compliant Persistent Unique Identifiers (PUIDs). DROID is an open-source,
platform-independent Java application. It can be used directly from the command line, or,
alternatively, using a graphical user interface. Evaluated here is the most recent version of DROID ,
which is DROID 6.0 (released March 2011).

4.2 Tool interface
DROID can be invoked through a graphical user interface and a command line interface. For the
command line interface a Windows batch file and a Unix shell script are provided. The batch file only
appears to work if it is invoked directly from the application directory (i.e. the directory in which the
batch file and the two main JAR files are installed). Since this is not very practical, calling the
executable JAR of the command-line interface directly4 will often be more convenient. It is possible
to tell DROID to analyse all files in a given directory (or set of directories), and the “-R ” command-
line switch activates recursive processing of all subdirectories (and sub-sub directories, and so on).

4.3 License type
DROID is released under an open-source BSD License, which “permits its use, modification, inclusion
in other products and redistribution as long as the terms of the license are adhered to” [DROID 6].
DROID uses a number of third party components, which are all released under a variety of open
source license types.

4.4 Language
DROID is written in Java (version 6). The user documentation states that DROID has been tested on
Java 6 update 17 to update 22, while it should run under Java 6 update 10 onwards.

4.5 Platform dependencies
According to the user documentation DROID runs on Windows, Linux and Mac, and potentially other
platforms that support Java 6 applications (see above).

4.6 Coverage of file formats
DROID tries to identify files using file signatures, or, alternatively, known extensions. These are
defined in a signature file, which is regularly updated by The National Archives. Just as an indication,
version 45 of the signature file contains 766 file type definitions and 327 file signatures.

4.7 Extendibility
Since the number of formats that DROID can handle is defined by the information in the signature
file, new formats can be added by modifying the signature file (or downloading the latest version
from the National Archives). Unlike earlier versions, in DROID 6 the signature file is always stored in a
separate (configurable) user directory (which is not necessarily the location of the DROID application
files). In addition to the regular signature file, DROID 6 also uses a separate file with ‘container
signatures ’, which is used for formats that may contain other files within themselves. Examples are

4 E.g. like this: java -jar C:\droid\droid-command-line-6.0.jar –a ...

12

ZIP, which is used as a physical container for the Open Document and Microsoft Office Open XML
formats, and OLE2 which is a container for the Microsoft Office formats.

4.8 Output format
Older versions of DROID (e.g. DROID 4) used to write their output directly to an XML file. In DROID 6
things are slightly more complicated. Central to its input and output handling is the concept of
profiles. A profile is defined as “the files and folders you want to find out about, and the results of
profiling them”. A profile uses the ZIP format as a physical container, and all relevant DROID in- and
output results are stored in this container. Crucially, the characterisation results are stored in a
database format that is not human readable. In order to use the results, the information from the
profile has to be exported. DROID 6 can only export the profile information to CSV (comma-
separated text) format. By default, each row in the exported CSV file represents one file object.
However, if a file object results in multiple format matches, the last 4 columns of the CSV output
(PUID, MIME type, format name and format version) are repeated for each match. This means that
the number of columns per row is variable. Alternatively, DROID offers a ‘one row per format’
option, where each row represents one unique format identification (which has the implication that
one file objected may be represented by multiple rows in the CSV file).

In addition to this, DROID 6 also has options to generate reports (which can be in either XML or PDF
format), but this report functionality is mainly useful for generating aggregate statistics of the
identification results (e.g. for each format the corresponding number of files). None of these output
formats are particularly suitable for use in automatic workflow systems5. Exporting is done as a
separate step, which means that 2 separate invocations of DROID are necessary to produce the CSV
output (i.e. first scan, then export).

4.9 Unique output identifiers
Identification results are reported as PRONOM Unique Identifiers (PUID) and MIME types. In
addition, DROID also provides a textual description of the format name and (if applicable) the format
version number.

4.10 Granularity of output
The use of PUID as the primary identifier ensures that there DROID’s output can be mapped directly
to the PRONOM registry (as well as the OPF registry).

4.11 Accuracy of reported results
Not analysed yet.

4.12 Comprehensiveness and completeness of reported results
The reporting of the analysis results appears to be complete and sufficiently comprehensive, with the
important exception of event information, which is explained further below. The output also contains
the full URI and file path for each analysed object.

5 We have contacted The National Archives about these output format issues, and inquired whether it would
be possible to re-introduce the ‘old’ XML output format. In a reply to this (e-mail Andrew Fetherston, 11-4-
2011) TNA confirmed that the XML output was dropped in recent DROID releases. He did however offer to add
a suggestion for unified XML output of results for any future development of DROID.

13

4.13 Fit to needs of preservation community
DROID is being developed by The National Archives, and the preservation community is its primary
target audience. However, the encountered output-related problems suggest that the current focus
of DROID is on interactive use of the software using the Graphical User Interface. The needs of users
who wish to incorporate DROID 6 in automated workflows are not served particularly well. The
inclusion of more elaborate XML output (similar to what was used in e.g. DROID 4) would make the
software much more suitable for such applications.

4.14 Ability to deal with nested objects
DROID 6 is able to look inside ZIP files. DROID analyses all file objects that are embedded in a ZIP file,
and these are included in DROID’s output. To illustrate this, the example below shows how a Perl
script that is embedded inside a ZIP archive is reported:

zip:file:/D:/aipSamplesUnpacked/./prdrm_1289288371730/unpacked/Original%20m
etadata/1746-4811-1-10-S2.zip!/CDF_masking/easy_script.pl

4.15 Ability to deal with composite objects
Formats such as Microsoft Word 97 and Open Document Format are based on multiple file objects
that are held together by a physical container (e.g. OLE2 for Microsoft Word 97, and ZIP for Open
Document Format). DROID 6 can handle both cases. Open Document files are identified as Open
Document format (and not as plain ZIP, even though ZIP is the container format). Interestingly, EPUB
files (which are organised in a similar manner as Open Document files) are still treated (and
identified) as regular ZIP files.

HTML represents another class of composite objects, where, for example, an individual HTML file
refers to external style sheets and images, which are all needed for proper rendering. The main
difference with e.g. Open Document Format or EPUB is the absence of a physical container file.
DROID does not currently have any mechanism to recognise the interdependencies between the
individual components of this particular class of ‘composite objects’.

4.16 User documentation
The GUI version of DROID has a comprehensive on-line help. Its contents are also provided as a 65
page manual in PDF format. The current evaluation revealed the following issues:

• In the description of the CSV output some columns are left out, and the column headings in
the documentation are sometimes slightly different from those in the actual CSV files (see
also the section on event information below).

• The documentation of the CSV output doesn’t explain that additional columns are added in
case of multiple format matches.

• The manual describes how to configure folders for user settings and temporary files. The
actual behaviour of the temporary files directory is slightly different from the documented
behaviour. In particular, by default the temporary files directory settings should be inherited
from the user settings directory settings, but this hasn’t been implemented accordingly in the
software. The result is that DROID may end up putting large amounts of temporary data at
unexpected locations, which can lead to system problems6.

6 This issue was reported to TNA, and they confirmed that this is a bug that will be corrected in upcoming
releases. In the meantime a simple fix is to always set the temporary files folder explicitly using the
‘droidTempDir’ environment variable (as described on page 62 of the DROID 6 Help document).

14

• In order to be able to work with DROID 6 a basic understanding of the ‘Profile’ concept is
crucial. However, the documentation does not clearly explain what a ‘Profile’ exactly is. The
most specific description describes a profile as “the files and folders you want to find out
about, and the results of profiling them”, but apart from being rather vague it is hidden away
in the ‘Create a new profile’ section.

• The PDF documentation is a direct derivative of the on-line help. Although certainly very
useful, it is somewhat lacking in structure (see also the aforementioned remark on profiles).
A properly edited user manual (which would, for example, explain central concepts such as
‘profiles’ in an introductory chapter) could be a further improvement.

4.17 Computational performance: one file at a time

4.17.1 KB Scientific Journals data set
DROID’s performance while processing one file at a time was tested using the ‘treeLaunch’ tool (see
section 3.3). The ‘treeLaunch’ tool was set up to recursively traverse the KB Scientific Journals data
set’s directory tree, and run DROID for each encountered file object. For an individual file object this
results in a command line like:

java -jar C:\droid\droid-command-line-6.0.jar -a 1-1-70.pdf -p test1.droid

Here, DROID’s –a switch defines a resource (in this case a PDF file), and –p defines a ‘profile’ (see
above).

It took about 39 hours to analyse the KB Scientific Journals data set in this way. Figure 4-1 and Table
4-1 summarise the main results. On average DROID 6 needs about 12 seconds per file object, but in
exceptional cases more than 20 seconds are needed. Figure 4-2 shows that processing time is
independent of file size.

15

Figure 4-1 Distribution of processing time per file object for DROID 6 one-file-at-a-time scenario, KB Scientific
Journals data set.

Table 4-1 Summary performance statistics for DROID 6 one-file-at-a-time scenario, KB Scientific Journals data
set (expressed in seconds per file, except N). N=number of files; q1, median and q3 are 1st , 2nd and 3rd
quantiles, respectively.

N min q1 median mean q3 max
11,892 11.19 11.74 11.89 11.90 12.00 23.02

16

Figure 4-2 Scatter plot of processing time per file object versus file size for DROID 6 one-file-at-a-time scenario,
KB Scientific Journals data set. Note logarithmic scale on horizontal axis.

4.17.2 KB Large data set
Table 4-2 shows the results of an additional test that was done on the KB Large data set (again using
the ‘treeLaunch’ tool). The table demonstrates that in general file size does not appear to affect
processing time very much. The TAR archive is an exception; however, bearing in mind that TAR is a
container format for which DROID also analyses all packed file objects this is not surprising.

Table 4-2 Performance for individual files in KB Large data set

File name Size (bytes) Processing time (s)
dpo_tonal_00990.tiff 36,420,900 12.63
IMAGE000060_lossless_colour.jp2 49,818,414 12.38
IMAGE000060.TIF 114,664,502 12.53
SGD_19451955_0000002_ID371.pdf 325,101,508 19.80
DipAsset6984444754559678047.tar 534,968,320 65.28
KBDVD.iso 683,180,032 12.53
KBDVD17062011.img 693,993,472 13.52
DNEPABOstg.PST 1,895,515,136 15.88

17

4.18 Computational performance: many files at a time
To test DROID’s performance while working on a large number of objects, we performed a recursive
scan of all file objects in the directory structure of the KB Scientific Journals data set and measured
the time needed for this. We used the following command line:

timeit java -jar C:\droid\droid-command-line-6.0.jar -a . -R -p
resultsAll.droid

Here, DROID’s –a switch again defines a resource (in this case the current directory); -R activates
recursing into subdirectories, and –p defines a ‘profile’ (see above).

This gives the following result:

Elapsed Time: 0:03:12.390

So DROID 6 needs about 3 minutes to scan 1.15 GB of data in the used test environment. To get
human- or machine-readable output, the resulting profile needs to be exported to CSV format, which
requires an additional DROID invocation:

timeit java -jar C:\droid\droid-command-line-6.0.jar -p resultsAll.droid -e
resultsAll.csv

The timing result in this case:

Elapsed Time: 0:00:22.890

At 20 s for about 20 thousand records (almost 12 thousand file objects + about 8 thousand
directories) this means that the additional overhead by the exporting step is unlikely to be a
problem.

These (preliminary) tests suggest that the computational performance of DROID 6 is rather good,
provided that a sufficiently large number of objects is analysed during each DROID run

4.19 Stability
Not investigated in detail so far. However, the current tests did not result in any crashes or other
stability issues.

4.20 Error handling and reporting
The DROID manual states that errors are sent to the console’s standard error output.

4.21 Provision of event information
The XML output format of older DROID versions used to contain event information on the DROID
version, the signature version, and the identification status of each file. Most of this has been
abandoned in the CSV output of DROID 6. More specifically:

• The DROID version number is not included
• The version number of the signature file is not included
• Event information on the outcome of individual analysed files is largely limited to system

errors only (e.g. errors that arise because a file doesn’t exist or access to a file is denied). This

18

is recorded in the ‘STATUS’ column (which is somewhat confusingly called ‘Job status’ in the
documentation).

• DROID 6 does provide information on the method that was used to identify an object
(signature or extension), and any mismatches between extensions and signatures are
recorded in an ‘EXTENSION_MISMATCH’ field (which is not described in DROID’s
documentation!).

• The output provides no information at all on whether an object could be identified in the first
place: if DROID encounters an unidentifiable object, most of the output fields are simply left
blank.

Summarising, the provision of event information (or lack thereof) appears to be a major problem
when using DROID 6 in an automated workflow7.

4.22 Maturity and development stage
The first version of DROID was released in 2006, and DROID 6 is the sixth major release. All major
DROID versions are released as stable versions (so no alpha or beta releases).

4.23 Development activity
With six major releases in six years, the development of DROID appears to be very active. In addition
to this, updated versions of the DROID signature file are released on a regular basis (e.g. at the time
of writing the current signature file is version 49).

4.24 Existing experience
It appears that many memory institutions that are working with digital records have at least some
experience with DROID, although it is not clear how many of them are really using the software
operationally.

4.25 Unidentified files
Although not part of the evaluation framework, it is useful to know something about which files can
and cannot be identified by a tool. DROID was unable to identify 566 files in the test dataset (some of
these are objects that are nested inside a ZIP archive). The following table shows the file extensions
that correspond to non-identified files:

Extension Count Remarks
fil 2 Text files with checksum values (Elsevier)
mol 3 MDL MOL file (chemical table format,

http://en.wikipedia.org/wiki/MDL_Molfile)
oa3 69 XML metadata format
pl 3 Perl script
pm 4 Perl script
r 1 R script (R, programming language for statistical applications)
sgc 52 SGML metadata (Elsevier)

7 We reported some of these problems back to the TNA. In a reply (e-mail Andrew Fetherston, 11-4-2011), they
suggested to use the XML reporting feature (which is meant for generating automated reports with aggregate
statistics on DROID runs) to generate some of the missing DROID and signature version output, and then
combine the results of the CSV file and the XML report using some custom-written script. However, this looks
like a step backward compared to DROID’s previous XML output format.

19

sgm 199 SGML metadata (Elsevier)
toc 59 Text table specific to Elsevier
xml 172 XML files without XML declaration

Note that these are all text-based formats, some of which contain markup (SGML or XML). Also,
DROID 6 cannot properly identify XML files that do not contain an XML declaration (which is not
mandatory in XML). This is simply a limitation of identification based on file signatures: without an
XML declaration, analysing the whole file with an XML parser would be the only way to establish its
contents as XML.

4.26 Conclusions
The evaluation shows that DROID 6 is potentially suitable for inclusion in the SCAPE architecture.
Since DROID 6 initialises quite slowly, it is important that it is deployed in such a way that many files
are analysed in one run. Under this condition, DROID’s computational performance appears to be
more than adequate. The main foreseen problems are related to DROID’s current output reporting
options, which are not well suited to automated workflows. This applies in particular to the provision
of identification results in CSV format (rather than XML), the output handling in case of multiple
format matches (or no matches at all), and the lack of event information. Finally, the description of
the CSV output files in DROID’s documentation is incomplete.

20

21

5 Fido 0.9

5.1 Overview
Fido (Format Identification for Digital Objects) is an identification tool that also uses the PRONOM
format signatures. It is essentially a DROID clone. The identification results are reported as PRONOM-
compliant Persistent Unique Identifiers (PUIDs). Fido is an open-source command line application
written in Python. There is also a Jython-based version of Fido (Jython is a Java implementation of
the Python language), which provides Fido as a JAR file. The following two versions will be evaluated
in this chapter:

1. Fido 0.9.3 (released December 2010)
2. Fido_jar 0.9.5 (Jython version, released March 2011)

Note here that no ‘regular’ 0.9.5 version of Fido has been released so far, which is due to the
management of the code being transferred from the original developer (Adam Farquhar) to the Open
Planets Foundation (Andy Jackson, personal communication). Since version 0.9.5 is the first (and
currently only) Jython release, it was not possible to use the same version of both releases.

5.2 Tool interface

5.2.1 Python version
Fido can be invoked through a command line interface. On top of the Python script, a Windows batch
file and a Unix shell script are provided. However, these are not very helpful since they contain a
reference to a non-existing file (fido.run). Moreover, they are not really needed, as installing Python
under Windows will automatically associate .py files with the Python interpreter, whereas on Linux-
based systems the command-line interpreter can be explicitly declared on the first line of the script.

5.2.2 Jython version
Fido can be invoked through a command line interface.

5.3 License type
Fido is open-source software that is released under Apache version 2.0 license.

5.4 Language
Fido is written in Python. Currently it uses a Python syntax that is compatible with Python versions
2.6 and 2.78. It is not compatible with the Python 3.x range of interpreters. Even though the 2.x range
of Python interpreters is still widely used, it may be worthwhile to consider upgrading to Python 3.x –
compatible code in order to make it more future-proof. In many cases it is possible to produce code
that works under both Python 2.6 (and 2.7) and Python 3.x9.

5.5 Platform dependencies

5.5.1 Python version
Fido runs on any platform for which Python 2.6 or Python 2.7 is available (it is currently not
compatible with the Python 3.x range of interpreters). There are no other dependencies.

8 Just one example is the use of the ‘print’ statement [example: print “hello world”], which is replaced by the
‘print’ function [example: print(“hello world”)] in Python 3.0 and later.
9 In fact Python 2.6 was especially released as a transition version that already supports most of 3.x syntax.

22

5.5.2 Jython version
According to its documentation, the Jython version of Fido requires Java 6 Update 23 or later with no
other dependencies.

5.6 Coverage of file formats
Fido tries to identify files using file signatures, or, alternatively, known extensions. These are defined
in two files, which are based on information from the PRONOM database. So in principle all formats
of the PRONOM database are covered, provided that they have a valid signature. Importantly, the
format of these files is not identical to the DROID signature files.

5.7 Extendibility
As with DROID, new formats can be added by modifying or updating the signature and extension
files. Although Fido’s documentation describes how to add new formats to these files, it does not
describe how to convert the PRONOM/DROID information to Fido-compatible format. Not having
such an option would severely limit Fido’s use in any operational setting10.

5.8 Output format
Output is written to the standard output device, which can be redirected to a text file. The format is
largely configurable using two user-defined command line parameters (matchprintf and
nomatchprintf) which are formatting strings (in Python format) that define the output in case of a
match or no match respectively. The default values of these parameters result in output in comma-
delimited format, where each line represents one unique format hit (if one file object gives two
format hits, they are both written separately). In principle the format strings could be used to
generate XML tags, but the creation of well-formed XML would require the possibility to write some
leading and trailing text data that could be used to define the root element at the start and the end
of the output. In the simplest case this could be implemented through the use of 2 additional
formatting strings.

5.9 Unique output identifiers
Identification results are reported as PRONOM Unique Identifiers (PUID) and MIME types11. In
addition, Fido also provides a textual description of the format name and (if applicable) a signature
name.

5.10 Granularity of output
The use of PUID as the primary identifier ensures that there Fido’s output can be mapped directly to
the PRONOM registry (as well as the OPF registry).

5.11 Accuracy of reported results
Not analysed yet.

10 In a response to an earlier version of this report, Maurice de Rooij (OPF / NANETH) comments that this
conversion can be done with the (undocumented) ‘prepare.py’ script that is part of Fido. A first test of this
script wasn’t successful, but we will look into this later.
11 However, MIME type reporting doesn’t seem to work the way it should, see Section 5.2.11

23

5.12 Comprehensiveness and completeness of reported results
Overall, Fido’s output is less verbose than DROID. Fido can be configured to report any or all of the
following output variables (see Fido’s documentation for more information):

• count (nth item matched)
• group_size
• filename
• filesize
• time (in msecs)
• group_index
• puid,
• formatname
• signaturename
• mimetype

This does not include the identification status (i.e. could a file object be identified at all), but this can
be derived indirectly through the use of the ‘matchprintf’ and ‘nomatchprintf’ strings. A cursory
inspection of some test results showed that if relative file paths are used for the FILE argument, file
names are written to the output using relative paths as well. This could be a problem in some cases,
whereas it may be desired in others (if full paths are used on the command line FIDO will report
absolute paths; if relative paths are given on the command line relative paths are reported). In
addition, some quick tests with the ‘-matchprintf’ option revealed that reporting of MIME types
always produces a ‘None’ result, which doesn’t look quite right. As with DROID, the possibilities for
providing event information are rather limited.

5.13 Fit to needs of preservation community
Fido is being developed under the umbrella of the Open Planets Foundation, and the preservation
community is its primary target audience. Unlike DROID, the focus appears to be on use in
automated workflows.

5.14 Ability to deal with nested objects

5.14.1 Python version
Fido is able to look inside ZIP files. It analyses all file objects that are embedded in a ZIP file, and
these are included in the output. To illustrate this, the example below shows how a CSV file that is
embedded inside a ZIP archive is reported:

".\prdrm_1289288371730\unpacked\Original metadata\1746-4811-1-10-
S1.zip!Supplementary Table I.csv"

5.14.2 Jython version
The Jython version of doesn’t yet support ZIP recursing.

5.15 Ability to deal with composite objects
Formats such as Microsoft Word 97 and Open Document Format are based on multiple file objects
that are held together by a physical container (e.g. OLE2 for Microsoft Word 97, and ZIP for Open
Document Format). Microsoft Office formats (Word, Excel) are all identified as “OLE2 Compound
Document Format”, which means Fido only recognizes the container, which is not very helpful. Open

24

Document files are identified as Open Document format (and not as plain ZIP, even though ZIP is the
container format). EPUB files (which are organised in a similar manner as Open Document files) are
still treated (and identified) as regular ZIP files.

HTML represents another class of composite objects, where, for example, an individual HTML file
refers to external style sheets and images, which are all needed for proper rendering. The main
difference with e.g. Open Document Format or EPUB is the absence of a physical container file. Like
DROID, Fido does not currently have any mechanism to recognise the interdependencies between
the individual components of this particular class of ‘composite objects’.

5.16 User documentation

5.16.1 Python version
The documentation of Fido is limited to a readme text file, which explains the command line
interface, the installation of Fido, and its generated output. The evaluation revealed the following
problems:

• The installation instructions describe the use of an installation script. Running this script
under Windows results in the installation of Fido in a number of (subdirectories of) the
Python system directories. However, this is not described in the documentation (which
doesn’t even mention the installation location at all).

• For running Fido, the documentation erroneously refers to a file called “fido.run”, which
doesn’t exist (this should probably be “run.py”).

• To add to the confusion, in the readme information on the main page of Fido’s Github site
this file is simply called “fido.py”, which probably reflects the -yet unreleased- 0.9.5 version
(although the same document also refers to the non-existent “fido.run” file) .

• The method for calling Fido that is given in the documentation looks unnecessarily verbose.
According to the readme, the following command line should be used:

python -m fido.run –h (which should really be python -m run.py –h!)

However, in most cases12 this can be reduced to:

run.py

This also eliminates the need for using either the batch file or shell script that are provided
with Fido (which aren’t working anyway!).

5.16.2 Jython version
The Jython version comes with a readme text file that is similar to the one of the Python version.
None of the comments on the Python version above apply to the Jython version, and the evaluation
didn’t reveal any particular problems.

12 A possible exception would be a Windows-based system on which multiple Python versions are installed.

25

5.17 Computational performance: one file at a time (Python version)

5.17.1 KB Scientific Journals data set
The ‘treeLaunch’ tool was used to get an impression of Fido’s performance when it is called to
process one file at a time. It was set up to recursively traverse the KB Scientific Journals data set’s
directory tree, and run Fido for each encountered file object. For an individual file object this results
in a command line like13:

c:\python27\python c:\fido\run.py -zip 1-1-70.pdf

Here, Fido’s –zip switch activates recursing into ZIP files. The –zip switch was explicitly activated here
in order to make the test results comparable with those of DROID (which recurses into ZIP files by
default).

It took 1 hour and 6 minutes to analyse the whole KB Scientific Journals data set in this way. Figure
5-1 and Table 5-1 summarise the main results. On average Fido needs about 0.3 seconds per file
object, with a maximum of about 1 second. This means that for the one-file-at-a-time scenario Fido’s
overall performance beats DROID 6 by a factor of about 36. Interestingly, Figure 5-2 suggests that
processing time increases slightly with file size.

Figure 5-1 Distribution of processing time per file object for Fido one-file-at-a-time scenario, KB Scientific
Journals data set.

Table 5-1 Summary performance statistics for Fido one-file-at-a-time scenario (expressed in seconds per file,
except N). N=number of files; q1, median and q3 are 1st , 2nd and 3rd quantiles, respectively.

N min q1 median mean q3 max
11,892 0.2960 0.3120 0.3130 0.3219 0.3280 1.0780

13 The explicit call to the Python interpreter was included here because omitting it resulted in a problem with
the ‘treeLaunch’ tool. In most cases it can be omitted, and calling the Python script directly will work fine.

26

Figure 5-2 Scatter plot of processing time per file object versus file size for Fido one-file-at-a-time scenario, KB
Scientific Journals data set. Note logarithmic scale on horizontal axis.

5.17.2 KB Large data set
Table 5-2 shows the results of an additional test that was done on the KB Large data set (again using
the ‘treeLaunch’ tool). The table demonstrates that in general file size does not appear to affect
processing time very much. Again the TAR archive is an exception; however, bearing in mind that TAR
is a container format for which Fido also analyses all packed file objects this is not surprising.

Table 5-2 Performance for individual files in KB Large data set

File name Size (bytes) Processing time (s)
dpo_tonal_00990.tiff 36,420,900 0.375
IMAGE000060_lossless_colour.jp2 49,818,414 0.359
IMAGE000060.TIF 114,664,502 0.375
SGD_19451955_0000002_ID371.pdf 325,101,508 0.359
DipAsset6984444754559678047.tar 534,968,320 17.532
KBDVD.iso 683,180,032 0.36
KBDVD17062011.img 693,993,472 0.359
DNEPABOstg.PST 1,895,515,136 0.375

27

5.18 Computational performance: one file at a time (Jython version)
For the Jython version we started with the following command line. Since the documentation states
that ZIP recursing doesn’t yet work for the Jython version of Fido, the –zip option was not used in any
of these tests.

timeit java -jar C:\Temp\identtools\fido_jar-0.9.5\fido.jar 1-70.pdf >
jfidoOut.csv

However, although Fido didn’t produce any error messages, this resulted in an empty output file.
After some experimentation it turned out that the Jython version of Fido only works if it is called
from its installation directory (in this case: C:\Temp\identtools\fido_jar-0.9.5\). This appears to be a
bug. As a workaround we used this command line instead:

timeit java -jar fido.jar D:\aipSamplesUnpackedOneDir\1-70.pdf >
jfidoOut.csv

However, this time Fido exited with the message “FIDO: Processed 0 files in 13399.13 msec”, with
again an empty output file. So in a final attempt we replaced the backward slashes by forward ones:

timeit java -jar fido.jar D:/aipSamplesUnpackedOneDir/1-70.pdf >
jfidoOut.csv

This gave identical results to the ones presented above. So the preliminary conclusion is that the
Jython version of Fido is not able to process files one at a time.

5.19 Computational performance: many files at a time
To test Fido’s performance while working on a large number of objects, we performed a recursive
scan of all file objects in the directory structure of the KB Scientific Journals data set and measured
the time needed for this.

5.19.1 Python version
For the Python version initially used the following command line 14:

timeit C:\Python27\python C:\Temp\identtools\fido-0.9.3\fido\run.py -
recurse -zip . > fidoOut.csv

Here, Fido’s -recurse switch activates recursing into subdirectories, and –zip activates recursing into
ZIP files (see above). Output is again redirected to a comma-delimited text file (‘fidoOut.csv’).

This gives the following result:

Elapsed Time: 0:03:35.764

This is similar to the corresponding DROID result, although Fido is marginally slower. However, unlike
DROID, no subsequent exporting steps are needed to get human- or machine-readable output.

14 The explicit call to the Python interpreter was included here because omitting it resulted in a problem with
the ‘timeit’ utility. In most cases it can be omitted, and calling the Python script directly will work fine.

28

After reviewing the resulting output of Fido, it turned out that the number of files that could not be
identified was significantly larger than was the case with DROID (1385 for Fido compared to 566 for
DROID 6). Upon closer inspection, this is probably due to the fact that Fido’s default behaviour is to
identify solely based on byte signatures, whereas DROID also uses file extensions if it cannot find a
match for any of the format signatures. Fido has an –extension command line switch that, when
activated, should result in similar behaviour. However, using this option resulted in a run-time error
(‘AttributeError’). Because of this, the –extension switch was not used in these tests.

5.19.2 Jython version
For the Jython version we started with the following command line15 (since the documentation states
that ZIP recursing doesn’t yet work for the Jython version of Fido, the –zip option was not used in any
of these tests):

timeit java -jar C:\Temp\identtools\fido_jar-0.9.5\fido.jar –recurse . >
jfidoOut.csv

However, although Fido didn’t produce any error messages, this again resulted in an empty output
file. After some experimentation it turned out that the Jython version of Fido only works if it is called
from its installation directory (in this case: C:\Temp\identtools\fido_jar-0.9.5\). This appears to be a
bug. As a workaround we used this command line instead:

timeit java -jar fido.jar –recurse D:\ aipSamplesUnpacked > jfidoOut.csv

However, this time Fido exited with the message “FIDO: Processed 0 files in 13367.23 msec”, with
again an empty output file.

Next we added a trailing backslash:

timeit java -jar fido.jar –recurse D:\aipSamplesUnpacked\ > jfidoOut.csv

This raised an exception in Jython (“SyntaxError: ("mismatched character”)).

In a final attempt we replaced all backward slashes by forward ones:

timeit java -jar fido.jar –recurse D:/aipSamplesUnpacked/ > jfidoOut.csv

This produced the very first run of the Jython version of Fido that resulted in any output. However,
upon inspection of the output it turned out that in spite of having used the –recurse switch, Fido
hadn’t actually recursed into any of the subdirectories. This meant that only 6 (out of a total of
11892) file objects files were analysed! In a last attempt to get at least some idea of this tool’s
performance, Fido was run on a modified version of the dataset in which all file objects are in one
single directory:

timeit java -jar fido.jar –recurse D:/aipSamplesUnpackedOneDir/ >
jfidoOut.csv

15 As it happens, the –extension switch does actually work for the Jython version, but it was not used in any of
these tests.

29

Giving the following result:

Elapsed Time: 0:49:05.387

So, where both DROID 6 and the Python version of Fido need about 3.5 minutes, the Jython version
takes no less than 49 minutes. Compared to the Python version of Fido, the Jython version is roughly
14 times slower.

5.20 Stability

5.20.1 Python version
Although this has not been investigated in any detail so far, during the performance tests run-time
errors occurred while using the –extension switch (see above).

5.20.2 Jython version
From the performance tests above it is obvious that stability is a major problem for the Jython
version of Fido.

5.21 Error handling and reporting
Fido’s documentation does not mention this, but from the tests it appears that error messages are
written to the standard error device.

5.22 Provision of event information
Fido provides only a minimum amount of event information

• The Fido version number is not included
• The version number of the signature file is not included – in fact, Fido’s signature and

extension files do not appear to include any version info at all (which could lead to several
unpleasant scenarios)

• Information on the method that was used to identify an object (signature or extension) can
be derived indirectly from the ‘signaturename’ field in the output.

• Contrary to DROID, Fido is able to provide information whether an object could be identified
in the first place (and this information is also reported by default).

Summarising, the provision of event information is in many ways similar to DROID 6, although being
able to establish whether a file object could be identified at all is very useful. The current absence of
any versioning information in the signature and extension files makes any version management in
operational settings virtually impossible.

5.23 Maturity and development stage
The first version of Fido was released in November 2010, and its authors currently consider Fido to
be in beta stage. The Jython version was released much more recently, and the outcome of the
current tests suggest that a pre-alpha stage might be more appropriate for this particular version.

5.24 Development activity
Here have been 3 major releases since Fido’s first release in November 2010, which indicates a high
level of activity.

30

5.25 Existing experience
Despite the interest in Fido by various memory institutions, experience with this tool is still limited
(which is unsurprising for such a young tool).

5.26 Unidentified files
Although not part of the evaluation framework, it is useful to know something about which files can
and cannot be identified by a tool. Fido was unable to identify 1385 files in the test dataset (some of
these are objects that are nested inside a ZIP archive). The following table shows the file extensions
that correspond to non-identified files:

Extension Count Remarks
fil 2 Text files with checksum values (Elsevier)
mol 3 MDL MOL file (chemical table format,

http://en.wikipedia.org/wiki/MDL_Molfile)
oa3 69 XML metadata format
pl 3 Perl script
pm 4 Perl script
r 1 R script (R, programming language for statistical applications)
sgc 52 SGML metadata (Elsevier)
sgm 199 SGML metadata (Elsevier)
toc 59 Text table specific to Elsevier
xml 172 XML files without XML declaration
pdf 73 Portable Document Format
cif 10 Crystallographic Information Framework
txt 1 Text file
csv 3 Comma delimited text file
raw 737 Extension reserved for ‘raw bitmap’ format; in test dataset this

extension is used for plain text files that are part of Elsevier metadata.

Note that these results cannot be directly compared to those of DROID, since DROID uses file
extensions as a fallback mechanism if signature-based identification is not possible. Since Fido’s –
extension switch didn’t turn out to work as it should, the above results are solely based on file
signatures. The difference with respect to DROID is largely due to the contribution of the “.raw” files
in the test dataset. These file are identified by DROID (based on their file extension), but wrongly
(DROID assumes ‘raw bitmap’ format, whereas in reality they are plain text files). The 73 PDF files
that could not be identified are more reason for concern, since PDF should always be identifiable
using byte signatures. Fido may be using outdated file signatures (to this author’s knowledge the
PRONOM signatures of a number of PDF versions have recently been updated by TNA), but since the
signature file doesn’t contain any version information there’s no way to find out where the
signatures are coming from (which illustrates the point made about this in the preceding section on
event information).

5.27 Conclusions
The evaluation of Fido revealed a substantial number of problems. Some of these problems only
occur in the Jython version, whereas others are specific to the Python version. The following issues
apply to both these versions:

31

• Lack of any option to automatically convert information from PRONOM (or DROID signature
files) to Fido format.

• Absence of any versioning information in Fido’s signature and file extension files.
• Inability to identify Microsoft Office formats beyond the “OLE2 Compound Document

Format” level.
• Limited provision of event information (similar to DROID 6).
• Reporting of MIME types doesn’t appear to work.
• Reporting of relative file paths in the output file could be a problem in some cases (although

this can be avoided by the user by always using full path references when invoking Fido).

Issues that are specific to the Python version of Fido (0.9.3) are:

• Undocumented behaviour of Fido’s installation script, resulting in the installation of Fido in
some Python system directories on Windows-based systems (this also applies to the
Windows installer package).

• The batch files and shell scripts that are provided with Fido will –at best- only work when
invoked from the directory in which these scripts are installed (and even then they will
mostly fail because they contain references to nonexistent files and to the Python interpreter
without specifying its full file path).

• Confusing and partially outdated information in the readme file about the use of the Fido
command line.

• Ditto for Github site (which describes the command-line interface of a Fido version that has
never been released as a Python version at all).

• Documentation describes method for invoking Fido that –in most cases- is unnecessarily
verbose.

• The –extension switch does not work, and its activation results in a run-time error.

The following issues are specific to the Jython version (0.9.5):
• The software only works if it is called from the directory in which the JAR file is installed.
• Erroneous handling of file paths under Windows (not tested under Linux).
• Attempts to analyse one file object at a time all failed (empty output without any error

messages).
• Recursing into (sub)directories doesn’t work.
• Extremely poor computational performance: about 14 times slower than the Python version

while analysing many files at a time.

Despite these problems, the Python version of Fido is a potentially interesting candidate for inclusion
in the SCAPE architecture, provided that these issues (most of which are relatively small) get fixed.
Apart from the code itself, the importance of accurate and up-to-date documentation, utility scripts
that work and sensible behaviour of installation scripts should not be overlooked. In this regard the
current situation makes things unnecessarily difficult and sometimes frustrating from a user’s point
of view, which will not help the acceptance and adoption of this tool. Fido’s main strength is its
performance while working at one file object at a time, which is about 35 times better than DROID 6.
For many files at a time, the performance is similar to DROID. In addition, compared to DROID, Fido’s
command-line interface is somewhat better suited for use in automated workflows, since no
additional data exporting actions are needed after the identification process.

32

For the Jython version things are slightly different. Apart from the fact that none of the tests with
this version were particularly successful, its performance is also very poor, even much worse than
DROID 6. This raises the question why anyone would need a Java-based version of Fido in the first
place, especially with Python being available for nearly all popular platforms.

On a final note, it may be worthwhile to consider an upgrade of Fido to code that is compatible with
the Python 3.x syntax. This is not an urgent issue (also, the Python 2.x range of interpreters is still
widely used), but it might make things easier in the long run.

33

6 Unix File Utility

6.1 Overview
File is a command-line utility that is part of every major Unix and Unix-like operating system. The first
version of this tool dates back to 1973. It identifies files based on signatures (‘magic numbers’) stored
in a ‘magic’ file. An open source implementation of the tool exists, and it has been ported to other
operating systems (e.g. Windows). The file utility reports identification results as MIME types. File
performs three sets of tests: filesystem tests, magic tests, and language tests. The first test that
succeeds terminates the utility.

The filesystem tests are based upon the results of a stat system call, and determine if the file is
empty, or a special file, e.g. sym-link, or a named pipe.

The magic tests check for files with data in particular fixed formats. Any file with some invariant
identifier at a small fixed offset into the file can usually be described in this way. The identifiers are
read from a compiled magic file, present at one of a set of possible locations or passed as an
argument to the utility.

If both the above tests fail the file is tested to see if it is a text file. ASCII, ISO-8859-x, non-ISO 8-bit
extended-ASCII sets, UTF-8 encoded Unicode, UTF-16 encoded Unicode, and EBCDIC are tested for.
If a text character set is identified a language check is performed using keywords, e.g. the presence
of the word "struct" indicates a C program. Command line options can be used disable some of these
tests.

All tests that are presented here were done with a Windows port of version 5.03 of the File utility
which is part of the GnuWin package16. This version dates back to 2009. The most recent version of
File is version 5.07, but for this version no ready-to-use Windows binaries are available (although it is
possible to create these by compiling the source code).

6.2 Tool interface
File has a command line interface.

6.3 License type
File is released under the original 4-clause BSD License, which permits use, modification, inclusion in
other products, and redistribution, but contains the controversial advertising clause.

6.4 Language
The file utility is written in C.

6.5 Platform dependencies
The file utility comes as standard with all major Unix and Unix-like (linux) operating systems. It is also
available for Windows as a stand alone utility or as part of the Cygwin distribution, although it is not
packaged as part of the basic Cygwin install. File is also included in OS-X according to its web site but
we cannot confirm this.

16 Link: http://gnuwin32.sourceforge.net/packages/file.htm

http://gnuwin32.sourceforge.net/packages/file.htm

34

6.6 Coverage of file formats
A report by Underwood (2009) mentions that ‘magic’ file version 4.21 covers about 2000 file types,
although that version dates back to 2008 or earlier (the current version is 5.07).

6.7 Extendibility
The file command uses the contents of magic files containing invariant identifiers and offsets to their
position. New signatures can be added, compiled and tested by anybody. To get signatures added to
the official magic files they need to be supplied in magic format to the maintainer, Christos Zoulas.
However, the way in which the signatures are organised is rather clumsy: the ‘magic’ file is compiled
from a set of over 200 separate smaller files which are stored in a directory called ‘magdir’ in the
source distribution. The documentation of File doesn’t describe how this is done, and apparently no
explicit version management exists either. In fact, the ‘Bugs’ section of the File man page
acknowledges that this is a problem by commenting that “[t]here must be a better way to automate
the construction of the Magic file from all the glop in magdir”17.

6.8 Output format
The file command outputs its results as plain text, usually in the format:

file_name ; identification text

The format of the identification text depends upon the arguments used to invoke file. Without
arguments the output is free text and contains some basic characterisation information depending
upon the file format (e.g. number of words). When invoked with the -i option the output is of the
format:

file_name ; mime-type; character-encoding.

6.9 Unique output identifiers
Identification results are reported as MIME types (e.g. ‘application/pdf’) and character encoding.
Alternatively, results may be reported as a textual description (e.g. ‘PDF document, version 1.3’).

6.10 Granularity of output
The use of MIME type as the primary identifier implies that there is no one-to-one match with the
PRONOM or OPF registries. Since PRONOM does also contain MIME type information, a mapping to
PRONOM is possible. However, PRONOM’s PUID classification uses a level of granularity that is
higher than the more general MIME type subdivision, which means that for many formats the
mapping to PRONOM will result in a range of possible PUIDS for one single MIME type. An alternative
would be to use File’s textual descriptions, which provide a higher level of granularity.

6.11 Accuracy of reported results
Not analysed yet.

6.12 Comprehensiveness and completeness of reported results
Compared to DROID and Fido, the reporting of the analysis results is rather sparse (although it
provides additional information on character encoding). As with Fido, File reports relative file paths

17 Link: http://linux.die.net/man/1/file

http://linux.die.net/man/1/file

35

if relative paths are used on the command line interface, but again this behaviour can be avoided by
using full paths on the command line.

6.13 Fit to needs of preservation community
Unlike DROID and Fido, File is not specifically targeted at the preservation community. Also, its
documentation states that “file uses several algorithms that favor speed over accuracy, thus it can
 be misled about the contents of text files”18. Inclusion of the tool in automated workflows would be
quite straightforward.

6.14 Ability to deal with nested objects
File has an ‘--uncompress’ option, which (according to its documentation) causes the tool to try to
look inside compressed files. A simple test on a ZIP file produced an abnormal (non-zero) return code
with an accompanying “compressed file format not implemented” message. We didn’t do any
further tests on other compressed formats, but overall it seems advisable not to use this switch in
any workflows19.

6.15 Ability to deal with composite objects
Formats such as Microsoft Word 97 and Open Document Format are based on multiple file objects
that are held together by a physical container (e.g. OLE2 for Microsoft Word 97, and ZIP for Open
Document Format). Some preliminary tests showed that Open Document Text files are identified as
Open Document format (and not as plain ZIP, even though ZIP is the container format). Interestingly,
an EPUB file (which also uses ZIP as a container) was identified as ‘application/octet-stream’, and not
even as a regular ZIP file. MS Word files were identified as ‘application/msword’; however, one MS
Excel spreadsheet was identified as ‘application/vnd.ms-office’ (whereas other Excel files in the test
dataset were correctly identified as ‘application/vnd.ms-excel’). So overall the identification of these
formats appears to be hit and miss. It should be noted here that a relatively old ‘magic’ file was used
that dates back to early 2009, so things may have improved in newer versions. As we were not able
to locate a pre-compiled version of a more recent ‘magic’ file we couldn’t follow up on this at this
stage.

HTML represents another class of composite objects, where, for example, an individual HTML file
refers to external style sheets and images, which are all needed for proper rendering. The main
difference with e.g. Open Document Format or EPUB is the absence of a physical container file. File
does not have any mechanism to recognise the interdependencies between the individual
components of this particular class of ‘composite objects’.

6.16 User documentation
There are several different versions of the File command, and the website of its main developer
doesn’t include any original documentation, but instead links to the manual page of the tool for the
OpenBSD platform20. For several other platforms similar (but not quite identical) manual pages exist.
Although this is somewhat confusing, the functionality and syntax for all versions of File that are part
of any Unix distribution are quite strictly constrained by a technical standard21 from the Open Group,

18 See following link: http://www.openbsd.org/cgi-bin/man.cgi?query=file&apropos=0&sektion=1
19 This applies in particular to many-files-at-a-time scenarios such as in Section 6.2.17, since File will exit upon
the first encountered ZIP file in that case.
20 Link: http://www.openbsd.org/cgi-bin/man.cgi?query=file&apropos=0&sektion=1

21 See also: http://pubs.opengroup.org/onlinepubs/9699919799/utilities/file.html

http://www.openbsd.org/cgi-bin/man.cgi?query=file&apropos=0&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=file&apropos=0&sektion=1
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/file.html

36

which is the certifying body for the UNIX trademark. As a result, they can all be used more or less
interchangeably. In addition, File’s --help switch lists all command line options.

6.17 Computational performance: one file at a time

6.17.1 KB Scientific Journals data set
The ‘treeLaunch’ tool was used to get an impression of File’s performance when it is called to process
one file at a time. It was set up to recursively traverse the KB Scientific Journals data set’s directory
tree, and run File for each encountered file object. For an individual file object this results in a
command line like:

file --mime-type --mime-encoding --no-pad 1-1-70.pdf

It took slightly over 5 minutes to analyse the whole KB Scientific Journals data set in this way. Figure
6-1 and Table 6-1 summarise the main results. On average File needs less than 0.03 seconds per file
object, with a maximum of about half a second. This means that for the one-file-at-a-time scenario
File’s overall performance beats DROID 6 by a factor of about 440. As with Fido, File shows a slight
increase in processing time with file size (Figure 6-2).

Figure 6-1 Distribution of processing time per file object for Unix File utility one-file-at-a-time scenario, KB
Scientific Journals data set.

Table 6-1 Summary performance statistics for Unix File utility one-file-at-a-time scenario, KB Scientific Journals
data set (expressed in seconds per file, except N). N=number of files; q1, median and q3 are 1st , 2nd and 3rd
quantiles, respectively.

N min q1 median mean q3 max
11,892 0.01500 0.01600 0.01600 0.02706 0.03100 0.53100

37

Figure 6-2 Scatter plot of processing time per file object versus file size for Unix File utility one-file-at-a-time
scenario, KB Scientific Journals data set. Note logarithmic scale on horizontal axis.

6.17.2 KB Large data set
Table 6-2 shows the results of an additional test that was done on the KB Large data set (again using
the ‘treeLaunch’ tool). The table demonstrates that in general file size does not affect processing
time very much. Once again the TAR archive is an exception. However, unlike DROID or Fido, File
does not analyse the contents of container files, which makes the increase in process time somewhat
surprising in this case.

Table 6-2 Performance for individual files in KB Large data set

File name Size (bytes) Processing time (s)
dpo_tonal_00990.tiff 36,420,900 0.109
IMAGE000060_lossless_colour.jp2 49,818,414 0.031
IMAGE000060.TIF 114,664,502 0.047
SGD_19451955_0000002_ID371.pdf 325,101,508 0.047
DipAsset6984444754559678047.tar 534,968,320 0.422
KBDVD.iso 683,180,032 0.047
KBDVD17062011.img 693,993,472 0.031
DNEPABOstg.PST 1,895,515,136 0.156

38

6.18 Computational performance: many files at a time
To test File’s performance while working on a large number of objects, we performed a recursive
scan of all file objects in the directory structure of the KB Scientific Journals data set and measured
the time needed for this. Unlike DROID or Fido, File doesn’t have an in-built ability to recursively scan
a directory structure. However, it is possible to specify all files that need to be analysed in a text file
(using the ‘--files-from’ switch). Therefore, we first generated this list using Windows’ ‘dir’ command,
and used this as input to File. This could also be done even more efficiently using pipes, which
eliminates the need to create a temporary file. As the ‘timeit’ utility appeared to crash on most
Windows system commands (including ‘dir’), the temporary file approach was used instead here,
using the following commands22:

dir /B /S /A-D D:\aipSamplesUnpacked > temp
timeit C:\Temp\identtools\file-5.03-bin\bin\file.exe --mime-type --mime-
encoding --no-pad --files-from temp > fileOut.txt

The first line calls the Windows ‘dir’ command with the options /B (bare format), /S (recursively walk
through directory structure) and /A-D (don’t display files that have the ‘directory’ attribute). Output
is written to a temporary file. The second line calls File, using the temporary file as input. Unlike the
DROID and Fido experiments, this will not recurse inside ZIP archives (see above for the reason for
this). Also note that the ‘dir’ command was excluded from the performance measurement due to an
incompatibility issue with the timer tool. However, the total added overhead of this first step is
negligible (about 2 seconds).

The result for the second step (File) is:

Elapsed Time: 0:01:52.311

This means that File needs about 2 minutes to scan 1.15 GB of data in the used test environment.
This is better than both DROID 6 and Fido (although the results are not 100% comparable since those
tools also looked into ZIP archives).

6.19 Stability
Not yet tested explicity for SCAPE but File is used:

• In nearly all BSD distributions
• In nearly all Linux distributions
• libmagic (File’s underlying library) is used by apache httpd servers mod_mime_magic module

This represents a significant user community. Reported bugs are generally fixed quickly. Also, the
current tests did not result in any crashes or other stability issues.

6.20 Error handling and reporting
The file utility returns 0 upon success and non zero on failure.

22 The equivalent command using pipes would be:
dir /B /S /A-D D:\aipSamplesUnpacked | C:\Temp\identtools\file-5.03-bin\bin\file --
mime-type --mime-encoding --no-pad --files-from - > fileOut.txt

39

6.21 Provision of event information
The version of the file command can be obtained by using the -v argument, which also returns the
location of the magic file (but not its version, which is unsurprising given that no versioning system
appears to exist).

For file objects that cannot be identified File returns MIME type ‘application/octet-stream’. Zero-byte
files result in MIME type ‘application/x-empty’. If File is instructed to analyse a file object that
doesn’t exist, it will report this as follows:

nonexistentFile.dat; cannot open `nonexistentFile.dat' (No such file or
directory)

6.22 Maturity and development stage
The original version of file originated in Unix Research Version 4 in 1973. All major BSD and Linux
distributions use a free, open-source reimplementation that was written in 1986-87 by Ian Darwin
from scratch. It was expanded by Geoff Collyer in 1989 and since then has had input from many
others. From late 1993 onwards its maintenance has been organized by Christos Zoulas.

6.23 Development activity
During the first 6 months of 2011, thee major versions (5.05, 5.06 and 5.07) of File have been
released23. The tool’s long history and its inclusion in so many operating systems make it extremely
unlikely that development will cease in the foreseeable future.

6.24 Existing experience
Since File has been around for such a long time and its use is so widespread, this means that there is
a large user community that has extensive experience with this tool. Less is known about its use in
the archival community, although File is included in the FITS tool set (which is evaluated in Chapter 7
of this report).

6.25 Unidentified files
Although not part of the evaluation framework, it is useful to know something about which files can
and cannot be identified by a tool. File was unable to identify 22 files in the test dataset. They were
all identified as ‘application/octet-stream’. These were mainly plain text files with a .raw extension
which are part of Elsevier’s metadata. In addition, one TIFF image could not be identified. However,
upon closer inspection it turned out that this file was probably corrupted24. A cursory scan of File’s
output also revealed that some plain text files were mistakenly identified as C++, Fortran, Lisp and
Pascal source code.

6.26 Conclusions
The evaluation of the File utility revealed a number of particular strengths as well as some potential
problems.

Its main strengths are:

23 See following link: ftp://ftp.astron.com/pub/file/

24 Interestingly, this file was judged to be ‘well-formed and valid’ by JHOVE 1.4; however, upon opening in
IrfanView the image turned out to be mostly blank, and a further inspection in a Hex editor revealed suspicious
amounts of null-bytes.

ftp://ftp.astron.com/pub/file/

40

• Excellent computational performance, both for one- and many- file-at-a time use cases
• Maturity, stability and width of user base
• Large number of supported formats (although any documentation on which formats are

supported doesn’t exist, and this information cannot be easily extracted from the ‘magic’ file
either)

Potential problems for use in preservation workflows are:

• Management of file signatures (especially creation and updating of the ‘magic’ file from
hundreds of smaller files, of which we were not able to track down any documentation)

• Lack of any versioning information in the ‘magic’ file
• One-to-one mapping of MIME types to PRONOM identifiers not possible for every format
• Mapping to textual descriptions would overcome this to a large extent, but creating such a

mapping may be quite cumbersome.
• Identification of text-based formats can be unreliable (although based on the current

analyses it is not possible to say if DROID or Fido are any better!)
• No scanning inside ZIP archives
• Latest binaries are not always available for all major platforms (e.g. Windows), so it may be

necessary to build these from the source code

Despite these problems, File may nevertheless be of considerable value to the SCAPE architecture.
Compared to DROID and Fido, it results in a considerably lower number of unidentified files
(although the results are not completely comparable because of the non-inclusion of file objects that
are embedded in ZIP archives). One possibility would be to use File as a primary identification tool,
and use DROID and/or Fido in addition for any formats that are not handled by File in sufficient
detail.

41

7 FITS (File Information Toolset) 0.5

7.1 Overview
FITS is an acronym of ‘File Identification Tool Set’. It is not a stand-alone characterisation tool, but
rather a wrapper around a number of external tools. Currently, these are:

• Jhove (AKA Jhove1)
• Exiftool
• National Library of New Zealand Metadata Extractor
• DROID 3.0
• FFIdent
• Unix File Utility (windows port)

In addition, FITS supplies two original tools: FileInfo and XmlMetadata. It is also possible to add other
tools. FITS converts all native output from these underlying tools into a common format (FITS XML).
In addition, FITS is capable of handling conflicting output of these tools in a number of ways. FITS is
developed by the Harvard University Library Office for Information Systems, and it is released as
open source software. Evaluated here is version 0.5, which was released in February 2011. Apart
from identification, FITS can also be used for feature extraction and validation. This report only
addresses the identification functionality.

7.2 Tool interface
FITS has a command line interface, which can accessed using a batch file (Windows) or a shell script
(Linux/OS X). The batch file only works if it is invoked directly from the application directory (i.e. the
directory in which the batch file is installed). Unlike DROID (which has a similar issue), in the case of
FITS there doesn’t appear to be any easy way of getting around this. Alternatively, the FITS
functionality may also be accessed through a Java application programming interface (API).

7.3 License type
FITS is released under a GNU Lesser GPL license. However, the tools that are bundled with FITS are
released under a number of different license types. The same applies to a number of libraries that
are used by FITS.

7.4 Language
FITS is written in Java.

7.5 Platform dependencies
According to the user documentation FITS runs on Windows, Linux and OS X (Mac). Furthermore
Java 1.6 or higher is required.

7.6 Coverage of file formats
Depends on wrapped tools. Both DROID and the Unix File Utility are wrapped by default, so the
format coverage is at least the union of the formats that are recognised by these tools .

42

7.7 Extendibility
In principle any type of tool can be added to FITS. The FITS output format also allows the use of
’external identifiers’, which means that any kind of format identifier can be used.

7.8 Output format
FITS reports its output to FITS XML format25. In addition, an option exists to convert FITS output to a
standard metadata schema (e.g. textMD for text files or NISO/MIX for image files). As this option is
mainly relevant for feature extraction, it will not be further discussed here.

7.9 Unique output identifiers
By default, FITS reports the identification results in terms of a (textual) format description (e.g. "Plain
text") and MIME type. Depending on the tool that was used for the identification the identification
results may also contain one or more so-called “external identifiers”, which are the native identifiers
of the wrapped tools. For instance, if one of the tools that were used to identify a particular file was
DROID, the FITS output file will contain one or more external identifier elements that contain the
corresponding PUIDs. Note however that the FITS output will not contain any PUID information at all
for any files that are not recognised by DROID.

7.10 Granularity of output
Mapping to PRONOM and the OPF registry is possible if FITS output file contains PUID information.
However, PUIDs are not used as the primary identifier, and the FITS output may not contain any
PUIDs at all.

7.11 Accuracy of reported results
Not analysed yet.

7.12 Comprehensiveness and completeness of reported results
The information in the FITS output file is very comprehensive. It contains the status of the
identification (“SINGLE_RESULT”, “CONFLICT” or “UNKNOWN)”, the format name (as a textual
description), MIME type, and the name and version of the tool that was used to establish this
information. Also, FITS provides comprehensive event information (see also Section 7.21).

7.13 Fit to needs of preservation community
FITS is specifically targeted at the preservation community (and it is also being developed by a
member of that community). The comprehensiveness of its output, and the emphasis on providing
event information (see Section 7.21) make FITS particularly suited for deployment in automated
workflows.

7.14 Ability to deal with nested objects
FITS 0.5 is not able to look inside ZIP files (or other file archive formats).

7.15 Ability to deal with composite objects
Some limited test on a number of composite formats revealed the following:

• Microsoft Word and Excel files are identified correctly, although without any indication of
the specific format version.

25 The schema of FITS XML is located here: http://hul.harvard.edu/ois/xml/xsd/fits/fits_output.xsd

http://hul.harvard.edu/ois/xml/xsd/fits/fits_output.xsd

43

• Any attempts at analysing OpenDocument Text files resulted in an exception being thrown
from NLNZ Metadata Extractor (tried this on several). Output file was written nevertheless.
The ODT files were also identified correctly.

• An EPUB file was erroneously identified as an OpenDocument Text file. This is not completely
surprising, as EPUB uses the Open Container Format (OCF), which describes the packaging of
individual file components of an EPUB publication in a ZIP archive. OCF is in turn based on
the Open Document Format (of which ODT is a sub-format). Incidentally FITS did not crash on
this particular file. Another EPUB file was identified as an ordinary ZIP file.

HTML represents another class of composite objects, where, for example, an individual HTML file
refers to external style sheets and images, which are all needed for proper rendering. The main
difference with e.g. Open Document Format or EPUB is the absence of a physical container file. FITS
does not currently have any mechanism to recognise the interdependencies between the individual
components of this particular class of ‘composite objects’.

7.16 User documentation
Documentation is provided as an online ‘FITS User Guide’26. The information in the User Guide is
adequate for getting started with FITS, although for serious (e.g. operational) uses of the tool it is
somewhat lacking in detail. This applies in particular to the explanation of the output format.

As an example, for file objects that cannot be identified, FITS reports the identification status
attribute as “UNKNOWN”. According to the User Guide, this attribute can only have a value of
“SINGLE_RESULT” or “CONFLICT” (without any mention of “UNKNOWN”)! In fact, the “UNKNOWN”
value is not included in the FITS output schema either, which means that the output file is not valid
according to its own schema 27 (this was confirmed by a check using an XML validator tool).28

Also, as described in Section 7.9, by default FITS reports the identification results in terms of a
(textual) format description (e.g. "Plain text") and MIME type. However, from the documentation it is
not clear where either the format descriptions or the MIME type strings are originating from. An
inspection of the FITS directory structure reveals that this is done using a number of style sheets (one
for each tool). Although this information is not necessarily needed to run FITS, having some general
idea of where the descriptions and mime types are coming from is certainly helpful in interpreting
the results29.

A final example: FITS uses the concept of a ‘format tree’ to handle formats that are a subset of a
more general format. Although the general idea is mentioned in the User Guide, a more detailed
description of the specific format of the format tree is currently missing. Moreover, the format tree is
defined in terms of textual format descriptions that are not documented anywhere (see above).
Users of the software who wish to wrap their own tools in FITS will however need this information.

26 Link: http://code.google.com/p/fits/wiki/user_guide
27 A commenter to the on-line User Guide reports a similar issue where the status attribute is “PARTIAL”. See
following link (bottom of page): http://code.google.com/p/fits/wiki/general
28 After reporting the above issue on the FITS project website we got an almost immediate response from one
of the developers, who instantly produced a corrected version of the XML schema. So it would be safe to
assume that the schema-related issues will be fixed in an upcoming release.
29 Just an example: since this type of output is so similar to the output of the Unix File tool, this could easily
lead to the erroneous assumption that FITS simply copies the identification results of ‘File’ (which is not the
case!). So explaining this in the documentation would be helpful to avoid such misunderstandings.

http://code.google.com/p/fits/wiki/user_guide
http://code.google.com/p/fits/wiki/general

44

7.17 Computational performance: one file at a time

7.17.1 KB Scientific Journals data set
The ‘treeLaunch’ tool was used to get an impression of the performance of FITS when it is called to
process one file at a time. It was set up to recursively traverse the KB Scientific Journals data set’s
directory tree, and run FITS for each encountered file object. For an individual file object this results
in a command line like:

fits -i 1-1-70.pdf

It took slightly less than 21 hours to analyse the whole KB Scientific Journals data set in this way.
Figure 7-1 and Table 7-1 summarise the main results. On average FITS2 needs 6.3 seconds per file
object, with a maximum of 23.7 seconds. For the one-file-at-a-time scenario this is almost twice as
fast as DROID 6, but compared to Fido or the Unix File utility this is still quite slow. Processing time
appears to increase quite markedly with file size (Figure 7-2). One noteworthy feature of Figure 7-2 is
that it shows some marked clustering around a number of narrowly-defined time intervals. These
clusters can also be seen as minor ‘peaks’ in Figure 7-1, and appear to be caused by the invocation of
format-specific tools (mostly of the files in these clusters are XML).

The ‘issues’ list at the FITS project Wiki also contains an entry about the tool’s processing
performance30. In a response to this, Spencer McEwen comments that in his experience JHOVE and
NLNZ Metadata Extractor take the longest amount of time, and read much more data from the
analysed files than the other tools. So, we repeated the performance test with these two tools
disabled. Performance was somewhat better in this case, but FITS still needed about 17 hours to
process the dataset.

30 Link: http://code.google.com/p/fits/issues/detail?id=20

http://code.google.com/p/fits/issues/detail?id=20

45

Figure 7-1 Distribution of processing time per file object for FITS one-file-at-a-time scenario, KB Scientific
Journals data set.

Table 7-1 Summary performance statistics for FITS one-file-at-a-time scenario, KB Scientific Journals data set
(expressed in seconds per file, except N). N=number of files; q1, median and q3 are 1st , 2nd and 3rd quantiles,
respectively.

N min q1 median mean q3 max
11,892 5.390 5.750 5.891 6.269 6.156 23.688

46

Figure 7-2 Scatter plot of processing time per file object versus file size for FITS one-file-at-a-time scenario, KB
Scientific Journals data set. Note logarithmic scale on horizontal axis.

7.17.2 KB Large data set
Table 7-2 shows the results of an additional test that was done on the KB Large data set (again using
the ‘treeLaunch’ tool). The table shows that processing time is strongly related to file size. Figure 7-3
illustrates this graphically.

Table 7-2 Performance for individual files in KB Large data set

File name Size (bytes) Processing time (s)
dpo_tonal_00990.tiff 36,420,900 12.828
IMAGE000060_lossless_colour.jp2 49,818,414 8.563
IMAGE000060.TIF 114,664,502 11.172
SGD_19451955_0000002_ID371.pdf 325,101,508 156.003
DipAsset6984444754559678047.tar 534,968,320 64.079
KBDVD.iso 683,180,032 72.361
KBDVD17062011.img 693,993,472 78.048
DNEPABOstg.PST 1,895,515,136 150.972

47

Figure 7-3 Scatter plot of processing time per file object versus file size for FITS one-file-at-a-time scenario, KB
Large data set.

7.17.3 Additional tests on influence of FITS configuration
FITS is different from most of the other tools covered by this report in that it wraps around multiple
tools, which all add up processing time. It is possible to switch individual tools on or off through FITS’
configuration files. In order to get an indication of the impact of this on FITS’ performance, we
performed an additional test on a small set of 5 files. Performance was measured for two different
FITS configurations:

• FITS’ standard configuration.
• A ‘minimal’ configuration, in which all tools except the Unix File tool are disabled.

Table 7-3 shows the results.

48

Table 7-3 Processing time for some format-size combinations using standard and ‘minimal’ FITS configuration.

Format Size Processing time (s), standard
configuration

Processing time (s), ‘minimal’
configuration

PDF 25 MB 10.5 2.2
PDF 69 KB 6.2 2.3
JPEG 69 KB 6.1 2.3
ZIP 8 MB 20.3 2.4
MS Word 2.5 MB 13.1 2.3

The table shows that the processing time per file decreases quite dramatically using the ‘minimal’
FITS configuration. Despite this, the overall performance doesn’t even come close to using the Unix
File tool in stand-alone mode, and FITS is adding quite a bit of overhead of its own (which is probably
due to initialisation).

7.18 Computational performance: many files at a time
Unlike DROID and Fido, FITS 0.5 does not have any functionality for processing multiple files in one
run.

7.19 Stability
Not investigated in detail so far. FITS did raise an exception while attempting to analyse a non-
existent file. In addition various exceptions were raised by the NLNZ Metadata Extractor tool, but
these didn’t lead to any subsequent FITS exceptions.

7.20 Error handling and reporting
The FITS User Guide is not specific on this. It seems that any error messages are written to the
console’s standard error device.

7.21 Provision of event information
The FITS output file contains extensive event information, including:

• FITS version number
• A time stamp
• Names and version numbers of all tools that were used in the identification process
• Status fields that indicate whether output of different tools give conflicting information
• Status field that indicates whether a file could be identified at all
• Provenance of identification results (i.e. specific tool and tool version of each result)

One omission is that FITS does not report any information on the version of the used version of the
DROID signature file (which is a particularly important piece of information). This issue aside, FITS’
provision of event information is superior to any of the other tools that have been investigated in this
report.

7.22 Maturity and development stage
The first version of FITS (0.2.5) was released in (late?) 2009. So far there have been nine releases,
four of which were major releases. Although the documentation makes no mention of the current
development stage of FITS, the number of the most recent release (0.5) suggests that the software is
currently in beta stage.

49

7.23 Development activity
With seven releases between January 2010 and February 2011, development appears to be quite
active.

7.24 Existing experience
Although FITS is fairly well-known within the preservation community, the degree to which it is used
by memory institutions is largely unknown.

7.25 Unidentified files
No files were left unidentified. A number of text files with “.raw” extension were wrongly identified
as “raw bitmap” (source: DROID).

7.26 Conclusions
The evaluation of FITS 0.5 reveals a mixed picture. Its main strengths are:

• Its ability to combine the identification functionality of several tools, and normalise the
output of these tools.

• The possibility to add new tools
• It supports a large number of file formats.
• Comprehensiveness of the output files.
• Use of XML (and an associated schema) for output enables validation of the output files
• Provision of detailed event information (except the DROID signature file version, which is

strangely absent). This makes FITS closely tailored to the specific needs of digital repositories.
• The behaviour of FITS is highly configurable (e.g. tools can be disabled, even for specific file

extensions).
• The FITS ‘format tree’ provides a sensible mechanism for ensuring that, in case of multiple

identification results by different tools, the most specific result is used.

In addition, FITS also offers the option to normalise its output according to standard metadata
schemas such as NISO/MIX or textMD (although this is largely outside of the scope of this document).

However, there are some problems too:

• Most importantly, FITS is slow (although calling FITS from the Java API will most likely result
in better performance than what was reported here).

• There is a lack of any option to process many files in one FITS run (which would improve
performance by reducing initialisation times).

• The batch launcher only works when it is executed from the FITS installation directory, which
is both clumsy and unnecessary.

• The User Guide provides enough information to get started with FITS, but for any “serious”
(e.g. operational) applications it is lacking in detail.

• This also applies to the documentation of the configuration options: even though almost
everything in FITS is highly configurable, the current documentation is not sufficient to fully
take advantage of this.

• The FITS identification results are reported as textual format descriptions, which are
currently not documented anywhere.

50

• One-to-one mapping of results to PRONOM identifiers is not possible for every format31.
• No scanning inside ZIP archives.

Of the above problems, FITS’ performance is the most serious one. However, it is important to stress
that the results of FITS cannot be directly be compared to those of the other tools in this report. The
main reasons for this are:

1. Unlike those other tools, each FITS run involves the invocation of multiple underlying tools,
and each tool adds to the total processing time.

2. Identification is only a small part of FITS’ functionality: it also includes feature extraction and
validation. Computationally such operations are more ’costly’ than simple identification,
because files may need to be read/analysed in their entirety.

3. FITS has no built-in functionality for analysing many file files at a time, which means that the
results for this use case had to be obtained by repeating the one file at a time use case for all
file objects in the dataset.

4. The actual performance of FITS is affected by its configuration: performance can be
improved by disabling specific tools.

As for the last point: even with JHOVE and NLNZ Metadata Extractor (which are supposed the slowest
tools that are wrapped inside FITS) disabled, performance was still very poor in the tests. This casts
some doubts on the suitability of FITS for processing large volumes of data in an operational setting.

On a final note, performance is likely to be better if FITS is invoked through its Java API (instead of
the command line). Additional tests are necessary to confirm this.

31 This is not really a limitation of FITS: some formats simply do not have an associated PRONOM identifier, and
for tools that do not use some other identifier there is no mapping back to PUID.

51

8 JHOVE2

8.1 Overview
JHOVE2 is the successor of the well-known JHOVE tool. Its creators refer to JHOVE2 as a “Java
framework for next-generation format-aware characterization”. It is being developed by the
California Digital Library, Portico, and Stanford University, with funding from the Library of Congress
under its National Digital Information Infrastructure and Preservation Program (NDIIPP). JHOVE2’s
functionality comprises identification, feature extraction, validation and policy-based assessment.
The current analysis is restricted to JHOVE2’s identification functionality. JHOVE2 is developed as
open-source software. We evaluated JHOVE 2.0.0 (released April 2011).

8.2 Tool interface
JHOVE2 has a command line interface, for which a Windows batch file and a Unix shell script are
provided. The batch file (“jhove2.cmd”) contains the following reference to a configuration script
that sets up a number of environment variables (“env.cmd”):

call env

This only works if the batch file is launched from its installation direction, and will go wrong
otherwise (unless the installation directory is included in Windows’ ‘path’ environment variable).

This can be fixed by changing the call to:

call %~dp0\env

This inserts the path to the directory where “jhove2.cmd” is installed32.

8.3 License type
JHOVE2 is released under an open-source BSD License. JHOVE2 uses a number of third party
components, which are all released under a variety of open source license types.

8.4 Language
JHOVE2 is written in Java (version 6).

8.5 Platform dependencies
According to the JHOVE2 User Guide the software is designed to work with any implementation that
is fully compliant with Java 6. The developers also state that the software has been tested on Sun’s
implementation of Java 6 on Windows, Solaris and Linux, and on Apple’s implementation of Java 6 on
Mac OS [JHOVE2a].

8.6 Coverage of file formats
JHOVE2 uses DROID 4.0 for identification33. DROID’s identification is based on file signatures, or,
alternatively, known extensions. These are defined in a signature file, which is regularly updated by

32 This issue will be corrected in the next code release (Stephen Abrams, pers. comm.)
33 Strangely JHOVE2’s documentation doesn’t appear to mention the included version of DROID, and the DROID
license file that is included with JHOVE2 is for DROID 3.0.

52

The National Archives. Strangely the JHOVE2 install contains a very old version (20) of the DROID
signature file (the current version is 49!). The DROID version that is used by JHOVE2 doesn’t support
‘container signatures’ for container formats such as ZIP (Open Document and Microsoft Office Open
XML formats) and OLE2 (container for the Microsoft Office formats).

8.7 Extendibility
Since the number of formats that DROID can handle is defined by the information in the signature
file, new formats can be added by modifying the signature file (or downloading the latest version
from the National Archives). However, the configuration file of JHOVE2’s identification module
contains a comment stating that “[t]he DROID Signature and Configuration files in the JHOVE2
distribution have been edited to, among other things, detect additional signatures for formats”. The
nature and extent of this “editing” is not further specified, which raises some concerns on what
happens if a user replaces the default signature file (which is very old) by a more recent one.

Another relevant feature of JHOVE2 is that external tools can be wrapped. In principle this would
make it possible to incorporate additional identification tools into the JHOVE2 framework. Apart
from this, individual modules of JHOVE2 can also be switched off (e.g. the policy-based assessment
module, or the module that calculates message digests).

8.8 Output format
JHOVE2 can report output in text, JSON and XML format. The output format can be set with a
command-line switch. Output is sent to the standard output device (default) or to a user-defined file.
In all cases the output is extremely verbose (including detailed information on JHOVE2 sub-
processes). As JHOVE2’s current documentation doesn’t cover its output, making sense of the output
files can be quite a challenge. JHOVE2’s functional requirements suggest that the current output
format is only intended as an intermediate format that can be converted to any desirable form using
an XSL style sheet transformation34. The JHOVE2 Wiki contains a note that style sheets to transform
JHOVE2 output to METS and PREMIS format will be included with release 2.1.0 of the software35. On
a side note, it is possible to configure JHOVE2’s output. The procedure is explained in the section
“Configure Unit and Displayer Properties” of the User’s Guide, but it involves editing numerous Java
properties settings files. This is something that may be too complicated for most general users
(besides, the description of the configuration directory structure doesn’t match the actual directory
structure, which adds to the confusion).

8.9 Unique output identifiers
Neither the User’s Guide nor any of the separate module documentation documents give any
information on how the identification results are reported. An inspection of some JHOVE2 output
files36 first reveals some identification-related information at the start of the file:

PresumptiveFormats:
 PresumptiveFormat {FormatIdentification}:
 NativeIdentifier {I8R}:
 Namespace: PUID
 Value: fmt/95

34 Link: https://bytebucket.org/jhove2/main/wiki/documents/JHOVE2-functional-requirements-v1_4.pdf ,
Imperative Requirement 5 (page 6)
35 See also: https://bitbucket.org/jhove2/main/wiki/StyleSheets

36 For the sake of readability all output examples here are given in plain text format.

https://bytebucket.org/jhove2/main/wiki/documents/JHOVE2-functional-requirements-v1_4.pdf
https://bitbucket.org/jhove2/main/wiki/StyleSheets

53

 JHOVE2Identifier {I8R}:
 Namespace: JHOVE2
 Value: http://jhove2.org/terms/format/pdf
 IdentificationProduct {I8R}:
 Namespace: JHOVE2
 Value: http://jhove2.org/terms/reportable/org/jhove2/module/identify/DROIDIdentifier
 Confidence: Tentative

Here we can see that JHOVE2 uses two identifiers:

• A PUID (fmt/95, which is PDF/A-1a)
• A “JHOVE2Identifier”. In the above example its value is:

 http://jhove2.org/terms/format/pdf
Although the JHOVE2 identifier has the format of a URL, it doesn’t point to any existing
document(s) on the JHOVE2 website.

We were initially puzzled by what seemed like a second block of identification-related information
(including a list of PUIDs) further down the output file under the Module {BaseFormatModule}
heading:

 Module {BaseFormatModule}:
 ModuleNotFoundMessage: [ERROR/PROCESS] No module name found for Identifier
http://jhove2.org/terms/format/pdf
 Format:
 Name: PostScript
 Identifier {I8R}:
 Namespace: JHOVE2
 Value: http://jhove2.org/terms/format/pdf
 AliasIdentifiers:
 AliasIdentifier {I8R}:
 Namespace: JHOVE2
 Value: http://jhove2.org/terms/format/pdf
 AliasIdentifier {I8R}:
 Namespace: PUID
 Value: fmt/14
 AliasIdentifier {I8R}:
 Namespace: PUID
 Value: fmt/15
 AliasIdentifier {I8R}:
 Namespace: PUID
 Value: fmt/16
 AliasIdentifier {I8R}:
 Namespace: PUID
 Value: fmt/17
 AliasIdentifier {I8R}:
 Namespace: PUID
 Value: fmt/18
 AliasIdentifier {I8R}:
 Namespace: PUID
 Value: fmt/19
 AliasIdentifier {I8R}:
 Namespace: PUID
 Value: fmt/20
 AliasIdentifier {I8R}:
 Namespace: PUID
 Value: fmt/95

The meaning of this information is not completely clear. Since fmt/14 to fmt/20 represent PDF
versions 1.0 to 1.6 this might be some meta-information that is related to JHOVE2’s “BaseFormat”
module (e.g. al PUIDs that correspond to JHOVE2 identifier “http://jhove2.org/terms/format/pdf”).
However, since the User’s Guide doesn’t contain any explanation of JHOVE2’s output, users are left

http://jhove2.org/terms/format/pdf

54

in the dark on this, which is not particularly helpful and rather confusing37. Also note that in the
above example there is a mention of the PostScript format38.

8.10 Granularity of output
The use of PUIDs ensures that JHOVE2’s output can be mapped directly to the PRONOM registry (as
well as the OPF registry).

8.11 Accuracy of reported results
Not analysed yet.

8.12 Comprehensiveness and completeness of reported results
The reporting of the analysis results is extremely comprehensive. There are two problems here:

1. JHOVE2’s output format is undocumented. This applies both to the information units as well
as the overall structure.

2. JHOVE2’s output is extremely verbose (including detailed event information at the level of
individual modules)

Because of the combination of 1 and 2 above it is quite difficult to make sense of the output in its
current form (which was also illustrated in the previous section). However, JHOVE2’s functional
requirements suggest that the current output format is only intended as an intermediate format that
can be converted to any desirable form using an XSL style sheet transformation39. The JHOVE2 Wiki
contains a note that style sheets to transform JHOVE2 output to METS and PREMIS format will be
included with release 2.1.0 of the software40.

8.13 Fit to needs of preservation community
The preservation community is JHOVE2’s primary target audience. Also, the JHOVE2 Project Team
partners as well as JHOVE2’s main funder (Library of Congress) are all actively involved in digital
preservation. JHOVE2’s functional requirements explicitly state that “[t]o the fullest extent possible,
JHOVE2 should be easily integrated into existing workflows.”[JHOVE2b].

8.14 Ability to deal with nested objects
JHOVE2 is specifically designed to deal with nested objects through its concept of source units, which
are “entities that can be independently characterized” [JHOVE2a]. Nested objects are simply one
class of aggregate source units. JHOVE2 currently recognises the following cases:

• A file system directory
• A ZIP or TAR file
• Directories within an archive file.

37 Update from Stephen Abrams in response to this issue: ‘The first block (under "PresumptiveFormat")
documents the specific format (fmt/95, PDF/A) returned by the identification tool (i.e. DROID). The second
block (under "Module") documents the full set of information JHOVE2 has been configured with regarding this
format. Since we do not yet have a PDF module, we consider all of the PDF version PUIDs to be alias of PDF/A.
When the PDF module becomes available later this year, we will be more precise in distinguishing the versions
and associated more tightly bound aliases.’
38 This turns out to be a bug (Stephen Abrams, pers. comm.)
39 Link: https://bytebucket.org/jhove2/main/wiki/documents/JHOVE2-functional-requirements-v1_4.pdf ,
Imperative Requirement 5 (page 6)
40 See also: https://bitbucket.org/jhove2/main/wiki/StyleSheets

https://bytebucket.org/jhove2/main/wiki/documents/JHOVE2-functional-requirements-v1_4.pdf
https://bitbucket.org/jhove2/main/wiki/StyleSheets

55

• A wrapper file (e.g. a TIFF file can be a wrapper for ICC profiles or XMP metadata)

JHOVE2 can deal with any combination of the above, provided that a module exists for the
container/wrapper format.

8.15 Ability to deal with composite objects
Formats such as Microsoft Word 97 and Open Document Format are based on multiple file objects
that are held together by a physical container (e.g. OLE2 for Microsoft Word 97, and ZIP for Open
Document Format). In principle, these could all be treated as aggregate source units in JHOVE2. In
addition, JHOVE2 introduces the concept of a clump, which is “a set of logically related files within a
container or file set”. This also applies to, for example, the file objects that constitute an ODF file.

In practice, JHOVE2 still identifies Microsoft Word documents as OLE2 objects; Open Document Text
and EPUB files are identified as regular ZIP files. Also, one small (300 KB) EPUB file caused JHOVE2 to
’hang’ (i.e. no exception occurred, but the processing of the file went on indefinitely and could only
be stopped by manually interrupting JHOVE2).

HTML represents another class of composite objects, where, for example, an individual HTML file
refers to external style sheets and images, which are all needed for proper rendering. The main
difference with e.g. Open Document Format or EPUB is the absence of a physical container file. In
JHOVE2 terms, the HTML example is simply a clump without a container file. However, the only
comparable clump type that is supported by JHOVE2 at this stage is the Shapefile format (which is a
GIS format that is based on a set of files that are not held together by any container).

8.16 User documentation
JHOVE2 is documented in a 39 page User’s Guide in PDF format, which provides instructions on
installing, configuring and using the software. The installation instructions in particular are very
comprehensive. The User’s Guide doesn’t include a description (or even a mention) of JHOVE2’s
output format(s) or reported properties. Properties that are related to JHOVE2’s feature extraction,
validation and assessment functionalities are described in separate documents, but it would appear
that the identification-specific output remains undocumented at this stage. The basic logic behind
JHOVE2’s output information is explained in a separate Architectural Overview document, but this is
a piece of documentation that is more aimed at the level of developers than users. As a general
remark, much of the currently available documentation on the JHOVE2 Wiki is very developer-
oriented. Although the JHOVE2 team should be praised for taking developer documentation
seriously, the currently available documentation will probably not satisfy the needs of JHOVE2’s
more general user audience.

8.17 Computational performance: one file at a time

8.17.1 KB Scientific Journals data set
The ‘treeLaunch’ tool was used to get an impression of Jhove2’s performance when it is called to
process one file at a time. It was set up to recursively traverse the KB Scientific Journals data set’s
directory tree, and run Jhove2 for each encountered file object. For an individual file object this
results in a command line like:

jhove2 1-1-70.pdf

56

It took about 25 hours to analyse the whole KB Scientific Journals data set in this way. Figure 8-1 and
Table 8-1 summarise the main results. On average JHOVE2 needs 7.6 seconds per file object, with a
maximum of almost 20 seconds. This means that for the one-file-at-a-time scenario JHOVE2 is about
50 % faster than DROID 6, but compared to Fido or the Unix File utility this is still quite slow.
Processing time appears to increase quite markedly with file size (Figure 8-2). One noteworthy
feature of Figure 8-2 is that it shows some marked clustering around a number of narrowly-defined
time intervals. These clusters can also be seen as minor ‘peaks’ in Figure 8-1, and they correspond to
formats that have dedicated modules in JHOVE2 (mostly XML).

Figure 8-1 Distribution of processing time per file object for JHOVE2 one-file-at-a-time scenario, KB Scientific
Journals data set.

Table 8-1 Summary performance statistics for JHOVE2 one-file-at-a-time scenario, KB Scientific Journals data
set (expressed in seconds per file, except N). N=number of files; q1, median and q3 are 1st , 2nd and 3rd
quantiles, respectively.

N min q1 median mean q3 max
11,892 5.906 7.156 7.266 7.610 7.422 19.704

57

Figure 8-2 Scatter plot of processing time per file object versus file size for JHOVE2 one-file-at-a-time scenario,
KB Scientific Journals data set. Note logarithmic scale on horizontal axis.

8.17.2 KB Large data set
Table 8-2 shows the results of an additional test that was done on the KB Large data set (again using
the ‘treeLaunch’ tool). The table shows that processing time is strongly related to file size. Figure
8-3 illustrates this graphically. This is caused by the behaviour of DROID 4 (which is the identification
tool that JHOVE2 uses ‘under the hood’): DROID 4 always scans each file object in its entirety, which
can make it very slow on large files41..

41 See e.g. here: http://www.openplanetsfoundation.org/node/563 (comments section)

http://www.openplanetsfoundation.org/node/563

58

Table 8-2 Performance for individual files in KB Large data set

File name Size (bytes) Processing time (s)
dpo_tonal_00990.tiff 36,420,900 16.485
IMAGE000060_lossless_colour.jp2 49,818,414 17.406
IMAGE000060.TIF 114,664,502 23.86
SGD_19451955_0000002_ID371.pdf 325,101,508 66.689
DipAsset6984444754559678047.tar 534,968,320 100.799
KBDVD.iso 683,180,032 108.753
KBDVD17062011.img 693,993,472 101.392
DNEPABOstg.PST 1,895,515,136 190.847

Figure 8-3 Scatter plot of processing time per file object versus file size for JHOVE2 one-file-at-a-time scenario,
KB Large data set.

8.17.3 Additional tests on influence of file type and size
JHOVE2 is different from most of the other tools covered by this report in that it includes feature
extraction and validation functionality for a limited number of file formats. One might expect that
this would influence its performance, since the amount of processing is format-dependent. For
instance, one would expect that formats that have a dedicated module (e.g.TIFF) would take more
time than unsupported formats, as for the former JHOVE2 also performs feature extraction and
validation. In order to get an indication of the impact of this on JHOVE2’s performance, we

59

performed an additional test on a small set of 8 files. Performance was measured for two different
JHOVE2 configurations:

• JHOVE2’s standard configuration.
• A ‘minimal’ configuration, where all JHOVE2 modules apart from the “IdentifierCommand”

were disabled42.

Table 8-3 shows the results.

Table 8-3 Processing time for some format-size combinations using standard and minimal JHOVE2
configuration. Formats supported by a dedicated JHOVE2 module marked with *.

Format Size Processing time (s), standard
configuration

Processing time (s), ‘minimal’
configuration

PDF 25 MB 10.4 9.0
PDF 69 KB 7.2 5.8
JPEG 69 KB 7.2 5.8
TIFF * 68 KB 8.1 5.8
TIFF * 110 MB 35.1 32.1
JP2 49 MB 15.6 14.2
ZIP * 8 MB 11.9 7.3
MS Word 2.5 MB 7.6 6.1

Two things are apparent from the table:

• Given a file of a particular size and format, processing time is not strongly related to whether
or not the format has its dedicated JHOVE2 module.

• Performance is somewhat better for the ‘minimal’ JHOVE2 configuration, but the overall
differences relative to the ‘standard’ configuration are comparatively small.

This all suggests that most of the processing time is consumed by DROID 4, and that JHOVE2’s
format-specific native modules are relatively fast. Since DROID 4 is known to be relatively slow, it
may be possible to boost JHOVE2’s performance significantly by using the latest version of DROID (6,
see Chapter 4 of this report).

8.18 Computational performance: many files at a time
To test JHOVE2’s performance while working on a large number of objects, we performed a recursive
scan of all file objects in the directory structure of the KB Scientific Journals data set and measured
the time needed for this. The following command line was used:

42 This was done by commenting all other modules out in the JHOVE2 configuration file (config\spring\jhove2-
framework-config.xml):

 <property name="commands">
 <list value-type="org.jhove2.module.Command">
 <ref bean="IdentifierCommand"/>
 <!-- <ref bean="DispatcherCommand"/>
 <ref bean="DigesterCommand"/>
 <ref bean="AssessorCommand"/>
 <ref bean="AggrefierCommand"/> -->
 </list>
 </property>

60

timeit jhove2.cmd D:\aipSamplesUnpacked -o D:\identOut\jhove2Out.txt

This gives the following result:

Elapsed Time: 0:35:42.541

So JHOVE2 needs about 35 minutes to scan 1.15 GB of data in the used test environment. For a total
of 11892 file objects this corresponds to an average processing time of 0.18 seconds per file43.

It is important to stress that these results are not directly comparable to DROID, Fido or the Unix File
tool, since JHOVE2 also performs feature extraction and validation (for a limited number of formats).
Since the scope of this report is restricted to identification, we did an additional test with the
‘minimal’ configuration that was mentioned in the previous section. This produced the following
result:

Elapsed Time: 0:01:19.407

However, it turned out that the output in this case only gives contains identification results for the
top-level directory (‘D:\aipSamplesUnpacked’), which is identified as a ‘directory’. All other
subdirectories and files are listed in the output file, but it doesn’t contain any identification
information. This may seem surprising at first. However, JHOVE2 treats directories (and also file sets)
as formats, which have dedicated format modules44. When JHOVE2 is instructed to scan a directory,
it needs its ‘directory’ format module for processing the contents of that directory. However, all
format modules are invoked through the ‘dispatcher’ command, and if the dispatcher is disabled (as
is the case in the ‘minimal’ configuration), JHOVE2 will not get past the level of the root directory.
This is not a bug: it is simply a consequence of JHOVE2’s architecture.

8.18.1 Additional note on treatment of source units in JHOVE2
The above observations point to an important difference between JHOVE2 and most of the other
tools that are addressed in this report. Basically, JHOVE2 always treats its (set of) command-line
argument(s) as one single source unit (which may be either unitary or aggregate). So, when JHOVE2’s
command-line argument is a directory, it will treat its root as the principal ‘parent’ unit, and all its
underlying sub-directories and files as ‘child’ units. This is different from, for example, analysing a
directory in DROID 6, since DROID 6 will simply consider each file (and subdirectory) in that directory
as an independent unit. Similarly, consider the following command line:

jhove2 rubbish.txt rubbish.pdf

One may expect that this will simply yield output related to files ‘rubbish.pdf’ and ‘rubbish.txt’.
Instead, at the highest level JHOVE2 treats this as a ‘file set’ (which is considered a format!) that
contains ‘rubbish.pdf’ and ‘rubbish.txt’ as child units.

In many cases a user may simply want to process a collection of files as separate unitary source units
(e.g. like in the 'old' JHOVE). This use case is currently not supported by JHOVE2, although it may be
included in upcoming versions45.

43 On a side note, the size of the output file was about 191 MB.
44 See also Page 39 (‘How JHOVE2 Identifies Source Units’) of the JHOVE2 User’s Guide
45 Source: e-mail Stephen Abrams, 2 august 2011 (JHOVE2-TECHTALK list)

61

8.19 Stability

8.19.1 JHOVE2 ‘hangs up’ on EPUB/ZIP file
The analysis of one particular EPUB / ZIP file (size: 300 B) caused JHOVE2 to ‘hang up’: the software
continued running for minutes without anything happening, and had to be interrupted manually.

8.19.2 Default location for writing memory objects
Although this is not strictly a stability issue, after installing JHOVE2 we initially experienced a problem
where JHOVE2 would produce the following error message:

'Cannot initialize Berkeley DB environment',

followed by a succession of Java exceptions. This turned out to be a configuration issue: by default
JHOVE2 uses (under MS Windows) the root of the C:\ drive for writing temporary memory objects. At
the KB the root of C:\ is configured as read-only, which means that this will go wrong. This can be
easily fixed by editing JHOVE2’s configuration settings46. However, using the standard temporary file
directory (as defined by Windows’ TMP and/or TEMP environment variable) as a default would avoid
this problem altogether (also, using the root of C:\ for writing temporary data is highly unusual, and
we know of no other applications that do this).

8.19.3 JHOVE2 doesn’t clean up its temporary files
Again not a stability issue, but problematic anyway: whenever JHOVE2 encounters a container unit
(e.g. a ZIP file), it extracts its contents to the Java temporary directory (tmpdir) for further analysis.
However, these files are not removed afterwards, which means that with time the Java temporary
directory will grow indefinitely, which may lead to a variety of problems.

8.20 Error handling and reporting
Only very high level error messages are written to the console’s standard error device. However, all
other error messages, warnings and informative messages are included in JHOVE2’s output files
(which are always written to standard out).

8.21 Provision of event information
The event information that is provided by JHOVE2 is extremely elaborate. It includes detailed
information on the environment in which JHOVE2 was run, and detailed information on individual
JHOVE2 modules. In fact, most of the information in a JHOVE2 output file is event information. The
sheer amount of event information can even be a little overwhelming. This problem should go away
once style sheets are available for transforming JHOVE2 output files to something more digestible
(e.g. PREMIS).

8.22 Maturity and development stage
JHOVE2 is still a very young tool. So far two prototypes have been released (August 2009 and April
2010, respectively), followed by a ‘first production release’ in April 2011. This is also the version that
is evaluated here. The term ‘production release’ suggests stable software that is ready to be used in

46 This is done by changing the property “envHome” in JHOVE2’s memory management configuration file
(explained on pages 22/23 of the User’s Guide).

62

an operational setting. This is somewhat misleading, as JHOVE2 in its current form does not appear
to be ready for operational use yet47.

8.23 Development activity
The development of JHOVE2 has been very active since the start of the project in 2008. Also, several
third-parties that are not part of the JHOVE2 project team have started developing JHOVE2 modules.
An example is the NetCDF module that is being developed by the Alfred Wegener Institute for Polar
and Marine Research. Maintenance and enhancement activity is funded by the three partner
institutions in the JHOVE2 project team, which makes it slightly unclear at this stage how (and at
what rate) further development will continue.

8.24 Existing experience
Given that it is still a very new tool, experience with JHOVE2 is still very limited.

8.25 Unidentified files
Not investigated (most likely similar to DROID).

8.26 Conclusions
The evaluation of JHOVE2 revealed a number of specific strengths and weaknesses.

JHOVE2’s main strengths appear to be:

• JHOVE2 offers an integrated approach for file characterisation that includes identification,
feature extraction, validation and policy-based assessment.

• JHOVE2’s modular architecture is a particular strength. It makes it attractive for third parties
to contribute to JHOVE2 by developing new modules. Also, it makes it possible to wrap
external tools in the JHOVE2 framework.

• JHOVE2 provides extremely comprehensive output, including detailed event information.
Currently this makes the JHOVE2 output rather difficult to digest, but once the style sheets
for transforming JHOVE2’s intermediate output format to METS and PREMIS are in place
(which will be included in the next release) this could turn into a major advantage over other
existing tools.

Potential problems for use in preservation workflows are:

• JHOVE2 is shipped with a very old version of the DROID signature file, which also contains
undocumented edits. It is not clear what happens if a user replaces the default signature file
with a more recent one, which raises some concerns on extendibility.

• The User’s Guide doesn’t provide any information on either JHOVE2’s output format or its
reported properties. For the feature extraction, validation and assessment modules this is
partially covered by separate documents (which were not reviewed here), but it seems that
the identification-specific output remains undocumented at this stage. This may not be a
problem once style sheets to convert to METS or PREMIS are in place, but these are not
included with the current release.

47 Reasons for this include the current use of an undocumented, complex intermediate output format; the lack
of any style sheets to transform the output to something more usable, and the fact that some format modules
(PDF, JPEG 2000) are still missing.

63

• Much of JHOVE2’s documentation is very developer-oriented at this stage. This may scare
potential users of the software away. This could be remedied by improved and more
elaborate user documentation.

• The current development stage of JHOVE2 is unclear. The evaluated version of the software
is announced as a production release, but the fact that JHOVE2 is currently only able to
produce output in a complex, intermediate output format which is also completely
undocumented would by itself make the use of the software in an operational setting
practically impossible. Moreover, current the lack of some format modules, style sheets for
output transformations and a more user-oriented documentation all suggest that the
software is currently still in beta stage. By itself this is not a problem, but the developers
should be clear about this. Presenting JHOVE2 as a production tool at this stage may confuse
its potential user base, which could be counter-productive in the long run.

• Although JHOVE2’s data model is particularly suited for dealing with composite objects, on
the identification side this doesn’t work out too well in practice because of its dependency
on DROID 4. This means that for MS Office documents, Open Document files and EPUB files
only the container format (OLE2, ZIP) is identified. A move towards DROID 6 would improve
this.

• The dependency on DROID 4 results in a relatively poor computational performance,
especially for large file objects, and when JHOVE2 is invoked for one file object at a time. Also
here, a move towards DROID 6 would improve this.

• JHOVE2 can be used for many files at a time scenarios (e.g. processing a directory tree), but
in that case all objects and subfolders will be interpreted as child units of the root directory.
Whether this is a problem or not depends on the context; moreover the currently used
output format (see above) makes it difficult to make any assessment of this.

• In principle it is possible to configure JHOVE2 to do identification only, and skip any
additional processing. The (mainly architectural) choice to treat directory trees and file sets
as formats limits these possibilities in practice, since the identification of file objects inside
folders still requires the invocation of format modules.

• The tests revealed a number of issues: the default location for writing temporary memory
objects; the creation of temporary that are not cleaned up, and the Windows launcher
scripts that only work from their installation directory. These are all relatively minor and
(most likely) easy to solve.

Similarly to the evaluation of FITS, it is important to stress that the results of JHOVE2 cannot be
directly compared to those of the other tools in this report. The main difference is that identification
is only one part of JHOVE2’s functionality: it also includes feature extraction, validation and policy-
based assessment. These are all outside of the scope of this evaluation. It also means that any
computational performance results cannot be directly compared with dedicated identification tools
(although JHOVE2’s performance issues appear to be caused mainly by DROID 4, with JHOVE2’s
native modules adding very little overhead).

Based on the above considerations, if the scope is limited to identification only, JHOVE2 does not
appear to be the most obvious choice for inclusion in the SCAPE architecture. If the scope is widened
to include feature extraction, validation and/or policy-based assessment the conclusion may be very
different.

64

65

9 Concluding observations and suggestions for further work
The previous chapters showed that each of the evaluated tools has their specific strengths and
weaknesses. We will not repeat these here. However, there are a couple of themes and issues that
are common to many of these tools, and these may show a way to how SCAPE could contribute to
the improvement of identification tools.

9.1 Performance of Java-based tools
For all the evaluated tools that are written in Java (DROID 6, FITS JHOVE2), performance is
problematic for the ‘one file at a time’ use case. This is primarily caused by the slow initialisation of
Java applications. The main problem here is that a typical ‘identification’ operation on a single file
object is very fast (order of magnitude: milliseconds), but that this is not worth much if an application
first needs several seconds to initialise. This also explains why a tool such as Fido, which is written in
Python, outperforms the Java-based tools by several orders of magnitude for this use case. Even
though Python is actually a ‘slower’ language than Java, the absence of any significant initialisation
penalty ultimately results in a much better performance. The results of the DROID and Fido
evaluations also demonstrate that these performance differences disappear for the ‘many files at a
time’ use case (with DROID being marginally faster). A fairly obvious solution for improving the
performance for ‘one file at a time’ use cases would be to invoke the tools through the Java API, but
this only works if the ‘calling’ workflow management system is also Java based. The question is: is
this a restriction that is acceptable for the designated user community of these tools? There appear
to be two important considerations here:

1. The number of file objects per tool invocation: one invocation for each individual file versus
one invocation for multiple files

2. The interface through which the tool is invoked: command-line interface versus Java API.

Table 9.1 below gives a schematic overview of the implications of the above on performance. The
combination of ‘one invocation for each individual file’ and an invocation through the command-line
interface is particularly problematic. Should the majority of (potential) users want to deploy these
tools in this way, then this would imply a mismatch between the tools and the requirements of their
user base. Whether this is actually the case is a completely different matter, but it is a consideration
that has major implications for operational workflows.

Table 9-1 Performance of Java-based tools as a function of number of file objects per invocation and invocation
method (‘-’ indicates poor performance, ‘+’ indicates good performance)

 One invocation - one file One invocation – multiple files
Command line interface - +
Java API + +

9.2 Identification of text-based formats
Although the current analysis doesn’t directly address identification accuracy, a recurring observation
that applies to all of the investigated tools is that the identification of text-based formats (including
XML) is problematic. This is largely a limitation of signature-based identification, which works well for
most binary formats, but is less suited to text-based formats. The identification of such formats could

66

be improved significantly by using alternative identification methods that do not rely on signatures.
Some examples are:

• The identification of XML could be improved using standard XML parsers that are available
for all modern programming languages. Some ideas and suggestions are given in Blekinge
(2011) and van der Knijff (2011).

• Some text-based formats can be identified by presence of specific keywords. This applies to
(but is not limited to) nearly all programming and scripting languages. The results of the
current analysis show that text files that contain source code or scripts often remain
unidentified. A possible solution may be to identify such files using statistical techniques
such as Bayesian spam filtering48.

Both methods can be implemented using readily available software libraries, and the resulting tool(s)
could be complementarily to signature-based tools.

9.3 Extensions to Unix File?
An earlier study by Underwood (2009) discussed several extensions to the Unix File utility that would
make this tool better suited to use in digital archives. These are mostly related to the creation and
management of file signatures. Since The Unix File utility is a mature tool that is widely used,
supports a wide range of file formats and has an outstanding computational performance, improving
the remaining problem areas could be an interesting option to improve and streamline signature-
based identification in archival settings.

48 See for instance the discussion here: http://stackoverflow.com/questions/475033/detecting-programming-
language-from-a-snippet

http://stackoverflow.com/questions/475033/detecting-programming-language-from-a-snippet
http://stackoverflow.com/questions/475033/detecting-programming-language-from-a-snippet

67

Acknowledgements
We would like to thank everyone who has provided feedback on earlier drafts of this document. The
input from the following people has been particularly helpful : Andrew Fetherston (The National
Archives), Maurice de Rooij (National Archives of the Netherlands; Open Planets Foundation), Andrea
Goethals, Spencer McEwen (Harvard University Library), Stephen Abrams (California Digital Library),
Sheila Morrissey (Portico), Miguel Ferreira (KEEP Solutions), René Voorburg, Judith Rog, Bart Kiers,
Barbara Sierman (KB/National Library of the Netherlands), Bram Lohman (Tessella).

68

69

References

Blekinge, A. A new direction in file characterisation. Blog, Open Planets Foundation, 2011. Link:

http://www.openplanetsfoundation.org/blogs/2011-02-17-new-direction-file-
characterisation (accessed 20 September 2011).

DROID 6 Help. The National Archives, 2011.

FITS User Guide. Link: http://code.google.com/p/fits/wiki/user_guide (accessed 20 September

2011).

JHOVE2 User’s Guide. JHOVE2 Project Team, 2011.

JHOVE2 Functional Requirements 1.4. JHOVE2 Project Team, 2009.

Underwood, W. Extensions of the UNIX File Command and Magic File for File Type Identification.

Georgia Tech Institute of Technology, 2009.

Van der Knijff, J., Blekinge, A. & Schlarb, S. WP 9: evaluation framework for characterisation tools.

Internal report, SCAPE project, 2011a.

Van der Knijff, J., Blekinge, A. & Schlarb, S. WP 9: target characterisation tools. Internal report, SCAPE

project, 2011b.

Van der Knijff, J. Improved identification of XML: a Python experiment. Blog, Open Planets

Foundation, 2011. Link: http://www.openplanetsfoundation.org/blogs/2011-07-11-
improved-identification-xml-python-experiment (accessed 20 September 2011).

.

http://www.openplanetsfoundation.org/blogs/2011-02-17-new-direction-file-characterisation
http://www.openplanetsfoundation.org/blogs/2011-02-17-new-direction-file-characterisation
http://code.google.com/p/fits/wiki/user_guide
http://www.openplanetsfoundation.org/blogs/2011-07-11-improved-identification-xml-python-experiment
http://www.openplanetsfoundation.org/blogs/2011-07-11-improved-identification-xml-python-experiment

	Evaluation of characterisation tools
	Part 1: Identification
	1 Introduction
	1.1 Scope of this document
	1.2 Outline

	2 Evaluation framework
	2.1 Tool interface
	2.2 License type
	2.3 Language
	2.4 Platform dependencies
	2.5 Coverage of file formats
	2.6 Extendibility
	2.7 Output format
	2.8 Unique output identifiers
	2.9 Granularity of output
	2.10 Accuracy of reported results
	2.11 Comprehensiveness and completeness of reported results
	2.12 Fit to needs of preservation community
	2.13 Ability to deal with nested objects
	2.14 Ability to deal with composite objects
	2.15 User documentation
	2.16 Computational performance
	2.17 Stability
	2.18 Error handling and reporting
	2.19 Provision of event information
	2.20 Maturity and development stage
	2.21 Development activity
	2.22 Existing experience

	3 Data set and test environment
	3.1 KB Scientific Journals set
	3.2 KB Large set
	3.3 Test environment

	4 DROID 6.0
	4.1 Overview
	4.2 Tool interface
	4.3 License type
	4.4 Language
	4.5 Platform dependencies
	4.6 Coverage of file formats
	4.7 Extendibility
	4.8 Output format
	4.9 Unique output identifiers
	4.10 Granularity of output
	4.11 Accuracy of reported results
	4.12 Comprehensiveness and completeness of reported results
	4.13 Fit to needs of preservation community
	4.14 Ability to deal with nested objects
	4.15 Ability to deal with composite objects
	4.16 User documentation
	4.17 Computational performance: one file at a time
	4.17.1 KB Scientific Journals data set
	4.17.2 KB Large data set

	4.18 Computational performance: many files at a time
	4.19 Stability
	4.20 Error handling and reporting
	4.21 Provision of event information
	4.22 Maturity and development stage
	4.23 Development activity
	4.24 Existing experience
	4.25 Unidentified files
	4.26 Conclusions

	5 Fido 0.9
	5.1 Overview
	5.2 Tool interface
	5.2.1 Python version
	5.2.2 Jython version

	5.3 License type
	5.4 Language
	5.5 Platform dependencies
	5.5.1 Python version
	5.5.2 Jython version

	5.6 Coverage of file formats
	5.7 Extendibility
	5.8 Output format
	5.9 Unique output identifiers
	5.10 Granularity of output
	5.11 Accuracy of reported results
	5.12 Comprehensiveness and completeness of reported results
	5.13 Fit to needs of preservation community
	5.14 Ability to deal with nested objects
	5.14.1 Python version
	5.14.2 Jython version

	5.15 Ability to deal with composite objects
	5.16 User documentation
	5.16.1 Python version
	5.16.2 Jython version

	5.17 Computational performance: one file at a time (Python version)
	5.17.1 KB Scientific Journals data set
	5.17.2 KB Large data set

	5.18 Computational performance: one file at a time (Jython version)
	5.19 Computational performance: many files at a time
	5.19.1 Python version
	5.19.2 Jython version

	5.20 Stability
	5.20.1 Python version
	5.20.2 Jython version

	5.21 Error handling and reporting
	5.22 Provision of event information
	5.23 Maturity and development stage
	5.24 Development activity
	5.25 Existing experience
	5.26 Unidentified files
	5.27 Conclusions

	6 Unix File Utility
	6.1 Overview
	6.2 Tool interface
	6.3 License type
	6.4 Language
	6.5 Platform dependencies
	6.6 Coverage of file formats
	6.7 Extendibility
	6.8 Output format
	6.9 Unique output identifiers
	6.10 Granularity of output
	6.11 Accuracy of reported results
	6.12 Comprehensiveness and completeness of reported results
	6.13 Fit to needs of preservation community
	6.14 Ability to deal with nested objects
	6.15 Ability to deal with composite objects
	6.16 User documentation
	6.17 Computational performance: one file at a time
	6.17.1 KB Scientific Journals data set
	6.17.2 KB Large data set

	6.18 Computational performance: many files at a time
	6.19 Stability
	6.20 Error handling and reporting
	6.21 Provision of event information
	6.22 Maturity and development stage
	6.23 Development activity
	6.24 Existing experience
	6.25 Unidentified files
	6.26 Conclusions

	7 FITS (File Information Toolset) 0.5
	7.1 Overview
	7.2 Tool interface
	7.3 License type
	7.4 Language
	7.5 Platform dependencies
	7.6 Coverage of file formats
	7.7 Extendibility
	7.8 Output format
	7.9 Unique output identifiers
	7.10 Granularity of output
	7.11 Accuracy of reported results
	7.12 Comprehensiveness and completeness of reported results
	7.13 Fit to needs of preservation community
	7.14 Ability to deal with nested objects
	7.15 Ability to deal with composite objects
	7.16 User documentation
	7.17 Computational performance: one file at a time
	7.17.1 KB Scientific Journals data set
	7.17.2 KB Large data set
	7.17.3 Additional tests on influence of FITS configuration

	7.18 Computational performance: many files at a time
	7.19 Stability
	7.20 Error handling and reporting
	7.21 Provision of event information
	7.22 Maturity and development stage
	7.23 Development activity
	7.24 Existing experience
	7.25 Unidentified files
	7.26 Conclusions

	8 JHOVE2
	8.1 Overview
	8.2 Tool interface
	8.3 License type
	8.4 Language
	8.5 Platform dependencies
	8.6 Coverage of file formats
	8.7 Extendibility
	8.8 Output format
	8.9 Unique output identifiers
	8.10 Granularity of output
	8.11 Accuracy of reported results
	8.12 Comprehensiveness and completeness of reported results
	8.13 Fit to needs of preservation community
	8.14 Ability to deal with nested objects
	8.15 Ability to deal with composite objects
	8.16 User documentation
	8.17 Computational performance: one file at a time
	8.17.1 KB Scientific Journals data set
	8.17.2 KB Large data set
	8.17.3 Additional tests on influence of file type and size

	8.18 Computational performance: many files at a time
	8.18.1 Additional note on treatment of source units in JHOVE2

	8.19 Stability
	8.19.1 JHOVE2 ‘hangs up’ on EPUB/ZIP file
	8.19.2 Default location for writing memory objects
	8.19.3 JHOVE2 doesn’t clean up its temporary files

	8.20 Error handling and reporting
	8.21 Provision of event information
	8.22 Maturity and development stage
	8.23 Development activity
	8.24 Existing experience
	8.25 Unidentified files
	8.26 Conclusions

	9 Concluding observations and suggestions for further work
	9.1 Performance of Java-based tools
	9.2 Identification of text-based formats
	9.3 Extensions to Unix File?

	Acknowledgements

