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Predicting rock fragmentation based 
on drill monitoring: A case study from 
Malmberget mine, Sweden
by S. Manzoor1, M. Danielsson2, E. Söderström3, H. Schunnesson1,  
A. Gustafson1, H. Fredriksson3, and D. Johansson1

Synopsis
Fragmentation analysis is an essential part of the optimization process in any mining operation. The 
costs of loading, hauling, and crushing the rock are strongly influenced by the size distribution of the 
blasted rock. Several direct and indirect methods are used to analyse or predict fragmentation, but 
none is entirely applicable to fragmentation assessment in sublevel caving mines, mainly because of the 
limitations imposed by the underground environment and the lack of all the required data to adequately 
describe the rock mass. Over the past few years, measurement while drilling (MWD) data has emerged 
as a potential tool to provide more information about the in-situ rock mass. This research investigated 
if MWD can be used to predict rock fragmentation in sublevel caving. The MWD data obtained from a 
sublevel caving mine in northern Sweden were used to find the relationship between rock fragmentation 
and the nature of the rock mass. The loading operation of the mine was filmed for more than 12 months 
to capture images of loaded load-haul-dump (LHD) buckets. The blasted material in those buckets was 
classified into four categories based on the median particle size (X50). The results showed a stronger 
correlation for fine and medium fragmented material with rock type (MWD data) than coarser material. 
The paper presents a model for prediction of fragmentation, which concludes that it is possible to use 
MWD data for fragmentation prediction.

Keywords
rock fragmentation, measurement while drilling, quick rating system, partial least squares regression, 
sublevel caving.

Introduction
Rock fragmentation is defined as the size distribution of blasted rock. It is influenced by such factors 
as blast design, rock strength, and discontinuities already present in the rock mass (Hunter et al., 1990; 
Latham and Lu, 1999; Azimi et al., 2010). Fragmentation is a key indicator of blast performance and is 
significantly affected by the drilling and charging of the boreholes. Good fragmentation facilitates the 
loading and hauling operation as well as minimizes energy consumption in the comminution process 
(Silva, Amaya, and Basso, 2017). It plays an important role in controlling the costs of any mining 
operation (Monjezi, Rezaei, and Varjani, 2009; Faramarzi, Mansouri, and Ebrahimi Farsangi, 2013; Zhang 
et al., 2020). Fragmentation-related costs can be divided into pre-blast costs, i.e., the costs related to 
drilling, charging, and blasting the rock mass, and post-blast costs, i.e., the costs related with loading, 
hauling, and crushing the blasted rock. In general, reduced post-blast costs and increased pre-blast costs 
are the result of finer fragmentation, and the opposite for coarser fragmentation (Mackenzie, 1967 in 
Morin and Ficarazzo, 2006). 

Fragmentation is a very important aspect of sublevel caving (SLC) as it affects the gravity flow of 
the blasted material, the loading at the drawpoints, the efficiency of load-haul-dump (LHD) operations, 
the orepass efficiency, and the energy requirements of crushers (Wimmer, 2010; Danielsson et al., 2017). 
Wimmer (2010) found that finer fragmentation increased the mobility of the material and resulted in 
more uniform gravity flow from the blasted ring. Meanwhile, coarser fragmentation, especially oversize 
fragments, hinders the material flow and may cause hangups in the ring, resulting in reduced ore recovery 
if the hangups cannot be released. An unsafe working environment is another possible consequence of 
coarse fragmentation and boulders (Danielsson et al., 2017). An oversize fragment is defined by Singh 
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and Narendrual (2010) as ‘any fragment produced from primary 
blasting, which cannot be adequately handled by the standard 
loading, hauling and crushing equipment used in an operation’. 

Fragmentation variation is an inherent characteristic of an 
SLC operation (Shekhar et al., 2016), depending on the design 
of the blast ring (Dustan and Power, 2011), the confined nature 
of blasting (Johansson, 2011), and the specific charge (Hustrulid 
and Kvapil, 2008). The design of the blast ring is important, as 
holes are concentrated at the bottom and more widely spread 
in the upper part of the ring (Dunstan and Power, 2011) (see 
example in Figure 2). The upward drilling of long holes will also 
increase the probability of borehole deviation in the upper part 
of the ring (Ghosh, Schunnesson, and Gustafson, 2017). This 
design of the blast ring and the probable borehole deviation lead 
to an uneven burden and specific charge, resulting in an uneven 
energy distribution along the boreholes. Consequently, variations 
in fragmentation are observed at different stages of material 
loading from the blasted ring (Power, 2004; Brunton, Fraser, and 
Hodgins, 2010; Wimmer, Nordqvist, and Ouchterlony, 2012). 
The chargeability of SLC rings is another key factor influencing 
fragmentation and boulder generation. The actual charged 
length of a borehole can be less than the planned one because 
of borehole collapse or other blockages. The actual vs planned 
charging length of a borehole can be defined as the chargeability 
(Ghosh, Gustafson, and Schunnesson, 2018). Danielsson et al. 
(2017) found that a decrease in chargeability will cause a lower 
local specific charge and, thus, coarser material. In a study 
at LKAB’s Malmberget mine, Andersson (2016) found that 
chargeability, on average, was below 90%. However, individual 
areas had chargeability rates of approximately 70%, and individual 
rings in those areas occasionally had chargeability rates as low as 
44%. Ghosh, Schunnesson, and Gustafson (2017) also showed that 
borehole stability is an important consideration when analysing 
fragmentation, as it is directly linked to the amount of explosives 
that can be charged into the borehole. If the borehole is blocked 
at some point by caving, it may not be possible to restore or re-
drill the borehole, leading to insufficient charging to break the 
rock mass effectively (Lundin, 2020). Borehole instability is also 
likely to be worsened by high stress states, production blasting, 
rockbursts, or mine seismicity (Zhang, 2016). 

The assessment of rock fragmentation has some practical 
limitations. There are several direct and indirect techniques 
for fragmentation assessment, including sieving, observational 
methods, and image-based analysis, but they are all limited in 
their ability to continuously monitor fragmentation, especially in 
an underground environment (Campbell and Thurley, 2017). Rock 
fragmentation is often estimated before blasting using different 
empirical formulae developed by various researchers. Ouchterlony 
and Sanchidrian (2019) presented a comprehensive review of 
these formulae. Fragmentation models help to target the required 
rock size distribution after blasting (Morin and Ficarazzo, 2006), 
but the uncertainty and even unavailability of correct rock 
properties causes errors. Another limitation of fragmentation 
models is their origin, i.e., they are mostly developed for surface 
mines (Ouchterlony and Sanchidrian, 2019) and lack application 
in underground environments. For example, they do not 
incorporate several essential factors relevant to fragmentation in 
SLC mining, such as the shape of the blast fan, confined nature of 
blasting, drilling accuracy, chargeability etc. 

Application of modern technologies like laser scanning 
and borehole scanning in the mining industry is enabling the 
acquisition of more accurate rock mass data. One of these 

technologies is measurement while drilling (MWD), a method 
that monitors the drilling process. It does not require additional 
equipment like laser scanners or cameras to collect data, and it 
does not disturb the mining operation. During production drilling, 
it records various parameters, for example, depth of the hole, 
penetration rate, percussive pressure, feed pressure, rotation 
pressure, rotation speed, flushing pressure at specified intervals 
along the length of the borehole (Schunnesson, 1996; van Eldert 
et al., 2019). The MWD technique has been used to improve blast 
design (Leighton, 1982), assess the chargeability of boreholes 
(Ghosh, Gustafson, and Schunnesson2018; Navarro et al., 2019), 
estimate rock strength (Rodgers et al., 2018), estimate the blast 
sill thickness (Vezhapparambu and Ellefmo, 2020), and detect 
discontinuities in the rock mass (Schunnesson, 1996; Khorzoughi, 
2013; Manzoor et al., 2020). MWD provides a fingerprint of the 
penetrated rock mass and increases the information available 
on the hidden volume of rock surrounding boreholes (Segui and 
Higgins, 2002; Khorzoughi, 2013). Ghosh, Zhang, and Nyberg 
(2015) have shown that MWD data can assist in estimating the 
borehole stability after a hole has been drilled.

In this paper, the possibility of using MWD data to predict 
fragmentation in sublevel caving is studied. MWD data and 
fragmentation data from two different orebodies in LKAB’s 
Malmberget mine were collected and analysed. Correlation 
analysis and partial least squares (PLS) regression are used 
to identify the relationship between MWD-based rock mass 
characteristics and fragmentation. 

Methodology
This research comprised a literature review, acquisition of 
MWD data from production drilling, and filming of the loading 
operation. Data processing involved MWD data filtering and 
extraction of relevant images from the filmed data. The data 
analysis involved the classification of rock mass based on MWD 
data, classification of fragmentation of the blasted material based 
on median fragment size, and the correlation of these data types.

Site description
LKAB’s Malmberget iron ore mine is located in Gällivare 
municipality in northern Sweden. The mine consists of around 20 
orebodies which spread over a large underground area of 2.5 by  
5 km (Lund, 2013). Of these, 13 are currently being mined 
(Shekhar, 2020). The annual production in 2019 was 16 Mt of ore. 
The mining operation is carried out from several main haulage 
levels located at 600 m, 815 m, 1000 m, and 1250 m. To achieve 
high productivity, large-scale sublevel caving is the current 
method of ore extraction. Blasted rock from the drawpoints is 
hauled by load-haul-dump (LHD) machines to orepasses that 
transfer the ore from the production level down to the haulage 
level. The ore is transported to underground crusher stations 
by trucks, and after primary crushing, the ore is hoisted to the 
processing plant at the surface. A general layout of the complete 
operation is shown in Figure 1. In the Malmberget mine, trucks are 
used instead of a train at stage four.

Data collection
The required data was collected from two orebodies of the mine: 
orebody A and orebody B. The selected drift from orebody A was 
drift 7870 at 1074 m level, and selected drifts from the orebody 
B were drifts 4960 and 4990 at 1052 m. In Malmberget mine, 
drilling is done in a fan-shaped pattern (Figure 2). The shortest 
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holes are less than 20 m long, and the longest are close to 50 m. 
The number of boreholes is mostly eight per ring, but there can 
be nine or ten per ring especially near the footwall. The mine site 
uses a fixed blasting configuration with a borehole diameter of  
115 mm and a ring-to-ring distance (burden) of 3.5 m. MWD data 
from 17 rings with a total of 141 boreholes, including a complete 
film record of all LHD buckets loaded from those rings, was used 
for this study. 

Drill monitoring data was collected from Simba WL6C 
drill rigs used in the Malmberget mine. The recorded data 
included time (YYYY-MM-DD hh:mm:ss), depth (m), rotation 
pressure (bar), penetration rate (m/min), feed pressure (bar), 
and percussive pressure (water pressure measured in bar). The 
sampling interval along the borehole was set to 3 cm. 

To monitor fragmentation, cameras were installed in the 
selected drifts to record each LHD bucket. Cameras were 
configured to record a short video whenever there was movement 
in the recording area. Filming underground in a production 
environment is always challenging. Commonly dust tends to 
reduce the quality of the recordings. To ensure better quality 
videos, cameras were assisted with good lighting. Another 
challenge during the recordings was that the headlights of 
the LHD machines sometimes distorted the frame pixels. The 
recordings took place during two time periods. During the first 
period, data was collected from orebody A; during the second 
period, from orebody B. The collected data cover more than 12 
months.

Data processing
The data collected from drill monitoring and film data was 
processed prior to analysis. Drill monitoring or MWD data 
often contains data values that are out of range of what can be 
considered as normal drilling behaviour. An example of this is 
very high or negative values, e.g. a negative penetration rate that 
indicates an impossible backward movement of the drill string. 
Furthermore, the drilling process in itself may generate data that 
is not related to rock mass variations but rather to the drill or 
control system, such as data recorded during collaring or when 
a new rod is added to the drill string. These examples suggest 
that initial filtering of data is essential for the final outcome of 
the analysis. Therefore, a new filtering method was developed to 
potentially improve the quality of data. The developed filtering 
method was compared with a previously known filtering method 
(Ghosh, Gustafson, and Schunnesson 2018) to find the one best 
representing the characteristics of the rock. A brief description of 
both methods is given below.

MWD data filtering (method A)
This method of MWD data filtering is adopted from Ghosh, 
Gustafson, and Schunnesson (2018) and is based on frequency 
analysis and practical experience. The recorded samples are 
filtered using predefined intervals for each parameter. Outside 
these threshold limits the drilling is assumed unrealistic or faulty. 
The predefined intervals used in this study are given in Table I. 
Thus, all samples having any of the MWD parameters outside the 
corresponding filter limit were removed from the data-set.

The lower limit of percussive pressure in Table I was adjusted 
from 5 bar, the limit used by Ghosh, Gustafson, and Schunnesson 
(2018) to 20 bar based on the data-set for the mining areas used in 
this study.

MWD data filtering (method B)
The second filtering method (B) is based on the time difference 
between the consecutive samples of MWD data. For normal 
drilling, with a logging interval of 3 cm, a new sample is recorded 
approximately every 2 to 3 seconds. Longer time intervals between 
samples will indicate irregularities in the drilling process such as 
rod changes or other types of stoppages. After such stoppages, the 
applied forces will only gradually regain their normal values and it 
will take some time before drilling is stable again. This means that 
several data-points surrounding stoppages are not reliable and 
should be removed from the data-set. 

In Figure 3, the borehole depth vs the time between the 
samples is presented for a particular borehole. In this case, the 
drilling process stops for 50-60 seconds every time a new rod is 
added to the drill string (at every 2.1 m, which is the length of each 
rod).

Figure 1—Layout of sublevel caving operation at LKAB mines (LKAB, 
2020)

Figure 2—Schematic layout of drilling pattern in SLC

   Table I

   �Pre-defined intervals for MWD data filtering (Ghosh, 
Gustafson, and Schunnesson, 2018)

   Recorded parameters	 Selected intervals as filter limits

   Penetration rate (m/min)	 ≥ 0.1 and ≤ 4
   Percussive pressure (bar)	 ≥ 20 and ≤ 200
   Feed pressure (bar)	 ≥ 35 and ≤ 100
   Rotation pressure (bar)	 ≥ 25 and ≤ 125
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Table II shows the raw MWD data when a new rod is added. 
The rod addition occurs between samples 2 and 3 and has a time 
length of 57 seconds. In the table it can be seen that the percussive 
pressure is reduced after the rod addition to protect the drilling 
system. This will affect the penetration rate. Therefore, it is 
important to remove not only the data sample during rod addition, 
where penetration rate is zero, but also surroundings values which 
are influenced by the stoppage. 

In this newly developed filtering method, the threshold time 
between two consecutive samples was set to 10 seconds to exclude 
both rod changes and other stoppages but include all normal 
drilling. For all identified stoppages the samples closest to the high 
time-step were assumed to be outliers and were removed. 

To reconstruct a complete MWD log, the removed samples 
were replaced by interpolated values from samples before and 
after the stop, assuming similar rock characteristics before and 
after the stoppage. Practically, the removed sample parameters 
are replaced by linearly interpolated data based on two samples 

before and three samples after the removed samples. In Table III, 
an example of the data after filtering is shown.

After applying the time-based filtering method on the data-set, 
the threshold filter limits in Table I were applied to further refine 
the MWD data. 

Rock mass classification based on MWD 
After filtering the MWD data, the quality of the rock mass 
surrounding the boreholes was characterized using principle 
component analysis (PCA). As input to the PCA analysis, not 
only the recorded and filtered MWD parameters were used, but 
also the variability of penetration rate and rotation pressure, and 
a fracturing parameter which is calculated using the following 
equation developed by Schunnesson (1996):

Figure 3—Time difference for MWD samples along a borehole

   Table II

   MWD parameters before applying any data filtering

   Sample	 Time	 Depth	 Penetration rate	 Percussive pressure	 Feed pressure	 Rotation pressure 
		  (m)	 (m/min)	 (bar)	 (bar)	 (bar)

   1	 00:36:17	 4.18	 0.70	 163.11	 64.52	 53.32
   2	 00:36:17	 4.19	 0.64	 165.68	 64.95	 57.19
   3	 00:37:14	 4.22	 0.00	 70.03	 55.86	 59.34
   4	 00:37:21	 4.25	 0.27	 116.57	 60.19	 57.62
   5	 00:37:25	 4.28	 0.41	 114.86	 60.19	 53.75
   6	 00:37:30	 4.31	 0.41	 116.57	 58.02	 52.89

   Table III

   MWD parameters after applying the developed filter method based on time series

   Sample	 Time	 Depth	 Penetration rate	 Percussive pressure	 Feed pressure	 Rotation pressure 
		  (m)	 (m/min)	 (bar)	 (bar)	 (bar)

   1	 00:36:17	 4.18	 0.70	 163.11	 64.52	 53.32
   2	 00:36:17	 4.21	 0.64	 153.81	 63.22	 53.23
   3	 00:37:14	 4.23	 0.59	 144.50	 61.92	 53.15
   4	 00:37:21	 4.26	 0.53	 135.19	 60.62	 53.06
   5	 00:37:25	 4.28	 0.47	 125.88	 59.32	 52.98
   6	 00:37:30	 4.31	 0.41	 116.57	 58.02	 52.89
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where PRV is penetration rate variability and RPV is rotation 
pressure variability, while σ shows the variance of the 
corresponding parameter. A detailed description of the PCA 
calculations can be found in Ghosh, Schunnesson, and Gustafson, 
(2018).

Based on the PCA analysis the rock mass is classified into 
five categories, ‘Solid’, ‘Slightly fractured’, ‘Highly fractured’, 
‘Minor cavities’, and ‘Major cavities’ (Ghosh, Schunnesson, 
and Gustafson, 2018). A similar rock mass classification based 
on MWD data was also used by Navarro et al. (2019) to assess 
chargeability in sublevel caving. Finally, the percentage of each 
category was calculated for every included ring. 

Processing film data
To monitor the fragmentation, HD surveillance cameras were 
utilized to collect videos of every passing bucket/loading sequence 
through built-in motion detection applications. The film data from 
the cameras was processed before the analysis to convert the raw 
video data into a usable form. Since the cameras were sensitive 
to motion, any movement in the filming area was recorded. 
Movements were caused by LHDs, personnel cars, drifters, water 
sprinklers, dozers etc., or by the oscillating ventilation duct during 
blasting activities. A MATLAB code was developed to extract 
the relevant images (frames) from the videos. From 500 to 1200 
frames were extracted from each video depending on the length 
of the videos, yielding too many images. Most of the frames 
did not contain images of buckets with the blasted material. 
Instead, they showed different machine parts from when the 
machine was entering or leaving the filming area or no machines 
at all. Few of the extracted frames from each video (about 5-10 
frames) contained LHD buckets filled with material. Some frames 
showed partial buckets as the videos were recorded during LHD 
motion. Only frames with full LHD buckets were forwarded to 
fragmentation analysis; all the rest were discarded. Figure 4 shows 
examples of frames with relevant and irrelevant data. 

Quick rating system (QRS)
A total of 5908 images of LHD buckets filled with blasted rock 
were selected for fragmentation assessment. These types of 
images can be analysed using commercially available software, e.g., 
Split-Desktop® (Kemeny, 1994), WipFrag™ (Maerz, Palangio, and 
Franklin, 1996), GoldSize (Kleine and Cameron, 1996), FragScan 
(Schleifer and Tessier, 1996), TUCIPS (Havermann and Vogt, 
1996), CIAS® (Downs and Kettunen, 1996), PowerSieve (Chung 
and Noy, 1996), IPACS (Dahlhielm, 1996), Fragalyst (Raina et 
al., 2002) etc. Image analysis using these software packages is 
normally time-consuming; for example, analysing a single image 
using Split-Desktop® can take two to three hours depending 
on the quality of the image (Petropoulos, 2015). Therefore, the 
analysis using commercial software was considered impractical, 

or even impossible considering the large number of images. The 
study used an observational method called quick rating system 
(QRS) as reported by Petropoulos (2015), Wimmer et al. (2015), 
Danielsson, Johansson, and Schunnesson (2019), and Danielsson 
et al. (2017) to assess the median fragment size, X50, of the 
material in the LHD buckets. In the QRS method, the actual 
images of fragmented rock are manually compared to reference 
fragmentation images (Wimmer et al., 2015). It is similar to the 
‘Compaphoto’ method (Cunningham, 1996), but is here modified 
to estimate fragmentation in LHD buckets. Since QRS is an 
observational method, it can be significantly influenced by the 
observer’s experience and bias and therefore carries a risk of low 
accuracy (Babaeian et al., 2019). However, similar and consistent 
results can be achieved as for Split-Desktop® if QRS classification 
is carried out carefully (Wimmer et al., 2015). 

In this study, the fragmentation was categorized into four 
classes based on X50. Class 1 referred to fine fragmentation, X50 
< 50 mm; class 2 was medium fragmentation, X50 = 50-400 mm; 
class 3 was coarse fragmentation, X50 = 400-1000 mm; class 4 
was oversize fragmentation, X50 > 1000 mm. Malmberget mine 
defines oversize fragments as rock blocks bigger than 1 x 1 x 1 m 
(Gustafson et al., 2016; Danielsson et al., 2017). An example of the 
fragmentation classes is shown in Figure 5.

Correlation analysis
This study used correlation analysis to examine the relationship 
between rock mass quality determined from MWD data and 
the fragmentation estimated from QRS. Correlation analysis is 
a statistical approach used to assess the association between 
two variables e.g., independent and response variables, where 
the correlation coefficient ‘R’ quantifies the strength of the 
relationship (Franzese and Luliano, 2019). Values range from −1 to 

Figure 4—Frames with irrelevant (A, B, C, D, E, F and G) and relevant data 
(H, I) (Manzoor et al., 2022)

Figure 5—Frames showing four classes of fragmentation based on X50
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+1; in this rating system, –1 shows a perfect negative correlation, +1 
a perfect positive correlation between the pair of variables, and 0 
indicates a complete independence and absence of any correlation 
(Franzese and Luliano, 2019). The intermediate values from 0 to 
±1 represent a partial correlation of variables; the correlation can 
be significant or weak (Franzese and Luliano, 2019). In practical 
applications visible correlations can have a value as small as ±0.4 
(Kleinbaum et al., 1998). 

In this study, multivariate regression analysis was used 
to model the relationship between rock mass types and 
fragmentation categories. Multivariate regression has the ability 
to handle multiple variables and consider all the associations 
between variables simultaneously (GeiB and Einax, 1996). Some 
of the most commonly used multivariate methods are PCA, 
discriminant analysis (DA), multiple regression analysis, factor 
analysis, logistic regression, PLS regression, cluster analysis, 
log-linear models, and multivariate analysis of variance. This 
study used PLS because of its minimal demands on measurement 
scales and sample size, as well as its ability to suggest where 
relationships might or might not exist. PLS helps to build models 
predicting more than one dependent variable (Lorber, Wangen, 
and Kowalsk, 1987). PLS regression was introduced by Wold in 
1966; it generalizes and combines features from PCA and multiple 
regression (Colombani et al., 2012). It is particularly useful when 
it is needed to predict a set of dependent variables from a large set 
of independent variables (Colombani et al., 2012). PLS does not 
assume that the predictors are fixed, unlike multiple regression; 
this means the predictors can be measured with error, making 
PLS more robust to measurement uncertainty (Cramer, 1993). A 
detailed description of the strengths and weaknesses of the PLS 
method is given by Cramer (1993). 

Results and discussion
Correlation tests – filtering methods
To evaluate any quality differences between filtering methods 
A and B, the correlation coefficients for the two methods were 
compared (see Table IV).

Since the correlation coefficients generally are higher for 
filtering method B, this method is selected for the following 
analysis. 

Correlation tests – rock mass type vs fragmentation
To initially study the relationship between rock mass classes 
(from MWD) and fragmentation (from QRS), scatter plots with 
linear regression lines are presented for each category (Figure 6). 
Each data-point in the figure represents one ring. In most cases 
a clear visible correlation can be seen, but the scatter is higher 
for coarse and oversize fragmentation than for fine and medium 
fragmentation. The amount of fine material increases when the 

percentage of solid rock mass increases, and decreases for all 
other rock mass types. Similarly, medium sized rock fragments 
decrease when solid rock mass increases and increase for all other 
rock mass types.

Correlation tests – linear or monotonic relationship
To further investigate the relationship between rock mass and 
fragmentation, Pearson and Spearman correlation coefficients 
were calculated and analysed. Initially, the Pearson correlation 
coefficients (R), p-values, and coefficients of determination 
(R2) were calculated (shown in Table V). The null hypothesis in 
this study states there is no relationship between the variables 
under observation, while the alternative hypothesis states there 
is a relationship. A significance level of 0.05 is used to reject the 
null hypothesis, i.e., a p-value less than 0.05 (typically ≤ 0.05) 
demonstrates strong evidence against the null hypothesis, as there 
is a probability lower than 5% that the null hypothesis is correct 
(and the results are random). R2 shows the amount of variability 
captured by the model and represents the goodness of fit for the 
model. Dogruoz, Rostami, and Keles (2017) reported R2 values as 
low as 0.40 in rock engineering applications. 

The p-value for fine and medium fragmentation is <0.05 
(with one exception) which means that the null hypothesis can 
be rejected and that there could be a correlation between the 
MWD readings and the fine and medium fragmented rock. For 
coarse and oversize material, the p-value suggests a statistically 
non-significant correlation. The values of R, p-value, and R2 
for fine and medium categories indicate a better correlation 
between fragmentation and rock type than for coarse and oversize 
categories.

A Pearson correlation coefficient measures the extent to 
which two variables tend to change together, i.e., linearly. If 
the relationship is not strictly linear, the Spearman correlation 
coefficient can be used (Hauke and Kossowski, 2011). The 
Spearman correlation evaluates the monotonic relationship 
between two continuous or ordinal variables. In a monotonic 
relationship, the variables tend to change together, but not 
necessarily at a constant rate. Table VI lists a comparison of 
Pearson and Spearman correlation coefficients. It indicates a 
higher correlation for Spearman than for the Pearson correlation 
coefficient. This suggests a monotonic relationship between the 
variables under observation. More importantly, both coefficients 
suggest the same relationship, i.e., fine and medium categories 
have better correlation than coarse and oversize fragmentation 
categories.

Partial least-squares regression 
The rock mass categories extracted from MWD analysis are 
not independent variables but relates to each other, so if some 

  Table IV

   Comparison of correlation coefficients for the two filtering methods

   Variables	                                  Fine		                                     Medium		                        Coarse		                         Oversize 
	 Method A	 Method B	 Method A	 Method B	 Method A	 Method B	 Method A	 Method B

   Solid	 0.444	 0.531	 -0.549	 -0.622	 -0.080	 -0.158	 0.228	 0.178
   Slightly fractured	 -0.197	 -0.396	 0.362	 0.542	 -0.180	 -0.018	 -0.378	 -0.326
   Highly fractured 	 -0.586	 -0.658	 0.668	 0.714	 0.228	 0.317	 -0.201	 -0.121
   Cavities	 -0.573	 -0.574	 0.617	 0.615	 0.279	 0.263	 -0.089	 -0.038
   Major cavities	 -0.508	 -0.516	 0.499	 0.501	 0.314	 0.325	 0.071	 0.097
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category is bigger, the other one is reduced. The parameters from 
the fragmentation analysis have a similar relationship. That means 
that multicollinearity exists between the explanatory and the 
response variables. Therefore, PLS regression was used since it 
has the ability to handle multiple variables and consider all the 
associations between variables simultaneously as well as deal with 
multicollinearity. The PLS components are linear combinations of 
the explanatory (MWD) variables that maximize their covariance 
with response (QRS) variables. 

Figure 7 illustrates the quality indices of the PLS regression 
model for the first two model components. The figure shows the 

Q2 cumulative index, which represents the global goodness of 
fit and predictive quality of the model. R²Y cumulative and R²X 
cumulative measure the cumulative fraction of the variation of the 
Y (QRS) and X (MWD) variables, respectively. The cumulative Q2 
has a relatively low value, suggesting the quality of fit is weak. The 
R²X for comp. 1, however, shows a very high value (88.2%) that 
indicates that the variance in the explanatory variables (MWD) is 
well captured by the first component and the second component 
increases the explained variance to 97.5%.  

Figure 8 shows the variable importance projection (VIP) for 
each independent variable for the first component. Values above 

Figure 6—Scatter plots and linear regression lines corresponding to percentages of different fragmentation classes from QRS (x-axis) and rock mass classes 
from MWD (y-axis)
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or close to unity are considered important and therefore those 
variables cannot be excluded from the model. Values significantly 
less than unity are less important and the corresponding variables 
can be excluded from the model. It can be seen in the figure that 
all variables are above or relatively close to unity and can therefore 
be considered as important for the model.  

In order to predict fragmentation, four regression models 
were made in PLS. The model parameters are presented in Table 
VII together with the R2 values for the respective models. R2 values 
for the models of fine and medium fragmentation suggest a better 
model fit compared to coarse and oversize fragmentation, which 
supports the results from the Pearson and Spearman correlation 
tests. That concludes that fine and medium rock fragmentation 
can be better predicted than coarse and oversize fragmentation.

The four regression models defined in Table VII are visualized 
in Figure 9, where the comparison of actual versus predicted 
fragmentation values for different categories is shown.

Figure 9 shows a more visible correlation for fine and medium 
fragmentation than for coarse and oversize fragmentation. 
This agrees with the correlation results, that solid rock tends 
to produce more fine fragmentation. In solid rock and rock 
with low fracturing the charging and blasting procedures face 
fewer challenges and uncertainties. Hence, the corresponding 
fragmentation will be better predicted for such rock mass types. 
This agrees with Akbari et al. (2018), who showed a positive 
correlation between discontinuities and fragmentation size, which 
means that an increase in fractures or discontinuities spacing, 
increases fragmentation size. 

This study shows that it is possible to predict fragmentation 
in an SLC mine using MWD data, which can therefore be a very 

   Table V

   Summary of correlation test using Pearson correlation method

   Variables		  Fine			   Medium			   Coarse			   Oversize 
	 R	 p-value	 R2	 R	 p-value	 R2	 R	 p-value	 R2	 R	 p-value	 R2

   Solid	 0.531	 0.028	 0.28	 -0.622	 0.008	 0.38	 -0.158	 0.545	 0.01	 0.178	 0.495	 0.03
   Slightly fractured	 -0.396	 0.116	 0.16	 0.542	 0.025	 0.29	 -0.018	 0.946	 0.03	 -0.326	 0.202	 0.11
   Highly fractured 	 -0.658	 0.004	 0.44	 0.714	 0.001	 0.50	 0.317	 0.214	 0.05	 -0.121	 0.644	 0.01
   Cavities	 -0.574	 0.016	 0.32	 0.615	 0.008	 0.38	 0.263	 0.308	 0.08	 -0.038	 0.886	 0.002
   Major cavities	 -0.516	 0.034	 0.27	 0.501	 0.040	 0.25	 0.325	 0.203	 0.10	 0.097	 0.711	 0.01

   Table VI

   Comparison of correlation coefficients using Pearson and Spearman correlation methods

   Variables	                               Fine		                                Medium		                                Coarse		                              Oversize 
	 Pearson	 Spearman	 Pearson	 Spearman	 Pearson	 Spearman	 Pearson	 Spearman

   Solid	 0.531	 0.689	 -0.622	 -0.738	 -0.158	 -0.301	 0.178	 0.272
   Slightly fractured	 -0.396	 -0.463	 0.542	 0.632	 -0.018	 0.056	 -0.326	 -0.400
   Highly fractured	 -0.658	 -0.718	 0.714	 0.703	 0.317	 0.365	 -0.121	 -0.245
   Minor cavities	 -0.574	 -0.699	 0.615	 0.730	 0.263	 0.346	 -0.038	 -0.260
   Major cavities	 -0.516	 -0.652	 0.501	 0.627	 0.325	 0.321	 0.097	 -0.238

Figure 7—PLS regression model quality for first and second components
Figure 8—VIPs (first component with 95% confidence interval)
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useful tool for mine productivity improvement. The model may be 
further improved using chargeability data, which is known to have 
a major impact on the blasting result. 

Conclusions
Drilling is an integral part of sublevel caving operations, and it 
is done before the rock mass is charged and blasted. This means 
that MWD data is available for interpretation purposes well before 
charging and blasting take place. The correlation test results 
presented in this paper shows that MWD data can be used to 
predict fragmentation in an SLC mine and can therefore be a very 
useful tool for fragmentation control and in the material handling 
processes. 

The study showed that a solid rock mass tends to produce 
more fine fragmentation. This may be explained by better and 
more optimal charging and blasting conditions in solid rock. 
In a disturbed rock mass, however, the analysis shows that less 
fines can be expected. In this case, poor rock conditions that may 
cause charging and blasting problems can be expected to result in 
coarsely fragmented material.

Compared to traditional MWD filtration based on fixed 
threshold limits, the newly developed filtering method based on 

time series was, in the correlation analysis, found to better reject 
unrealistic drilling behaviour and therefore better represent the 
true characteristics of the rock mass. 
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