



# FAIR Data Discovery and Access

@OSFAIR 2023 Madrid, 27 September 2023

Peter Thijsse - MARIS (Blue-Cloud and FAIR-EASE)





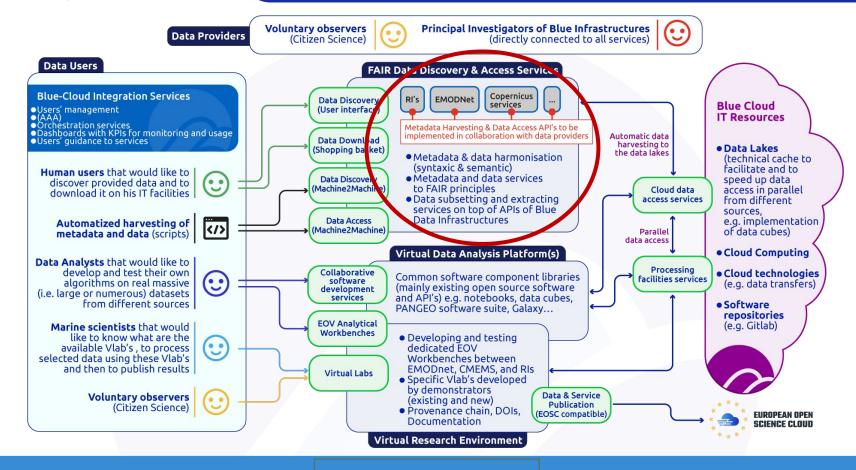
### Content

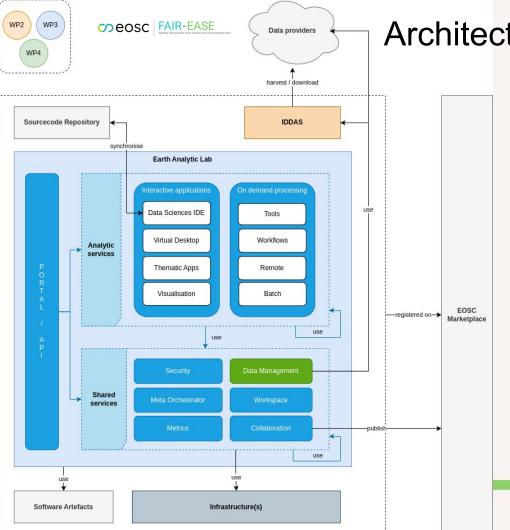
- Introduction
- The challenge of data discovery and access in VRE development
- FAIR data
- FAIR software
- Important step to support VRE developments: FAIR services





### Introduction to the challenge


- Many different data providers, distributed in location, services, standards
- Important to offer human and machine users a data discovery and access mechanism with clear guidance on characteristics
- Data lake/space/workspace/...




Compose and submit shopping request at the granule level Retrieve the datasets by downloading from the Dashboard Push datasets to the Blue-Cloud VRE Data Pool

#### COSC Blue-Cloud2026

#### **Architecture Blue-Cloud 2026 services core**





# Architecture FAIR-EASE (EAL focus)

#### Infrastructure(s)

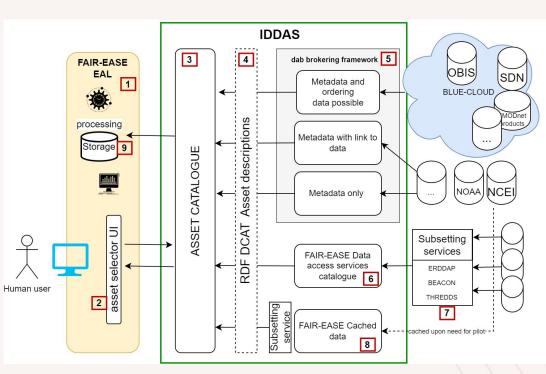
- Storage : workspace, reference data, scratch (temp) Processing resources : CPU, GPU, memory, local disk Job/service orchestrator : deploy services and/or
- submit jobs
- Monitoring : user usage

#### Data

- **IDDAS** Assets catalogue
- Data Management Assets selector Data Providers data access/subsets services

#### Software and scripts

- Sourcecode repository : git, ... Software artefacts :
- - Packages (python, R, julia, ..., conda)
  - Container images (docker, apptainer/singularity)


#### EOSC Marketplace

- **Register FAIR-EASE services**
- Publish users output : data, tools/services, workflows/scripts, documentation, ....

### COEOSC FAIR-EASE

# IDDAS in development

- 1. Earth Analytical Lab
- 2. Asset selector
- 3. Asset catalogue
- 4. Asset descriptions
- 5. DAB brokering framework
- 6. Data access services catalogue
- 7. Sub-setting services
- 8. Cached data
- 9. Data Storage







### Central role of data access

- Similar challenges in BC2026 and FAIR-EASE, and also in EOSC
- VRE systems are highly dependent on
  - FAIR data: for findability and (re-)use of distributed data
  - FAIR software: e.g. for processing
  - and well described interoperable (FAIR?) services => to access the data, without required human contact/interpretation
- Only then we are supporting the full "data lake/data space" concept





### Important points/differences

- DDAS key position in both architectures
- Level 1 metadata level access via DAB (CNR)
- Level 2 data access level to distributed services via metadata to data access services.
- Important: Metadata and data harmonisation
  - metadata model mapping
  - vocabulary mapping (parameters, units, etc)
- For each data access service a specific "conversion" has to be implemented
  - how to search datasets
  - how to order
  - $\circ$   $\quad$  how to move from metadata to the data file request
  - difficult and human intervention needed.
- Difference between BC and FE:
  - BC only marine Blue Data Infrastructures, all on board of consortium (so able to upgrade services, implement agreed solutions)
  - FE is multidisciplinary, and most infrastructures not on board as partner
  - FE aims to include also direct data access (subsetting services) as part of the IDDAS



### FAIR data and software

FAIR data solutions (e.g. in ENVRI-FAIR) using FIP approach:

- improved machine2machine services for metadata and data access
- Upgraded metadata model for enhanced FAIRness (e.g. quality info)
- Expanded vocabularies to support provenance (Re-usability)

FAIR software examples:

- Software as a research object
- Publication in Zenodo/Github with sufficient metadata
- version management
- Clear license in metadata
- Software meets community standards

#### Metrics: FIP, F-UJI



- (Meta)data are assigned a globally unique and persistent identifier
- Data are described with rich metadata
- Metadata clearly and explicitly include in the identifier of the data it describes
- (Meta)data are registered or indexed in a searchable resource

Interoperable

- (Meta)data use a formal, accessible, shared and broadly applicable language
- (Meta)data use vocabularies that follow FAIR principles
- (Meta)data include qualified references to other (meta)data

#### FAIR data principles - source: CCDC

| F: Software, and its associated metadata, is easy for both humans and machines to find.                | I: Software interoperates with other software by exchanging data and/or metadata, and/or<br>through interaction via application programming interfaces (APIs), described through standards. |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F1. Software is assigned a globally unique and persistent identifier.                                  | 11. Software reads, writes and exchanges data in a way that meets domain-relevant community standards.                                                                                      |
| F1.1. Components of the software representing levels of granularity are assigned distinct identifiers. | 12. Software includes qualified references to other objects.                                                                                                                                |
| F1.2. Different versions of the software are assigned distinct identifiers.                            | R: Software is both usable (can be executed) and reusable (can be understood, modified, built<br>upon, or incorporated into other software).                                                |
| F2. Software is described with rich metadata.                                                          | R1. Software is described with a plurality of accurate and relevant attributes.                                                                                                             |
| F3. Metadata clearly and explicitly include the identifier of the software they describe.              | R1.1. Software is given a clear and accessible license.                                                                                                                                     |
| F4. Metadata are FAIR, searchable and indexable.                                                       | R1.2. Software is associated with detailed provenance.                                                                                                                                      |
| A: Software, and its metadata, is retrievable via standardised protocols.                              | R2. Software includes qualified references to other software.                                                                                                                               |
| A1. Software is retrievable by its identifier using a standardised communications protocol.            | R3. Software meets domain-relevant community standards.                                                                                                                                     |
| A1.1. The protocol is open, free, and universally implementable.                                       |                                                                                                                                                                                             |
| A1.2. The protocol allows for an authentication and authorization procedure, where necessary.          |                                                                                                                                                                                             |
| A2. Metadata are accessible, even when the software is no longer available.                            |                                                                                                                                                                                             |

e (Meta)data are richly described with a plurality of accurate and relevant attributes

coeosc

- (Meta)data are released with a clear and accessible data usage licence
  (Meta)data are associated with a detailed
- (Meta)data are associated with a detailed provenance
- (Meta)data meet domain-relevant community standards



A federated European FAIR and Open Research Ecosyste for oceans, seas, coastal and inland waters

(Meta)data are retrievable by their identifier

· The protocol allows for authentication and

· The protocol is open, free and universal



using a standardized protocol

authorization, as needed



# One step further: FAIR services?

FAIR principles for data access services  $\rightarrow$  increase findability, accessibility and interoperability of data access services (machine-2-machine)

This can be achieved by describing the services in a standardized manner, such that information is made available on:

- 1. what the service does, what is offers
- 2. how it works, how to make requests

COCOSC FAIR-EASE

- 3. how to access it (authentication?)
- 4. input/output

A starting point will be research on currently available ontologies for describing services

- Several standardized vocabularies and ontologies are available
  - Particularly in the context of the Semantic Web and Linked Data
- These vocabularies help provide structured and machine-readable descriptions of services, making them more discoverable and interoperable

Some of the commonly used models and vocabularies for describing services (but these are in our opinion not yet complete):

- OWL-S
- OpenAPI Specification (formerly Swagger) => most promising candidate, when published as RDF. Needs additional attributes and semantics
- Dublin Core Metadata Initiative (DCMI)
- DCAT Class
- Hydra
- ESIP
- ODIS
- schema.org





### Way forward

- In FAIR-EASE a working group will focus on best possible solution for describing services for m2m access
- Solutions will be documented and tested as prototype
- Starting point what already exists, building on top of that
- Close contact with BC2026, and possibly other initiatives
- Looking for examples in other domains, RDA WG, other infastructures?
  - Please contact us when interested to share views and experiences

=> Let's discuss!





### Time for questions and discussion.

contact: peter@maris.nl