

Vocabulary
Versioning

SSH Vocabulary Commons
Discussion Paper

 Vocabulary Versioning - Discussion Paper

2

Document information

Dissemination Level PU

Date 18/08/2023

Type Discussion Paper

Number of Pages 21

Version 1.0

Abstract: Versioning is an important aspect for the interoperability of Controlled Vocabularies (CVs)
but there is currently a lack of detailed recommendations for versioning practice. This discussion paper
is intended to stimulate debate and feedback on a practical approach to the versioning of Controlled
Vocabularies.

 Vocabulary Versioning - Discussion Paper

3

Author

Organisation Name Contact Information

UK Data Service Darren Bell dbell@essex.ac.uk

Contributors

Organisation Name Contact Information

CLARIN Daan Broeder d.g.broeder@uu.nl

CESSDA/FSD Mari Kleemola mari.kleemola@tuni.fi

University of South Wales Douglas Tudhope douglas.tudhope@southwales.ac.uk

DANS-KNAW Menzo Windhouwer menzo.windhouwer@di.huc.knaw.nl

 Vocabulary Versioning - Discussion Paper

4

Executive Summary
Work towards a Social Science and Humanities (SSH) Vocabulary Commons started during the SSHOC
project. CESSDA, CLARIN, DARIAH and E-RIHs have a common interest to use and manage Controlled
Vocabularies (CVs) collaboratively. An important aspect for the technical or format interoperability of
vocabularies is versioning but there is currently a lack of detailed recommendations for vocabulary
versioning practice.

This document proposes an approach for vocabulary versioning that enables two primary use cases: (1)
referencing a SKOS concept as an object at a point in time - a "synchronic" approach which requires an
explicitly versioned URI, and (2) referencing a SKOS concept as the most current version (albeit
accompanied by provenance information represented in various SKOS predicates such as
skos:changeNote) - a "diachronic" approach that does not require an explicitly versioned URI.

The opening section provides and justifies the proposed version approach. Following sections cover the
implications and ideal practice for URI construction and provenance.

This discussion paper is released to the community with a view to seeking feedback and consensus.

 Vocabulary Versioning - Discussion Paper

5

Abbreviations and Acronyms

Abbreviation Full name

CESSDA Consortium of European Social Science Data Archives

CLARIN Common Language Resources and Technology Infrastructure

CV Controlled Vocabulary

DARIAH Digital Research Infrastructure for the Arts and Humanities

DDI Data Documentation Initiative

DNS Domain Name System

ELSST European Language Social Science Thesaurus

E-RIHS European Research Infrastructure for Heritage Science

FAIR Findable, Accessible, Interoperable, Reusable

HTML Hypertext Markup Language

HTTP(S) Hypertext Transfer Protocol (Secure)

JSON-LD JavaScript Object Notation for Linked Data

RDF Resource Description Framework

SKOS Simple Knowledge Organization System

SSH Social Sciences and Humanities

SSHOC project Social Sciences & Humanities Open Cloud project

TXT text

URI Uniform Resource Identifier

URL Uniform Resource Locator

UUID Universally Unique Identifier

XML Extensible Markup Language

 Vocabulary Versioning - Discussion Paper

6

Table of Contents

Executive Summary .. 4

1. Introduction .. 7

2. A proposed vocabulary versioning approach .. 8

2.1 Vocabulary representations .. 8

2.2 What actually changes over time ... 9

2.3 “Wholesale Versioning” and redundancy .. 11

2.4 Versioning number schemes .. 15

3. URI Construction .. 16

3.1 Parts of a well-formed URI .. 16

3.2 Summary of recommended syntax ... 18

3.3 “Version-neutral” URIs.. 18

3.4 A note on multilinguality ... 19

4. Provenance ... 20

4.1 Recording change ... 20

4.2 Recording relationships between versions ... 21

4.3 Dealing with deprecated concepts ... 21

4.4 A note on semantic drift .. 22

5. Conclusion .. 22

 Vocabulary Versioning - Discussion Paper

7

1. Introduction
Work towards a Social Sciences and Humanities (SSH) Vocabulary Commons started during the SSHOC
project1. CESSDA, CLARIN, DARIAH and E-RIHs have a common interest to use and manage Controlled
Vocabularies (or just “vocabularies”) collaboratively. They all see vocabularies as first-class citizens or FAIR
data objects in their own right. An important aspect for the technical or format interoperability of
vocabularies is versioning. Changes in vocabularies should be made explicit and be documented but
there is currently a lack of detailed recommendations for vocabulary versioning practice.

This document proposes an approach for vocabulary versioning that enables two primary use cases:
(1) referencing a SKOS2 concept as an object at a point in time - a "synchronic" approach which

requires an explicitly versioned URI, and
(2) referencing a SKOS concept as the most current version (albeit accompanied by provenance

information represented in various SKOS predicates such as skos:changeNote) - a "diachronic"
approach that does not require an explicitly versioned URI.

This discussion paper is released to the community with a view to seeking feedback and consensus.
Responses received will be integrated into a future position paper. The opening section provides and
justifies the proposed version approach. Following sections cover the implications and ideal practice for
URI construction and provenance.

1 SSHOC project: https://sshopencloud.eu/project
2 Simple Knowledge Organization System: https://www.w3.org/2004/02/skos/

https://sshopencloud.eu/project
https://www.w3.org/2004/02/skos/

 Vocabulary Versioning - Discussion Paper

8

2. A proposed vocabulary versioning approach

2.1 Vocabulary representations
For the purpose of this document, Controlled Vocabularies (“CVs” or just “vocabularies”) are considered
to be sets of concepts that can be arranged either as a simple flat list or in a hierarchical structure. Within
the SSH community, there are a number of formal standards used to represent vocabularies, principally
DDI CodeLists/CategorySchemes3, SKOS and occasionally Genericode4. Less formalised (and hence less
interoperable) representations range from TXT files to Excel spreadsheets. This document considers
versioning within the context of SKOS representations of vocabularies but makes no prescriptions or
recommendations about particular RDF serialisations like RDF/XML or JSON-LD, for example.

Figure 1 above presents two examples of CVs. Using SKOS terminology, the first example is a
ConceptScheme labelled ‘ANIMALS’ which has three Concepts: Concept 1 is labelled “Dog”; Concept 2 is
labelled “Cat” and Concept 3 is labelled “Mouse”. The second ConceptScheme is labelled “COUNTRIES”
and has four concepts labelled “Europe”, “Spain”, “Africa” and “Egypt”. These are arranged in a meaningful
hierarchy, unlike the first “flat” example.

In order for CVs to be useful, they will be published in a system5 and “consumed” for some purpose by
either machines or humans. A typical use case for this kind of consumption would be two different
archives referencing the same concept from two different DDI documents in order to perform useful
operations related to semantic comparability or federated discoverability.

3 DDI Codes and Categories : https://doi.org/10.5281/zenodo.5180592
4 Genericode: http://docs.oasis-open.org/codelist/cs-genericode-1.0/doc/oasis-code-list-representation-
genericode.html
5 Typically software, but in previous decades, ELSST, for example, was issued as a paper document.

https://doi.org/10.5281/zenodo.5180592
http://docs.oasis-open.org/codelist/cs-genericode-1.0/doc/oasis-code-list-representation-genericode.html
http://docs.oasis-open.org/codelist/cs-genericode-1.0/doc/oasis-code-list-representation-genericode.html

 Vocabulary Versioning - Discussion Paper

9

2.2 What actually changes over time
In order to properly assess how we best approach versioning with SKOS vocabularies, we need to
understand precisely the scope of what we are managing. With typical versioning of a typical entity like a
dataset, we might conceptualise it thus:

While simplistic, Figure 2 nonetheless illustrates a foundational consideration of versioning: where are
the boundaries of the object that is subject to version control? In Figure 2, the red lines indicate where
we stop caring about the versioning context of the object; it might be part of a longitudinal collection for
example, but if we focus solely on the Dataset object itself, the red lines bound the scope of our
versioning concerns. Conversely, within this boundary, we are not concerned about versioning individual
cells or columns or rows as child objects of the Dataset object (in this particular example at least), even
though granular changes to cells for example will result in a new version of the Dataset object.

When dealing with SKOS vocabularies, the boundaries can be asserted strictly at only two levels of
granularity6. To some extent, this is what makes SKOS a “Simple” Knowledge Organization System. Here,
we have two key entities (or “classes” to be more technically correct), namely the CV (a SKOS
“ConceptScheme”7) and its constituent items (SKOS “Concepts”8). Both classes are versionable:

6 Strictly speaking, skos:Collection is a third available class but out of scope for this document, which focuses on
simple CV use cases.
7 SKOS Concept Scheme : https://www.w3.org/TR/skos-primer/#secscheme
8 SKOS Concepts: https://www.w3.org/TR/skos-primer/#secconcept

https://www.w3.org/TR/skos-primer/#secscheme
https://www.w3.org/TR/skos-primer/#secconcept

 Vocabulary Versioning - Discussion Paper

10

In Figure 3, we have a simple CV labelled “Animals” in English and the first Concept labelled “Dog” (in
English) is re-labelled as “Hound”. Not only do we need to consider our object boundary as the CV itself
which moves from v1 to v2 but each of its three constituent concepts (labelled “Dog”, “Cat” & “Mouse”
respectively in English) are also discrete objects and hence subject to versioning over time.

Changes to CVs could also involve merely a simple change to the title of the CV itself. For example, in our
working example, the CV labelled as “Animals” in English might be re-labelled as “Pets” and that might be
the only change that moves the CV from v1 to v2, that is to say, no child concepts themselves might have
changed - see Figure 4 below:

In conjunction with the previous figure, this neatly illustrates a problem that we need to manage: when
we have a parent and a child, what are the rules when only the parent or only the child object changes -
in this case, either the ConceptScheme or the Concept. Can we truly treat them independently?

 Vocabulary Versioning - Discussion Paper

11

2.3 “Wholesale Versioning” and redundancy
Figure 3 illustrates an approach that presumes that a change to the CV’s contents constitutes a change
to the parent CV digital object and therefore warrants a version increment of the parent CV itself: we say
that a change to the child “propagates up” to the parent9. However, apart from the concept labelled “Dog”
which was re-labelled “Hound” (hence the concept was incremented to v2), the other concepts remain
unchanged at v1. Representing all of this in SKOS could look something like this at the URI level:

Table 1 - CV Version 1

Concept Scheme https://example.org/Animals/1

Concept https://example.org/Dog/1

Concept https://example.org/Cat/1

Concept https://example.org/Mouse/1

Table 2 - CV Version 2

Concept Scheme https://example.org/Animals/2

Concept https://example.org/Hound/2

Concept https://example.org/Cat/1

Concept https://example.org/Mouse/1

One might notice that the Cat Concept v1 (with URI https://example.org/Cat/1) is a member of two
different versions of the CV. This is perfectly fine at a technical level as you can simply use a SKOS
inScheme predicate to assert that the Concept https://example.org/Cat/1 is a member of two
ConceptSchemes: https://example.org/Animals/1 and https://example.org/Animals/2.

Similarly, Figure 4 presents a scenario in which the parent object changes: CV “Animals” is renamed to
“Pets” but the version increment does not propagate down to the child concepts, which remain at v1.

Table 3 - CV Version 1

Concept Scheme https://example.org/Animals/1

Concept https://example.org/Dog/1

Concept https://example.org/Cat/1

Concept https://example.org/Mouse/1

9 If we consider a loose dataset analogy, changing the value in an individual cell in an Excel spreadsheet leads to a
new version of the spreadsheet file.

 Vocabulary Versioning - Discussion Paper

12

Table 4 - CV Version 2

Concept Scheme https://example.org/Pets/2

Concept https://example.org/Dog/1

Concept https://example.org/Cat/1

Concept https://example.org/Mouse/1

This “sparse” approach to non-aligned version numbers between a ConceptScheme and its constituent
Concepts can be counter-intuitive for a lot of metadata managers and casual users.

A spreadsheet analogy may be helpful. Imagine an Excel file with 10 rows and 10 columns of data i.e. 100
cells. The approach above would require you, at the point of creating the spreadsheet, to create 100
persistent identifiers for each cell and one for the spreadsheet. From the outset, you will need to manage
persistent identifiers for 100 cells, create a new versioned URI for each cell after each change and ensure
that every versioned instance of a cell version was explicitly related to a specific spreadsheet version.

Reverting back to our SKOS perspective, let us assume that you are on version 20 of a ConceptScheme.
It contains 20 Concepts, each of which may have a different version number (assuming for example that
every concept was changed at least once for versions 1 through 20 of the ConceptScheme). The
assortment of non-aligned version numbers at the concept level, while formally complete and technically
correct, can be hard to disentangle for data managers and developers, let alone casual users and
browsers of a CV.

Additionally, the main use case for asserting a specific Concept version (independent of its parent CV
context) is that you may want to reference it from a DDI document at a specific point in time. If the only
information in my DDI document about the concept is that its URI is https://example.org/Cat/1 and
https://example.org/Cat/1 is associated with twenty different versions of the Animals
ConceptScheme, then writing business logic for applications potentially becomes more complex, as I
have to perform additional work to establish unambiguously which instance in time of
https://example.org/Cat/1 I am actually intending to reference.

All of this has been leading up to what is an essentially imperfect but more practical and intuitive solution
and we refer to this as “wholesale versioning”. Essentially, this means that for a SKOS ConceptScheme
and its constituent Concepts, at the point of publishing (i.e. the point when we would necessarily want to
increment our version numbers) we increment and align both the ConceptScheme version number and
all of the Concept version numbers, regardless of whether an individual Concept has changed or not.

 Vocabulary Versioning - Discussion Paper

13

This has consequences for the construction of concept URIs. Instead of each Concept effectively having
its own URI and ambiguous namespace (See Tables 1 and 2 above), we associate all concepts consistently
with the parent CV namespace e.g., instead of:

CV Version 1 -

Concept Scheme https://example.org/Animals/1

Concept https://example.org/Dog/1

Concept https://example.org/Cat/1

Concept https://example.org/Mouse/1

CV Version 2 -

Concept Scheme https://example.org/Animals/2

Concept https://example.org/Hound/2

Concept https://example.org/Cat/1

Concept https://example.org/Mouse/1

we instead base a URI for concepts derived from the parent CV namespace:

CV Version 1 - unified namespace of https://example.org/Animals

Concept Scheme https://example.org/Animals/1

Concept https://example.org/Animals/1/Dog

Concept https://example.org/Animals/1/Cat

Concept https://example.org/Animals/1/Mouse

CV Version 2

Concept Scheme https://example.org/Animals/2

Concept https://example.org/Animals/2/Dog

Concept https://example.org/Animals/2/Cat

Concept https://example.org/Animals/2/Mouse

 Vocabulary Versioning - Discussion Paper

14

Following on from our examples in Figure 3 and Figure 4, this approach would manifest itself as follows
(Figures 3b and 4b):

While this approach is unquestionably less “elegant” in that we increment the version number for a
concept object not exclusively based on whether it has changed or not, but rather as a consequence of
its association with the ConceptScheme object and associated Concepts, at least one of which will have
changed).

Now when I reference https://example.org/Animals/2/Cat from my DDI document, I know
unequivocally that I am referencing a particular instance of the Concept within the context of a Concept
Scheme published at a particular point in time.

 Vocabulary Versioning - Discussion Paper

15

2.4 Versioning number schemes
So far we have used the simplest and most obvious version numbering scheme available to us i.e. an
integer10. When we create a new version, we simply add 1 to the version number. This is perfectly
acceptable if all we want to do is assert that there has been “a change” of some unspecified type.

Often however, we want to indicate the granularity of change which helps consumers of the CV to
determine how impactful the change is. A common version number syntax in common use and
recommended by CESSDA is semantic versioning11. This has emerged from software development and
works on the basis of three integers delimited by a period, representing “major”, “minor” and so-called
“patch” changes (for “patch”, read “sub-minor” in the context of this discussion).

So, for example, if our CV number is currently 2.0.0, then a major change would be represented as 3.0.0,
a minor change would be represented as 2.1.0 and a sub-minor change would be represented as 2.0.1.

So far so simple, but it is important that there be a shared and documented understanding of what
“major”, “minor” and “sub-minor” mean for a particular community. A typographic correction may be
classed as trivial or important depending on the use case and this document does not prescribe what
kinds of changes should be classed as “major”, “minor” or “sub-minor” but it does recommend that there
be a mapping of change types to these levels of versioning granularity. A good example is provided by
the DDI Alliance which has an enumeration of “major”, “minor” and “sub-minor” changes and examples
of operations on CVs that warrant these designations12.

10 Strictly speaking, we don’t even to have to use integers. There is no special reason why “v1”, “v2” and “v3” could
not be represented by some other string like “uyii7”, “kQuuhi” and “~#%$”. However, not only would we need to
manage and maintain additional semantic information to interpret these strings correctly, it would be complex to
consistently parse such constructions. For all practical purposes, versioning syntax is almost always based around some
integer scheme.
11 Semantic versioning: https://semver.org/
12 DDI Alliance CV policy: https://ddialliance.org/controlled-vocabularies#policy

https://semver.org/
https://ddialliance.org/controlled-vocabularies#policy

 Vocabulary Versioning - Discussion Paper

16

3. URI Construction

3.1 Parts of a well-formed URI
A URI is an identifier for ConceptScheme and Concept resources. One essential thing to grasp is that in
this context URIs are NOT URLs for web pages. Consider this example exported from an earlier incarnation
of the CESSDA Vocabulary Manager:

https://ddialliance.org/Specification/DDI-CV/AggregationMethod_1.1.html#Mode

This is not an optimally constructed URI for the purposes of resolving to RDF data. Firstly, it’s referencing
an HTML web page and secondly, it is using a hash to represent an anchor in the page. Although linked
data URIs can superficially resemble URLs, they are intended primarily to retrieve data, not to retrieve
browsable web content.

So what are the various elements we should consider as the constituent parts of a well-formed URI in the
Controlled Vocabulary arena? The potential segments are summarized in Table 5 and then explained in
more detail.

Table 5 - Potential segments in a SKOS URI for a Concept.

Segment Example

1 BaseURI https://example.org/

2 ConceptSchemeIdentifier Animals

3 ConceptSchemeVersion 2.0.0

4 ConceptIdentifier Dog

5 ConceptVersion Implied by ConceptSchemeVersion

See earlier discussion on “wholesale” versioning

Example: https://example.org/Animals/2.0.0/Dog

BaseURI
The base URI must be resolvable through DNS to an HTTP(S)-based service that can provide more
information about the URI that is passed to it.

Another real-world example: the ELSST concept “ACADEMIC ABILITY” (concept version 3) has a URI of
https://elsst.cessda.eu/id/3/bf0d664a-e89a-4ec3-80d2-04f664b359ab and the BaseURI is
https://elsst.cessda.eu/id/

 Vocabulary Versioning - Discussion Paper

17

ConceptSchemeIdentifier
In the ELSST example above, the BaseURI actually encompasses the ConceptSchemeIdentifier. That is to
say, because https://elsst.cessda.eu/id/ as a web address only hosts one ConceptScheme i.e. ELSST, there
is no need to further partition the URI to indicate a specific ConceptScheme. Compare this to two
examples of ConceptSchemes from the EU's multilingual and multidisciplinary thesaurus Eurovoc13:

• Combined Nomenclature, 2019: http://publications.europa.eu/resource/authority/cn2019
• SDMX glossary 2018: http://publications.europa.eu/resource/authority/sdmxglossary2018

Here you can see that the BaseURI is http://publications.europa.eu/resource/authority/
but because many hundreds of ConceptSchemes are being hosted, it makes sense to append the
ConceptScheme Identifier as well.

ConceptSchemeVersion
It is recommended to indicate the version of the concept scheme in the ConceptScheme URI based on
the following pattern:

<BASE_URI>/<CONCEPTSCHEME_IDENTIFIER>/<CONCEPTSCHEME_VERSION>/

For example: https://example.org/Animals/2.0.0/
where 2.0.0 is the numeric version of the ConceptScheme.

ConceptIdentifier
Following the “wholesale” versioning pattern identified earlier, the version of the concept is implied by
the version of the concept scheme, so the following pattern results for a Concept URI:

<BASE_URI>/<CONCEPTSCHEME_IDENTIFIER>/<CONCEPTSCHEME_VERSION>/<CONCEPT_IDENTIFIER>

For example: https://example.org/Animals/2.0.0/Dog

It is the strong recommendation of this document that the use of natural language be avoided in URIs,
unless it can be unequivocally guaranteed that any natural language string in the URI will not change over
time. Doubtless, avoiding natural language sacrifices human readability but it is arguable that URIs are
not primarily for human consumption in any case.

Continuing the concept URI example above, a more robust approach would be to render

https://example.org/Animals/2.0.0/Dog

instead as:

https://example.org/652/2.0.0/132

where ‘652’ is a machine-readable ConceptSchemeIdentifier and ‘132’ is a machine-readable
ConceptIdentifier.

13 EuroVoc: https://eur-lex.europa.eu/browse/eurovoc.html

https://elsst.cessda.eu/id/
http://publications.europa.eu/resource/authority/cn2019
http://publications.europa.eu/resource/authority/sdmxglossary2018
http://publications.europa.eu/resource/authority/
https://eur-lex.europa.eu/browse/eurovoc.html

 Vocabulary Versioning - Discussion Paper

18

Integers are used here for illustration but equally, more complex identifiers could be used. For example,
ELSST uses UUIDs for all of its ConceptIdentfiiers: see https://elsst.cessda.eu/id/3/c9167160-43b8-4afb-
8291-d6b9887104aa for an example where c9167160-43b8-4afb-8291-d6b9887104aa is the
persistent ConceptIdentifier. This also has the advantage of being globally unique.

3.2 Summary of recommended syntax
To summarise, this document makes the following recommendations for URIs:

• Avoid the use of natural language in URIs

• A URI for a ConceptScheme should be constructed thus:
o <BASE_URI>/<CONCEPTSCHEME_IDENTIFIER>/<CONCEPTSCHEME_VERSION>/

 Example 1:
https://testrdf-vocabulary.ddialliance.org/cv/AggregationMethod/1.1/
Where https://testrdf-vocabulary.ddialliance.org/cv/ is the BaseURI,
AggregationMethod is the ConceptScheme identifier and 1.1 is the ConceptScheme version.

 Example 2:
https://elsst.cessda.eu/id/3/
Note that here https://elsst.cessda.eu/id/ functions as a combined BaseURI &
ConceptScheme identifier and 3 is the ConceptScheme version.

• A URI for a Concept should usually be constructed thus:
o <BASE_URI>/<CONCEPTSCHEME_IDENTIFIER>/

<CONCEPTSCHEME_VERSION>/<CONCEPT_IDENTIFIER>

 Example:
http://testrdf-vocabulary.ddialliance.org/cv/AggregationMethod/1.1/d35e61
Where https://testrdf-vocabulary.ddialliance.org/cv/ is the BaseURI,
AggregationMethod is the ConceptScheme identifier, 1.1 is the ConceptScheme version and
d35e61 is the Concept identifier.

3.3 “Version-neutral” URIs
So far, we have focussed on specific versioned instances of both Concepts and ConceptSchemes.
However, it may be that as a consuming agent you are not particularly interested in what the label of a
concept was at a specific point in time. Rather, you may simply want to know what the most up-to-date
label is (and perhaps other metadata) for a particular concept.

A method to achieve this is with “version-neutral” URIs. Let's say that http://example.org/652/1/132 is the
concept labelled “DOG” in version 1 of the ‘Animals’ ConceptScheme and http://example.org/652/2/132
is the same concept re-labelled as “HOUND” in version 2 of the same ConceptScheme. Let us also say
that I want to always reference the latest version of this concept, rather than targeting the concept as it
was at a specific point in time. I could provide mechanisms to resolve http://example.org/652/132

https://elsst.cessda.eu/id/3/c9167160-43b8-4afb-8291-d6b9887104aa
https://elsst.cessda.eu/id/3/c9167160-43b8-4afb-8291-d6b9887104aa

 Vocabulary Versioning - Discussion Paper

19

to the latest version, in this case http://example.org/652/2/132. Once the ConceptScheme had
been incremented to v3, then http://example.org/652/132 would instead resolve to
http://example.org/652/3/132 and so on over time.

Note that this kind of redirection requires a relatively sophisticated infrastructure, with linked data
endpoints being able to provide the correct resolution over time to the latest version. This is normally
achieved in practice with redirection and URL rewrite mechanisms on reverse proxies like Nginx14 or
HAProxy 15 . The CESSDA ELSST Thesaurus 16 provides a rich real-world implementation where all
ConceptSchemes and Concepts have both multiple version-specific URIs and a single “version-neutral”
URIs (and URNs for expression in XML documents, typically DDI).

3.4 A note on multilinguality
Concept labels very often need to be translated into multiple languages. It is critical to understand that
the translation of labels and notes into other languages does not imply that separate objects with
separate URIs are required. For example, a representation along these lines might look like:

http://example.org/652/2/132_en and http://example.org/652/2/132_fr

which are two URIs that resolve to the (version 2) concept with identifier ‘132’’. The English concept label
is ‘DOG’ and the French concept label is ‘CHIEN’.

While at one level it might seem intuitive to approach translations this way (indeed, earlier incarnations
of CESSDA Vocabulary Manager took this approach), it cannot be emphasised enough that consuming
agents need to be completely unambiguous about which concept object is being referenced. Segmenting
concept objects into multiple language objects causes significant additional complexity for comparability
and interoperability 17 . The underlying language characteristics of the concept are, in one sense,
secondary semantic issues. Indeed, the design of DDI schema has been predicated on the axiom that
languages are secondary attributes of concept objects, and the @xml:lang attribute is used precisely for
this purpose. The DDI Alliance strongly discourages the instantiation of language-specific objects with
distinct URIs. Following on from our example above, the much preferred approach is to represent ‘DOG’
and ‘CHIEN’ with a single URI like so:

<skos:Concept rdf:about="http://example.org/652/2/132>
<skos:prefLabel xml:lang="en">DOG</skos:prefLabel>
<skos:prefLabel xml:lang="fr">CHIEN</skos:prefLabel>

</skos:Concept>

14 Nginx: https://www.nginx.com/
15 HAProxy: http://www.haproxy.org/
16 ELSST: https://thesauri.cessda.eu/en/
17 Note that SKOS-XL allows you to create multiple label and note objects which can contain richer metadata about
the label/note. These can be language specific. Nonetheless, these label/note objects will still be associated with a
single Concept object, and so the principle of not creating multiple Concept URIs for multiple languages still holds.

https://www.nginx.com/
http://www.haproxy.org/
https://thesauri.cessda.eu/en/

 Vocabulary Versioning - Discussion Paper

20

4. Provenance
While it’s one thing to imply a change by the increment of a version number, provenance information
specifies the details of what has been changed and when and ideally by whom. While we have previously
emphasised the machine-readability of SKOS vocabulary metadata, this is a scenario where human
readable information can be valuable.

Typically, a metadata manager, data steward, ontologist or researcher may reasonably ask of a Concept
or ConceptScheme: “show me a concise summary of what has changed since I last looked at this CV”.

4.1 Recording change
At the human readable level, there are three key properties that can be used to provide human-readable
information about changes to a Concept or ConceptScheme.

1. skos:historyNote
A top-level summary intended for users of the ConceptScheme, documenting significant changes
to the meaning, form, or state of its child concepts. History notes can be applied to Concepts as
well, but it is the recommendation of this document that they be reserved for use as top-level
summary of changes to the CV, analogous to release notes.

2. skos:changeNote
A change note is intended for documenting more granular changes to a concept for the purposes
of administration and management.

3. owl:versionInfo
A textual, human-readable representation of the version information for either a ConceptScheme
or a Concept. Although the version number may be indicated in the URI, this may not necessarily
always be the case.

<skos:ConceptScheme rdf:about="http://example.org/652/2/>
<skos:historyNote rdf:parseType="Resource">
<rdf:value>This is the human readable change log for version 2
of the ANIMALS CV. Concept 132 was re-labelled in English from
'DOG' to 'HOUND'</rdf:value>
<dc:date>2021-10-08</dc:date>
<owl:versionInfo>Version 2</owl:versionInfo>
</skos:historyNote>

</skos:ConceptScheme>

In version 2 of the ANIMALS CV above, skos:historyNote is used to provide a summary of the CV
changes from version 1. At the concept level, there could be a similar construction using
skos:changeNote but this would require slightly more involved techniques like reification.

 Vocabulary Versioning - Discussion Paper

21

4.2 Recording relationships between
versions

As well as representing summary change logs for the CV with skos:historyNote and more granular
concept changes with skos:changeNote, it is important that each versioned instance of either a
ConceptScheme or Concept can be correctly related to its preceding and succeeding versions. Commonly
used RDF predicates for this purpose include:

• dct:hasVersion (inverse dcterms:isVersionOf)
• owl:priorVersion

These point to resources, rather than containing contextual notes, so following on from our example
above, if we were referencing version 3 of the Animals CV, the following snippet illustrates how that might
be constructed:

<skos:ConceptScheme rdf:about="http://example.org/652/3>
<owl:priorVersion rdf:resource="http://example.org/652/2"/>
<dcterms:isVersionOf rdf:resource="http://example.org/652/"/>

</skos:ConceptScheme>

Similarly, version 2 of the Animals CV looks like:

<skos:ConceptScheme rdf:about="http://example.org/652/2>
<owl:priorVersion rdf:resource="http://example.org/652/1"/>
<dcterms:isVersionOf rdf:resource="http://example.org/652/"/>

</skos:ConceptScheme>

If we want to maintain a “version-neutral” instance of the ‘Animals’ ConceptScheme with, for example, a
URI of http://example.org/652/ we may wish to indicate which specific versions of this
ConceptScheme are available:

<skos:ConceptScheme rdf:about="http://example.org/652/>
<dcterms:hasVersion rdf:resource="http://example.org/652/3/"/>
<dcterms:hasVersion rdf:resource="http://example.org/652/2/"/>
<dcterms:hasVersion rdf:resource="http://example.org/652/1/"/>

</skos:ConceptScheme>

4.3 Dealing with deprecated concepts
Generally speaking, it is not recommended to fully delete concepts. Once you are working with linked
data and URIs, the foundational idea is that URIs should be persistent and should resolve to something,
even if the concept is no longer actually used. In order to represent these, owl:Deprecated can be used
in conjunction with skos:changeNote to provide a “stub” of information i.e. a tombstone record.

 Vocabulary Versioning - Discussion Paper

22

<skos:Concept rdf:about="http://example.org/652/4/132>
<skos:inScheme rdf:resource="http://example.org/652/4/"

 <owl:priorVersion rdf:resource="http://example.org/652/3/132"
<owl:deprecated rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">

 true
 </owl:deprecated>

<skos:changeNote rdf:parseType="Resource">
<rdf:value>
The concept labelled ‘HOUND’ in English (ID 132) was deprecated
in version 4 of the Animals CV
</rdf:value>
<dc:date>2021-12-19</dc:date>
<owl:versionInfo>Version 4</owl:versionInfo>

</skos:changeNote>
</skos:Concept>

In the example above, the ‘Animals’ CV is now at version 4 and the concept labelled ‘HOUND’ (with
identifier ‘132’) has now been deprecated. Nonetheless, sufficient information is provided here that will
allow a consuming agent to establish this unambiguously and also to traverse to the previous version 3
of the concept (http://example.org/652/3/132), if required.

4.4 A note on semantic drift
During the lifecycle of a vocabulary, the specification or meaning of a concept might change and result
in a split or merge of concepts. The "new" concept(s) should not reuse a previous ConceptIdentifier and
continue incrementing its version sequence. Instead, a new ConceptIdentifier should be used (in the
case of a merge) and new ConceptIdentifiers (in the case of a split). Good governance practices should
be in place to clearly designate who can make decisions on new Concepts or ConceptSchemes18.

5. Conclusion
This discussion paper is intended to stimulate debate and feedback on a practical approach to the
versioning of Controlled Vocabularies, an approach which should enable consuming agents to reference
a particular instance of the Concept within the context of a Concept Scheme published at a particular
point in time. Additionally, we considered the boundaries and scope of versioning for CVs, how URIs
should optimally be constructed, and the trade-offs involved between perfect information modelling and
usability, as well as some simple mechanisms for capturing provenance and change information. We are
keen to continue the discussion and welcome feedback.

18 For more guidance on “content custodians”, see Cox et al. (2021). Ten Simple Rules for making a vocabulary FAIR.
PLoS Comput Biol 17(6): e1009041. https://doi.org/10.1371/journal.pcbi.1009041

https://doi.org/10.1371/journal.pcbi.1009041

	Executive Summary
	1. Introduction
	2. A proposed vocabulary versioning approach
	2.1 Vocabulary representations
	2.2 What actually changes over time
	2.3 “Wholesale Versioning” and redundancy
	2.4 Versioning number schemes

	3. URI Construction
	3.1 Parts of a well-formed URI
	3.2 Summary of recommended syntax
	3.3 “Version-neutral” URIs
	3.4 A note on multilinguality

	4. Provenance
	4.1 Recording change
	4.2 Recording relationships between versions
	4.3 Dealing with deprecated concepts
	4.4 A note on semantic drift

	5. Conclusion

