

 1

Virtual Comparative Trials and Bioequivalence

Assessment: From Data-Based to Probabilistic

Assessment

Celine Brochot, Frederic Y. Bois

Certara UK Limited, Simcyp Division, Sheffield, UK. Certara UK Limited

Corresponding author: Frederic Y. Bois,
Simcyp Division, Level 2-Acero, 1 Concourse Way,
Sheffield, S1 2BJ, United Kingdom.
Email: frederic.bois@certara.com

Keywords

Bayesian inference, Comparative clinical trials, Virtual bioequivalence assessment,

Paliperidone, Sensitivity analysis.

Abstract

The recent emergence of virtual comparative trials, in particular for virtual bioequivalence

(VBE) assessment, implies a formalization of their analyses. In recent VBE assessments,

pharmacokinetic models informed with in vitro data and verified with small clinical trials data

were used to simulate otherwise unfeasibly large trials. Simulated VBE trials are assessed in a

frequentist framework as if they were real, despite the unlimited number of virtual subjects they

can use. This may control consumer risk adequately but imposes unnecessary risks to producers.

We propose a fully Bayesian model-integrated VBE assessment framework to control consumer

and minimize producer risk, and compare its performance with a data-based VBE workflow.

We illustrate our approach with a case study on a hypothetical paliperidone palmitate generic

long-acting injectable suspension formulation, using a validated population pharmacokinetic

model published for the reference formulation. Our study shows that the fully Bayesian

workflow is efficient and rewards data gathering and model-integration to make the best use of

prior information. Safe space analyses in the two workflows differ because the accuracy of the

second one is higher and gives a clearer estimate of the parameter region in which BE is

expected.

mailto:celine.brochot@certara.com

 2

Introduction

Bioequivalence (BE) clinical trials analyses check that two drug formulations do not lead to

different average rate and extent of drug absorption in patient populations or surrogate healthy

volunteers. The development of complex generic products can be challenging: long-acting

injectable (LAI) formulations, for example, may require clinical trials lasting years; high inter-

or intra-subject variability may force to use very large numbers of trial participants; costs can

be prohibitive for such products. Virtual bioequivalence (VBE) testing uses a model, in vitro

and abbreviated trial data (obtained in small-size studies), to generate realistic BE trials

simulations, and uses them to assess BE for a particular formulation [1,2]. This can be much

less expensive and time-consuming [3,4]. Motivations and conditions for the US-FDA approval

of a generic product on the basis of a VBE assessment instead of a comparative clinical trial

were recently explained [1]. An extensive validation process was developed at the occasion of

that assessment. A publication by Hsieh et al. [2] describes a partly Bayesian VBE workflow

integrating evidence from in vitro experiments, scientific literature and clinical trials.

Regulatory acceptance of VBE is quite new, and VBE methodology still in flux. Fortunately,

most ingredients of a sound VBE framework are available. Modeling and simulations to design

or replace clinical trials are common [5–12]. Model-integrated BE assessment is progressing

rapidly [13–15] and VBE can easily use model-integrated approaches. Since VBE uses minimal

clinical data, it makes sense to integrate historical data and in vitro evidence (e.g., on dissolution

[16]) to quantify the differences between reference and generic products. Bayesian inference is

currently the best way to do that, even with mechanistic models [2,17–19]. Bayesian analysis

of clinical BE trials has been discussed [20–26].

So far, simulated VBE trials have been submitted to non-compartmental analysis and standard

hypothesis testing as if they were real trials. However, unlimited sample size is available to a

virtual trial. At the limit, standard statistical tests would need to operate with zero-length

confidence intervals, and error analyses become moot. Limiting arbitrarily the size of virtual

trials is also sub-optimal for decision making. It lowers power and affects both producers and

consumers because a safe product, potentially less expensive, might not be approved when it

could be. Nobody benefits from curtailing the power of VBE assessments. We show that the

above difficulties disappear if we adopt a more coherent fully Bayesian approach [20–22],

shifting from a statistical assessment based on asymptotics to a more coherent probabilistic

assessment.

 3

In the following, we describe a fully Bayesian workflow for VBE assessment and compare it

to a partly Bayesian workflow. We apply those workflows in a case study using simulated

abbreviated trial data. The reference and test formulations will be assumed to differ in terms of

a single drug-release parameter. We discuss issues related to model-integrated VBE, power and

type I error assessments, as well as safe space analysis (a form of sensitivity analysis to estimate

the range by which a generic formulation’s characteristics can vary while maintaining

bioequivalence [2]).

Methods

Bayesian workflows description

We investigate two Bayesian workflows (Figure 1). Workflow A steps mimic data-based BE

assessment, except for the Bayesian calibration of a predictive model:

1. Definition of the model structure and prior parameter distributions, usually for the

reference formulation. Mechanistic or empirical structural models can be used, but

mechanistic should be preferred if in vitro data are available. The model should be

sufficiently predictive of the key characteristics used to compare products: bioequivalence

checks similar active drug absorption’s rate and extent between test and reference

formulations. Rate and extent are measured by peak plasma concentration (Cmax) and area

under the plasma concentration vs. time curve (AUC). It is therefore mandatory for those

to be correctly simulated by the model for both test and reference.

2. Model recalibration with in vitro data and clinical data from an abbreviated BE trial

provides estimates of the difference between test and reference formulations’ critical

quality attributes (CQA), part of the model parameters. An alternative is to first use the

abbreviated trial data for model verification. If the model needs improvement, updating it

one way or another is necessary and Bayesian recalibration using the abbreviated trial data

can be tried. If the model does not need recalibration, it can be used directly to perform

further simulations. Recalibration is mandatory for an empirical PK model, because there

is no other way to inform the difference between test and reference.

3. Simulation of virtual trials of different sizes for BE assessment, type I, type II error and

CQA safe-space analyses using data-based methods. Those methods are usually akin to the

TOST test [27] with trial design-specific adaptations. Model-integrated methods have been

proposed, whereby Cmax and AUC are estimated by model-fitting [13]. The statistical tests

 4

control type I error rate, the probability of declaring bioequivalent a formulation that is in

fact not bioequivalent, which is clearly a consumer risk [15]. Type II error rate, the

probability of wrongly declaring non-bioequivalent a formulation, is clearly a producer risk

but also indirectly a consumer risk. Type II error depends on trial size and intra-group

variances. The power of a trial (one minus type II error) is usually required to be at least

80% to avoid running wasteful trials for sponsors and participants. Since type II error and

power strongly depend on the variability structure of Cmax and AUC measures and on drug

concentration measurements’ uncertainty, the model should also be predictive of Cmax and

AUC variances.

Figure 1: Two VBE workflows. On the left (A), a partly Bayesian data-based assessment

workflow, on the right (B), the fully Bayesian workflow we propose.

Workflow B differs workflow A at the last step. There is uncertainty about the difference

between test and reference because information is imperfect and all the model parameters

calibrated at step 2 of the workflow, even without recalibration with in vivo data, have a joint

posterior probability distribution to which all components of variability and uncertainty

contribute. Therefore, average Cmax and AUC differences between test and reference have a

joint posterior predictive distribution which can be estimated. With such a posterior distribution,

the Bayesian strict equivalent of the current standard regulatory rule (focusing on population

bioequivalence [28]) is to declare bioequivalence if the probability that both Cmax and AUC

differences fall within the 0.8 to 1.25 interval is equal or superior to 0.90. Questions about type

 5

I and type II errors of a statistical test for a simulated trial disappear from our concerns.

However, concerns about making a correct decision are still present and relate directly to model

validation. Safe-space analyses are still possible and valid though. With nonlinear PK models,

the posterior predictive distribution of Cmax and AUC differences can be estimated by Monte

Carlo simulations.

Case study: VBE of generics for long-acting injectable products

One of the most important problems in the management of schizophrenic patients is poor

medication adherence [29]. LAI formulations, which can release drug over months, improve

adherence to treatment. The first marketed LAI suspension of paliperidone palmitate, an

antipsychotic agent [30,31], called INVEGA SUSTENA® or PP1M in the following, is usually

injected once per month. A more recent formulation (INVEGA TRINZA®, PP3Mr in the

following) can be injected every three months. Reliable population PK models have been

developed and published for PP1M and PP3Mr [30,31]. Those models were developed using

clinical data collected in phase I and phase III trials. The subjects received an injection of PP1M

(dose range 50–150 mg eq.) every month for 4 months; and then switched to PP3Mr (dose range

175–525 mg eq.) with an injection every 3 months for one year (i.e., 4 injections in total). We

also developed a version of the model that can simulate cross-over clinical trials with sequences

PP1M, PP3Mr, PP3Mt or PP1M, PP3Mt, PP3Mr. We will assess our VBE workflows with

those models.

Models for PP long-acting injectables

The joint PP1M and PP3Mr models we use [30,31] is illustrated in Figure 2. It is a two-

compartment model with a depot and a central compartment. The PP3Mr model has two

saturable release processes (described by Hills equations) from the depot compartment. The

joint model was developed and checked in a population framework with large clinical datasets

of the innovator’s drug [31]. We use the same framework (see Appendix, sections Paliperidone

palmitate long-acting injectable PK models and Hierarchical population model for details).

 6

Figure 2: Structural part of the population PK models used for the innovator’s PP 1-month

(PP1M) and 3-month (PP3Mr) long-acting injectable products28,29.

To model differences between the reference (PP3Mr) and test (PP3Mt) formulations, we

introduced a vector of relative changes, 𝛿, affecting the geometric means of the six drug-release

and absorption parameters of the model, 𝑓3 (the fraction of PP rapidly released), 𝑘𝑎𝑠3,𝑚𝑎𝑥

(maximum release rate from the slow depot), 𝑘𝑎𝑟3,𝑚𝑎𝑥 (maximum release rate from the rapid

depot), 𝑘𝑎𝑠3,50 (Hills coefficient for the slow-release depot), 𝑘𝑎𝑟3,50 (Hills coefficient for the

rapid depot), and 𝛾 (Hills power), in that order. Each mean (𝜇𝑖,𝑡𝑒𝑠𝑡 in the following equation)

for the test formulation, given the reference formulation value 𝜇𝑖,𝑟𝑒𝑓 and the relative change 𝛿𝑖,

was computed as:

 𝜇𝑖,𝑡𝑒𝑠𝑡 = 𝛿𝑖 × 𝜇𝑖,𝑟𝑒𝑓, with 𝑖 ∈ {1, … , 6} (1)

Recalibration of the model with simulated abbreviated parallel clinical trial data

In the absence of an actual abbreviated trial on PP3Mr and PP3Mt formulations, we simulated

an abbreviated parallel BE clinical trial with 25 subjects per arm. All the model parameters with

prior uncertainty or population variability where randomly sampled to generate virtual subjects.

The same dosing regimen and sampling scheme as in [31] were applied. In both arms, a final

PP dose of 525 mg eq. was tested; initial PP1M dose was 150 mg eq. Plasma concentrations

simulated at 54, 55, 57, 59 and 63 weeks for each individual were used for model recalibration.

The calibration dataset therefore consisted of 250 measurements from 50 individuals.

Differences between PP3Mr and PP3Mt drug-release parameters were simulated at the

population average level by setting the value of the second component of vector 𝛿, i.e. 𝛿2, to

1.05 (5% difference). This increases 𝑘𝑎𝑠3,𝑚𝑎𝑥 population mean by 5% for test above reference.

The other components of 𝛿 were set to 1.0 (no difference). Parameter 𝑘𝑎𝑠3,𝑚𝑎𝑥 was determined

to be the most influential on Cmax and (partial) AUC at steady state, during the last dosing period;

 7

it conditions the rate of release from the slow depot compartment (see Appendix, section

Sensitivity analysis of impact of drug-release parameters on Cmax and AUC).

The above simulated abbreviated trial is the only source of information we should consider to

estimate the differences between parameters of the test and reference formulations. Estimating

those differences is important to simulate realistic final BE trials. Because our population PK

model has strong prior information on the reference formulation parameters, a Bayesian

approach is well suited to estimate the value of the difference 𝛿2. Metropolis-Hastings Markov-

chain Monte Carlo (MCMC) sampling was used to obtain a sample of parameter values from

their joint posterior distribution given the abbreviated trial data [19]. We fixed the population

means and variances to the central values (maximum likelihood estimate, MLE, values in [31])

of their prior distributions. We set residual error 𝜎2 to the MLE of [31]. It would not make

sense to update those parameters on the basis of a small trial, and we know by construction that

the subjects from the reference trial arm are drawn from those priors. Subject-level parameters

f1, f3, ka,1, 𝑘𝑎𝑟3,50, 𝑘𝑎𝑠3,𝑚𝑎𝑥, 𝑘𝑎𝑠3,50, CL, V, and Qcentral (0) were estimated jointly with the values

of the difference test vs. reference parameter 𝛿2. A vague lognormal prior with geometric mean

at 1 and geometric SD at 2 was assigned to 𝛿2. The prior of 𝛿2 can be seen on Figure 5, it

approximately spans a factor 8.

Four MCMC chains of 10000 iterations were run, the first 2500 iterations were discarded.

Convergence of the remaining 4×7500 was checked using Gelman and Rubin diagnostic [32].

Large parallel virtual trial simulation, BE assessment, type I and II errors analyses

At this step, workflow A and workflow B diverge. Workflow A is data-based: We simulated a

“realistically large” virtual parallel BE trial and analyzed it as a standard BE trial. Since the

trial design is parallel, a simple TOST test was used on the data-based estimates of Cmax and

partial AUC over the last dosing period (AUC was estimated by the trapezoidal rule). A

simulation-based power analysis (see Appendix, section Parallel and Cross-over Trials Power

Calculations (Workflow A)) indicated that 130 subjects would be adequate given all the prior

information we had on PP kinetics with the reference formulation. To simulate a parallel BE

trial with 130 subjects per arm, we fixed the population means and variances to the central

values of their prior distributions (MLE value in [31]). Virtual subjects were sampled from their

population distribution. We set residual error 𝜎2 to its MLE [31]. The value of 𝛿2 was set to its

mean estimate after calibration with the abbreviated trial data. The other 𝛿 values were set at 1.

The dosing schedule and sampling times were the same as in the above trials.

 8

Workflow B uses Monte Carlo simulations to obtain an estimate of the joint posterior predictive

distribution of the ratios 𝛿𝐶𝑚𝑎𝑥 and 𝛿𝐴𝑈𝐶 between the population geometric means of Cmax (and

AUC, respectively) for the test and the reference formulations. To be fully model-integrated,

we estimated Cmax by computing PP plasma concentration at 100 time points during the last

dosing period (the system is at steady-state, and we checked that 100 points was largely enough

to get a stable estimate of Cmax); AUC was computed by numerical integration (adding one ODE

to the system of ODEs to solve) over the same period. We formed the 𝛿𝐶𝑚𝑎𝑥 and 𝛿𝐴𝑈𝐶 ratios

for 1000 simulated trials with 1000 subjects per arm each. Each trial was simulated exactly as

the large trial described above, except for the number of subjects.

Large cross-over virtual trial simulation, BE assessment, type I and II errors analyses

We also simulated a realistically large cross-over BE trial and analyzed it using standard tests.

In this case, treatment, sequence and period effects are estimated by regression and a TOST test

is used for the mean ratio on the data-based estimates of Cmax and partial AUC over the last

PP3Mr or PP3Mt dosing periods (AUC was estimated by the trapezoidal rule). A simulation-

based power analysis (see Appendix, section Parallel and Cross-over Trials Power Calculations

(Workflow A)) indicated that 130 subjects would be more than adequate given all the prior

information we had on PP kinetics with the reference formulation. To simulate a parallel BE

trial with 130 subjects per arm, we fixed the population means and variances to the central

values of their prior distributions (MLE value in [31]). Virtual subjects were sampled from their

population distribution, as above. We set residual error 𝜎2 to its MLE [31]. The value of 𝛿2 was

set to its mean estimate after calibration with the abbreviated trial data. The other 𝛿 values were

set at 1. The dosing schedule and sampling times were the same as in the above trials.

Safe-space calculations

For workflow A, 1000 virtual trials with 130 subjects per arm were run as above, except for

sampling each element of δ from a uniform [0.5,2] distribution. This generated a large number

of bioequivalent and non-bioequivalent test formulations. We computed the geometric mean

ratios test over reference for Cmax and AUC for those simulated trials. BE for Cmax and AUC of

each trial was assessed with a TOST test. BE was declared if it passed for both Cmax and AUC.

Color-coded TOST BE passes and fails were plotted against the values sampled for the different

components of vector 𝛿.

 9

For workflow B, safe-space calculations required computing the posterior predictive

distribution of 𝛿𝐶𝑚𝑎𝑥 and 𝛿𝐴𝑈𝐶 over the whole drug-release parameters’ space. However, we

know that the safe-space limits should be crisp (because they are not blurred by uncertainty

induced by limited trial size), and the workflow A safe-space calculations gave us a rough

estimate of safe-space shape. We therefore focused on determining the boundaries of the safe-

space for the two most critical absorption parameters (𝑓3 and 𝑘𝑎𝑠3,𝑚𝑎𝑥) of the PK model. For

each trial point (near the boundary) of the 𝑓3 and 𝑘𝑎𝑠3,𝑚𝑎𝑥 space, we based our decision for BE

on the 𝛿𝐶𝑚𝑎𝑥 and 𝛿𝐴𝑈𝐶 ratios from 1000 simulated trials with 1000 subjects per arm each. Each

trial was simulated exactly as the large trial described above, except for the number of subjects.

Software

We coded the structural PK model as a C-language routine callable from workflow R [33]

scripts using the Nimble R package [33–35] to perform Monte Carlo simulations, Bayesian

inference and posterior analyses. The corresponding codes are given in Appendix, section

Computer codes).

Results

Prior model checking

To check our PM model implementation we compared the simulations obtained with it to the

measured paliperidone concentrations reported in [31]. Figure 3 presents simulated

paliperidone plasma concentration measurement percentiles overlaid with the reported data

summaries for several PP1M and PP3Mr dosages. One hundred clinical trials with 130 subjects

were simulated to integrate uncertainty in population parameters values, inter-individual

variability, and residual error. The median, 5th and 95th percentiles of the plasma concentrations

for the 130 subjects were computed in each trial. The blue bands in Figure 3 are bounded by

the 5th and 95th percentiles of the distributions of those three quantiles over the 100 trials.

Despite missing information about the subjects’ covariates, our implementation of the model

captures well the reported PP1M and PP3Mr kinetics, including inter-individual variability and

residual error. Summary ratios of predicted over observed PP3Mr median concentrations values

do not exceed 1.25. The code used for that plot (Population PK model implementation in

Nimble R v8_pop) and further details are given in Appendix, section Prior model checking.

 10

Figure 3: Simulated plasma PP concentrations with the PP1M and PP3Mr model for all

validation plots in the original paper29 for various dosages. Four injections of PP1M (dose

range 50 to 150 mg eq.) are followed by four injections of PP3Mr (doses indicated in each

panel). A total of 100 of clinical trials with 130 subjects were simulated. The solid and dashed

red lines represent the median, 5th and 95th percentiles of the observations as reported in the

original publication; the shaded blue areas represent the 90 % confidence interval of the

median, 5th and 95th percentiles predicted by our implementation of the model.

Abbreviated clinical trial simulation

Figure 4 shows the simulated concentration data, Cmax, and AUC / Δ𝑡 for the simulated

abbreviated clinical trial. Cmax and AUC were computed for the last PP3Mr or PP3Mt dosing

period in which plasma concentration were sampled at weeks 54, 55, 57, 61 and 65, and Δ𝑡 is

corresponding time span (11 weeks). AUC / Δ𝑡 is an average concentration and can be plotted

on the same scale (see also in Appendix, section Abbreviated clinical trial simulation summary

plot).

 11

Figure 4: Simulated plasma PP concentrations, Cmax, and AUC / Δ𝑡 for 25 subjects per arm in

a parallel abbreviated virtual trial when parameter 𝑘𝑎𝑠3,𝑚𝑎𝑥 was increased by 5% from the

value of the reference formulation. The subjects received four injections of PP1M (150 mg

eq.) prior to four injections (525 mg eq.) of PP3Mr (blue) or PP3Mt (red). The grey lines

indicate the injection times.

Cmax and AUC are increased on average in the test formulation (geometric mean ratio

test/reference at 1.38 for both). Such an increase is large compared to the couple of percents

expected with a 5% increase in 𝑘𝑎𝑠3,𝑚𝑎𝑥 (see in Appendix, section Sensitivity analysis of

impact of drug-release parameters on Cmax and AUC). A standard two-one-sided t-test (TOST

test) on either Cmax or AUC did not allow to conclude to bioequivalence, due to the size of the

difference between formulations, a low number of subjects and large inter-individual variability

in Cmax and AUC (51% and 54%, respectively).

Recalibration of the model with the simulated abbreviated clinical trial data

MCMC sampling was used to estimate the joint posterior distribution of 𝛿2 and of the subject-

specific parameters f1,i, f3,i, ka,1,i, 𝑘𝑎𝑟3,50,𝑖, 𝑘𝑎𝑠3,𝑚𝑎𝑥,𝑖, 𝑘𝑎𝑠3,50,𝑖, CLi, Vi, and Qcentral,i (0) for the

two groups of the abbreviated clinical trial (451 parameters altogether). Subject-specific

parameters can be considered as nuisance parameters that were integrated over. Sufficient

convergence was achieved for all parameters (see Appendix for a convergence plot and a

histogram of all 𝑅̂ values in section Convergence of the model recalibration by MCMC

 12

sampling). The posterior distribution of 𝛿2 had a geometric mean of 1.42, a geometric SD of

1.19, and a 95 % credibility interval of 1.0 to 1.97 (see Appendix, section Posterior distribution

summary for parameter 𝜹𝟐). Figure 5 plots its empirical posterior distribution (well

approximated by a normal distribution), together with its prior. The posterior mean of 𝛿2 is

quite high compared to the value (1.05) used for simulating the clinical data because we used a

random abbreviated trial for recalibration in which test subjects happen to behave quite

differently from the reference subjects. Only a much larger trial would be likely to yield more

accurate estimates of differences between test and reference. Note that this is conservative from

a consumer safety point of view.

Figure 5: Posterior distribution of 𝛿2 (histogram and smooth density curve). The dotted line

shows its prior distribution. The posterior is much more precise.

The posterior fit of the recalibrated model to the abbreviated trial data is very good, as shown

in Figure 6 (see also in Appendix, section Observations vs. predictions plot for the recalibration

step).

 13

Figure 6: Abbreviated trial data (circles) and posterior model predicted profiles obtained with

the maximum posterior population PK parameter values for the reference formulation (left

panel) and the test formulation (right panel). Boxplots of Cmax, and AUC / Δ𝑡 are shown for

the data (blue or red) and for the model predictions (grey). Cmax, and AUC / Δ𝑡 are noticeably

higher for the test formulation.

Large virtual trial simulation, BE assessment, type I and II errors analyses

Partly Bayesian data-based workflow

A plot of a simulated large trial plasma concentration data with Cmax, and AUC / Δ𝑡 is shown

on Figure 7 (see also in Appendix, section Large virtual trial trial simulation summary plots).

In this trial, Cmax and AUC are increased on average in the test formulation (geometric mean

ratio test/reference at 1.08 and 1.06, respectively). The difference between 𝑘𝑎𝑠3,𝑚𝑎𝑥 population

means in test and reference formulations, 𝛿2, was set to 1.42. A standard two-one-sided t-test

(TOST test) on either Cmax or AUC concludes to bioequivalence, despite the large inter-

individual variability in Cmax and AUC (57% and 54%, respectively). This is due to the expected

randomness of the virtual trial. That randomness impacts type I and type II errors (and therefore

power) of the analysis (see in Appendix, sections Parallel and Cross-over Trials Power

Calculations (Workflow A) and Type I Error Analysis (Data-based Workflow A)). Power can

be good for a data-based approach in the case of perfect BE (also with good prior information

and study designs more sophisticated than just parallel) but it degrades rapidly if sizeable

differences exist between formulations (even though they are bioequivalent). Type I error was

very low and below the expected 2.5% at each side of the BE interval. This is a side-effect of

the low power of parallel BE trials; close to the BE boundaries no trial will conclude to BE due

to unmeasured inter-subject variability.

 14

Figure 7: Simulated plasma PP concentrations, Cmax, and AUC / Δ𝑡 for 130 subjects per arm in

a parallel virtual trial. The subjects received four injections of PP1M (150 mg eq.) prior to

four injections (525 mg eq.) of PP3Mr (blue) or PP3Mt (red).

Fully Bayesian model-integrated workflow

Workflow B uses Monte Carlo simulations to approximate 𝛿𝐶𝑚𝑎𝑥 and 𝛿𝐴𝑈𝐶 ratios posterior

predictive distribution (see Figure 8). The decision about BE is immediate: the Cmax ratio

exceeds 1.25 with probability 0.354, and the AUC ratio exceeds it with probability 0.378, so

BE should not be declared. The decision about BE differs from the one reached in the data-

based workflow, because the latter relied on only one (albeit large) VBE trial, while here we

“average” decision over 1000 trials.

 15

Figure 8: Histograms of the Bayesian marginal posterior predictive distributions of 𝛿𝐶𝑚𝑎𝑥 and

𝛿𝐴𝑈𝐶 ratios. 𝑃𝐵𝐸
̅̅ ̅̅ ̅ is the probability of non-bioequivalence. The red-shaded areas mark the

standard non- bioequivalence regions (0.8 – 1.25).

Safe space Analysis

For workflow A, Figure 9 (left panel) shows the safe-space of model parameters 𝑓3 and

𝑘𝑎𝑠3,𝑚𝑎𝑥 (proxies for CQA’s), as assessed by large virtual parallel trials. Parameters 𝑓3 and

𝑘𝑎𝑠3,𝑚𝑎𝑥 were the most influential parameters on safe-space definition and they interact, which

is why we show the results in two dimensions (results for all six drug-release model parameters

are given in Appendix, section Full safe-space calculations for the data-based parallel trial

workflow). Given the low power of the TOST test near the BE limits, the safe-space region

limits are fuzzy, and the “safest” space is quite reduced. The safe region is banded due to the

structure of the PP kinetic model. The location of the full parallel trial we simulated for BE

assessment is given by a blue cross. It falls in that region were decisions can be inconsistent.

Safe-space calculations with a large cross-over trial lead to similar results, with a marked

uncertainty, even if reduced compared to the above results (see Appendix, section Safe-space

calculations for the data-based cross-over trial workflow).

The safe-space identified by workflow B is shown on Figure 9 right panel. Since power is no

more a problem in that framework, the region is much better defined and about twice as large,

but still coherent with the previous estimate (actually intermediate between the optimistic and

the pessimistic estimates marked by green and red lines, respectively, in the left panel). A (𝛿1,

𝛿2) pairs with value (1, 1.42) is a pass in this framework because on average it will not lead to

exceedance of the BE limits for Cmax nor AUC.

 16

Figure 9: BE safe-space regions for the absorption parameters 𝑓3 and 𝑘𝑎𝑠3,𝑚𝑎𝑥 of the PP

population PK model. Left: data-based estimate; the green dots indicate parallel PP trials

(1000 trials, 500 subjects per arm) for which BE was declared using the TOST test; the red

dots indicate failing trials; the red lines mark “sure” safe-space; the green lines mark the

limits of surely non-BE space. The blue cross marks the location of the simulated full parallel

trial we simulated for BE assessment. The intermediate areas stems from imperfect statistical

power. Right: the fully Bayesian, model-based regions are much crisper.

Discussion and conclusion

We have presented two Bayesian virtual comparative clinical trial workflows. We demonstrated

them with a realistic case study using an empirical population pharmacokinetic model of

paliperidone palmitate LAI formulations. This work is not intended to be a VBE assessment for

a particular product but a discussion of overarching issues in VBE.

PP long-acting injectable formulations are difficult to compare: between subject variability is

high, and actual comparative trials seem unfeasible at reasonable costs and in reasonable time.

However, the pharmacokinetics of the innovator formulation are well documented and a

population PK model validated with clinical data on that formulation is available; the model

describes the data well and was accepted by the US FDA [36]. Our implementation of it had to

make a few approximations which should not affect our conclusions: we could not account for

unreported covariate measurements; we had no information about subject-level parameters’

covariance; we have uncertainty on the exact PP dose per subject and on previous treatments at

start of the validation trials. That explains why our predicted population variability is a bit

higher that the published one. Inter-occasion variability and modeling error are folded into

 17

residual error, but that should have minimal impact on our results because we simulated parallel

clinical trials. Overall, predictions were within a factor 2 of the summary observations and the

median estimates were within 25% of their observed counterparts reported in [31]. A refined

model could assume that different formulations have different variabilities in release and

absorption. They might be estimable from prior clinical data and abbreviated trial with a

Bayesian population PBPK approach. An alternative would be to assume the possibility of

different variances and assess its impact by sensitivity analysis.

We did not use in vitro evidence about test and reference differences, because this has already

been demonstrated [2], and the model we used has no parameter measurable in vitro.

Mechanistic PBPK models can better integrate prior information and data from in vitro

experiments. However, we do not have such a model for PP LAI suspensions and a simpler

model allows us to focus on the actual differences between workflows A and B.

Both workflows start with a definition of prior distributions and their Bayesian recalibration

with available data, here from an abbreviated trial. In fact, the recalibration step is not needed,

if the prior data already inform the model sufficiently to make it valid for prediction purposes.

The data-based workflow A then assesses a simulated VBE trial with a frequentist test as if it

were real. The particular abbreviated trial used impacts both workflows; the particular large

trial simulated impacts only workflow A. Despites using an abbreviated trial which by chance

over-estimates formulation differences, workflow A declares BE, but again by chance. Safe-

space analysis shows that the simulated large trial falls in the area were BE decisions are quite

random because of low power. The problem is posed of how to define “large” (and still

“realistic”) for a virtual trial. Performing a standard statistical analysis of only one large trial is

also problematic, because the decision hinges entirely on one trial realization. Changing deign

of the large trial from parallel to cross-over increases the power of Workflow A, but it remains

largely affected by uncertainty and is not optimal. Averaging over many very large trials could

be done, but overall, assessing VBe on the basis of a large simulated trial just blurs the

information already obtains up to the abbreviated trial stage. That is because a large simulated

trial does not bring any new information and the subsequent statistical test just add unjustified

randomness to the decision process.

The model-integrated workflow B is more coherent and bases decisions on expected future

rather than on a particular virtual trial simulation. The posterior distribution of formulation

differences is used to calculate posterior predictive distributions of PK measures of drug

absorption. Those give us directly the probability that formulation differences will lead to

 18

unacceptable differences in drug absorption (see Figure 8). VBE assessment then simply

estimates the probability that Cmax or AUC differences exceed predefined limits. This is

essentially equivalent to the current decision rule, with a probability estimated more accurately.

Decision depends on the uncertainty we have on the size of the formulation differences, and

that uncertainty is itself affected by the between-subject variability of measures of rate and

extent of drug absorption (in particular in a parallel trial design). We used model-based

estimates of Cmax and AUC because it would not make sense to re-introduce measurement error

in the process when it has already been accounted for during model calibration. Overall,

workflow B controls consumer risk strictly while minimizing producer risk. The Bayesian

decision rule also rewards data gathering in the first steps of the workflow. Note that the

abbreviated trial could have had any design (the more informative, the better, so a cross-over

design could be used, if possible). The design of the abbreviated trial should be closely

examined, and the use of other metrics of rate and extent (e.g., Cmin and various forms of partial

AUC) could be investigated [37,38].

Concerns about making the right decision with an acceptable error rate do not disappear in

workflow B; However, standard statistical test performances (e.g., type I and II error

assessment) do not apply anymore because there is no need for a large trial and associated

statistical testing. In our case study, if we declare bioequivalence and let the drug go to market,

there is a 35% chance that we release a non-bioequivalent product; if we do not declare

bioequivalence and block the product, there is a 65% chance that the product is in fact

bioequivalent in the population. So, it is a judgement call, but if we adhere to the strict practice

of controlling direct consumer risk at 5% we would reject bioequivalence, with a relatively high

direct producer risk. A deeper problem is that a VBE framework, either data-based or model-

integrated, has very little specific clinical evidence (only an abbreviated trial) available.

However, it benefits from using a validated (i.e., as good as possible) structural model, in vitro

data and published prior information (which can be massive in the case of PBPK models).

Therefore, model structure and correct parameterization are very important for both workflows,

and model verification is of paramount importance in VBE. Modeling error can be introduced

and could have more impact than in a BE assessment [1]. Standard BE trial analyses also make

assumptions (like when using drug plasma concentrations for assessing the local bioequivalence

of a drug targeting the gastro-intestinal-tract), but the issue is more glaring in VBE assessment.

A further complication is that we simulate the abbreviated trial and the “ground truth” of our

case study is laid bare for everyone to compare to the results of workflows A and B. Readers

 19

can immediately see the incoherences between “truth” and “decision”: the data-based workflow

leads to a correct decision if we know the truth, but an incorrect decision given the information

from the abbreviated trial; On the contrary, the model-integrated workflow decision is correct,

given the abbreviated trial, but incorrect given the ground truth. In a “real life VBE assessment”,

we would only have a model, its prior parameter distributions, in vitro data and data from one

abbreviated clinical trial. Ground truth would not be accessible to us and workflow A would

always be at the mercy of incoherent abbreviated trial and large trial simulations. However, we

show that workflow B is more coherent and safer for everyone (producers and consumers). In

a way, in a data-based VBE framework, type I and type II calculations on the virtual large trial

can be a smoke screen giving a false sense of security, as if they were dispelling the only source

of potential error, while they mask the real crux of VBE: having a correct model. So, we should

not conduct VBE assessments like we do for BE assessments and should not judge a VBE

assessment like a BE one.

Safe space analyses average over many simulations and are not affected by a specific trial

simulation. However, they still differ between the two workflows and this may be viewed as

our most important contribution. Safe-space calculations are more precise with workflow B

because producer risk is minimized. Those calculations for workflow B took longer (12 hours

on an 8-core laptop machine) than for workflow A. Preliminary calculations with workflow A

could orient the search for precise safe-space boundaries in a fully Bayesian framework, as we

have shown here.

Overall, we have shown that a Bayesian framework is well-suited for VBE assessment. We

think that virtual comparative trials would benefit in general from the transparency and

improved accuracy it provides. We need to gain more experience with it, in particular on real

case studies with mechanistic, e.g. PBPK models.

References

1. Tsakalozou E, Babiskin A, Zhao L. Physiologically‐based pharmacokinetic modeling to

support bioequivalence and approval of generic products: a case for diclofenac sodium

topical gel, 1%. CPT: Pharmacometrics and Systems Pharmacology. 2021;10:399-411

(PMC8129718).

2. Hsieh N-H, Bois FY, Tsakalozou E, Ni Z, Yoon M, Sun W, et al. A Bayesian population

physiologically based pharmacokinetic absorption modeling approach to support generic

drug development: application to bupropion hydrochloride oral dosage forms. Journal of

Pharmacokinetics and Pharmacodynamics. 2021;48:893-908 (PMC8604781).

 20

3. Sharan S, Fang L, Lukacova V, Chen X, Hooker AC, Karlsson MO. Model‐informed drug

development for long‐acting injectable products: summary of American College of

Clinical Pharmacology symposium. Clinical Pharmacology in Drug Development.

2021;10:220–8.

4. Gong Y, Zhang P, Yoon M, Zhu H, Kohojkar A, Hooker AC, et al. Establishing the

suitability of model‐integrated evidence to demonstrate bioequivalence for long‐acting

injectable and implantable drug products: summary of workshop. CPT: Pharmacometrics

& Systems Pharmacology. 2023;12:624–30.

5. Tozer TN, Bois FY, Hauck WH, Chen M-L, Williams R. Absorption rate vs. exposure:

which is more useful for bioequivalence testing. Pharmaceutical Research. 1996;13:453-

456 (PMID8692741).

6. Zhang F, Jia R, Gao H, Wu X, Liu B, Wang H. In silico modeling and simulation to guide

bioequivalence testing for oral drugs in a virtual population. Clinical Pharmacokinetics.

2021;60:1373–85.

7. Jamei M. Recent advances in development and application of physiologically-based

pharmacokinetic (PBPK) models: a transition from academic curiosity to regulatory

acceptance. Current Pharmacology Reports. 2016;2:161-169 (PMC4856711).

8. Loisios-Konstantinidis I, Hens B, Mitra A, Kim S, Chiann C, Cristofoletti R. Using

physiologically based pharmacokinetic modeling to assess the risks of failing

bioequivalence criteria: a tale of two ibuprofen products. The AAPS Journal.

2020;22:113 (PMID32830289).

9. Lin L, Wong H. Predicting oral drug absorption: mini review on physiologically-based

pharmacokinetic models. Pharmaceutics. 2017;9:41.

10. Upton RN, Mould DR. Basic concepts in population modeling, simulation, and model-

based drug development: part 3 - Introduction to pharmacodynamic modeling methods.

CPT Pharmacometrics and Systems Pharmacology. 2014;3:e88.

11. Goutelle S, Woillard J, Buclin T, Bourguignon L, Yamada W, Csajka C, et al. Parametric

and nonparametric methods in population pharmacokinetics: experts’ discussion on use,

strengths, and limitations. The Journal of Clinical Pharmacology. 2022;62:158–70.

12. Cristofoletti R, Patel N, Dressman JB. Assessment of bioequivalence of weak base

formulations under various dosing conditions using physiologically based

pharmacokinetic simulations in virtual populations. Case examples: ketoconazole and

posaconazole. Journal of Pharmaceutical Sciences. 2017;106:560-569 (PMID27865610).

13. Dubois A, Gsteiger S, Pigeolet E, Mentré F. Bioequivalence tests based on individual

estimates using non-compartmental or model-based analyses: evaluation of estimates of

sample means and type I error for different designs. Pharmaceutical Research.

2010;27:92–104.

14. Loingeville F, Bertrand J, Nguyen TT, Sharan S, Feng K, Sun W, et al. New model–based

bioequivalence statistical approaches for pharmacokinetic studies with sparse sampling.

The AAPS Journal. 2020;22:141 (PMID33125589).

15. Möllenhoff K, Loingeville F, Bertrand J, Nguyen TT, Sharan S, Zhao L, et al. Efficient

model-based bioequivalence testing. Biostatistics. 2022;23:314-327 (PMID32696053).

 21

16. Cristofoletti R, Rowland M, Lesko LJ, Blume H, Rostami-Hodjegan A, Dressman JB.

Past, present, and future of bioequivalence: improving assessment and extrapolation of

therapeutic equivalence for oral drug products. Journal of Pharmaceutical Sciences.

2018;107:2519–30.

17. Bois FY, Hsieh N-H, Gao W, Chiu WA, Reisfeld B. Well-tempered MCMC simulations

for population pharmacokinetic models. Journal of Pharmacokinetics and

Pharmacodynamics. 2020;47:543–59.

18. Wedagedera JR, Afuape A, Chirumamilla SK, Momiji H, Leary R, Dunlavey M, et al.

Population PBPK modeling using parametric and nonparametric methods of the Simcyp

Simulator, and Bayesian samplers. CPT: Pharmacometrics and Systems Pharmacology.

2022;11:755-765 (PMC9197540).

19. Gelman A, Bois FY, Jiang J. Physiological pharmacokinetic analysis using population

modeling and informative prior distributions. Journal of the American Statistical

Association. 1996;91:1400–12.

20. Breslow N. Biostatistics and Bayes. Statistical Science [Internet]. 1990;5. Available from:

https://projecteuclid.org/journals/statistical-science/volume-5/issue-3/Biostatistics-and-

Bayes/10.1214/ss/1177012092.full

21. Fluehler H, Grieve AP, Mandallaz D, Mau J, Moser HA. Bayesian approach to

bioequivalence assessment: an example. Journal of Pharmaceutical Sciences.

1982;72:1178–81.

22. Racine-Poon A, Grieve AP, Flühler H, Smith AFM. A two-stage procedure for

bioequivalence studies. Biometrics. 1987;43:847–56.

23. Peck CC, Campbell G. Bayesian approach to establish bioequivalence: why and how?

Clinical Pharmacology and Therapeutics. 2019;105:301–3.

24. Selwyn MR, Hall NR. On Bayesian methods for bioequivalence. Biometrics.

1984;40:1103.

25. Ghosh P, Rosner GL. A semi-parametric Bayesian approach to average bioequivalence.

Statistics in Medicine. 2007;26:1224–36.

26. Ghosh P, Gönen M. Bayesian modeling of multivariate average bioequivalence. Statistics

in Medicine. 2008;27:2402–19.

27. Schuirmann DJ. A comparison of the two one-sided tests procedure and the power

approach for assessing the equivalence of average bioavailability. Journal of

Pharmacokinetics and Biopharmaceutics. 1987;15:657–80.

28. Ghosh P, Khattree R. Bayesian approach to average bioequivalence using Bayes’ factor.

Journal of Biopharmaceutical Statistics. 2003;13:719–34.

29. Valsecchi P, Barlati S, Garozzo A, Deste G, Nibbio G, Turrina C, et al. Paliperidone

palmitate in short- and long-term treatment of schizophrenia. Rivista di Psichiatria.

2019;54:235–48.

30. Samtani MN, Vermeulen A, Stuyckens K. Population pharmacokinetics of intramuscular

paliperidone palmitate in patients with schizophrenia: a novel once-monthly, long-acting

 22

formulation of an atypical antipsychotic. Clinical Pharmacokinetics. 2009;48:585-600

(PMID19725593).

31. Magnusson MO, Samtani MN, Plan EL, Jonsson EN, Rossenu S, Vermeulen A, et al.

Population pharmacokinetics of a novel once-every 3 months intramuscular formulation

of paliperidone palmitate in patients with schizophrenia. Clinical Pharmacokinetics.

2017;56:421-433 (PMID27743205).

32. Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences (with

discussion). Statistical Science. 1992;7:457–511.

33. R Development Core Team. R: A Language and Environment for Statistical Computing

(R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org)

[Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2013. Available

from: http://www.R-project.org

34. de Valpine P, Turek D, Paciorek CJ, Anderson-Bergman C, Lang DT, Bodik R.

Programming with models: writing statistical algorithms for general model structures

with NIMBLE. Journal of Computational and Graphical Statistics. 2017;26:403–13.

35. NIMBLE Development Team. NIMBLE: MCMC, Particle Filtering, and Programmable

Hierarchical Modeling, https://cran.r-project.org, https://r-nimble.org. doi:

10.5281/zenodo.1211190; 2022.

36. US FDA C for DE and R. Clinical Pharmacology and Biopharmaceutics Review -

Application Number 207946orig1s000 [Internet]. US FDA; 2014 [cited 2023 Jan 21].

Available from:

https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/207946Orig1s000ClinPharmr.

pdf

37. Gajjar P, Dickinson J, Dickinson H, Ruston L, Mistry HB, Patterson C, et al. Determining

bioequivalence possibilities of long acting injectables through population PK modelling.

European Journal of Pharmaceutical Sciences. 2022;179:106296 (PMID36184958).

38. Lionberger RA, Raw AS, Kim SH, Zhang X, Yu LX. Use of partial AUCto demonstrate

bioequivalence of zolpidem tartrate extended release formulations. Pharmaceutical

Research. 2012;29:1110–20.

Acknowledgements

We thank Pauline Bogdanovich for helping with the coding and simulations of the cross-over

design trial analyses. We also thank the Simcyp Library team for helping with literature access.

All funding was internally provided by Certara Inc. Both authors are employees and potential

shareholders of Certara.

 23

Appendix

Contents

Paliperidone palmitate long-acting injectable PK models ... 24

Hierarchical population model ... 25

Prior model checking ... 26

Sensitivity analysis of impact of drug-release parameters on Cmax and AUC 30

Abbreviated clinical trial simulation summary plot ... 31

Convergence of the model recalibration by MCMC sampling .. 32

Posterior distribution summary for parameter 𝜹𝟐 .. 33

Observations vs. predictions plot for the recalibration step ... 33

Large virtual trial trial simulation summary plots .. 34

Parallel trial case ... 34

Cross-over trial case ... 34

Parallel and Cross-over Trials Power Calculations (Workflow A) .. 35

Methods .. 35

Results .. 36

Type I Error Analysis (Data-based Workflow A) .. 38

Methods .. 38

Results .. 39

Full safe-space calculations for the data-based parallel trial workflow 41

Safe-space calculations for the data-based cross-over trial workflow 42

Computer codes .. 42

Structural model C code (v4) for parallel trials .. 42

Structural model C code (v5) for cross-over trials ... 43

Population PK model implementation in Nimble R (v8_pop) ... 45

Statistical model in R (v13) for parallel trials .. 51

Data-based R workflow for parallel trials (v4) ... 55

Statistical model in R (v14) for cross-over trials .. 66

Data-based R workflow for cross-over trials (v5) .. 70

TOST code in R .. 77

Cmax and AUC data-based calculations code in R .. 79

Structural model C code (v6).. 79

Statistical model in R (v16) .. 80

Fully Bayesian workflow in R (v3) .. 84

Fully Bayesian safe-space calculations in R... 86

References .. 90

 24

Paliperidone palmitate long-acting injectable PK models

The PP1M model published by Samtani et al. [1], also used by Magnusson et al. [2], is a two-

compartment model with a depot and a central compartment. The structure of the PP3Mr model

[2] is similar, but with two saturable release processes (described by Hills equations) from the

depot compartment.

The two models were jointly used to model trials in which the starting dose is PP1M (for

equilibration of the patients) followed by PP3Mr injections [2]. The equations are solved

concurrently because PP1M depot may still release drug after the first PP3Mr injection. This is

the approach taken by Magnusson et al. [2]. The model considers the fact that some subjects

had already been treated with PP before entering the trial and had an unknown quantity,

Qcentral (0), of PP in the central compartment. This quantity is therefore an additional model

parameter. Note that this model assumes that all injections go to the same injection site,

replenishing the previous depot.

For the PP1M model, after an intra-muscular injection of a Dose1 of paliperidone palmitate in

the depot compartment at the j-th injection time, tij, a fraction f1 of Dose1 is available for release

from the depot through a zero-order process up to time tl1, at which f1×Dose1 has been released.

After tl1, the remaining of Dose1 is released through a first order process with rate constant ka,1.

The corresponding ordinary differential equations are:

𝜕𝑄𝑑𝑒𝑝𝑜𝑡,1

𝜕𝑡
= −

𝑓1×𝐷𝑜𝑠𝑒1

𝑡𝑙1
, with 𝑄𝑑𝑒𝑝𝑜𝑡,1(𝑡𝑖𝑗) += 𝑓1 × 𝐷𝑜𝑠𝑒1, if 𝑡 < 𝑡𝑖𝑗 + 𝑡𝑙1 (2)

𝜕𝑄𝑑𝑒𝑝𝑜𝑡,1

𝜕𝑡
= −(𝑘𝑎,1 × 𝑄𝑑𝑒𝑝𝑜𝑡,1), with 𝑄𝑑𝑒𝑝𝑜𝑡,1(𝑡𝑖𝑗 + 𝑡𝑙1) += (1 − 𝑓1) × 𝐷𝑜𝑠𝑒1, if 𝑡 ≥ 𝑡𝑖𝑗 + 𝑡𝑙1 (3)

𝜕𝑄𝑐𝑒𝑛𝑡𝑟𝑎𝑙

𝜕𝑡
= −

𝜕𝑄𝑑𝑒𝑝𝑜𝑡,1

𝜕𝑡
− 𝐶𝐿 ×

𝑄𝑐𝑒𝑛𝑡𝑟𝑎𝑙

𝑉
 (4)

where Qdepot,1 and Qcentral are the amounts of drug in the depot and central compartments, CL is

the drug clearance from the central compartment and V is the volume of that compartment.

The structure of the PP3Mr model [2] is similar, but with two saturable release processes (rapid

and slow, described by Hills equations) from the depot compartment.

𝜕𝑄𝑑𝑒𝑝𝑜𝑡,𝑟,3

𝜕𝑡
= −

𝑘𝑎𝑟3,𝑚𝑎𝑥 × 𝑄𝑑𝑒𝑝𝑜𝑡,𝑟,3

𝑘𝑎𝑟3,50+𝑄𝑑𝑒𝑝𝑜𝑡,𝑟,3
, with 𝑄𝑑𝑒𝑝𝑜𝑡,𝑟,3(𝑡𝑖𝑗) += 𝑓3 × 𝐷𝑜𝑠𝑒3 (5)

𝜕𝑄𝑑𝑒𝑝𝑜𝑡,𝑠,3

𝜕𝑡
= −

𝑘𝑎𝑠3,𝑚𝑎𝑥 × 𝑄𝑑𝑒𝑝𝑜𝑡,𝑠,3
𝛾

𝑘𝑎𝑠3,50
𝛾+ 𝑄𝑑𝑒𝑝𝑜𝑡,𝑠,3

𝛾 , with 𝑄𝑑𝑒𝑝𝑜𝑡,𝑠,3(𝑡𝑖𝑗) += (1 − 𝑓3) × 𝐷𝑜𝑠𝑒3 (6)

 25

𝜕𝑄𝑐𝑒𝑛𝑡𝑟𝑎𝑙

𝜕𝑡
= −

𝜕𝑄𝑑𝑒𝑝𝑜𝑡,𝑟,3

𝜕𝑡
−

𝜕𝑄𝑑𝑒𝑝𝑜𝑡,𝑠,3

𝜕𝑡
− 𝐶𝐿 ×

𝑄𝑐𝑒𝑛𝑡𝑟𝑎𝑙

𝑉
 (7)

where Qdepot,r,3, Qdepot,s,3 and Qcentral are the respective amounts of drug in the rapid-release depot,

slow-release depot, and central compartments; 𝑘𝑎𝑟3,𝑚𝑎𝑥, 𝑘𝑎𝑟3,50, 𝑘𝑎𝑠3,𝑚𝑎𝑥, 𝑘𝑎𝑠3,50, and γ are

Hills drug-release and absorption parameters. Dose3 is the dose of paliperidone palmitate at the

j-th injection time; f3 is the fraction of Dose3 going to the fast release depot.

Hierarchical population model

The above structural model was developed, calibrated and checked in a population framework

with large clinical datasets of the innovator’s drug [2]. We use the same framework.

At the subject level, plasma concentration measurements were assumed to be lognormally

distributed with a geometric mean given by the model-predicted subject-specific central

compartment concentration profile and a variance 𝜎2 in log-space. Predicted plasma

concentration values at times 𝑡𝑖,𝑗 were obtained using the structural model, f, described above:

 𝐶𝑖,𝑗 ~ 𝐿𝑁(𝑓(𝜃𝑖 , 𝑡𝑖,𝑗), 𝜎2) (8)

For parameters 𝑘𝑎,1, 𝑘𝑎𝑠3,𝑚𝑎𝑥 , 𝑘𝑎𝑠3,50, 𝑘𝑎𝑟3,50, 𝐶𝐿, and 𝑉, subject-specific parameter values

𝜽𝑖 were assumed to be lognormally distributed around population geometric means 𝝁 with

variances Σ2 in log-space:

 𝜃𝑖 ~ 𝐿𝑁(𝜇, Σ2) (9)

Parameters 𝑘𝑎𝑟3,𝑚𝑎𝑥 and 𝛾 were assumed to be the same for all subjects. In the analyses of

Samtani et al. and Magnusson et al., a multivariate normal distribution was used, but they did

not report the covariances’ values. We assumed that they were negligible and use only the

variances they provided. This does not seem to affect the ability of the model to reproduce the

results of Magnusson et al. (see main text).

For parameters 𝑓1 and 𝑓3, a logit transformation was used and the corresponding logit, 𝜅, was

assumed to be lognormally distributed:

 𝜅𝑖 ~ 𝐿𝑁 (
𝜇

1−𝜇
, Σ2) (10)

 𝜃𝑖 =
1

1+exp (−𝜅)
 (11)

 26

The initial quantity of PP in the central compartment, Qcentral (0), was not reported for the

subjects of the Magnusson et al. trials. We assumed that subject-level values Qcentral,i (0) were

lognormally distributed around a population geometric mean equal to 30 mg eq. of PP, with

geometric SD 1.5. Those values were adjusted manually by us to match the starting PP plasma

concentration levels shown in Figure 3 of the main text. They have a very small impact on the

concentrations during the last dosing period, about one year later. We also have uncertainty on

the exact dose of PP1M for each subject (some unreported dose adjustment was applied to the

last three doses of PP1M to reach the therapeutic window for each subject), but we left that to

be part of residual error (and it is unclear whether this reduced subject variability or not).

To model differences between the reference (PP3Mr) and test (PP3Mt) formulations, we

introduced a vector of relative changes, 𝛿, affecting the geometric means of the six drug-release

and absorption parameters of the model, 𝑓3 (the fraction of PP rapidly released), 𝑘𝑎𝑠3,𝑚𝑎𝑥

(maximum release rate from the slow depot), 𝑘𝑎𝑟3,𝑚𝑎𝑥 (maximum release rate from the rapid

depot), 𝑘𝑎𝑠3,50 (Hills coefficient for the slow-release depot), 𝑘𝑎𝑟3,50 (Hills coefficient for the

rapid depot), and 𝛾 (Hills power), in that order. Each mean (termed 𝜇𝑖,𝑡𝑒𝑠𝑡 in the following

equation) for the test formulation, given the reference formulation value 𝜇𝑖,𝑟𝑒𝑓 and the relative

change 𝛿𝑖, was computed as:

 𝜇𝑖,𝑡𝑒𝑠𝑡 = 𝛿𝑖 × 𝜇𝑖,𝑟𝑒𝑓, with 𝑖 ∈ {1, … , 6} (12)

Those drug-release parameters should be related to product formulation CQA’s such as drug

dissolution, injection medium composition, etc. Magnusson et al. [2] gave estimates for the

parameters’ population geometric means and geometric variances (the latter transformed to

coefficients of variation, CV, in natural space), together with precisions (as CVs) of those

estimates. We used those numbers, appropriately transformed, to define prior distributions for

the model’s parameters (for details, see Structural model C code (v4)). Magnusson et al. also

introduced covariate measurements made on their subjects, but individual covariates values

were not reported in the original model [2]. Therefore, their covariate model was not

implemented here.

Prior model checking

Model checking consisted in comparing the simulations obtained with our model to the

measured paliperidone concentrations of reported in the Magnusson et al. [2]. In the latter,

individual data were not reported, but the median, 5th and 95th percentiles of the observations

 27

are given in their Figure 6. We digitized those plots with the Engauge Digitizer®. The model

was run to ensure that the implementation of the code and of the dosing schedule were adequate.

The dose regimen simulated was as follows: all subjects received an injection of PP1M (dose

range 50–150 mg eq.) every 4 weeks for 4 months; they were then switched to PP3M (dose

range 175–525 mg eq.) with an injection every 12 weeks for one year. Because the subjects

were exposed to paliperidone before the trial, we estimated visually the quantity in plasma at

the start of the trial. For each subject, this quantity (in mg) was sampled from a lognormal

distribution with geometric mean 30 mg and variance 1.5 in log scale.

The model predicts “true” or rather average plasma concentrations of paliperidone in virtual

subjects. It can also simulate measured concentrations (simulated data) by adding a random

error to the predicted average plasma concentration (Figure 10). The distribution of this random

error is given by the published residual error model [2]; it accounts for measurement error,

inter-occasion variability and modeling error. Figure 11 shows simulation results for a small

cohort of 20 subjects. The code used for those plots is given below (Population PK model

implementation in Nimble R (v8_pop)).

Plots of the predicted vs. observed (by Magnusson et al. [2]) median, fifth percentile and 95th

percentile PP3Mr plasma concentrations at the various measurement times are shown in Figure

12. Practically all predictions are within a factor 2 away from the observation. Ratios averaged

over time are given in Table 1. The average ratios for the median concentrations do not exceed

1.25.

Table 1: Average predicted-over-observed median, fifth percentile and 95th percentile PP3Mr

plasma concentration ratios for the different trial doses presented in Magnusson et al. [2].

Dose Median

ratio

5 %tile

ratio

95 %tile

roadio

525 1.05 0.97 1.26

350 1.08 0.99 1.22

263 1.12 1.00 1.16

175 1.24 1.18 1.54

 28

Figure 10: Simulation of plasma PP concentrations for a virtual subject with the joint PP1M

(INVEGA) and PP3M (TRINZA) models [2]. Four injections of PP1M (75 mg eq.) are

followed by four injections of PP3M (263 mg eq.). Parameter values were set to the best

estimates given in the original publication [2]. Red line: average (predicted) plasma

concentration of paliperidone; Blue points: simulated concentration measurements, with

random error.

Figure 11: Simulation plasma PP concentrations for 20 virtual subjects with the PP1M

(INVEGA) and PP3M (TRINZA) models [2]. Four injections of PP1M (75 mg eq.) are

followed by four injections of PP3M (263 mg eq.). Parameter values were set to the best

estimates given in the original publication [2]. Left panel: average (predicted) plasma

concentrations of paliperidone; Right panel: simulated concentration measurements, with

random error.

 29

Figure 12: Predicted vs. observed (by Magnusson et al. [2]) medians (black), fifth percentiles

(blue) and 95th percentiles (green) PP plasma concentrations at the various measurement times

over the four PP3Mr (TRINZA) dosing periods. Parameter values were set to the best

estimates given in the original publication.

We also implemented a version of the model able to simulate cross-over clinical trials with

sequences PP1M, PP3Mr, PP3Mt or PP1M, PP3Mt, PP3Mr (see sections Structural model C

code (v5) for cross-over trials and Statistical model in R (v14) for cross-over trials, below).

Figure 13 shows the simulation of a subject PP plasma levels in a PP1M, PP3Mr, PP3Mt

sequence with this model.

 30

Figure 13: Simulation of plasma PP concentrations for a virtual subject with the cross-over

trial model. Four injections of PP1M (75 mg eq.) are followed by four injections of PP3M

reference formulation (TRINZA®) (263 mg eq.) and four injections of the same dose of a test

PP3M formulation with 𝑓3 (the fraction of PP rapidly released), and 𝑘𝑎𝑠3,𝑚𝑎𝑥 twice as high as

in the reference formulation. Red line: predicted plasma concentration of paliperidone for a

random subject.

Sensitivity analysis of impact of drug-release parameters on Cmax and AUC

We investigated the effect of changing the drug-release and absorption parameters of the PP3Mt

model on the maximum PP plasma concentration (Cmax) and the area under the curve (AUC) in

the last PP3Mt dosing period. Those drug-release parameters of the model are 𝑘𝑎𝑟3,𝑚𝑎𝑥, 𝑘𝑎𝑟3,50,

𝑘𝑎𝑠3,𝑚𝑎𝑥, 𝑘𝑎𝑠3,50, γ, and 𝑓3. The population mean of each drug-release parameter was changed

one-at-a-time by ±5%, i.e., by setting the relative change 𝛿𝑖 to 0.95 and 1.05. The same dosing

regimen and sampling scheme as in the Magnusson et al.’s trial were applied. Only the highest

doses for PP1M (150 mg eq.) and PP3Mt (525 mg eq.) were tested.

An analysis was run for one subject to quantify the impact on Cmax and AUC of modifying by

5% the drug-release parameters. Figure 14 (left two panels) shows that in that case 𝑓3, 𝑘𝑎𝑠3,𝑚𝑎𝑥

and 𝑘𝑎𝑟3,𝑚𝑎𝑥 can impact Cmax up to 2.2%, and that the AUC can be modified up to 3% by 𝑓3

and 𝑘𝑎𝑠3,𝑚𝑎𝑥 . These influential parameters are positively correlated with the two PK

parameters. Cmax and AUC are most sensitive to 𝑘𝑎𝑠3,𝑚𝑎𝑥 which controls PP release from the

slow-release depot. For LAI products, absorption conditions the concentration decay phase

(flip-flop) and we are using partial AUC at steady-state. So, the release rates logically condition

trough concentrations, and therefore Cmax and AUC. Figure 14, right panel, also shows how

 31

these small changes in the parameters’ values affect PP plasma kinetic profile during the last

dosing period (between 53 and 65 weeks, with blood sampling at weeks 54, 55, 57, 61 and 65).

Figure 14: Percentages of change in Cmax (left panel) and AUC (middle panel) when the model

drug-release parameters are decreased (light blue) or increased (dark blue) by 5%. Right

panel: predicted PP plasma concentration when the values of the drug-release parameters are

set to the reference values (red curve) or modified by 5% (blue curves). Four injections of

PP1M (150 mg eq.) were followed by four injections of either PP3Mr or PP3Mt (525 mg eq.).

The plot is for the last dosing period.

Abbreviated clinical trial simulation summary plot

Figure 15: Simulated plasma PP concentrations averages of subjects (25 per arm) for the two

arms of the simulated parallel abbreviated virtual trial when parameter 𝑘𝑎𝑠3,𝑚𝑎𝑥 was increased

by 5% from the value of the reference formulation. The subjects received four injections of

PP1M (150 mg eq.) prior to four injections (525 mg eq.) of PP3Mr (blue) or PP3Mt (red). The

vertical bars span ± 1 SD around the averages. The grey lines mark injection times.

 32

Convergence of the model recalibration by MCMC sampling

Figure 16: Illustration of MCMC sampling convergence. The values of parameter V (for

virtual subject 38) sampled by four simulated Markov chains (different colors) are plotted

against the number of iterations. The chains started from different random values and

converged in probability to the target distribution only after about 1000 iterations. For all

parameters, the first 2500 iterations were discarded to make sure that only values at

convergence were kept.

Figure 17: Histogram (over 451 model parameters) of the logarithms of the MCMC

convergence diagnostic 𝑅̂.

 33

Posterior distribution summary for parameter 𝜹𝟐

Table 2: Summary statistics and convergence diagnostic 𝑅̂ for the marginal posteriors of

log (δ2), actually sampled, and 𝛿2.

Parameter Geometric

Mean

Geometric

SD

2.5 %tile Median 97.5 %tile R̂

log (δ2) 0.349 0.175 0.00 0.352 0.680 1.01

δ2 1.42 1.19 1.00 1.42 1.97 1.01

Observations vs. predictions plot for the recalibration step

Figure 18: Observed PP plasma concentrations vs. corresponding posterior predictions with

the maximum posterior (most likely) population PK parameter values. In blue: reference

formulation group; in red: test group.

 34

Large virtual trial trial simulation summary plots

Parallel trial case

Figure 19: Simulated plasma PP concentrations averages of subjects (130 per arm) for the two

arms of the simulated parallel virtual trial. The difference between 𝑘𝑎𝑠3,𝑚𝑎𝑥 population means

in test and reference formulations, 𝛿2, was set to 1.42 (geometric mean of its posterior

distribution). By chance, this difference does not translate into large differences between test

and reference PP plasma concentrations. The subjects received four injections of PP1M (150

mg eq.) prior to four injections (525 mg eq.) of PP3Mr (blue) or PP3Mt (red). The vertical

bars span ± 1 SD around the averages. The grey lines mark injection times.

Cross-over trial case

A plot of the simulated large cross-over trial plasma concentration data with Cmax, and AUC /

Δ𝑡 is shown on Figure 20. In this trial, Cmax and AUC are increased on average in the test

formulation, as the box plots on the Figure show. The difference between 𝑘𝑎𝑠3,𝑚𝑎𝑥 population

means in test and reference formulations, 𝛿2, was set to 1.42. A standard two-one-sided t-test

(TOST test for cross-over trials) on either Cmax or AUC concludes to bioequivalence, despite

the large inter-individual variability in Cmax and AUC.

 35

Figure 20: Simulated plasma PP concentrations averages of subjects (130 per arm) for the two

arms of the simulated cross-over virtual trial. The difference between 𝑘𝑎𝑠3,𝑚𝑎𝑥 population

means in test and reference formulations, 𝛿2, was set to 1.42 (geometric mean of its posterior

distribution). The subjects received four injections of PP1M (150 mg eq.) prior to four

injections (525 mg eq.) of PP3Mr and then four injections PP3Mt (blue), or the reverse

sequence (PP3Mt then PP3Mr, in red). The grey lines mark injection times.

Parallel and Cross-over Trials Power Calculations (Workflow A)

Methods

Parallel case

Power is the probability P of declaring BE when the test formulation is actually bioequivalent

to the reference formulation. It is equal to 1 minus type II error, which measures producer risk

(the probability of declaring non-BE when the products are in fact bioequivalent. In a simulation

context, if all model parameters distributions for the test formulation model are exactly the same

as for the reference formulation model (in the case of the population PK model we use, all

 36

components of the vector 𝛿 at value 1) then we are certain that test and reference are

bioequivalent, and we can compute power.

If the test and reference formulations are not strictly identical (some components of 𝛿 ≠ 1), we

can still estimate the probability P of declaring BE, but we should not call it “power”, even

though the formulations might still be bioequivalent in terms of Cmax and AUC (if the structural

parameters’ relative differences 𝛿 are small enough).

In any case, the probability of declaring BE for a given value of 𝛿 can be calculated with the

following pseudo-algorithm:

1. Simulate 1000 virtual trials of arm size Nmax with 𝛿 set at the chosen value (we took

Nmax = 500 subjects per arm). Only N virtual subjects among Nmax will be used to

compute power at arm size N (lower or equal to Nmax); For that:

2. Set arm size N to 2.

3. For each one of the 1000 virtual trials, draw randomly (without replacement) N

subjects, assess and record BE for Cmax and AUC using a TOST test; global BE is

declared if BE is declared for both Cmax and AUC.

4. Compute probability P at arm size N as the number of trials that declared BE over the

total number of simulated trials (1000).

5. Increment arm size by 1.

6. Go to step 3 if arm size ≤ Nmax, otherwise go to step 7.

7. End; report probability P for each arm size.

See workflow code v4 below.

Cross-over case

Similar calculations were performed for the case of a large cross-over trial (up to 500 subjects).

Here also one thousand (1000) trials were simulated. See code in section Data-based R

workflow for cross-over trials (v5), below.

Results

Parallel case

The results of the above calculations are shown on Figure 21 for several values of 𝛿2 (the test

over reference ratio of the drug-release parameter 𝑘𝑎𝑠3,𝑚𝑎𝑥). All the other components of 𝛿

were set to 1. In the case of perfect bioequivalence (𝛿2 = 1), 80% power or better is expected

with 120 virtual subjects per arm or more. Power decreases when difference 𝛿2 increases; for

 37

example, with 𝛿2 = 1.2, more than 200 virtual subjects would probably be needed to reach 80%

power.

Table 3 gives a numerical summary of Figure 21. With 130 subjects per arm, power (the

probability of declaring bioequivalence when 𝛿2 = 1.0) is just slightly above 80%.

Figure 21: Estimated probability P of declaring bioequivalence as a function of the number of

subjects per arm in a PP parallel virtual clinical BE trial. The PP population PK model was

used to simulate 1000 virtual trials with different values of 𝛿2 (the test over reference ratio of

the drug-release parameter 𝑘𝑎𝑠3,𝑚𝑎𝑥). BE was assessed for Cmax and AUC with a TOST test.

Table 3: Probability of declaring bioequivalence as a function of the number of subjects per

arm in a PP parallel virtual clinical BE trial and the underlying true value of 𝛿2 . BE was

assessed for Cmax and AUC with a TOST test.

δ2
Number of subjects per arm

100 130 200 300 400 500

1.00 0.68 0.83 0.97 1.00 1.00 1.00

1.05 0.66 0.81 0.95 0.99 1.00 1.00

1.10 0.62 0.77 0.92 0.99 1.00 1.00

1.20 0.48 0.60 0.77 0.90 0.96 0.98

1.40 0.20 0.25 0.34 0.46 0.56 0.64

1.60 0.06 0.06 0.06 0.07 0.08 0.08

 38

Cross-over case

With the same number of subjects per arm (130), a cross-over trial, as expected, is consistently

more powerful, as shown in Figure 22.

Figure 22: Estimated probability P of declaring bioequivalence as a function of the number of

subjects per arm in a PP cross-over virtual clinical BE trial. The PP population PK model was

used to simulate 1000 virtual trials with different values of 𝛿2 (the test over reference ratio of

the drug-release parameter 𝑘𝑎𝑠3,𝑚𝑎𝑥). BE was assessed for Cmax and AUC with a TOST test.

Type I Error Analysis (Data-based Workflow A)

Methods

Type I error is the probability of declaring BE when the test formulation is actually not

bioequivalent to the reference formulation. It measures a consumer risk. In a simulation context,

it is necessary to generate trials with differences between test and reference. This can be done

by sampling vector 𝛿 values in a large range. The trials for which the simulated data-based ratio

of test over reference for Cmax or AUC is outside the range [0.8, 1.25] can be considered as truly

non-bioequivalent, if the trial size is large. We can then use the TOST to get its opinion on BE

and check the fraction of trials for which TOST declares BE when the trial was in fact non-BE.

This fraction is an estimate of type 1 error.

Type I error was therefore calculated with the following pseudo algorithm:

1. Simulate 1000 virtual trials of arm size Nmax (we took Nmax = 500 subjects per arm).

 39

2. For each one of the 1000 virtual trials, sample each element of 𝛿 from a uniform [0.5,2]

distribution. Compute geometric mean ratios test over reference for Cmax and AUC for

the simulated data. Assess and record BE for Cmax and AUC using a TOST test; global

BE is declared if BE is declared for both Cmax and AUC.

3. Probability of declaring BE is the number of trials that declared BE over the total

number of simulated trials (1000). Type I error is the probability of declaring BE when

the Cmax and AUC ratios are outside interval [0.8, 1.25].

Similar calculations were performed in the case of a 2-by-2 cross-over clinical trial (code in

section Data-based R workflow for cross-over trials (v5), below).

Results

Figure 23 shows the probability of declaring BE with TOST as a function of the actual

differences in Cmax and AUC ratios for 1000 virtual trials. We can see that in no case BE was

declared when the raw data showed non-compliant differences in Cmax or AUC. Actually,

outside the [0.9, 1.1] interval, approximately, BE was never declared. This is because TOST

judges BE on the basis of confidence limits, and because there is also a producer risk (power is

not always 100% with a size 1000 per arm trial). More precise type I error calculations would

require computing the fraction of false positive TOST BE in different bins of difference values,

but in any case, near the borders 0.8 and 1.25 those fractions would clearly be null. Overall, we

can conclude that consumer risk is very small.

 40

Figure 23: Estimated probability P of declaring bioequivalence as a function geometric of the

data-based mean ratio test over reference for Cmax (left panel) or AUC (right panel) in 1000 PP

parallel virtual clinical BE trials with 500 subjects per arm. The PP population PK model was

used to simulate each trial with different values of vector 𝛿 (the test over reference ratios for

the population PK model absorption parameters). BE was assessed for Cmax and AUC with a

TOST test.

Figure 24 shows similar results for Cmax in cross-over clinical trials. The increased power of

cross-over trials compared to parallel trials translate in wider BE regions, but no trial declares

bioequivalence beyond the 0.8 and 1.25 mean ratio limits.

Figure 24: Estimated probability P of declaring bioequivalence as a function geometric of the

data-based mean ratio test over reference for Cmax in 1000 PP cross-over virtual clinical BE

trials with 500 subjects per arm. The PP population PK model was used to simulate each trial

with different values of vector 𝛿 (the test over reference ratios for the population PK model

absorption parameters). BE was assessed for Cmax with a TOST test.

 41

Full safe-space calculations for the data-based parallel trial workflow

Figure 25: Data-based BE safe-space regions for the six drug-release parameters of the PP

population PK model. The green dots mark the PP trials (1000 trials, 500 subjects per arm) for

which BE was declared using the TOST test; the red dots indicate failing trials.

 42

Safe-space calculations for the data-based cross-over trial workflow

Figure 26: Data-based BE safe-space regions for the absorption parameters 𝑓3 and 𝑘𝑎𝑠3,𝑚𝑎𝑥 of

the PP population PK model in a cross-over trial. Left: data-based estimate; the green dots

indicate PP trials (1000 trials, 500 subjects per arm) for which BE was declared using the

TOST test; the red dots indicate failing trials; the red lines mark “sure” safe-space; the green

lines mark the limits of surely non-BE space. The blue cross marks the location of the

simulated full parallel trial we simulated for BE assessment. The intermediate areas stems

from imperfect statistical power.

Computer codes

Structural model C code (v4) for parallel trials

/* compile within R with system("R CMD SHLIB PP3M_model.c")

 V04

*/

#include <R.h>

#define Nparms 12

static double parms[Nparms];

/* A trick to keep up with the parameters */

#define Dose_PP1M parms[0]

#define F2 parms[1]

#define Duration_2 parms[2]

#define ka_PP1M parms[3]

#define ka1_max parms[4]

 43

#define ka3_max parms[5]

#define kamt1_50 parms[6]

#define kamt3_50 parms[7]

#define gamma parms[8]

#define CL parms[9]

#define V parms[10]

#define PP3M_start parms[11]

/* initializer: same name as the dll (without extension) */

void PP13M_model_v04(void (* odeparms)(int *, double *))

{

 int N = Nparms;

 odeparms(&N, parms);

}

/* Derivatives */

void derivs(int *neq, double *t, double *y, double *ydot, double *yout, int*ip)

{

 double Ke;

 // State variables

 // Q_depot_s1 = y[0] # quantity (mg) in PP1M slow absorption depot

 // Q_depot_s3 = y[1] # quantity (mg) in PP3M slow absorption depot

 // Q_depot_r3 = y[2] # quantity (mg) in PP3M fast absorption depot

 // Q_central = y[3] # quantity (mg) in central compartment

 // ODEs

 // Quantity in PP1M depot slow absorption

 ydot[0] = -ka_PP1M * y[0];

 // Quantities in PP3M depots

 if (*t < PP3M_start) { // use PP1M model, PP3M model differentials are null

 // Quantity in PP3M depot slow absorption

 ydot[1] = 0;

 // Quantity in PP3M depot rapid absorption

 ydot[2] = 0;

 }

 else { // use PP1M and PP3M models concurrently

 // Quantity in PP3M depot slow absorption

 ydot[1] = -ka1_max * pow(y[1], gamma) /

 (pow(kamt1_50, gamma) + pow(y[1], gamma));

 // Quantity in PP3M depot rapid absorption

 ydot[2] = -ka3_max * y[2] / (kamt3_50 + y[2]);

 }

 // Quantity in central compartment

 // clearance from central

 Ke = CL / V;

 // hard-code the zero-order inputs after PP1M injections

 if (((0 <= *t) && (*t < 319)) || ((672 <= *t) && (*t < 991)) ||

 ((1344 <= *t) && (*t < 1663)) || ((2016 <= *t) && (*t < 2335))) {

 ydot[3] = F2 * Dose_PP1M / Duration_2

 -(ydot[0] + ydot[1] + ydot[2]) - Ke * y[3];

 }

 else {

 ydot[3] = -(ydot[0] + ydot[1] + ydot[2]) - Ke * y[3];

 }

}

/* End */

Structural model C code (v5) for cross-over trials

/* compile within R with system("R CMD SHLIB PP3M_model.c")

 V05: three formulations dosing.

*/

#include <R.h>

#define Nparms 13

 44

static double parms[Nparms];

/* Keep up with the parameters */

#define Dose_PP1M parms[0]

#define F2 parms[1]

#define Duration_2 parms[2]

#define ka_PP1M parms[3]

#define ka1_max parms[4]

#define ka3_max parms[5]

#define kamt1_50 parms[6]

#define kamt3_50 parms[7]

#define gamma parms[8]

#define CL parms[9]

#define V parms[10]

#define PP3M_start parms[11]

#define ka1_max_T parms[12]

/* initializer: same name as the dll (without extension) */

void PP13M_model_v05(void (* odeparms)(int *, double *))

{

 int N = Nparms;

 odeparms(&N, parms);

}

/* Derivatives */

void derivs(int *neq, double *t, double *y, double *ydot, double *yout, int*ip)

{

 double Ke;

 // State variables

 // Q_depot_s1 = y[0] # quantity (mg) in PP1M slow absorption depot

 // Q_depot_s3 = y[1] # quantity (mg) in PP3M slow absorption depot

 // Q_depot_r3 = y[2] # quantity (mg) in PP3M fast absorption depot

 // Q_central = y[3] # quantity (mg) in central compartment

 // ODEs

 // Quantity in PP1M depot slow absorption

 ydot[0] = -ka_PP1M * y[0];

 // Quantities in PP3M depots

 if (*t < PP3M_start) { // use PP1M model, PP3M model differentials are null

 // Quantity in PP3M depot slow absorption

 ydot[1] = 0;

 // Quantity in PP3M depot rapid absorption

 ydot[2] = 0;

 }

 else { // use PP1M and PP3M models concurrently

 // Quantity in PP3M depot slow absorption

 if (*t < 10920) { // 10920 = 65*24*7

 ydot[1] = -ka1_max * pow(y[1], gamma) /

 (pow(kamt1_50, gamma) + pow(y[1], gamma));

 } else {

 ydot[1] = -ka1_max_T * pow(y[1], gamma) /

 (pow(kamt1_50, gamma) + pow(y[1], gamma));

 }

 // Quantity in PP3M depot rapid absorption

 ydot[2] = -ka3_max * y[2] / (kamt3_50 + y[2]);

 }

 // Quantity in central compartment

 // clearance from central

 Ke = CL / V;

 // hard-code the zero-order inputs after PP1M injections

 if (((0 <= *t) && (*t < 319)) || ((672 <= *t) && (*t < 991)) ||

 ((1344 <= *t) && (*t < 1663)) || ((2016 <= *t) && (*t < 2335))) {

 ydot[3] = F2 * Dose_PP1M / Duration_2

 -(ydot[0] + ydot[1] + ydot[2]) - Ke * y[3];

 45

 }

 else {

 ydot[3] = -(ydot[0] + ydot[1] + ydot[2]) - Ke * y[3];

 }

}

/* End */

Population PK model implementation in Nimble R (v8_pop)

v8_pop: Parameters of the population distributions are distributed.

Modify the PK model (v04).

library(nimble)

compile C ODE model for deSolve

Cmodel.name = "PP13M_model_v04"

dyn.load(paste(Cmodel.name, .Platform$dynlib.ext, sep = ""))

ODE solver: performs a simulation, given initial state values,

output times and time-constant, scaled, parameters

R_ode = function(y, times, parms) {

 ## params = c(1:Dose_PP1M, 2:F2, 3:Duration_2, 4:ka_PP1M,

 ## 5:ka1_max, 6:ka3_max, 7:kamt1_50, 8:kamt3_50, 9:gamma,

 ## 10:CL, 11:V, 12:PP3M_start, 13:F3, 14:Dose_PP3M,

 ## 15:Q_cen_0)

 ## The last two parameters should not be passed to the ODE solver, they are

 ## used here only.

 ## State variables (y) initial conditions

 y = c("Q_depot_s1" = 0,

 "Q_depot_s3" = 0,

 "Q_depot_r3" = 0,

 "Q_central" = parms[15])

 ## The doses are specified as "events" affecting the state variables

 ## dosing times (hours)

 dose_times = c(c(0, 4, 8, 12) + parms[3] / (24 * 7),

 17, 29, 41, 53) * 24 * 7

 N_doses = length(dose_times)

 ## changing state variables at dosing times

 vars = c("Q_depot_s1", "Q_depot_s3", "Q_depot_r3")

 v1 = (1 - parms[2]) * parms[1] # value applied to Q_depot_s1

 v2 = (1 - parms[13]) * parms[14] # value applied to Q_depot_s3

 v3 = parms[13] * parms[14] # value applied to Q_depot_r3

 ## Form the events table

 eventdat = data.frame(var = c(rep("Q_depot_s1", 4), rep(vars[2:3], 4)),

 time = c(dose_times[1:4], rep(dose_times[5:8], each=2)),

 value = c(rep(v1, 4),

 rep(c(v2, v3), N_doses - 4)),

 method = "add")

 ## Integrate numerically, with outputs at specified times

 result = deSolve::ode(y, times, func="derivs", parms=parms[1:12],

 rtol=1e-6, atol=1e-6, dllname="PP13M_model_v04",

 initfunc = "PP13M_model_v04",

 events=list(data=eventdat))

 result = result[which(result[,1] %in% times),] # weed out extra times

 if (dim(result)[[1]] < length(times)) { ## integration failed

 return(rep(1E-30, length(times)))

 } else {

 ## compute central concentration, convert from mg/L to ng/ml, return

 return(result[,5] * 1E3 / parms[11])

 }

} # end of R_ode model solver

Nimble function with nimbleRcall. This is just a wrapper

nimble_ode = nimbleRcall(

 prototype = function(

 46

 y = double(1), # vector

 times = double(1), # vector

 parms = double(1) # vector

) {},

 returnType = double(1), # outcome is a vector

 Rfun = 'R_ode')

Hierarchical core Nimble (BUGS) code

myNimbleCode = nimbleCode({ ## BUGS (extended) code

 ## population mean (with prior if not fixed)

 F2t_m <- logit(0.168) # From Samtani paper Table III.

 # from online resource 3 Magnusson, F2 = 0.153

 F3t_m <- logit(0.209) # transformed F3

 ka1_pp1m_mv <- log(1 + 0.02^2)

 ka1_pp1m_m ~ dlnorm(meanlog=log(4.88E-4), varlog=ka1_pp1m_mv) # (1/h)

 ka1_max_m ~ dnorm(mean = 0.0904, sd = 0.0696 * 0.0904) # (mg/h)

 ##ka1_max_m <- 0.0904 # (mg/h)

 ka3_max_m ~ dnorm(mean = 0.164, sd = 0.0465 * 0.164) # (mg/h)

 kamt1_50_m ~ dnorm(mean = 120, sd = 0.0383 * 120) # (mg)

 kamt3_50_m ~ dnorm(mean = 21.4, sd = 0.0952 * 21.4) # (mg)

 gamma_m ~ dnorm(mean = 1.44, sd = 0.0165 * 1.44) # unitless

 CL_m ~ dnorm(mean = 3.84, sd = 0.0216 * 3.84) # (1/hr)

 V_m <- 1960 # (L)

 ##

 ## pop (inter-individual) SDs (with prior if not fixed)

 if (SamEq3) { # SD or CV applies to F2, so: detransform

 ## F2_sd

 omega2 <- 0.064 / (0.168 * (1 - 0.168)) # Samtani eq. 3

 F2_sd ~ dnorm(mean = omega2, sd = 0.02*omega2)

 F2_v <- F2_sd^2

 ## F3_v

 F3_v <- (0.854 * 0.209 / (0.209 * (1 - 0.209)))^2 # Samtani eq. 3

 } else { # SD or CV applies to F2 transformed

 F2_sd ~ dnorm(mean = 0.064, sd = 0.02*0.064)

 F3_v <- (abs(F3t_m) * 0.854)^2

 }

 ##

 ka1_pp1m_cv ~ dnorm(mean = 0.590, sd = 0.03*0.59)

 ka1_pp1m_v <- log(1 + ka1_pp1m_cv^2)

 ##

 ka1_max_cv ~ dnorm(mean = 0.827, sd = 0.0501 * 0.827)

 ka1_max_v <- log(1 + ka1_max_cv^2)

 ##

 ka3_max_v <- 0

 ##

 kamt1_50_cv ~ dnorm(mean = 0.500, sd = 0.101 * 0.500)

 kamt1_50_v <- log(1 + kamt1_50_cv^2)

 ##

 kamt3_50_cv ~ dnorm(mean = 0.867, sd = 0.142 * 0.867)

 kamt3_50_v <- log(1 + kamt3_50_cv^2)

 ##

 gamma_v <- 0

 ##

 CL_cv_v <- log(1 + 0.0317^2)

 CL_cv ~ dlnorm(meanlog=log(0.357), varlog=CL_cv_v)

 CL_v <- log(1 + CL_cv^2)

 ##

 V_v <- log(1 + 0.628^2)

 ##

 ## measurement error variance in log for plasma concentration, ng/ml

 ## if we want uncertainty on the residual error we should use:

 res_cv_v <- log(1 + 0.321^2)

 res_cv ~ dlnorm(meanlog=log(0.306), varlog=res_cv_v)

 sigma2 <- log(1 + res_cv^2)

 ##

 ## for each subject

 for (i in 1:nsubjects) {

 47

 tmp2[i] ~ dnorm(mean = F2t_m, var = F2_v)

 F2[i] <- ilogit(tmp2[i])

 tmp3[i] ~ dnorm(mean = F3t_m, var = F3_v)

 F3[i] <- ilogit(tmp3[i])

 ka_PP1M[i] ~ dlnorm(meanlog=log(ka1_pp1m_m), varlog=ka1_pp1m_v) # (1/hr)

 ka1_max[i] ~ dlnorm(meanlog=log(ka1_max_m), varlog=ka1_max_v) # (mg/h)

 ka3_max[i] ~ dlnorm(meanlog=log(ka3_max_m), varlog=ka3_max_v) # (mg/h)

 kamt1_50[i] ~ dlnorm(meanlog=log(kamt1_50_m), varlog=kamt1_50_v) # (mg)

 kamt3_50[i] ~ dlnorm(meanlog=log(kamt3_50_m), varlog=kamt3_50_v) # (mg)

 gamma[i] ~ dlnorm(meanlog=log(gamma_m), varlog=gamma_v) # no unit

 CL[i] ~ dlnorm(meanlog=log(CL_m), varlog=CL_v) # (1/hr)

 V[i] ~ dlnorm(meanlog=log(V_m), varlog=V_v) # (L)

 ##

 Q_cen_0[i] ~ dlnorm(meanlog=log(Q_cen_0_mean), sdlog = log(Q_cen_0_sd))

 ##

 ## likelihood for concentration measurements

 ## Call the ODE solver to get predictions for each subject

 ## predictions are plasma concentrations, in ng/ml

 Conc[i, 1:ntimes] <- nimble_ode(y[1:nstates], times[1:ntimes],

 c(Dose_PP1M, F2[i], Duration_2,

 ka_PP1M[i], ka1_max[i], ka3_max[i],

 kamt1_50[i], kamt3_50[i], gamma[i],

 CL[i], V[i], PP3M_start, F3[i],

 Dose_PP3M, Q_cen_0[i]))

 ## data likelihood

 for (j in 1:ntimes) {

 C_plasma_obs[i,j] ~ dlnorm(meanlog=log(Conc[i,j]), varlog=sigma2)

 }

 }

}) # End myNimbleCode

Build and compile the model for predictions with various PP1M doses

show the difference between data and mean

N = 1 # number of trials

nsubjects = 1 # number of subjects

times = seq(0, 65, 2) * 7 * 24 # up to 65 weeks, in hours

dose_pp1m = c(150, 100, 75, 50)

dose_pp3m = c(525, 350, 263, 175)

Q_cen_0_mean = 30 # geo mean

Q_cen_0_sd = 1.5 # geo SD

data = list()

inits = list(Q_cen_0_mean = Q_cen_0_mean, # (mg)

 Q_cen_0_sd = Q_cen_0_sd, # (mg)

 Dose_PP1M = dose_pp1m[1], # (mg)

 Dose_PP3M = dose_pp3m[1]) # (mg)

constants = list(nsubjects = nsubjects,

 SamEq3 = 1, # Boolean

 Duration_2 = 319, # (h)

 PP3M_start = 17*7*24, # (h)

 ntimes = length(times),

 times = times,

 nstates = 4)

Rmodel = nimbleModel(myNimbleCode, constants, data, inits)

Cmodel = compileNimble(Rmodel, showCompilerOutput=F)

Node.names = Cmodel$getNodeNames(includeData=T)

Cmodel$simulate(nodes = Node.names)

res = values(Cmodel, Node.names)

par(mfrow=c(2,2), mar=c(4,4,3,1))

plot.times = times/(24*7)

for (j in 1:length(dose_pp3m)) { # for each dose of PP3M

 Cmodel$Q_cen_0_mean = Q_cen_0_mean

 48

 Cmodel$Q_cen_0_sd = Q_cen_0_sd

 Cmodel$Dose_PP1M = dose_pp1m[j]

 Cmodel$Dose_PP3M = dose_pp3m[j]

 Cmodel$simulate(nodes=Node.names)

 sub.mean_vector = values(Cmodel, "Conc")

 sub.data_vector = values(Cmodel, "C_plasma_obs")

 sub.mean = matrix(sub.mean_vector, nrow=nsubjects, byrow = F)

 sub.data = matrix(sub.data_vector, nrow=nsubjects, byrow = F)

 ## plot individual means

 plot (plot.times, times, type="n", col="red", lwd=2, log="y",

 las=1, xlab="Time (week)", ylab="Plasma concentration (ng/ml)",

 main=paste("Study 3011. PP3M", dose_pp3m[j] ,"mg eq."),

 xlim=c(0, 66), ylim=c(1, 200),

 yaxp=c(1, 100, 1)) # ylim should be adapted!!!!

 for (i in 1:nsubjects) {

 lines(plot.times, sub.data[i,], type ="p", col="blue",lwd=1)

 lines(plot.times, sub.mean[i,], type ="l", col="red", lwd=2)

 }

 abline(v=c(0, 14, 17, 29, 41, 53))

}

Build and compile the model for predictions with various PP1M doses

small clinical study

N = 1 # number of trials

nsubjects = 20 # number of subjects

times = seq(0, 65, 2) * 7 * 24 # up to 65 weeks, in hours

dose_pp1m = c(150, 100, 75, 50)

dose_pp3m = c(525, 350, 263, 175)

Q_cen_0_mean = 30 # geo mean

Q_cen_0_sd = 1.5 # geo SD

data = list()

inits = list(Q_cen_0_mean = Q_cen_0_mean, # (mg)

 Q_cen_0_sd = Q_cen_0_sd, # (mg)

 Dose_PP1M = dose_pp1m[1], # (mg)

 Dose_PP3M = dose_pp3m[1]) # (mg)

constants = list(nsubjects = nsubjects,

 SamEq3 = 1, # Boolean

 Duration_2 = 319, # (h)

 PP3M_start = 17*7*24, # (h)

 ntimes = length(times),

 times = times,

 nstates = 4)

Rmodel = nimbleModel(myNimbleCode, constants, data, inits)

Cmodel = compileNimble(Rmodel, showCompilerOutput=F)

Node.names = Cmodel$getNodeNames(includeData=T)

Cmodel$simulate(nodes = Node.names)

res = values(Cmodel, Node.names)

par(mfrow=c(2,2), mar=c(4,4,3,1))

plot.times = times/(24*7)

for (j in 1:length(dose_pp3m)) { # for each dose of PP3M

 Cmodel$Q_cen_0_mean = Q_cen_0_mean

 Cmodel$Q_cen_0_sd = Q_cen_0_sd

 Cmodel$Dose_PP1M = dose_pp1m[j]

 Cmodel$Dose_PP3M = dose_pp3m[j]

 Cmodel$simulate(nodes=Node.names)

 sub.mean_vector = values(Cmodel, "Conc")

 sub.data_vector = values(Cmodel, "C_plasma_obs")

 49

 sub.mean = matrix(sub.mean_vector, nrow=nsubjects, byrow = F)

 sub.data = matrix(sub.data_vector, nrow=nsubjects, byrow = F)

 plot (plot.times, times, type="n", col="red", lwd=2, log="y",

 las=1, xlab="Time (week)", ylab="Plasma concentration (ng/ml)",

 main=paste("Study 3011. PP3M", dose_pp3m[j] ,"mg eq."),

 xlim=c(0, 66), ylim=c(1, 200),

 yaxp=c(1, 100, 1)) # ylim should be adapted!!!!

 for (i in 1:nsubjects) {

 # plot individual mean

 #lines(plot.times, sub.mean[i,], type ="l", col="lightskyblue2",lwd=0.5)

 ## plot individual data

 lines(plot.times, sub.data[i,], type ="p", col="lightskyblue2",lwd=0.5)

 }

 abline(v=c(0, 14, 17, 29, 41, 53))

}

Build and compile the model for predictions with various PP1M doses

N =100 and nsbjects =130

nsubjects = 130 # number of subjects

times = seq(0, 65, 1) * 7 * 24 # up to 65 weeks, in hours

times = c(0, seq(0, 65*7*24, 7*6)+12) ## (hours)

dose_pp1m = c(150, 100, 75, 50)

dose_pp3m = c(525, 350, 263, 175)

Q_cen_0_mean = 30 # geo mean

Q_cen_0_sd = 1.5 # geo SD

data = list()

inits = list(Q_cen_0_mean = Q_cen_0_mean, # (mg)

 Q_cen_0_sd = Q_cen_0_sd, # (mg)

 Dose_PP1M = dose_pp1m[1], # (mg)

 Dose_PP3M = dose_pp3m[1]) # (mg)

constants = list(nsubjects = nsubjects,

 SamEq3 = 1, # Boolean

 Duration_2 = 319, # (h)

 PP3M_start = 17*7*24, # (h)

 ntimes = length(times),

 times = times,

 nstates = 4)

Rmodel = nimbleModel(myNimbleCode, constants, data, inits)

Cmodel = compileNimble(Rmodel, showCompilerOutput=F)

Node.names = Cmodel$getNodeNames(includeData=T)

Cmodel$simulate(nodes = Node.names)

res = values(Cmodel, Node.names)

Magnus1 = read.csv("Magnusson_Figure6_Panel1.csv")

Magnus2 = read.csv("Magnusson_Figure6_Panel2.csv")

Magnus3 = read.csv("Magnusson_Figure6_Panel3.csv")

Magnus4 = read.csv("Magnusson_Figure6_Panel4.csv")

N = 100 # number of trials

par(mfrow=c(2,2), mar=c(4,4,3,1))

plot.times = times/(24*7)

for (j in 1:length(dose_pp3m)) { # for each dose of PP3M

 Cmodel$Q_cen_0_mean = Q_cen_0_mean

 Cmodel$Q_cen_0_sd = Q_cen_0_sd

 Cmodel$Dose_PP1M = dose_pp1m[j]

 Cmodel$Dose_PP3M = dose_pp3m[j]

 ## Monte Carlo simulations for mean and data predictions for random subjects

 quant.mean.p5.all = matrix(0, nrow=N,

 ncol=length(values(Cmodel, "Conc"))/nsubjects)

 50

 quant.mean.p50.all = matrix(0, nrow=N,

 ncol=length(values(Cmodel, "Conc"))/nsubjects)

 quant.mean.p95.all = matrix(0, nrow=N,

 ncol=length(values(Cmodel, "Conc"))/nsubjects)

 quant.data.p5.all = matrix(0, nrow=N,

 ncol=length(values(Cmodel,

 "C_plasma_obs"))/nsubjects)

 quant.data.p50.all = matrix(0, nrow=N,

 ncol=length(values(Cmodel,

 "C_plasma_obs"))/nsubjects)

 quant.data.p95.all = matrix(0, nrow=N,

 ncol=length(values(Cmodel,

 "C_plasma_obs"))/nsubjects)

 for (i in 1:N) { # for each trial

 Cmodel$simulate(nodes=Node.names)

 sub.mean_vector = values(Cmodel, "Conc")

 sub.data_vector = values(Cmodel, "C_plasma_obs")

 sub.mean = matrix(sub.mean_vector, nrow=nsubjects, byrow = F)

 sub.data = matrix(sub.data_vector, nrow=nsubjects, byrow = F)

 quant.mean = apply(sub.mean, MAR=2, FUN=quantile, probs=c(0.05, 0.5, 0.95))

 quant.data = apply(sub.data, MAR=2, FUN=quantile, probs=c(0.05, 0.5, 0.95))

 quant.mean.p5.all[i,] = quant.mean[1,]

 quant.mean.p50.all[i,] = quant.mean[2,]

 quant.mean.p95.all[i,] = quant.mean[3,]

 quant.data.p5.all[i,] = quant.data[1,]

 quant.data.p50.all[i,] = quant.data[2,]

 quant.data.p95.all[i,] = quant.data[3,]

 }

 ## plot individual means

 plot (plot.times, times, type="n", col="red", lwd=2, log="y",

 las=1, xlab="Time (week)", ylab="Plasma concentration (ng/ml)",

 main=paste("Study 3011. PP3M", dose_pp3m[j] ,"mg eq."),

 xlim=c(0, 66), ylim=c(1, 200),

 yaxp=c(1, 100, 1)) # ylim should be adapted!!!!

 quant.p5 = apply(quant.data.p5.all, MAR=2, FUN=quantile, probs=c(0.05, 0.95))

 lines(plot.times, quant.p5[1,], col="lightskyblue2")

 lines(plot.times, quant.p5[2,], col="lightskyblue2")

 polygon(c(plot.times,rev(plot.times)),

 c(quant.p5[2,],rev(quant.p5[1,])),

 col="lightskyblue2", border = "lightskyblue2")

 quant.p50 = apply(quant.data.p50.all, MAR=2, FUN=quantile,

 probs=c(0.05, 0.95))

 lines(plot.times, quant.p50[1,], col="lightskyblue2")

 lines(plot.times, quant.p50[2,], col="lightskyblue2")

 polygon(c(plot.times,rev(plot.times)),

 c(quant.p50[2,],rev(quant.p50[1,])),

 col="lightskyblue2", border = "lightskyblue2")

 quant.p95 = apply(quant.data.p95.all, MAR=2, FUN=quantile,

 probs=c(0.05, 0.95))

 lines(plot.times, quant.p95[1,], col="lightskyblue2")

 lines(plot.times, quant.p95[2,], col="lightskyblue2")

 polygon(c(plot.times,rev(plot.times)),

 c(quant.p95[2,],rev(quant.p95[1,])),

 col="lightskyblue2", border = "lightskyblue2")

 if (j == 1) {

 lines(Magnus1$Time, Magnus1$P50, col="red", lwd=2)

 lines(Magnus1$Time, Magnus1$P5, col="red", lty=2)

 51

 lines(Magnus1$Time, Magnus1$P95, col="red", lty=2)

 }

 if (j == 2) {

 lines(Magnus2$Time, Magnus2$P50, col="red", lwd=2)

 lines(Magnus2$Time, Magnus2$P5, col="red", lty=2)

 lines(Magnus2$Time, Magnus2$P95, col="red", lty=2)

 }

 if (j == 3) {

 lines(Magnus3$Time, Magnus3$P50, col="red", lwd=2)

 lines(Magnus3$Time, Magnus3$P5, col="red", lty=2)

 lines(Magnus3$Time, Magnus3$P95, col="red", lty=2)

 }

 if (j == 4) {

 lines(Magnus4$Time, Magnus4$P50, col="red", lwd=2)

 lines(Magnus4$Time, Magnus4$P5, col="red", lty=2)

 lines(Magnus4$Time, Magnus4$P95, col="red", lty=2)

 }

 abline(v=c(0, 14, 17, 29, 41, 53))

}

End.

Statistical model in R (v13) for parallel trials

R/Nimble code for PP1M/PP3M population model, from Magnusson

v13

library(nimble)

compile C ODE model for deSolve

Cmodel.name = "PP13M_model_v04"

system(paste0("R CMD SHLIB ", Cmodel.name, ".c"))

dyn.load(paste(Cmodel.name, .Platform$dynlib.ext, sep = ""))

===

Define the model

ODE solver: performs a simulation, given initial state values,

output times and time-constant, scaled, parameters

This is an R function

R_ode = function(y, times, parms) {

 ## parms: 1:Dose_PP1M, 2:F2, 3:Duration_2, 4:ka_PP1M,

 ## 5:ka1_max, 6:ka3_max, 7:kamt1_50, 8:kamt3_50,

 ## 9:gamma, 10:CL, 11:V, 12:PP3M_start,

 ## 13:F3, 14:Dose_PP3M, 15:Q_cen_0

 ## The last two parameters should not be passed to the ODE solver, they are

 ## used here only.

 ## State variables (y) initial conditions

 y = c("Q_depot_s1" = 0,

 "Q_depot_s3" = 0,

 "Q_depot_r3" = 0,

 "Q_central" = parms[15])

 ## The doses are specified as "events" affecting the state variables

 ## dosing times (hours)

 dose_times = c(c(0, 4, 8, 12) + parms[3] / (24 * 7),

 17, 29, 41, 53) * 24 * 7

 N_doses = length(dose_times)

 ## changing state variables at dosing times

 vars = c("Q_depot_s1", "Q_depot_s3", "Q_depot_r3")

 v1 = (1 - parms[2]) * parms[1] # value applied to Q_depot_s1

 v2 = (1 - parms[13]) * parms[14] # value applied to Q_depot_s3

 v3 = parms[13] * parms[14] # value applied to Q_depot_r3

 ## Form the events table

 eventdat = data.frame(var = c(rep("Q_depot_s1", 4), rep(vars[2:3], 4)),

 time = c(dose_times[1:4], rep(dose_times[5:8], each=2)),

 value = c(rep(v1, 4),

 52

 rep(c(v2, v3), N_doses - 4)),

 method = "add")

 ## Integrate numerically, with outputs at specified times

 result = deSolve::lsode(y, c(0,times), func="derivs", parms=parms[1:12],

 rtol=1e-6, atol=1e-6, dllname="PP13M_model_v04",

 initfunc = "PP13M_model_v04",

 events=list(data=eventdat))

 result = result[which(result[,1] %in% times),] # weed out extra times

 if (dim(result)[[1]] < length(times)) { ## integration failed

 return(rep(1E-30, length(times)))

 } else {

 ## compute central concentration, convert from mg/L to ng/ml, return

 return(result[,5] * 1E3 / parms[11])

 }

} # end of R_ode model solver

Nimble function with nimbleRcall. This is just a wrapper.

nimble_ode = nimbleRcall(

 prototype = function(

 y = double(1), # vector

 times = double(1), # vector

 parms = double(1) # vector

) {},

 returnType = double(1), # outcome is a vector

 Rfun = 'R_ode'

)

Hierarchical core Nimble (BUGS) code

myNimbleCode = nimbleCode({ ## BUGS (extended) code

 ##

 ## REFERENCE group population mean (with prior if not fixed)

 F2t_m <- logit(0.168) # From Samtani paper Table III.

 F3t_m <- logit(0.209) # transformed F3

 ka1_pp1m_mv <- log(1 + 0.02^2)

 ka1_pp1m_m ~ dlnorm(meanlog=log(4.88E-4), varlog=ka1_pp1m_mv) # (1/h)

 ka1_max_mv <- log(1 + 0.0696^2)

 ka1_max_m ~ dlnorm(meanlog=log(0.0904), varlog=ka1_max_mv) # (mg/h)

 ka3_max_mv <- log(1 + 0.0465^2)

 ka3_max_m ~ dlnorm(meanlog=log(0.164), varlog=ka3_max_mv) # (mg/h)

 kamt1_50_mv <- log(1 + 0.0383^2)

 kamt1_50_m ~ dlnorm(meanlog=log(120), varlog=kamt1_50_mv) # (mg)

 kamt3_50_mv <- log(1 + 0.0952^2)

 kamt3_50_m ~ dlnorm(meanlog=log(21.4), varlog=kamt3_50_mv) # (mg)

 gamma_mv <- log(1 + 0.0165^2)

 gamma_m ~ dlnorm(meanlog=log(1.44), varlog=gamma_mv) # unitless

 CL_mv <- log(1 + 0.0216^2)

 CL_m ~ dlnorm(meanlog=log(3.84), varlog=CL_mv) # (L/hr)

 V_m <- 1960 # (L)

 ##

 ## REFERENCE pop (inter-individual) SDs (with prior if not fixed)

 ##

 ## F2_sd

 omega2 <- 0.064 / (0.168 * (1 - 0.168)) # Samtani eq. 4 inverted

 F2_sd ~ dnorm(mean = omega2, sd = 0.02*omega2)

 F2_v <- F2_sd^2

 ## F3_v, Samtani eq. 4 inverted

 F3_v <- (0.854 / (1 - 0.209))^2

 ##

 ka1_pp1m_cv_v <- log(1 + 0.03^2)

 ka1_pp1m_cv ~ dlnorm(meanlog=log(0.590), varlog=ka1_pp1m_cv_v)

 ka1_pp1m_v <- log(1 + ka1_pp1m_cv^2)

 ##

 ka1_max_cv_v <- log(1 + 0.0501^2)

 ka1_max_cv ~ dlnorm(meanlog=log(0.827), varlog=ka1_max_cv_v)

 ka1_max_v <- log(1 + ka1_max_cv^2)

 ##

 53

 ka3_max_v <- 0

 ##

 kamt1_50_cv_v <- log(1 + 0.101^2)

 kamt1_50_cv ~ dlnorm(meanlog=log(0.500), varlog=kamt1_50_cv_v)

 kamt1_50_v <- log(1 + kamt1_50_cv^2)

 ##

 kamt3_50_cv_v <- log(1 + 0.142^2)

 kamt3_50_cv ~ dlnorm(meanlog=log(0.867), varlog=kamt3_50_cv_v)

 kamt3_50_v <- log(1 + kamt3_50_cv^2)

 ##

 gamma_v <- 0

 ##

 CL_cv_v <- log(1 + 0.0317^2)

 CL_cv ~ dlnorm(meanlog=log(0.357), varlog=CL_cv_v)

 CL_v <- log(1 + CL_cv^2)

 ##

 V_v <- log(1 + 0.628^2)

 ##

 ## TEST group population mean (with prior if not fixed)

 ## Delta is a vector containing the factor of difference between the

 ## ref and test compounds for the 6 drug-release parameters

 ## 1 = no difference.

 ## Order in Delta: f_3, k_as3,max, k_ar3,max, k_as3,50, k_ar3,50, Gamma.

 ## If Do_fit > 0.5, sample the first 3 Delta.

 if (Do_fit > 0.5) {

 logDelta2 ~ dnorm(mean=logmeanD2, var=logvarD2)

 Delta[2] <- exp(logDelta2)

 }

 F3t_m_T <- logit(0.209 * Delta[1]) # transformed F3 with delta

 ka1_max_m_T <- ka1_max_m * Delta[2] # (mg/h)

 ka3_max_m_T <- ka3_max_m * Delta[3] # (mg/h)

 kamt1_50_m_T <- kamt1_50_m * Delta[4] # (mg)

 kamt3_50_m_T <- kamt3_50_m * Delta[5] # (mg)

 gamma_m_T <- gamma_m * Delta[6] # unitless

 ##

 ## if F3_m is modified then F3_v is modified:

 if (SamEq3) { # see above

 F3_v_T <- (0.854 / (1 - 0.209 * Delta[1]))^2

 } else {

 F3_v_T <- (abs(F3t_m_T) * 0.854)^2

 }

 ##

 ## measurement error variance in log for plasma concentration, ng/ml

 ## if we want uncertainty on the residual error we should use:

 res_cv_v <- log(1 + 0.321^2)

 res_cv ~ dlnorm(meanlog=log(0.306), varlog=res_cv_v)

 sigma2 <- log(1 + res_cv^2)

 ## simpler is:

 ## sigma2 <- log(1 + 0.306^2)

 ## for each REFERENCE subject

 for (i in 1:nsubjects_per_arm) {

 tmp2[i] ~ dnorm(mean = F2t_m, var = F2_v)

 F2[i] <- ilogit(tmp2[i])

 tmp3[i] ~ dnorm(mean = F3t_m, var = F3_v)

 F3[i] <- ilogit(tmp3[i])

 ka_PP1M[i] ~ dlnorm(meanlog=log(ka1_pp1m_m), varlog=ka1_pp1m_v) # (1/hr)

 ka1_max[i] ~ dlnorm(meanlog=log(ka1_max_m), varlog=ka1_max_v) # (mg/h)

 ka3_max[i] <- ka3_max_m # (mg/h)

 kamt1_50[i] ~ dlnorm(meanlog=log(kamt1_50_m), varlog=kamt1_50_v) # (mg)

 kamt3_50[i] ~ dlnorm(meanlog=log(kamt3_50_m), varlog=kamt3_50_v) # (mg)

 gamma[i] <- gamma_m

 CL[i] ~ dlnorm(meanlog=log(CL_m), varlog=CL_v) # (L/hr)

 V[i] ~ dlnorm(meanlog=log(V_m), varlog=V_v) # (L)

 ##

 ## quantity at t 0

 Q_cen_0[i] ~ dlnorm(meanlog=log(Q_cen_0_mean), sdlog = log(Q_cen_0_sd))

 ##

 54

 ## likelihood for concentration measurements

 ## Call the ODE solver to get predictions for each subject

 ## predictions are plasma concentrations, in ng/ml

 Conc[i, 1:ntimes] <- nimble_ode(y[1:nstates], times[1:ntimes],

 c(Dose_PP1M, F2[i], Duration_2,

 ka_PP1M[i], ka1_max[i], ka3_max[i],

 kamt1_50[i], kamt3_50[i], gamma[i],

 CL[i], V[i], PP3M_start, F3[i],

 Dose_PP3M, Q_cen_0[i]))

 ## data likelihood

 for (j in 1:ntimes) {

 C_plasma_obs[i,j] ~ dlnorm(meanlog=log(Conc[i,j]), varlog=sigma2)

 }

 }

 ## for each TEST subject

 for (i in (1+nsubjects_per_arm):(2*nsubjects_per_arm)) {

 tmp2[i] ~ dnorm(mean = F2t_m, var = F2_v)

 F2[i] <- ilogit(tmp2[i])

 tmp3[i] ~ dnorm(mean = F3t_m_T, var = F3_v_T)

 F3[i] <- ilogit(tmp3[i])

 ka_PP1M[i] ~ dlnorm(meanlog=log(ka1_pp1m_m), varlog=ka1_pp1m_v) # (1/hr)

 ka1_max[i] ~ dlnorm(meanlog=log(ka1_max_m_T), varlog=ka1_max_v) # (mg/h)

 ka3_max[i] <- ka3_max_m_T # (mg/h)

 kamt1_50[i] ~ dlnorm(meanlog=log(kamt1_50_m_T), varlog=kamt1_50_v) # (mg)

 kamt3_50[i] ~ dlnorm(meanlog=log(kamt3_50_m_T), varlog=kamt3_50_v) # (mg)

 gamma[i] <- gamma_m_T

 CL[i] ~ dlnorm(meanlog=log(CL_m), varlog=CL_v) # (L/hr)

 V[i] ~ dlnorm(meanlog=log(V_m), varlog=V_v) # (L)

 ##

 ## quantity at t 0

 Q_cen_0[i] ~ dlnorm(meanlog=log(Q_cen_0_mean), sdlog = log(Q_cen_0_sd))

 ##

 ## likelihood for concentration measurements

 ## Call the ODE solver to get predictions for each subject

 ## predictions are plasma concentrations, in ng/ml

 Conc[i, 1:ntimes] <- nimble_ode(y[1:nstates], times[1:ntimes],

 c(Dose_PP1M, F2[i], Duration_2,

 ka_PP1M[i], ka1_max[i], ka3_max[i],

 kamt1_50[i], kamt3_50[i], gamma[i],

 CL[i], V[i], PP3M_start, F3[i],

 Dose_PP3M, Q_cen_0[i]))

 ## data likelihood

 for (j in 1:ntimes) {

 C_plasma_obs[i,j] ~ dlnorm(meanlog=log(Conc[i,j]),varlog=sigma2)

 }

 }

}) # End myNimbleCode

End.

 55

Data-based R workflow for parallel trials (v4)

Partly Bayesian paliperidone palmitate VBE workflow

With R:Nimble package

v4

IDtag = "_4" # version number

===

0. Read the statistical model and TOST test

source("Statistical model v13.R")

source("Our_TOST.R")

source("Cmax_AUC.R")

===

1. Compile the model for prediction of an abbreviated BE trial

N.subjects.a = 25 # parallel trial, reference / test, 20 subjects per arm

Magnusson dosings were at PP1M: 0, 4, 8, 12, PP3M: 17, 29, 41, 53 weeks.

Magnusson sampling times were at:

1, 5, 9, 13, 14, 17(-),

21, 25, 29(-), 33, 37, 41(-), 45, 49, 53(-), 54, 55, 57, 61, 65

(-) indicate "just before, say 1 hour before.

We use the same times, but in hours.

Hr1 = 1 / (24 * 7) # one hour in weeks

times = c(1, 5, 9, 13, 14, 17-Hr1,

 21, 25, 29-Hr1, 33, 37, 41-Hr1, 45, 49, 53-Hr1, 54, 55, 57, 61, 65)

times = times * 24 * 7

plot.times = times / (24 * 7) # in weeks

N.times = length(plot.times)

dose_pp1m = 150

dose_pp3m = 525

Q_cen_0_mean = 30 # geo mean

Q_cen_0_sd = 1.5 # geo SD

order in Delta: f_3, k_as3,max, k_ar3,max, k_as3,50, k_ar3,50, Gamma

Delta = rep(1,6)

data = list()

inits = list(Q_cen_0_mean = Q_cen_0_mean, # (mg)

 Q_cen_0_sd = Q_cen_0_sd, # (mg)

 Dose_PP1M = dose_pp1m[1], # (mg)

 Dose_PP3M = dose_pp3m[1], # (mg)

 Delta = Delta)

constants = list(nsubjects_per_arm = N.subjects.a,

 Do_fit = 0, # 0: no fit, > 0: index

 SamEq3 = 1, # Boolean

 Duration_2 = 319, # (h)

 PP3M_start = 17*7*24, # (h)

 ntimes = N.times,

 times = times,

 nstates = 4)

Rmodel = nimbleModel(myNimbleCode, constants, data, inits, calculate=F)

Cmodel = compileNimble(Rmodel, showCompilerOutput=F)

===

2a. Simulate an abbreviated BE trial, assuming bioequivalence

Simulate the whole trial at once

Node.names = Cmodel$getNodeNames(includeData=T)

Cmodel$Delta[2] = 1.05 # ka slow max

 56

Cmodel$simulate(nodes = Node.names)

all.pred = values(Cmodel, "Conc") # individual profiles no noise

all.data = values(Cmodel, "C_plasma_obs") # for just the simulated data

all.pred = matrix(all.pred, ncol=N.times, byrow = F) # subjects by row

all.data = matrix(all.data, ncol=N.times, byrow = F) # subjects by row

Reference arm of the trial

ref.pred.mat = all.pred[1:N.subjects.a,]

ref.data.mat = all.data[1:N.subjects.a,]

Test arm of the trial

test.pred.mat = all.pred[(N.subjects.a + 1):(2 * N.subjects.a),]

test.data.mat = all.data[(N.subjects.a + 1):(2 * N.subjects.a),]

parameters

param.pop = values(Cmodel,

 c("ka1_pp1m_m", "ka1_max_m", "ka3_max_m",

 "kamt1_50_m", "kamt3_50_m", "gamma_m", "CL_m",

 "F2_v", "ka1_pp1m_v", "ka1_max_v", "kamt1_50_v",

 "kamt3_50_v", "CL_v", "sigma2"))

param.ind = values(Cmodel,

 c("F2", "F3", "ka_PP1M","ka1_max", "ka3_max",

 "kamt1_50", "kamt3_50", "gamma", "CL", "V"))

param.ind.mat = matrix(param.ind, nrow=N.subjects.a, byrow = F)

colnames(param.ind.mat) = c("F2_Ref", "F2_Test", "F3_Ref", "F3_Test",

 "ka_PP1M_Ref","ka_PP1M_Test",

 "ka1_max_Ref", "ka1_max_Test",

 "ka3_max_Ref","ka3_max_Test",

 "kamt1_50_Ref", "kamt1_50_Test",

 "kamt3_50_Ref", "kamt3_50_Test",

 "gamma_Ref", "gamma_Test", "CL_Ref",

 "CL_Test", "V_Ref", "V_Test")

rownames(param.ind.mat) = c(paste0("subject_", 1:N.subjects.a))

param.pop.mat = matrix(param.pop, nrow=1, byrow = F)

colnames(param.pop.mat) = c("ka1_pp1m_m", "ka1_max_m", "ka3_max_m",

 "kamt1_50_m", "kamt3_50_m", "gamma_m", "CL_m",

 "F2_v", "ka1_pp1m_v", "ka1_max_v",

 "kamt1_50_v", "kamt3_50_v", "CL_v", "sigma2")

Check

plot(as.numeric(ref.pred.mat), as.numeric(ref.data.mat),

 type ="p", col="blue",lwd=0.5, log="xy")

plot(plot.times, ref.pred.mat[1,], type ="l", col="blue",lwd=0.5)

points(plot.times, ref.data.mat[1,], col="blue",lwd=0.5)

Plot

plot(plot.times, plot.times, type="n", xlab="Time (weeks)",

 ylab="Plasma concentration (ng/ml)", yaxt ="n",

 ylim=c(1,1000), log="y",cex.lab=1.3)

axis(2, at = c(0.001,0.01, 0.1, 1, 10, 100, 1000),

 labels=c("0.001","0.01", "0.1","1", "10", "100", "1000"), las=1)

for (i in 1:N.subjects.a) {

 lines(plot.times, ref.data.mat[i,], type="b", col="blue")

 lines(plot.times, test.data.mat[i,], type="b", col="red")

}

abline(v=c(0, 4, 8, 12, 17, 29, 41, 53))

legend(x=45, y=1000, leg=c("Reference", "Test"), lty=1,

 col=c("blue", "red"), bty="o", bg="white", box.lty=0)

bSave = FALSE

if (bSave) {

 57

 ## Save simulated data

 names.col = c("time in h", paste0("subject_Ref_", 1:N.subjects.a),

 paste0("subject_Test_", 1:N.subjects.a))

 write.table(cbind(t(t(times)),t(ref.data.mat),t(test.data.mat)),

 file = paste0("AbbreviatedTrial_25subjectsPerArm_data", IDtag,

 ".csv"),

 sep = ",", dec = ".", row.names = FALSE, col.names = names.col)

 ## Save mean individual profiles

 write.table(cbind(t(t(times)),t(ref.pred.mat),t(test.pred.mat)),

 file = paste0("AbbreviatedTrial_25subjectsPerArm_pred", IDtag,

 ".csv"),

 sep = ",", dec = ".", row.names = FALSE, col.names = names.col)

 ## Save parameters

 write.table(param.ind.mat,

 file = paste0("AbbreviatedTrial_25subjectsPerArm_param_ind",

 IDtag, ".csv"),

 sep=",", dec=".",

 row.names=c(paste0("subject_", 1:N.subjects.a)))

 write.table(param.pop.mat,

 file = paste0("AbbreviatedTrial_25subjectsPerArm_param_pop",

 IDtag, ".csv"),

 sep=",", dec=".", row.names=FALSE)

}

===

2b. Alternative: read the abbreviated trial data

ab.data = read.csv("AbbreviatedTrial_25subjectsPerArm_data_4.csv")

dim(ab.data)

N.times = dim(ab.data)[1]

N.subjects.a = (dim(ab.data)[2] - 1) / 2 # parallel trial subjects per arm

plot.times = ab.data$time.in.h / (24 * 7) # in weeks

Compute Cmax

istart = 16

iend = N.times

itime = istart:iend

iref = 1:N.subjects.a + 1

itest = (N.subjects.a + 1):(2 * N.subjects.a) + 1

Cmax.ref = get.Cmax(ab.data[itime,iref])

Cmax.test = get.Cmax(ab.data[itime,itest])

Compute AUC for each subject in the last dosing period (using the last 5

time points for each subject)

AUC.ref = get.AUC(plot.times[itime], ab.data[itime,iref])

AUC.test = get.AUC(plot.times[itime], ab.data[itime,itest])

Plot concentrations, Cmax, AUC

pdf("Abbreviated trial plot.pdf")

layout(matrix(1:4,1,4), widths=c(0.8,0.1,0.1,0.01))

par(mar=c(5,5,15,0))

plot(plot.times, plot.times, type="n", xlab="Time (weeks)",

 ylab="Plasma concentration (ng/ml)", yaxt ="n",

 ylim=c(1,1000), log="y", cex.lab=1.5)

axis(2, at = c(0.001,0.01, 0.1, 1, 10, 100, 1000),

 labels=c("0.001","0.01", "0.1","1", "10", "100", "1000"), las=1)

for (i in 1:N.subjects.a) {

 lines(plot.times, ab.data[,i+1], type="b", col="blue") # ref

}

for (i in (N.subjects.a + 1):(2 * N.subjects.a)) {

 lines(plot.times, ab.data[,i+1], type="b", col="red") # test

}

abline(v=c(0, 4, 8, 12, 17, 29, 41, 53), col="gray")

 58

legend(x=45, y=1000, leg=c("Reference", "Test"), lty=1,

 col=c("blue", "red"), bty="o", bg="white", box.lty=0)

Plot Cmax

par(mar=c(5,0,15,0))

boxplot(Cmax.ref, Cmax.test, xlim=c(0.5,2.5), ylim=c(1,1000), log="y",

 col=c("royalblue", "violetred1"),

 xaxt="s", yaxt="n", xlab="", ylab="", names=c("Ref", "Test"))

text(1.5, y=1000, lab="Cmax")

Plot AUC divided by time difference (to be on a concentration scale)

diffT = plot.times[iend] - plot.times[istart]

boxplot(AUC.ref/diffT, AUC.test/diffT, xlim=c(0.5,2.5),

 ylim=c(1,1000), log="y", col=c("royalblue", "violetred1"),

 yaxt="n", xlab="", ylab="", names=c("Ref", "Test"))

text(1.5, y=1000, lab=expression(AUC / Delta[t]))

dev.off()

Perform a standard BE test (two one-sided t-test) on trial results:

Cmax.yes = myTOST(Cmax.ref, Cmax.test)

AUC.yes = myTOST(AUC.ref, AUC.test)

BE.yes = Cmax.yes && AUC.yes

all FALSE

Cmax geometric means ratio

exp(mean(log(Cmax.test)) - mean(log(Cmax.ref)))

Cmax CV

mean(c(sd(Cmax.ref) / mean(Cmax.ref), sd(Cmax.test) / mean(Cmax.test)))

AUC geometric means ratio

exp(mean(log(AUC.test)) - mean(log(AUC.ref)))

AUC CV

mean(c(sd(AUC.ref) / mean(AUC.ref), sd(AUC.test) / mean(AUC.test)))

Remove columns names

colnames(ab.data) = NULL

===

3a. Bayesian calibration of the PP3M model given abbreviated trial data.

Parallelize

library(parallel)

N.cores = detectCores() / 2

this_cluster <- makeCluster(N.cores)

Create a function with all the needed code

run_MCMC_allcode <- function(seed) {

 ##

 library(nimble)

 source("Statistical model v13.R")

 ##

 ab.data = read.csv("AbbreviatedTrial_25subjectsPerArm_data_4.csv")

 N.subjects.a = (dim(ab.data)[2] - 1) / 2 # parallel trial subjects per arm

 ## Remove columns names

 colnames(ab.data) = NULL

 ##

 Hr1 = 1 / (24 * 7) # one hour in weeks

 times = c(1, 5, 9, 13, 14, 17-Hr1,

 21, 25, 29-Hr1, 33, 37, 41-Hr1, 45, 49, 53-Hr1, 54, 55, 57, 61, 65)

 times = times * 24 * 7

 plot.times = times / (24 * 7) # in weeks

 N.times = length(plot.times)

 ##

 dose_pp1m = 150

 dose_pp3m = 525

 59

 ##

 Q_cen_0_mean = 30 # geo mean

 Q_cen_0_sd = 1.5 # geo SD

 ##

 Delta = rep(1,6)

 ##

 data = list(C_plasma_obs=t(ab.data[,-1]))

 ##

 inits = list(Q_cen_0_mean = Q_cen_0_mean, # (mg)

 Q_cen_0_sd = Q_cen_0_sd, # (mg)

 Dose_PP1M = dose_pp1m[1], # (mg)

 Dose_PP3M = dose_pp3m[1], # (mg)

 Delta = Delta)

 ##

 constants = list(nsubjects_per_arm = N.subjects.a,

 Do_fit = 1, ## 0: no Delta fit, > 0: fit

 logmeanD2 = 0,

 logvarD2 = log(2)^2,

 SamEq3 = 1, # Boolean, leave at 1

 Duration_2 = 319, # (h)

 PP3M_start = 17*7*24, # (h)

 ntimes = length(times),

 times = times,

 nstates = 4)

 ##

 Rmodel = nimbleModel(myNimbleCode, constants, data, inits, calculate=F)

 ##

 conf = configureMCMC(Rmodel, thin=1, # useConjugacy = FALSE,

 nodes=c("logDelta2",

 "tmp2", "tmp3", "ka_PP1M", "ka1_max",

 "kamt1_50", "kamt3_50", "CL", "V", "Q_cen_0"),

 monitors=c("logDelta2",

 "F2", "F3", "ka_PP1M", "ka1_max",

 "kamt1_50", "kamt3_50", "CL", "V", "Q_cen_0",

 "Conc",

 "logProb_logDelta2",

 "logProb_tmp2", "logProb_tmp3",

 "logProb_ka_PP1M", "logProb_ka1_max",

 "logProb_kamt1_50", "logProb_kamt3_50",

 "logProb_CL", "logProb_V", "logProb_Q_cen_0",

 "logProb_C_plasma_obs"))

 ##

 Rmcmc = buildMCMC(conf)

 Cmodel = compileNimble(Rmodel, showCompilerOutput=F)

 Cmcmc = compileNimble(Rmcmc, project=Rmodel)

 ##

 Cmodel$ka1_pp1m_m = 4.88E-4

 Cmodel$ka1_max_m = 0.0904

 Cmodel$ka3_max_m = 0.164

 Cmodel$kamt1_50_m = 120

 Cmodel$kamt3_50_m = 21.4

 Cmodel$gamma_m = 1.44

 Cmodel$CL_m = 3.84

 Cmodel$F2_v = (0.064 / (0.168 * (1 - 0.168)))^2

 Cmodel$F3_v = (0.854 / (1 - 0.209))^2

 Cmodel$ka1_pp1m_v = log(1 + 0.590^2)

 Cmodel$ka1_max_v = log(1 + 0.827^2)

 Cmodel$kamt1_50_v = log(1 + 0.5^2)

 Cmodel$kamt3_50_v = log(1 + 0.867^2)

 Cmodel$CL_v = log(1 + 0.357^2)

 Cmodel$res_cv = 0.306

 ##

 mysamples = runMCMC(Cmcmc, niter=10000, nburnin=2500, setSeed=seed)

 return(mysamples)

 ##

} ## End run_MCMC_allcode

chain_output <- parLapply(cl=this_cluster, X=1:N.cores, fun=run_MCMC_allcode)

 60

save(chain_output,

 file=paste0("Parallel chains output.Delta2.fix pop",IDtag,".Rsave"))

load(file=paste0("Parallel chains output.Delta2.fix pop",IDtag,".Rsave"))

pdf("Parallel chains trajectories.IWish.fix pop.pdf")

par(mfrow = c(1,1))

mycolors = rainbow(N.cores)

for (j in 1:dim(chain_output[[1]])[2]) {

 for (i in 1:N.cores) {

 this_output <- chain_output[[i]]

 if (i == 1) {

 plot(this_output[,j], type = "l", ylab = colnames(this_output)[j],

 col=mycolors[i], las=1)

 } else {

 lines(this_output[,j], col=mycolors[i])

 }

 }

}

dev.off()

Close the cluster when you're done with it.

stopCluster(this_cluster)

===

3b. Check the model using the abbreviated BE trial

There is no point of doing that with simulations of the prior model,

unless we want to exercise the checking tools.

For now, we just show fit plots.

===

4. Simulate a virtual parallel bioequivalence trials with many subjects

N.subjects.v = 130 # number of virtual subjects per arm

Hr1 = 1 / (24 * 7) # one hour in weeks

times = c(1, 5, 9, 13, 14, 17-Hr1,

 21, 25, 29-Hr1, 33, 37, 41-Hr1, 45, 49, 53-Hr1, 54, 55, 57, 61, 65)

times = times * 24 * 7

plot.times = times / (24 * 7) # in weeks

N.times = length(plot.times)

dose_pp1m = 150

dose_pp3m = 525

Q_cen_0_mean = 30 # geo mean

Q_cen_0_sd = 1.5 # geo SD

Delta = rep(1,6)

data = list()

inits = list(Q_cen_0_mean = Q_cen_0_mean, # (mg)

 Q_cen_0_sd = Q_cen_0_sd, # (mg)

 Dose_PP1M = dose_pp1m[1], # (mg)

 Dose_PP3M = dose_pp3m[1], # (mg)

 Delta = Delta)

constants = list(nsubjects_per_arm = N.subjects.v,

 Do_fit = 0, # 0: no fit, > 0: index

 SamEq3 = 1, # Boolean

 Duration_2 = 319, # (h)

 PP3M_start = 17*7*24, # (h)

 ntimes = N.times,

 times = times,

 nstates = 4)

Rmodel = nimbleModel(myNimbleCode, constants, data, inits, calculate=F)

 61

Cmodel = Rmodel

Cmodel = compileNimble(Rmodel, showCompilerOutput=F)

Cmodel$Delta[2] = 1.42 # posterior mean

Cmodel$ka1_pp1m_m = 4.88E-4

Cmodel$ka1_max_m = 0.0904

Cmodel$ka3_max_m = 0.164

Cmodel$kamt1_50_m = 120

Cmodel$kamt3_50_m = 21.4

Cmodel$gamma_m = 1.44

Cmodel$CL_m = 3.84

Cmodel$F2_v = (0.064 / (0.168 * (1 - 0.168)))^2

Cmodel$F3_v = (0.854 / (1 - 0.209))^2

Cmodel$ka1_pp1m_v = log(1 + 0.590^2)

Cmodel$ka1_max_v = log(1 + 0.827^2)

Cmodel$kamt1_50_v = log(1 + 0.5^2)

Cmodel$kamt3_50_v = log(1 + 0.867^2)

Cmodel$CL_v = log(1 + 0.357^2)

Cmodel$res_cv = 0.306

Run a BE trial

Node.names = Cmodel$getNodeNames(includeData=T)

Cmodel$simulate(nodes = Node.names)

all.res = values(Cmodel, Node.names)

all.data = values(Cmodel, "C_plasma_obs") # for just the simulated data

all.pred = values(Cmodel, "Conc") # for just the individual profile no noise

all.data = matrix(all.data, ncol=N.times, byrow = F) # subjects by row

all.pred = matrix(all.pred, ncol=N.times, byrow = F) # subjects by row

Reference arm of the trial

ref.data.mat = all.data[1:N.subjects.v,]

ref.pred.mat = all.pred[1:N.subjects.v,]

Test arm of the trial

test.data.mat = all.data[(N.subjects.v + 1):(2 * N.subjects.v),]

test.pred.mat = all.pred[(N.subjects.v + 1):(2 * N.subjects.v),]

Compute Cmax

istart = 16

iend = N.times

itime = istart:iend

isub = 1:N.subjects.v

Cmax.ref = get.Cmax(t(ref.data.mat[,itime]))

Cmax.test = get.Cmax(t(test.data.mat[,itime]))

Compute AUC for each subject in the last dosing period

AUC.ref = get.AUC(plot.times[itime], t(ref.data.mat[,itime]))

AUC.test = get.AUC(plot.times[itime], t(test.data.mat[,itime]))

Plot concentrations, Cmax, AUC

pdf("Virtual trial N 130 simulated profiles.pdf")

layout(matrix(1:4,1,4), widths=c(0.8,0.1,0.1,0.01))

par(mar=c(5,5,15,0))

plot(plot.times, plot.times, type="n", xlab="Time (weeks)",

 ylab="Plasma concentration (ng/ml)", yaxt ="n",

 ylim=c(1,1000), log="y", cex.lab=1.5)

axis(2, at = c(0.001,0.01, 0.1, 1, 10, 100, 1000),

 labels=c("0.001","0.01", "0.1","1", "10", "100", "1000"), las=1)

for (i in 1:N.subjects.v) {

 lines(plot.times, ref.data.mat[i,], type="b", col="blue") # ref

 lines(plot.times, test.data.mat[i,], type="b", col="red") # test

}

abline(v=c(0, 4, 8, 12, 17, 29, 41, 53), col="gray")

legend(x=45, y=1000, leg=c("Reference", "Test"), lty=1,

 col=c("blue", "red"), bty="o", bg="white", box.lty=0)

 62

Plot Cmax

par(mar=c(5,0,15,0))

boxplot(Cmax.ref, Cmax.test, xlim=c(0.5,2.5), ylim=c(1,1000), log="y",

 col=c("royalblue", "violetred1"),

 xaxt="s", yaxt="n", xlab="", ylab="", names=c("Ref", "Test"))

text(1.5, y=1000, lab="Cmax")

Plot AUC divided by time difference (to be on a concentration scale)

diffT = plot.times[iend] - plot.times[istart]

boxplot(AUC.ref/diffT, AUC.test/diffT, xlim=c(0.5,2.5),

 ylim=c(1,1000), log="y", col=c("royalblue", "violetred1"),

 yaxt="n", xlab="", ylab="", names=c("Ref", "Test"))

text(1.5, y=1000, lab=expression(AUC / Delta[t]))

dev.off()

===

5. Perform a standard BE test (two one-sided t-test) on trial results,

Cmax.yes = myTOST(Cmax.ref, Cmax.test)

AUC.yes = myTOST(AUC.ref, AUC.test)

BE.yes = Cmax.yes && AUC.yes

Cmax geometric means ratio

exp(mean(log(Cmax.test)) - mean(log(Cmax.ref)))

Cmax CV

mean(c(sd(Cmax.ref) / mean(Cmax.ref), sd(Cmax.test) / mean(Cmax.test)))

AUC geometric means ratio

exp(mean(log(AUC.test)) - mean(log(AUC.ref)))

AUC CV

mean(c(sd(AUC.ref) / mean(AUC.ref), sd(AUC.test) / mean(AUC.test)))

===

6. Power: probability of declaring BE when it is true.

This is equal to (1 - type II error), where type II error is the

probability of rejecting BE when it is true

Compute once for many subjects and then use only part of the data

for smaller trial sizes.

N.subjects.v = 500 # number of virtual subjects per arm

Hr1 = 1 / (24 * 7) # one hour in weeks

times = c(1, 5, 9, 13, 14, 17-Hr1,

 21, 25, 29-Hr1, 33, 37, 41-Hr1, 45, 49, 53-Hr1, 54, 55, 57, 61, 65)

times = times * 24 * 7

plot.times = times / (24 * 7) # in weeks

N.times = length(plot.times)

dose_pp1m = 150

dose_pp3m = 525

Q_cen_0_mean = 30 # geo mean

Q_cen_0_sd = 1.5 # geo SD

We need to recompile, because nsubjects must be a constant

constants = list(nsubjects_per_arm = N.subjects.v,

 Do_fit = 0, # 0: no fit, > 0: index

 SamEq3 = 1, # Boolean

 Duration_2 = 319, # (h)

 PP3M_start = 17*7*24, # (h)

 ntimes = N.times,

 times = times,

 nstates = 4)

data = list()

 63

inits = list(Q_cen_0_mean = Q_cen_0_mean, # (mg)

 Q_cen_0_sd = Q_cen_0_sd, # (mg)

 Dose_PP1M = dose_pp1m[1], # (mg)

 Dose_PP3M = dose_pp3m[1], # (mg)

 Delta = rep(1, 6))

Rmodel = nimbleModel(myNimbleCode, constants, data, inits, calculate=F)

Cmodel = Rmodel

Cmodel = compileNimble(Rmodel, showCompilerOutput=F)

Node.names = Cmodel$getNodeNames(includeData=T)

Cmodel$simulate(nodes = Node.names)

res = values(Cmodel, Node.names)

Main simulation: bioequivalent case

Cmodel$Delta = c(1, 1, 1, 1, 1, 1) # true BE

N.mtc.v = 1000 # number of simulated virtual trials

BE.yes = rep(-1, N.mtc.v)

Cmax.ref = Cmax.test = matrix(0, nrow=N.mtc.v, ncol=N.subjects.v)

AUC.ref = AUC.test = matrix(0, nrow=N.mtc.v, ncol=N.subjects.v)

istart = 16

iend = N.times

itime = istart:iend

for (i in 1:N.mtc.v) {

 ## Simulate the trial

 Cmodel$simulate(nodes = Node.names)

 all.data = values(Cmodel, "C_plasma_obs")

 all.data = matrix(all.data, ncol=N.times, byrow = F) # subjects by row

 ##

 ## Reference arm of the trial

 ref.data.mat = all.data[1:N.subjects.v,]

 ##

 ## Test arm of the trial

 test.data.mat = all.data[(N.subjects.v + 1):(2 * N.subjects.v),]

 ##

 ## find Cmax for each subject, record it

 Cmax.ref[i,] = get.Cmax(t(ref.data.mat[,itime]))

 Cmax.test[i,] = get.Cmax(t(test.data.mat[,itime]))

 ##

 ## find AUC for each subject, record it

 AUC.ref[i,] = get.AUC(plot.times[itime], t(ref.data.mat[, itime]))

 AUC.test[i,] = get.AUC(plot.times[itime], t(test.data.mat[,itime]))

 ##

 print(paste("Trial", i))

}

save(list=c("N.mtc.v", "N.subjects.v", "Cmax.ref", "Cmax.test", "AUC.ref",

 "AUC.test"), file=paste0("Cmax & AUC for power",IDtag,".Rsave"))

load(file=paste0("Cmax & AUC for power",IDtag,".Rsave"))

Now process increasing chunks of the results

power = rep(0, N.subjects.v)

BE.yes = rep(0, N.mtc.v)

for (k in 2:N.subjects.v) {

 N.subj.current = k

 my.index = sample.int(N.subjects.v, N.subj.current)

 for (i in 1:N.mtc.v) {

 Cmax.yes = myTOST(Cmax.ref[i,my.index], Cmax.test[i,my.index])

 AUC.yes = myTOST(AUC.ref[i,my.index], AUC.test[i,my.index])

 #

 BE.yes[i] = Cmax.yes && AUC.yes

 }

 ## power:

 power[k] = sum(BE.yes) / N.mtc.v # probability of declaring BE

}

Plot

 64

pdf("Power plot after calibration.pdf")

plot(2:N.subjects.v, power[-1], type="l", xlab="Number of subjects per arm",

 ylab="Probability of declaring bioequivalence", xlim=c(1,N.subjects.v),

 ylim=c(0, 1), col="grey", lwd=0.5, las=1)

lines(2:N.subjects.v, supsmu(2:N.subjects.v, power[-1])$y, lwd=2, col="red")

dev.off()

===

7. Type I error: probability of declaring BE when it is not true.

Compute once for many subjects and then use only part of the data

for smaller trial sizes.

N.subjects.v = 500 # number of virtual subjects per arm

Hr1 = 1 / (24 * 7) # one hour in weeks

times = c(1, 5, 9, 13, 14, 17-Hr1,

 21, 25, 29-Hr1, 33, 37, 41-Hr1, 45, 49, 53-Hr1, 54, 55, 57, 61, 65)

times = times * 24 * 7

plot.times = times / (24 * 7) # in weeks

N.times = length(plot.times)

dose_pp1m = 150

dose_pp3m = 525

Q_cen_0_mean = 30 # geo mean

Q_cen_0_sd = 1.5 # geo SD

We need to recompile, because nsubjects must be a constant

constants = list(nsubjects_per_arm = N.subjects.v,

 Do_fit = 0, # 0: no fit, > 0: index

 SamEq3 = 1, # Boolean

 Duration_2 = 319, # (h)

 PP3M_start = 17*7*24, # (h)

 ntimes = N.times,

 times = times,

 nstates = 4)

data = list()

inits = list(Q_cen_0_mean = Q_cen_0_mean, # (mg)

 Q_cen_0_sd = Q_cen_0_sd, # (mg)

 Dose_PP1M = dose_pp1m[1], # (mg)

 Dose_PP3M = dose_pp3m[1], # (mg)

 Delta = rep(1, 6))

Rmodel = nimbleModel(myNimbleCode, constants, data, inits, calculate=F)

Cmodel = compileNimble(Rmodel, showCompilerOutput=F)

Node.names = Cmodel$getNodeNames(includeData=T)

Cmodel$simulate(nodes = Node.names)

res = values(Cmodel, Node.names)

Main simulation

N.mtc.v = 1000 # number of simulated virtual trials

BE.yes = rep(-1, N.mtc.v)

Delta = matrix(0, nrow=N.mtc.v, ncol=6)

Cmax.ref = Cmax.test = matrix(0, nrow=N.mtc.v, ncol=N.subjects.v)

AUC.ref = AUC.test = matrix(0, nrow=N.mtc.v, ncol=N.subjects.v)

istart = 16

iend = N.times

itime = istart:iend

t.start = Sys.time()

for (i in 1:N.mtc.v) {

 ## Simulate the trial

 Delta[i,] = runif(6, 0.7, 1.5)

 Cmodel$Delta = Delta[i,]

 Cmodel$simulate(nodes = Node.names)

 65

 all.data = values(Cmodel, "C_plasma_obs")

 all.data = matrix(all.data, ncol=N.times, byrow = F) # subjects by row

 ##

 ## Reference arm of the trial

 ref.data.mat = all.data[1:N.subjects.v,]

 ##

 ## Test arm of the trial

 test.data.mat = all.data[(N.subjects.v + 1):(2 * N.subjects.v),]

 ##

 ## find Cmax for each subject, record it

 Cmax.ref[i,] = get.Cmax(t(ref.data.mat[,16:N.times]))

 Cmax.test[i,] = get.Cmax(t(test.data.mat[,16:N.times]))

 ##

 ## find AUC for each subject, record it

 AUC.ref[i,] = get.AUC(plot.times[itime], t(ref.data.mat[, itime]))

 AUC.test[i,] = get.AUC(plot.times[itime], t(test.data.mat[,itime]))

 ##

 print(paste("Trial", i))

}

t.end = Sys.time()

t.end - t.start

98% of the time is spend simulating trials

Save

save(list=c("N.mtc.v", "N.subjects.v", "Delta",

 "Cmax.ref", "Cmax.test", "AUC.ref", "AUC.test"),

 file=paste0("Cmax & AUC for type 1 error", IDtag,".Rsave"))

load(file=paste0("Cmax & AUC for type 1 error",IDtag,".Rsave"))

Set number of subjects to use; we can use at most N.subjects.v subjects

N.subject.used = N.subjects.v

j = 1:N.subject.used

Cmax difference per trial

Cmax.ref.means = apply(log(Cmax.ref[,j]), MARGIN=1, FUN=mean)

Cmax.test.means = apply(log(Cmax.test[,j]), MARGIN=1, FUN=mean)

Test/Ref relative differences

Cmax.rel.diffs = exp(Cmax.test.means - Cmax.ref.means)

mean(Cmax.rel.diffs)

AUC difference per trial

AUC.ref.means = apply(log(AUC.ref[,j]), MARGIN=1, FUN=mean)

AUC.test.means = apply(log(AUC.test[,j]), MARGIN=1, FUN=mean)

Test/Ref relative differences

AUC.rel.diffs = exp(AUC.test.means - AUC.ref.means)

mean(AUC.rel.diffs)

Compute BE for the various trials

Cmax.yes = AUC.yes = BE.yes = rep(0, N.mtc.v)

for (i in 1:N.mtc.v) {

 Cmax.yes[i] = myTOST(Cmax.ref[i,], Cmax.test[i,])

 AUC.yes[i] = myTOST(AUC.ref[i,], AUC.test[i,])

 BE.yes[i] = Cmax.yes[i] && AUC.yes[i]

}

Plot passes

pdf("Type 1 error plot.pdf")

par(mar=c(8,5,7,1), las=1, cex.lab=1.2)

plot(Cmax.rel.diffs, Cmax.yes, type="p",

 xlab="Cmax relative differences geometric mean",

 ylab="Probability of declaring Cmax BE")

abline(v=c(0.8, 1.25), col="red")

plot(AUC.rel.diffs, AUC.yes, type="p",

 xlab="AUC relative differences geometric mean",

 ylab="Probability of declaring AUC BE")

abline(v=c(0.8, 1.25), col="red")

lines(AUC.centers, AUC.error1, col="blue")

dev.off()

 66

===

8. Safe space: probability of declaring BE when it is not true.

We have saved the Delta and BE decisions in the type 1 error

calculations; we can just reuse them.

The saved simulation are the same as type 1 error but a copy has been made.

load(file=paste0("Cmax & AUC for type 1 error",IDtag,".Rsave"))

load(file=paste0("Cmax & AUC for safe space",IDtag,".Rsave"))

Set number of subjects to use; we can use at most N.subjects.v subjects

N.subject.used = N.subjects.v

j = 1:N.subject.used

Cmax difference per trial

Cmax.ref.means = apply(log(Cmax.ref[,j]), MARGIN=1, FUN=mean)

Cmax.test.means = apply(log(Cmax.test[,j]), MARGIN=1, FUN=mean)

Test/Ref relative differences

Cmax.rel.diffs = exp(Cmax.test.means - Cmax.ref.means)

mean(Cmax.rel.diffs)

AUC difference per trial

AUC.ref.means = apply(log(AUC.ref[,j]), MARGIN=1, FUN=mean)

AUC.test.means = apply(log(AUC.test[,j]), MARGIN=1, FUN=mean)

Test/Ref relative differences

AUC.rel.diffs = exp(AUC.test.means - AUC.ref.means)

mean(AUC.rel.diffs)

Compute BE for the various trials

Cmax.yes = AUC.yes = BE.yes = rep(0, N.mtc.v)

for (i in 1:N.mtc.v) {

 Cmax.yes[i] = myTOST(Cmax.ref[i,], Cmax.test[i,])

 AUC.yes[i] = myTOST(AUC.ref[i,], AUC.test[i,])

 BE.yes[i] = Cmax.yes[i] && AUC.yes[i]

}

Plot safe space

pdf("Safe space plot.pdf")

is.BE = which(BE.yes == 1) # we could also use Cmax.yes or AUC.yes

my.panel = function (x,y) {

 par(las=1, cex.lab=1.2)

 points(x[is.BE], y[is.BE], pch=16, cex=0.3, col="green")

 points(x[-is.BE], y[-is.BE], pch=16, cex=0.3, col="red")

}

my.labels = c(expression(delta[1]), expression(delta[2]), expression(delta[3]),

 expression(delta[4]), expression(delta[5]), expression(delta[6]))

pairs(Delta, panel=my.panel, labels=my.labels)

dev.off()

End.

Statistical model in R (v14) for cross-over trials

R/Nimble code for PP1M/PP3M population model

v14.

===

library(nimble)

compile C ODE model for deSolve

Cmodel.name = "PP13M_model_v05"

system(paste0("R CMD SHLIB ", Cmodel.name, ".c"))

dyn.load(paste(Cmodel.name, .Platform$dynlib.ext, sep = ""))

dyn.unload(paste(Cmodel.name, .Platform$dynlib.ext, sep = ""))

ODE solver: performs a simulation, given initial state values,

output times and time-constant, scaled, parameters

 67

This is an R function

R_ode = function(y, times, parms) {

 ## parms: 1:Dose_PP1M, 2:F2, 3:Duration_2, 4:ka_PP1M,

 ## 5:ka1_max, 6:ka3_max, 7:kamt1_50, 8:kamt3_50,

 ## 9:gamma, 10:CL, 11:V, 12:PP3M_start,

 ## 13:F3, 14:Dose_PP3M, 15:Q_cen_0, 16:F3_2,

 ## 17:ka1_max_2

 ## Parameters 13-16 should not be passed to the ODE solver, they are

 ## used here only.

 ## State variables (y) initial conditions

 y = c("Q_depot_s1" = 0,

 "Q_depot_s3" = 0,

 "Q_depot_r3" = 0,

 "Q_central" = parms[15])

 ## The doses are specified as "events" affecting the state variables

 ## dosing times (hours)

 dose_times = c(c(0, 4, 8, 12) + parms[3] / (24 * 7),

 17, 29, 41, 53, 65, 77, 89, 101) * 24 * 7

 N_doses = length(dose_times)

 ## changing state variables at dosing times

 vars = c("Q_depot_s1", "Q_depot_s3", "Q_depot_r3")

 v1 = (1 - parms[2]) * parms[1] # applied to Q_depot_s1

 v2 = (1 - parms[13]) * parms[14] # applied to Q_depot_s3

 v3 = parms[13] * parms[14] # applied to Q_depot_r3

 v4 = (1 - parms[16]) * parms[14] # applied to Q_depot_s3 during test dosing

 v5 = parms[16] * parms[14] # applied to Q_depot_r3 during test dosing

 ## Form the events table

 eventdat = data.frame(var = c(rep("Q_depot_s1", 4), rep(vars[2:3], 8)),

 time = c(dose_times[1:4],

 rep(dose_times[5:12], each=2)),

 value = c(rep(v1, 4),

 rep(c(v2, v3), 4), rep(c(v4, v5), 4)),

 method = "add")

 ## Integrate numerically, with outputs at specified times

 result = deSolve::lsode(y, c(0,times), func="derivs", parms=parms[c(1:12,17)],

 rtol=1e-6, atol=1e-6, dllname="PP13M_model_v05",

 initfunc = "PP13M_model_v05",

 events=list(data=eventdat))

 result = result[which(result[,1] %in% times),] # weed out extra times

 if (dim(result)[[1]] < length(times)) { ## integration failed

 return(rep(1E-30, length(times)))

 } else {

 ## compute central concentration, convert from mg/L to ng/ml, return

 return(result[,5] * 1E3 / parms[11])

 }

} # end of R_ode model solver

Nimble function with nimbleRcall. This is just a wrapper

nimble_ode = nimbleRcall(

 prototype = function(

 y = double(1), # vector

 times = double(1), # vector

 parms = double(1) # vector

) {},

 returnType = double(1), # outcome is a vector

 Rfun = 'R_ode'

)

Hierarchical core Nimble (BUGS) code

myNimbleCode = nimbleCode({ ## BUGS (extended) code

 ##

 ## REFERENCE population mean (with prior if not fixed)

 F2t_m <- logit(0.168) # From Samtani paper Table III.

 # from online resource 3 Magnusson, F2 = 0.153

 F3t_m <- logit(0.209) # transformed F3

 ka1_pp1m_mv <- log(1 + 0.02^2)

 68

 ka1_pp1m_m ~ dlnorm(meanlog=log(4.88E-4), varlog=ka1_pp1m_mv) # (1/h)

 ka1_max_mv <- log(1 + 0.0696^2)

 ka1_max_m ~ dlnorm(meanlog=log(0.0904), varlog=ka1_max_mv) # (mg/h)

 ka3_max_mv <- log(1 + 0.0465^2)

 ka3_max_m ~ dlnorm(meanlog=log(0.164), varlog=ka3_max_mv) # (mg/h)

 kamt1_50_mv <- log(1 + 0.0383^2)

 kamt1_50_m ~ dlnorm(meanlog=log(120), varlog=kamt1_50_mv) # (mg)

 kamt3_50_mv <- log(1 + 0.0952^2)

 kamt3_50_m ~ dlnorm(meanlog=log(21.4), varlog=kamt3_50_mv) # (mg)

 gamma_mv <- log(1 + 0.0165^2)

 gamma_m ~ dlnorm(meanlog=log(1.44), varlog=gamma_mv) # unitless

 CL_mv <- log(1 + 0.0216^2)

 CL_m ~ dlnorm(meanlog=log(3.84), varlog=CL_mv) # (L/hr)

 V_m <- 1960 # (L)

 ##

 ## REFERENCE pop (inter-individual) SDs (with prior if not fixed)

 ##

 ## FB: I am not sure about F2_v and F3_v. See eqs. 3 and 4 of Samtani.

 ## Their reported SD (or CV in Magnusson) may apply to F2 or F2t, the

 ## logit transform. Same for F3.

 ## OK, it does not make much of a difference any way; stick to SamEq3 true

 if (SamEq3) { # SD or CV applies to F2, so: detransform

 ## F2_sd

 omega2 <- 0.064 / (0.168 * (1 - 0.168)) # Samtani eq. 4 inverted

 F2_sd ~ dnorm(mean = omega2, sd = 0.02*omega2)

 F2_v <- F2_sd^2

 ## F3_v, Samtani eq. 4 inverted

 F3_v <- (0.854 / (1 - 0.209))^2

 } else { # SD or CV applies to F2 transformed

 F2_sd ~ dnorm(mean = 0.064, sd = 0.02*0.064)

 F3_v <- (abs(F3t_m) * 0.854)^2

 }

 ##

 ka1_pp1m_cv_v <- log(1 + 0.03^2)

 ka1_pp1m_cv ~ dlnorm(meanlog=log(0.590), varlog=ka1_pp1m_cv_v)

 ka1_pp1m_v <- log(1 + ka1_pp1m_cv^2)

 ##

 ka1_max_cv_v <- log(1 + 0.0501^2)

 ka1_max_cv ~ dlnorm(meanlog=log(0.827), varlog=ka1_max_cv_v)

 ka1_max_v <- log(1 + ka1_max_cv^2)

 ##

 ka3_max_v <- 0

 ##

 kamt1_50_cv_v <- log(1 + 0.101^2)

 kamt1_50_cv ~ dlnorm(meanlog=log(0.500), varlog=kamt1_50_cv_v)

 kamt1_50_v <- log(1 + kamt1_50_cv^2)

 ##

 kamt3_50_cv_v <- log(1 + 0.142^2)

 kamt3_50_cv ~ dlnorm(meanlog=log(0.867), varlog=kamt3_50_cv_v)

 kamt3_50_v <- log(1 + kamt3_50_cv^2)

 ##

 gamma_v <- 0

 ##

 CL_cv_v <- log(1 + 0.0317^2)

 CL_cv ~ dlnorm(meanlog=log(0.357), varlog=CL_cv_v)

 CL_v <- log(1 + CL_cv^2)

 ##

 V_v <- log(1 + 0.628^2)

 ##

 ## TEST population mean (with prior if not fixed)

 ## Delta is a vector containing the factor of difference between the

 ## ref and test compounds for the first 2 absorption parameters

 ## 1 = no difference.

 ## Order in Delta: f_3, k_as3,max.

 ## If Do_fit > 0.5, sample Delta2.

 if (Do_fit > 0.5) {

 logDelta2 ~ dnorm(mean=logmeanD2, var=logvarD2)

 Delta[2] <- exp(logDelta2)

 69

 }

 ## Note that we were changing the pop mean on AVERAGE, the realized

 ## pop mean values could differ by more of less than Delta because of noise:

 ## ka1_max_m_T ~ dlnorm(meanlog=log(0.0904*Delta),varlog=ka1_max_mv)# (mg/h)

 ## It is simpler and more robust to do:

 F3t_m_T <- logit(0.209 * Delta[1]) # transformed F3 with delta

 ka1_max_m_T <- ka1_max_m * Delta[2] # (mg/h)

 ##

 ## if F3_m is modified then F3_v is modified:

 if (SamEq3) { # see above

 F3_v_T <- (0.854 / (1 - 0.209 * Delta[1]))^2

 } else {

 F3_v_T <- (abs(F3t_m_T) * 0.854)^2

 }

 ##

 ## measurement error variance in log for plasma concentration, ng/ml

 ## if we want uncertainty on the residual error we should use:

 res_cv_v <- log(1 + 0.321^2)

 res_cv ~ dlnorm(meanlog=log(0.306), varlog=res_cv_v)

 sigma2 <- log(1 + res_cv^2)

 ## for each subject of group 1 (REFERENCE then TEST sequence)

 for (i in 1:nsubjects_per_arm) {

 ## for REFERENCE drug

 tmp2[i] ~ dnorm(mean = F2t_m, var = F2_v)

 F2[i] <- ilogit(tmp2[i])

 tmp3[i] ~ dnorm(mean = F3t_m, var = F3_v)

 F3[i] <- ilogit(tmp3[i])

 ka_PP1M[i] ~ dlnorm(meanlog=log(ka1_pp1m_m), varlog=ka1_pp1m_v) # (1/hr)

 ka1_max[i] ~ dlnorm(meanlog=log(ka1_max_m), varlog=ka1_max_v) # (mg/h)

 ka3_max[i] <- ka3_max_m # (mg/h)

 kamt1_50[i] ~ dlnorm(meanlog=log(kamt1_50_m), varlog=kamt1_50_v) # (mg)

 kamt3_50[i] ~ dlnorm(meanlog=log(kamt3_50_m), varlog=kamt3_50_v) # (mg)

 gamma[i] <- gamma_m

 CL[i] ~ dlnorm(meanlog=log(CL_m), varlog=CL_v) # (L/hr)

 V[i] ~ dlnorm(meanlog=log(V_m), varlog=V_v) # (L)

 ##

 ## for TEST drug

 tmp3_2[i] ~ dnorm(mean = F3t_m_T, var = F3_v_T)

 F3_2[i] <- ilogit(tmp3_2[i])

 ka1_max_2[i] ~ dlnorm(meanlog=log(ka1_max_m_T), varlog=ka1_max_v) # (mg/h)

 ##

 ## quantity at t 0

 Q_cen_0[i] ~ dlnorm(meanlog=log(Q_cen_0_mean), sdlog = log(Q_cen_0_sd))

 ##

 ## likelihood for concentration measurements

 ## Call the ODE solver to get predictions for each subject

 ## predictions are plasma concentrations, in ng/ml

 Conc[i, 1:ntimes] <- nimble_ode(y[1:nstates], times[1:ntimes],

 c(Dose_PP1M, F2[i], Duration_2,

 ka_PP1M[i], ka1_max[i], ka3_max[i],

 kamt1_50[i], kamt3_50[i], gamma[i],

 CL[i], V[i], PP3M_start, F3[i],

 Dose_PP3M, Q_cen_0[i],

 F3_2[i], ka1_max_2[i]))

 ## data likelihood

 for (j in 1:ntimes) {

 C_plasma_obs[i,j] ~ dlnorm(meanlog=log(Conc[i,j]), varlog=sigma2)

 }

 }

 ## for each subject of group 2 (TEST then REFERENCE sequence)

 for (i in (1+nsubjects_per_arm):(2*nsubjects_per_arm)) {

 ## for TEST drug

 tmp2[i] ~ dnorm(mean = F2t_m, var = F2_v)

 F2[i] <- ilogit(tmp2[i])

 tmp3_2[i] ~ dnorm(mean = F3t_m_T, var = F3_v_T)

 F3_2[i] <- ilogit(tmp3_2[i])

 70

 ka_PP1M[i] ~ dlnorm(meanlog=log(ka1_pp1m_m), varlog=ka1_pp1m_v) # (1/hr)

 ka1_max_2[i] ~ dlnorm(meanlog=log(ka1_max_m_T),varlog=ka1_max_v) # (mg/h)

 ka3_max[i] <- ka3_max_m # (mg/h)

 kamt1_50[i] ~ dlnorm(meanlog=log(kamt1_50_m), varlog=kamt1_50_v) # (mg)

 kamt3_50[i] ~ dlnorm(meanlog=log(kamt3_50_m), varlog=kamt3_50_v) # (mg)

 gamma[i] <- gamma_m

 CL[i] ~ dlnorm(meanlog=log(CL_m), varlog=CL_v) # (L/hr)

 V[i] ~ dlnorm(meanlog=log(V_m), varlog=V_v) # (L)

 ##

 ## for REFERENCE drug

 tmp3[i] ~ dnorm(mean = F3t_m, var = F3_v)

 F3[i] <- ilogit(tmp3[i])

 ka1_max[i] ~ dlnorm(meanlog=log(ka1_max_m), varlog=ka1_max_v) # (mg/h)

 ##

 ## quantity at t 0

 Q_cen_0[i] ~ dlnorm(meanlog=log(Q_cen_0_mean), sdlog = log(Q_cen_0_sd))

 ##

 ## likelihood for concentration measurements

 ## Call the ODE solver to get predictions for each subject

 ## predictions are plasma concentrations, in ng/ml

 Conc[i, 1:ntimes] <- nimble_ode(y[1:nstates], times[1:ntimes],

 c(Dose_PP1M, F2[i], Duration_2,

 ka_PP1M[i], ka1_max_2[i], ka3_max[i],

 kamt1_50[i], kamt3_50[i], gamma[i],

 CL[i], V[i], PP3M_start, F3_2[i],

 Dose_PP3M, Q_cen_0[i],

 F3[i], ka1_max[i]))

 ## data likelihood

 for (j in 1:ntimes) {

 C_plasma_obs[i,j] ~ dlnorm(meanlog=log(Conc[i,j]), varlog=sigma2)

 }

 }

}) # End myNimbleCode

Data-based R workflow for cross-over trials (v5)

Paliperidone palmitate VBE workflow

v5: Switch to a simple cross-over study design for the large VBE trial.

IDtag = "_5" # version number

===

0. Read the statistical model and TOST test

source("Statistical model v14.R")

source("Our_TOST.R")

source("Cmax_AUC.R")

===

4. Simulate a virtual crossover bioequivalence trial with many subjects

N.subjects.v = 130 # number of virtual subjects per arm

Hr1 = 1 / (24 * 7) # one hour in weeks

times = c(1, 5, 9, 13, 14, 17-Hr1,

 21, 25, 29-Hr1, 33, 37, 41-Hr1, 45, 49, 53-Hr1, 54, 55, 57, 61,

 65-Hr1, 69, 73, 77-Hr1, 81, 85, 89-Hr1, 93, 97, 101-Hr1, 102, 103,

 105, 109, 113)

times = times * 24 * 7

plot.times = times / (24 * 7) # in weeks

N.times = length(plot.times)

dose_pp1m = 150

dose_pp3m = 525

Q_cen_0_mean = 30 # geo mean

Q_cen_0_sd = 1.5 # geo SD

Factor Delta applied to population mean reference parameters to get

 71

population mean test parameters. Order in Delta: f_3, k_as3,max

Delta = rep(1,2)

data = list()

inits = list(Q_cen_0_mean = Q_cen_0_mean, # (mg)

 Q_cen_0_sd = Q_cen_0_sd, # (mg)

 Dose_PP1M = dose_pp1m[1], # (mg)

 Dose_PP3M = dose_pp3m[1], # (mg)

 Delta = Delta)

constants = list(nsubjects_per_arm = N.subjects.v,

 Do_fit = 0, # 0: no fit, > 0: index

 SamEq3 = 1, # Boolean

 Duration_2 = 319, # (h)

 PP3M_start = 17*7*24, # (h)

 ntimes = N.times,

 times = times,

 nstates = 4)

Rmodel = nimbleModel(myNimbleCode, constants, data, inits, calculate=F)

Cmodel = Rmodel

Cmodel = compileNimble(Rmodel, showCompilerOutput=F)

Reference population means and variances MLE

Cmodel$Delta[2] = 1.42 # posterior mean after abbreviated trial calibration

Cmodel$ka1_pp1m_m = 4.88E-4

Cmodel$ka1_max_m = 0.0904

Cmodel$ka3_max_m = 0.164

Cmodel$kamt1_50_m = 120

Cmodel$kamt3_50_m = 21.4

Cmodel$gamma_m = 1.44

Cmodel$CL_m = 3.84

Cmodel$F2_v = (0.064 / (0.168 * (1 - 0.168)))^2

Cmodel$F3_v = (0.854 / (1 - 0.209))^2

Cmodel$ka1_pp1m_v = log(1 + 0.590^2)

Cmodel$ka1_max_v = log(1 + 0.827^2)

Cmodel$kamt1_50_v = log(1 + 0.5^2)

Cmodel$kamt3_50_v = log(1 + 0.867^2)

Cmodel$CL_v = log(1 + 0.357^2)

Cmodel$res_cv = 0.306

Run a BE trial

Node.names = Cmodel$getNodeNames(includeData=T)

Cmodel$simulate(nodes = Node.names)

all.res = values(Cmodel, Node.names)

all.data = values(Cmodel, "C_plasma_obs") # for just the simulated data

all.pred = values(Cmodel, "Conc") # for just the individual profile no noise

all.data = matrix(all.data, ncol=N.times, byrow = F) # subjects by row

all.pred = matrix(all.pred, ncol=N.times, byrow = F) # subjects by row

Group 1 (REFERENCE then TEST sequence) arm of trial

g1.pred.mat = all.pred[1:N.subjects.v,]

g1.data.mat = all.data[1:N.subjects.v,]

Group 2 (TEST then REFERENCE sequence) arm of trial

g2.pred.mat = all.pred[(N.subjects.v + 1):(2 * N.subjects.v),]

g2.data.mat = all.data[(N.subjects.v + 1):(2 * N.subjects.v),]

save the simulation

save(list=c("Node.names", "all.res", "g1.data.mat", "g2.data.mat"),

file="Virtual trial N 130 simulated profiles_v6.Rsave")

load(file="Virtual trial N 130 simulated profiles_v6.Rsave")

Compute Cmax for each subject in the last dosing period of PP3M and PP3Mt

itime = 16:20 # sampling times in last dosing period of 1st PP3M formulation

jtime = 30:34 # sampling times in last dosing period of 2nd PP3M formulation

 72

Cmax.g1_R = get.Cmax(t(g1.data.mat[,itime]))

Cmax.g1_T = get.Cmax(t(g1.data.mat[,jtime]))

Cmax.g2_T = get.Cmax(t(g2.data.mat[,itime]))

Cmax.g2_R = get.Cmax(t(g2.data.mat[,jtime]))

Compute AUC for each subject in the last dosing period of PP3M and PP3Mt

AUC.g1_R = get.AUC(plot.times[itime], t(g1.data.mat[,itime]))

AUC.g1_T = get.AUC(plot.times[jtime], t(g1.data.mat[,jtime]))

AUC.g2_T = get.AUC(plot.times[itime], t(g2.data.mat[,itime]))

AUC.g2_R = get.AUC(plot.times[jtime], t(g2.data.mat[,jtime]))

Plot concentrations, Cmax, AUC

pdf("Virtual trial N 130 simulated profiles.pdf")

layout(matrix(c(1,4,2,5,3,6,0,0),2,4), widths=c(0.8,0.1,0.1,0.01))

Group 1 plots

par(mar=c(5,5,3,0))

plot(plot.times, plot.times, type="n", xlab="Time (weeks)",

 ylab="Plasma concentration (ng/ml)", yaxt ="n",

 ylim=c(1,1000), log="y", cex.lab=1.5)

axis(2, at = c(0.001,0.01, 0.1, 1, 10, 100, 1000),

 labels=c("0.001","0.01", "0.1","1", "10", "100", "1000"), las=1)

for (i in 1:N.subjects.v) {

 lines(plot.times, g1.data.mat[i,], type="b", col="blue") # group 1

}

abline(v=c(0, 4, 8, 12, 17, 29, 41, 53, 65, 77, 89, 101), col="gray")

legend(x=45, y=1000, leg="Group 1", lty=1,

 col="blue", bty="o", bg="white", box.lty=0)

Plot Cmax

par(mar=c(5,0,3,0))

boxplot(Cmax.g1_R, Cmax.g1_T, xlim=c(0.5,2.5), ylim=c(1,1000), log="y",

 col=c("royalblue1", "royalblue3"),

 xaxt="s", yaxt="n", xlab="", ylab="", names=c("Ref", "Test"))

text(1.5, y=1000, lab="Cmax")

Plot AUC divided by time difference (to be on a concentration scale)

diffT = plot.times[20] - plot.times[16]

diffT_T = plot.times[34] - plot.times[30]

boxplot(AUC.g1_R/diffT, AUC.g1_T/diffT_T, xlim=c(0.5,2.5),

 ylim=c(1,1000), log="y", col=c("royalblue1", "royalblue3"),

 yaxt="n", xlab="", ylab="", names=c("Ref", "Test"))

text(1.5, y=1000, lab=expression(AUC / Delta[t]))

Group 2 plots

par(mar=c(5,5,3,0))

plot(plot.times, plot.times, type="n", xlab="Time (weeks)",

 ylab="Plasma concentration (ng/ml)", yaxt ="n",

 ylim=c(1,1000), log="y", cex.lab=1.5)

axis(2, at = c(0.001,0.01, 0.1, 1, 10, 100, 1000),

 labels=c("0.001","0.01", "0.1","1", "10", "100", "1000"), las=1)

for (i in 1:N.subjects.v) {

 lines(plot.times, g2.data.mat[i,], type="b", col="red") # group 2

}

abline(v=c(0, 4, 8, 12, 17, 29, 41, 53, 65, 77, 89, 101), col="gray")

legend(x=45, y=1000, leg="Group 2", lty=1,

 col="red", bty="o", bg="white", box.lty=0)

Plot Cmax

par(mar=c(5,0,3,0))

boxplot(Cmax.g2_T, Cmax.g2_R, xlim=c(0.5,2.5), ylim=c(1,1000), log="y",

 col=c("violetred1", "violetred3"),

 xaxt="s", yaxt="n", xlab="", ylab="", names=c("Test", "Ref"))

text(1.5, y=1000, lab="Cmax")

Plot AUC divided by time difference (to be on a concentration scale)

 73

diffT_T = plot.times[20] - plot.times[16]

diffT = plot.times[34] - plot.times[30]

boxplot(AUC.g2_T/diffT_T, AUC.g2_R/diffT, xlim=c(0.5,2.5),

 ylim=c(1,1000), log="y", col=c("violetred1", "violetred3"),

 yaxt="n", xlab="", ylab="", names=c("Test", "Ref"))

text(1.5, y=1000, lab=expression(AUC / Delta[t]))

dev.off()

===

5. Perform BE test (TOST) on 2x2 crossover trial results,

Cmax.yes = myTOST.2x2(Cmax.g1_R, Cmax.g1_T, Cmax.g2_T, Cmax.g2_R)

AUC.yes = myTOST.2x2(AUC.g1_R, AUC.g1_T, AUC.g2_T, AUC.g2_R)

BE.yes = Cmax.yes && AUC.yes

===

6. Power: probability of declaring BE when it is true.

This is equal to (1 - type II error), where type II error is the

probability of rejecting BE when it is true

Compute once for many subjects and then use only part of the data

for smaller trial sizes.

N.subjects.v = 500 # number of virtual subjects per arm

Hr1 = 1 / (24 * 7) # one hour in weeks

times = c(1, 5, 9, 13, 14, 17-Hr1,

 21, 25, 29-Hr1, 33, 37, 41-Hr1, 45, 49, 53-Hr1, 54, 55, 57, 61,

 65-Hr1, 69, 73, 77-Hr1, 81, 85, 89-Hr1, 93, 97, 101-Hr1, 102, 103,

 105, 109, 113)

times = times * 24 * 7

plot.times = times / (24 * 7) # in weeks

N.times = length(plot.times)

dose_pp1m = 150

dose_pp3m = 525

Q_cen_0_mean = 30 # geo mean

Q_cen_0_sd = 1.5 # geo SD

We need to recompile, because nsubjects must be a constant

constants = list(nsubjects_per_arm = N.subjects.v,

 Do_fit = 0, # 0: no fit, > 0: index

 SamEq3 = 1, # Boolean

 Duration_2 = 319, # (h)

 PP3M_start = 17*7*24, # (h)

 ntimes = N.times,

 times = times,

 nstates = 4)

data = list()

inits = list(Q_cen_0_mean = Q_cen_0_mean, # (mg)

 Q_cen_0_sd = Q_cen_0_sd, # (mg)

 Dose_PP1M = dose_pp1m[1], # (mg)

 Dose_PP3M = dose_pp3m[1], # (mg)

 Delta = rep(1,2))

Rmodel = nimbleModel(myNimbleCode, constants, data, inits, calculate=F)

Cmodel = Rmodel

Cmodel = compileNimble(Rmodel, showCompilerOutput=F)

Node.names = Cmodel$getNodeNames(includeData=T)

Cmodel$simulate(nodes = Node.names)

res = values(Cmodel, Node.names)

Main simulation: bioequivalent case

Cmodel$Delta = c(1, 1) # true BE

 74

N.mtc.v = 1000 # number of simulated virtual trials

Cmax.g1_R = Cmax.g1_T = Cmax.g2_T = Cmax.g2_R =

AUC.g1_R = AUC.g1_T = AUC.g2_T = AUC.g2_R =

 matrix(0, nrow=N.mtc.v, ncol=N.subjects.v)

BE.yes = rep(-1, N.mtc.v)

itime = 16:20 # sampling times in last dosing period for 1st PP3M formulation

jtime = 30:34 # sampling times in last dosing period for 2nd PP3M formulation

t.start = Sys.time()

for (i in 1:N.mtc.v) {

 ## Simulate the trial

 Cmodel$simulate(nodes = Node.names)

 all.data = values(Cmodel, "C_plasma_obs")

 all.data = matrix(all.data, ncol=N.times, byrow = F) # subjects by row

 ##

 ## Group 1 (REFERENCE then TEST sequence) arm of trial

 g1.data.mat = all.data[1:N.subjects.v,]

 ##

 ## Group 2 (TEST then REFERENCE sequence) arm of trial

 g2.data.mat = all.data[(N.subjects.v + 1):(2 * N.subjects.v),]

 ##

 ## Compute Cmax for each subject in the last dosing period of PP3M and PP3Mt

 Cmax.g1_R[i,] = get.Cmax(t(g1.data.mat[,itime]))

 Cmax.g1_T[i,] = get.Cmax(t(g1.data.mat[,jtime]))

 Cmax.g2_T[i,] = get.Cmax(t(g2.data.mat[,itime]))

 Cmax.g2_R[i,] = get.Cmax(t(g2.data.mat[,jtime]))

 ##

 ## Compute AUC for each subject in the last dosing period of PP3M and PP3Mt

 AUC.g1_R[i,] = get.AUC(plot.times[itime], t(g1.data.mat[,itime]))

 AUC.g1_T[i,] = get.AUC(plot.times[jtime], t(g1.data.mat[,jtime]))

 AUC.g2_T[i,] = get.AUC(plot.times[itime], t(g2.data.mat[,itime]))

 AUC.g2_R[i,] = get.AUC(plot.times[jtime], t(g2.data.mat[,jtime]))

 ##

 print(paste("Trial", i))

}

t.end = Sys.time()

t.end - t.start

save(list=c("N.mtc.v", "N.subjects.v",

 "Cmax.g1_R", "Cmax.g1_T", "Cmax.g2_T", "Cmax.g2_R",

 "AUC.g1_R", "AUC.g1_T", "AUC.g2_T", "AUC.g2_R"),

 file=paste0("Cmax & AUC for power",IDtag,".Rsave"))

load(file=paste0("Cmax & AUC for power",IDtag,".Rsave"))

Now process increasing chunks of the results

power = rep(0, N.subjects.v/2)

BE.yes = rep(0, N.mtc.v)

for (k in seq(2, N.subjects.v, 2)) {

 N.subj.current = k

 my.index = sample.int(N.subjects.v, N.subj.current) # randomize

 for (i in 1:N.mtc.v) {

 Cmax.yes = myTOST.2x2(Cmax.g1_R[i,my.index], Cmax.g1_T[i,my.index],

 Cmax.g2_T[i,my.index], Cmax.g2_R[i,my.index])

 AUC.yes = myTOST.2x2(AUC.g1_R[i,my.index], AUC.g1_T[i,my.index],

 AUC.g2_T[i,my.index], AUC.g2_R[i,my.index])

 #

 BE.yes[i] = Cmax.yes && AUC.yes

 }

 ## power:

 power[k/2] = sum(BE.yes) / N.mtc.v # probability of declaring BE

}

Plot

pdf("Power plot 2x2 crossover after calibration.pdf")

plot(seq(2, N.subjects.v, 2), power, type="l",

 xlab="Number of subjects per arm",

 ylab="Probability of declaring bioequivalence",

 xlim=c(1,N.subjects.v), ylim=c(0, 1), col="grey", lwd=0.5, las=1)

 75

smooth:

lines(seq(2, N.subjects.v, 2),

 supsmu(seq(2,N.subjects.v,2), power)$y, lwd=2, col="red")

dev.off()

===

7. Type I error: probability of declaring BE when it is not true.

Compute once for many subjects and then use only part of the data

for smaller trial sizes.

N.subjects.v = 500 # number of virtual subjects per arm

Hr1 = 1 / (24 * 7) # one hour in weeks

times = c(1, 5, 9, 13, 14, 17-Hr1,

 21, 25, 29-Hr1, 33, 37, 41-Hr1, 45, 49, 53-Hr1, 54, 55, 57, 61,

 65-Hr1, 69, 73, 77-Hr1, 81, 85, 89-Hr1, 93, 97, 101-Hr1, 102, 103,

 105, 109, 113)

times = times * 24 * 7

plot.times = times / (24 * 7) # in weeks

N.times = length(plot.times)

dose_pp1m = 150

dose_pp3m = 525

Q_cen_0_mean = 30 # geo mean

Q_cen_0_sd = 1.5 # geo SD

We need to recompile, because nsubjects must be a constant

constants = list(nsubjects_per_arm = N.subjects.v,

 Do_fit = 0, # 0: no fit, > 0: index

 SamEq3 = 1, # Boolean

 Duration_2 = 319, # (h)

 PP3M_start = 17*7*24, # (h)

 ntimes = N.times,

 times = times,

 nstates = 4)

data = list()

inits = list(Q_cen_0_mean = Q_cen_0_mean, # (mg)

 Q_cen_0_sd = Q_cen_0_sd, # (mg)

 Dose_PP1M = dose_pp1m[1], # (mg)

 Dose_PP3M = dose_pp3m[1], # (mg)

 Delta = rep(1,2))

Rmodel = nimbleModel(myNimbleCode, constants, data, inits, calculate=F)

Cmodel = compileNimble(Rmodel, showCompilerOutput=F)

Node.names = Cmodel$getNodeNames(includeData=T)

Cmodel$simulate(nodes = Node.names)

res = values(Cmodel, Node.names)

Main simulation

N.mtc.v = 1000 # number of simulated virtual trials

BE.yes = rep(-1, N.mtc.v)

Delta = matrix(0, nrow=N.mtc.v, ncol=2)

Cmax.g1_R = Cmax.g1_T = Cmax.g2_T = Cmax.g2_R =

AUC.g1_R = AUC.g1_T = AUC.g2_T = AUC.g2_R =

 matrix(0, nrow=N.mtc.v, ncol=N.subjects.v)

itime = 16:20 # sampling times in last dosing period for 1st PP3M formulation

jtime = 30:34 # sampling times in last dosing period for 2nd PP3M formulation

t.start = Sys.time()

for (i in 1:N.mtc.v) {

 ## Simulate the trial

 Delta[i,] = runif(2, 0.7, 1.5)

 Cmodel$Delta = Delta[i,]

 Cmodel$simulate(nodes = Node.names)

 76

 all.data = values(Cmodel, "C_plasma_obs")

 all.data = matrix(all.data, ncol=N.times, byrow = F) # subjects by row

 ##

 ## Group 1 (REFERENCE then TEST sequence) arm of trial

 g1.data.mat = all.data[1:N.subjects.v,]

 ##

 ## Group 2 (TEST then REFERENCE sequence) arm of trial

 g2.data.mat = all.data[(N.subjects.v + 1):(2 * N.subjects.v),]

 ##

 ## Compute Cmax for each subject in the last dosing period of PP3M and PP3Mt

 Cmax.g1_R[i,] = get.Cmax(t(g1.data.mat[,itime]))

 Cmax.g1_T[i,] = get.Cmax(t(g1.data.mat[,jtime]))

 Cmax.g2_T[i,] = get.Cmax(t(g2.data.mat[,itime]))

 Cmax.g2_R[i,] = get.Cmax(t(g2.data.mat[,jtime]))

 ##

 ## Compute AUC for each subject in the last dosing period of PP3M and PP3Mt

 AUC.g1_R[i,] = get.AUC(plot.times[itime], t(g1.data.mat[,itime]))

 AUC.g1_T[i,] = get.AUC(plot.times[jtime], t(g1.data.mat[,jtime]))

 AUC.g2_T[i,] = get.AUC(plot.times[itime], t(g2.data.mat[,itime]))

 AUC.g2_R[i,] = get.AUC(plot.times[jtime], t(g2.data.mat[,jtime]))

 ##

 print(paste("Trial", i))

}

t.end = Sys.time()

t.end - t.start

Save

save(list=c("N.mtc.v", "N.subjects.v", "Delta",

 "Cmax.g1_R", "Cmax.g1_T", "Cmax.g2_T", "Cmax.g2_R",

 "AUC.g1_R", "AUC.g1_T", "AUC.g2_T", "AUC.g2_R"),

 file=paste0("Cmax & AUC for type 1 error", IDtag,".Rsave"))

load(file=paste0("Cmax & AUC for type 1 error",IDtag,".Rsave"))

Set number of subjects to use; we can use at most N.subjects.v subjects

N.subject.used = N.subjects.v

j = 1:N.subject.used

Test/Ref relative Cmax differences

tmp1 = exp(apply(log(Cmax.g1_T) - log(Cmax.g1_R), MARGIN=1, FUN=mean))

tmp2 = exp(apply(log(Cmax.g2_T) - log(Cmax.g2_R), MARGIN=1, FUN=mean))

Cmax.rel.diffs = apply(cbind(tmp1, tmp2), MARGIN=1, FUN=mean)

mean(Cmax.rel.diffs)

Test/Ref relative AUC differences

tmp1 = exp(apply(log(AUC.g1_T) - log(AUC.g1_R), MARGIN=1, FUN=mean))

tmp2 = exp(apply(log(AUC.g2_T) - log(AUC.g2_R), MARGIN=1, FUN=mean))

AUC.rel.diffs = apply(cbind(tmp1, tmp2), MARGIN=1, FUN=mean)

mean(AUC.rel.diffs)

Compute BE for the various trials

Cmax.yes = AUC.yes = BE.yes = rep(0, N.mtc.v)

for (i in 1:N.mtc.v) {

 Cmax.yes[i] = myTOST.2x2(Cmax.g1_R[i,], Cmax.g1_T[i,],

 Cmax.g2_T[i,], Cmax.g2_R[i,])

 AUC.yes[i] = myTOST.2x2(AUC.g1_R[i,], AUC.g1_T[i,],

 AUC.g2_T[i,], AUC.g2_R[i,])

 BE.yes[i] = Cmax.yes[i] && AUC.yes[i]

}

Plot passes

pdf("Type 1 error plot 2x2 crossover.pdf")

par(mfrow=c(2,1), mar=c(4,5,1,1), las=1, cex.lab=0.8)

par(mar=c(8,5,7,1), las=1, cex.lab=1.2)

plot(Cmax.rel.diffs, Cmax.yes, type="p",

 xlab="Cmax relative differences geometric mean",

 ylab="Probability of declaring Cmax BE")

abline(v=c(0.8, 1.25), col="red")

lines(Cmax.centers, Cmax.error1, col="blue")

 77

lines(Cmax.centers, supsmu(1:(N.bins-1), Cmax.error1,span=0.03)$y,

col="blue")

plot(AUC.rel.diffs, AUC.yes, type="p",

 xlab="AUC relative differences geometric mean",

 ylab="Probability of declaring AUC BE")

abline(v=c(0.8, 1.25), col="red")

lines(AUC.centers, AUC.error1, col="blue")

dev.off()

===

8. Safe space: probability of declaring BE when it is not true.

We have saved the Delta and BE decisions in the type 1 error

calculations; we can just reuse them.

The saved simulation are the same as type 1 error but a copy has been made.

load(file=paste0("Cmax & AUC for type 1 error",IDtag,".Rsave"))

load(file=paste0("Cmax & AUC for safe space",IDtag,".Rsave"))

Set number of subjects to use; we can use at most N.subjects.v subjects

N.subject.used = N.subjects.v

j = 1:N.subject.used

Test/Ref relative Cmax differences

tmp1 = exp(apply(log(Cmax.g1_T) - log(Cmax.g1_R), MARGIN=1, FUN=mean))

tmp2 = exp(apply(log(Cmax.g2_T) - log(Cmax.g2_R), MARGIN=1, FUN=mean))

Cmax.rel.diffs = apply(cbind(tmp1, tmp2), MARGIN=1, FUN=mean)

mean(Cmax.rel.diffs)

Test/Ref relative AUC differences

tmp1 = exp(apply(log(AUC.g1_T) - log(AUC.g1_R), MARGIN=1, FUN=mean))

tmp2 = exp(apply(log(AUC.g2_T) - log(AUC.g2_R), MARGIN=1, FUN=mean))

AUC.rel.diffs = apply(cbind(tmp1, tmp2), MARGIN=1, FUN=mean)

mean(AUC.rel.diffs)

Compute BE for the various trials

Compute BE for the various trials

Cmax.yes = AUC.yes = BE.yes = rep(0, N.mtc.v)

for (i in 1:N.mtc.v) {

 Cmax.yes[i] = myTOST.2x2(Cmax.g1_R[i,], Cmax.g1_T[i,],

 Cmax.g2_T[i,], Cmax.g2_R[i,])

 AUC.yes[i] = myTOST.2x2(AUC.g1_R[i,], AUC.g1_T[i,],

 AUC.g2_T[i,], AUC.g2_R[i,])

 BE.yes[i] = Cmax.yes[i] && AUC.yes[i]

}

pdf("Safe space delta[1,2] plot 2x2 crossover.pdf")

is.BE = which(BE.yes == 1) # we could also use Cmax.yes or AUC.yes

par(mar=c(5,5,2,1))

plot(Delta[,1], Delta[,2], type="n", cex.lab=1.4, las=1,

 xlab=expression(delta[1]),

 ylab=expression(delta[2]))

points(Delta[is.BE,1], Delta[is.BE,2], pch=16, cex=0.5, col="green")

points(Delta[-is.BE,1], Delta[-is.BE,2], pch=16, cex=0.8, col="red")

abline(a=1.23, b=-0.5, col="red")

abline(a=1.83, b=-0.5, col="red")

abline(a=1.14, b=-0.5, col="green")

abline(a=2.09, b=-0.5, col="green")

dev.off()

End.

TOST code in R

v1: TOST for parallel trials

v2: Add TOST for 2x2 (RT/TR) crossover trials

TOST test function: takes ref and test PK parameters (Cmax...) and

 78

returns TRUE if they are bioequivalent

myTOST = function(X.ref, X.test) {

 N = length(X.ref)

 ##

 ## means in log space

 mu.ref = mean(log(X.ref))

 mu.test = mean(log(X.test))

 ##

 ## variances in log space

 var.ref = var(log(X.ref))

 var.test = var(log(X.test))

 ##

 logmeans.diff = mu.test - mu.ref

 logvars.mean = (var.ref + var.test) / 2

 ##

 ## delta = t.variate * SE

 delta = qt(0.95, df = 2*N - 2) * sqrt(logvars.mean * 2 / N)

 CL_lo = logmeans.diff - delta

 CL_up = logmeans.diff + delta

 ##

 X.yes = (exp(CL_lo) > 0.8) && (exp(CL_up) < 1.25) # true or false...

 return(X.yes)

}

TOST test function for cross-over trials

returns TRUE if they are bioequivalent

myTOST.2x2 = function(X.g1_r, X.g1_t, X.g2_t, X.g2_r) {

 ## parameters are group 1 ref, then test then group 2 ref then test results

 ## assumes completely balanced design

 ## log-transform and contatenate the data

 y = log(c(X.g1_r, X.g1_t, X.g2_t, X.g2_r))

 ##

 Nsub.in_seq = length(X.g1_r) # number of subjects per sequence

 Nsub.total = Nsub.in_seq * 2 # total number of subjects

 Nobs.total = Nsub.in_seq * 4 # number of observations

 ##

 ## Recode the design variables

 X = matrix(0, Nobs.total, 4)

 X[,1] = 1 # Intercept

 X[,2] = rep(c(0,1,1,0), each=Nsub.in_seq) # treatment

 X[,3] = rep(0:1, each=Nsub.total) # sequence

 X[,4] = rep(1:0, each=Nsub.in_seq)

 ##

 b = solve(t(X)%*%X)%*%t(X)%*%y

 ##

 res = y - X%*%b # residuals

 ##

 ## Compute within subject variance

 my.i = 1:Nsub.in_seq

 res.delta = c(res[my.i + Nsub.in_seq] - res[my.i],

 res[my.i + 3*Nsub.in_seq] - res[my.i + 2*Nsub.in_seq])

 var.within = (sum(res.delta * res.delta) / 2) / (Nsub.total - 2)

 ##

 SD.within = sqrt(var.within) # within subject standard deviation

 ## Compute total variance

 var.total = mean(res * res) * Nsub.total / (Nsub.total - 2)

 ## Compute between subject variance

 var.between = var.total - var.within

 ##

 SE.Form = SD.within * sqrt(1 / Nsub.in_seq)

 ##

 dof = (Nobs.total - 4) / 2

 ##

 tfactor = qt(0.95, dof)

 CL_up = b[2] + tfactor * SE.Form

 CL_lo = b[2] - tfactor * SE.Form

 ##

 X.yes = (exp(CL_lo) > 0.8) && (exp(CL_up) < 1.25) # true or false...

 79

}

End.

Cmax and AUC data-based calculations code in R

Compute Cmax and AUC given a vector of times and a matrix of concentration

measurements at some times for different subjects (times in row, subjects

in columns)

Compute Cmax for different subjects

get.Cmax = function(conc) {

 return(apply(conc, MARGIN=2, FUN=max))

}

Compute AUC for each subject

get.AUC = function(times, conc) {

 Ns = dim(conc)[2]

 AUC = rep(0, Ns)

 Nt = length(times)

 dx = diff(times)

 for (i in 1:Ns) {

 AUC[i] = sum((conc[-Nt,i] + conc[-1,i]) * dx) / 2

 }

 return(AUC)

}

End.

Structural model C code (v6)

/* compile within R with system("R CMD SHLIB PP3M_model.c")

 V05: Compute central concentration AUC by integration

*/

#include <R.h>

#define Nparms 12

static double parms[Nparms];

/* A trick to keep up with the parameters */

#define Dose_PP1M parms[0]

#define F2 parms[1]

#define Duration_2 parms[2]

#define ka_PP1M parms[3]

#define ka1_max parms[4]

#define ka3_max parms[5]

#define kamt1_50 parms[6]

#define kamt3_50 parms[7]

#define gamma parms[8]

#define CL parms[9]

#define V parms[10]

#define PP3M_start parms[11]

/* initializer: same name as the dll (without extension) */

void PP13M_model_v06(void (* odeparms)(int *, double *))

{

 int N = Nparms;

 odeparms(&N, parms);

}

/* Derivatives */

void derivs(int *neq, double *t, double *y, double *ydot, double *yout, int*ip)

{

 double Ke;

 // State variables

 80

 // Q_depot_s1 = y[0] # quantity (mg) in PP1M slow absorption depot

 // Q_depot_s3 = y[1] # quantity (mg) in PP3M slow absorption depot

 // Q_depot_r3 = y[2] # quantity (mg) in PP3M fast absorption depot

 // Q_central = y[3] # quantity (mg) in central compartment

 // AUC_central = y[4] # integral of y[3]

 // ODEs

 // Quantity in PP1M depot slow absorption

 ydot[0] = -ka_PP1M * y[0];

 // Quantities in PP3M depots

 if (*t < PP3M_start) { // use PP1M model, PP3M model differentials are null

 // Quantity in PP3M depot slow absorption

 ydot[1] = 0;

 // Quantity in PP3M depot rapid absorption

 ydot[2] = 0;

 }

 else { // use PP1M and PP3M models concurrently

 // Quantity in PP3M depot slow absorption

 ydot[1] = -ka1_max * pow(y[1], gamma) /

 (pow(kamt1_50, gamma) + pow(y[1], gamma));

 // Quantity in PP3M depot rapid absorption

 ydot[2] = -ka3_max * y[2] / (kamt3_50 + y[2]);

 }

 // Quantity in central compartment

 // clearance from central

 Ke = CL / V;

 // hard-code the zero-order inputs after PP1M injections

 if (((0 <= *t) && (*t < 319)) || ((672 <= *t) && (*t < 991)) ||

 ((1344 <= *t) && (*t < 1663)) || ((2016 <= *t) && (*t < 2335))) {

 ydot[3] = F2 * Dose_PP1M / Duration_2

 -(ydot[0] + ydot[1] + ydot[2]) - Ke * y[3];

 }

 else {

 ydot[3] = -(ydot[0] + ydot[1] + ydot[2]) - Ke * y[3];

 }

 // Q central AUC

 ydot[4] = y[3];

}

/* End */

Statistical model in R (v16)

R/Nimble code for PP1M/PP3M population model, from Magnusson

v14: Sample Delta from its posterior to abbreviated trial distribution.

Posterior of log(Delta[2]) is well approximated by a normal.

v15: Uses C model v5 which calculates AUC by integration.

v16: Reset AUC_central at last dosing time.

library(nimble)

compile C ODE model for deSolve

Cmodel.name = "PP13M_model_v06"

system(paste0("R CMD SHLIB ", Cmodel.name, ".c"))

dyn.load(paste(Cmodel.name, .Platform$dynlib.ext, sep = ""))

dyn.unload(paste(Cmodel.name, .Platform$dynlib.ext, sep = ""))

===

Define the model

ODE solver: performs a simulation, given initial state values,

output times and time-constant, scaled, parameters

This is an R function

 81

R_ode = function(y, times, parms) {

 ## parms: 1:Dose_PP1M, 2:F2, 3:Duration_2, 4:ka_PP1M,

 ## 5:ka1_max, 6:ka3_max, 7:kamt1_50, 8:kamt3_50,

 ## 9:gamma, 10:CL, 11:V, 12:PP3M_start,

 ## 13:F3, 14:Dose_PP3M, 15:Q_cen_0

 ## The last two parameters should not be passed to the ODE solver, they are

 ## used here only.

 ## State variables (y) initial conditions

 y = c("Q_depot_s1" = 0,

 "Q_depot_s3" = 0,

 "Q_depot_r3" = 0,

 "Q_central" = parms[15],

 "AUC_central" = 0)

 ## The doses are specified as "events" affecting the state variables

 ## dosing times (hours)

 dose_times = c(c(0, 4, 8, 12) + parms[3] / (24 * 7),

 17, 29, 41, 53) * 24 * 7

 N_doses = length(dose_times)

 ## changing state variables at dosing times

 vars = c("Q_depot_s1", "Q_depot_s3", "Q_depot_r3")

 v1 = (1 - parms[2]) * parms[1] # value applied to Q_depot_s1

 v2 = (1 - parms[13]) * parms[14] # value applied to Q_depot_s3

 v3 = parms[13] * parms[14] # value applied to Q_depot_r3

 ## Form the events table

 eventdat = data.frame(var = c(rep("Q_depot_s1", 4), rep(vars[2:3], 4),

 "AUC_central"),

 time = c(dose_times[1:4], rep(dose_times[5:8], each=2),

 dose_times[8]),

 value = c(rep(v1, 4),

 rep(c(v2, v3), N_doses - 4), 0),

 method = c(rep("add", 12), "replace"))

 ## Integrate numerically, with outputs at specified times

 results = deSolve::lsode(y, times, func="derivs", parms=parms[1:12],

 rtol=1e-6, atol=1e-6, dllname="PP13M_model_v06",

 initfunc = "PP13M_model_v06",

 events=list(data=eventdat))

 ## results = result[which(results[,1] %in% times),] # weed out extra times

 nrow.res = dim(results)[[1]]

 if (results[nrow.res,1] < times[length(times)]) { ## integration failed

 return(rep(1E-30, 2))

 } else {

 ## central concentration AUC is computed over last dosing period,

 ## convert from hours * mg/L to week * ng/ml, return

 from = max(which(results[,1] == dose_times[N_doses]))

 Cmax = max(results[from:nrow.res,5])

 AUC = results[nrow.res,6] * 1E3 / parms[11] / 168

 return(as.numeric(c(Cmax, AUC)))

 }

} # end of R_ode model solver

Nimble function with nimbleRcall. This is just a wrapper

to call the R-coded "R_ode" model solver from inside the "myNimbleCode" core

function (defined next). It has to match the format of the "R_ode" function.

nimble_ode = nimbleRcall(

 prototype = function(

 y = double(1), # vector

 times = double(1), # vector

 parms = double(1) # vector

) {},

 returnType = double(1), # outcome is a vector

 Rfun = 'R_ode'

)

Hierarchical core Nimble (BUGS) code

myNimbleCode = nimbleCode({ ## BUGS (extended) code

 82

 ##

 ## REFERENCE group population mean (with prior if not fixed)

 F2t_m <- logit(0.168) # From Samtani paper Table III.

 # from online resource 3 Magnusson, F2 = 0.153

 F3t_m <- logit(0.209) # transformed F3

 ka1_pp1m_mv <- log(1 + 0.02^2)

 ka1_pp1m_m ~ dlnorm(meanlog=log(4.88E-4), varlog=ka1_pp1m_mv) # (1/h)

 ka1_max_mv <- log(1 + 0.0696^2)

 ka1_max_m ~ dlnorm(meanlog=log(0.0904), varlog=ka1_max_mv) # (mg/h)

 ka3_max_mv <- log(1 + 0.0465^2)

 ka3_max_m ~ dlnorm(meanlog=log(0.164), varlog=ka3_max_mv) # (mg/h)

 kamt1_50_mv <- log(1 + 0.0383^2)

 kamt1_50_m ~ dlnorm(meanlog=log(120), varlog=kamt1_50_mv) # (mg)

 kamt3_50_mv <- log(1 + 0.0952^2)

 kamt3_50_m ~ dlnorm(meanlog=log(21.4), varlog=kamt3_50_mv) # (mg)

 gamma_mv <- log(1 + 0.0165^2)

 gamma_m ~ dlnorm(meanlog=log(1.44), varlog=gamma_mv) # unitless

 CL_mv <- log(1 + 0.0216^2)

 CL_m ~ dlnorm(meanlog=log(3.84), varlog=CL_mv) # (L/hr)

 V_m <- 1960 # (L)

 ##

 ## REFERENCE pop (inter-individual) SDs (with prior if not fixed)

 ##

 ## F2_sd

 omega2 <- 0.064 / (0.168 * (1 - 0.168)) # Samtani eq. 4 inverted

 F2_sd ~ dnorm(mean = omega2, sd = 0.02*omega2)

 F2_v <- F2_sd^2

 ## F3_v, Samtani eq. 4 inverted

 F3_v <- (0.854 / (1 - 0.209))^2

 ##

 ka1_pp1m_cv_v <- log(1 + 0.03^2)

 ka1_pp1m_cv ~ dlnorm(meanlog=log(0.590), varlog=ka1_pp1m_cv_v)

 ka1_pp1m_v <- log(1 + ka1_pp1m_cv^2)

 ##

 ka1_max_cv_v <- log(1 + 0.0501^2)

 ka1_max_cv ~ dlnorm(meanlog=log(0.827), varlog=ka1_max_cv_v)

 ka1_max_v <- log(1 + ka1_max_cv^2)

 ##

 ka3_max_v <- 0

 ##

 kamt1_50_cv_v <- log(1 + 0.101^2)

 kamt1_50_cv ~ dlnorm(meanlog=log(0.500), varlog=kamt1_50_cv_v)

 kamt1_50_v <- log(1 + kamt1_50_cv^2)

 ##

 kamt3_50_cv_v <- log(1 + 0.142^2)

 kamt3_50_cv ~ dlnorm(meanlog=log(0.867), varlog=kamt3_50_cv_v)

 kamt3_50_v <- log(1 + kamt3_50_cv^2)

 ##

 gamma_v <- 0

 ##

 CL_cv_v <- log(1 + 0.0317^2)

 CL_cv ~ dlnorm(meanlog=log(0.357), varlog=CL_cv_v)

 CL_v <- log(1 + CL_cv^2)

 ##

 V_v <- log(1 + 0.628^2)

 ##

 ## TEST group population mean (with prior if not fixed)

 ## Delta is a vector containing the factor of difference between the

 ## ref and test compounds for the 6 drug-release parameters

 ## 1 = no difference.

 ## Order in Delta: f_3, k_as3,max, k_ar3,max, k_as3,50, k_ar3,50, Gamma.

 ## If Do_fit > 0.5, sample the first 3 Delta.

 if (Do_fit > 0.5) {

 logDelta2 ~ dnorm(mean=logmeanD2, var=logvarD2)

 Delta[2] <- exp(logDelta2)

 }

 else {

 logDelta2 ~ dnorm(mean=0.34882, sd=0.17475) # abb. trial posterior

 83

 Delta[2] <- exp(logDelta2)

 }

 F3t_m_T <- logit(0.209 * Delta[1]) # transformed F3 with delta

 ka1_max_m_T <- ka1_max_m * Delta[2] # (mg/h)

 ka3_max_m_T <- ka3_max_m * Delta[3] # (mg/h)

 kamt1_50_m_T <- kamt1_50_m * Delta[4] # (mg)

 kamt3_50_m_T <- kamt3_50_m * Delta[5] # (mg)

 gamma_m_T <- gamma_m * Delta[6] # unitless

 ##

 ## if F3_m is modified then F3_v is modified:

 if (SamEq3) { # see above

 F3_v_T <- (0.854 / (1 - 0.209 * Delta[1]))^2

 } else {

 F3_v_T <- (abs(F3t_m_T) * 0.854)^2

 }

 ##

 ## measurement error variance in log for plasma concentration, ng/ml

 ## if we want uncertainty on the residual error we should use:

 res_cv_v <- log(1 + 0.321^2)

 res_cv ~ dlnorm(meanlog=log(0.306), varlog=res_cv_v)

 sigma2 <- log(1 + res_cv^2)

 ## simpler is:

 ## sigma2 <- log(1 + 0.306^2)

 ## for each REFERENCE subject

 for (i in 1:nsubjects_per_arm) {

 tmp2[i] ~ dnorm(mean = F2t_m, var = F2_v)

 F2[i] <- ilogit(tmp2[i])

 tmp3[i] ~ dnorm(mean = F3t_m, var = F3_v)

 F3[i] <- ilogit(tmp3[i])

 ka_PP1M[i] ~ dlnorm(meanlog=log(ka1_pp1m_m), varlog=ka1_pp1m_v) # (1/hr)

 ka1_max[i] ~ dlnorm(meanlog=log(ka1_max_m), varlog=ka1_max_v) # (mg/h)

 ka3_max[i] <- ka3_max_m # (mg/h)

 kamt1_50[i] ~ dlnorm(meanlog=log(kamt1_50_m), varlog=kamt1_50_v) # (mg)

 kamt3_50[i] ~ dlnorm(meanlog=log(kamt3_50_m), varlog=kamt3_50_v) # (mg)

 gamma[i] <- gamma_m

 CL[i] ~ dlnorm(meanlog=log(CL_m), varlog=CL_v) # (L/hr)

 V[i] ~ dlnorm(meanlog=log(V_m), varlog=V_v) # (L)

 ##

 ## quantity at t 0

 Q_cen_0[i] ~ dlnorm(meanlog=log(Q_cen_0_mean), sdlog = log(Q_cen_0_sd))

 ##

 ## Call the ODE solver to get AUC_central for each subject

 ## prediction is plasma concentration AUC, in week * ng/ml

 Cmax_AUC[i,1:2] <- nimble_ode(y[1:nstates], times[1:ntimes],

 c(Dose_PP1M, F2[i], Duration_2,

 ka_PP1M[i], ka1_max[i], ka3_max[i],

 kamt1_50[i], kamt3_50[i], gamma[i],

 CL[i], V[i], PP3M_start, F3[i],

 Dose_PP3M, Q_cen_0[i]))

 }

 ## for each TEST subject

 for (i in (1+nsubjects_per_arm):(2*nsubjects_per_arm)) {

 tmp2[i] ~ dnorm(mean = F2t_m, var = F2_v)

 F2[i] <- ilogit(tmp2[i])

 tmp3[i] ~ dnorm(mean = F3t_m_T, var = F3_v_T)

 F3[i] <- ilogit(tmp3[i])

 ka_PP1M[i] ~ dlnorm(meanlog=log(ka1_pp1m_m), varlog=ka1_pp1m_v) # (1/hr)

 ka1_max[i] ~ dlnorm(meanlog=log(ka1_max_m_T), varlog=ka1_max_v) # (mg/h)

 ka3_max[i] <- ka3_max_m_T # (mg/h)

 kamt1_50[i] ~ dlnorm(meanlog=log(kamt1_50_m_T), varlog=kamt1_50_v) # (mg)

 kamt3_50[i] ~ dlnorm(meanlog=log(kamt3_50_m_T), varlog=kamt3_50_v) # (mg)

 gamma[i] <- gamma_m_T

 CL[i] ~ dlnorm(meanlog=log(CL_m), varlog=CL_v) # (L/hr)

 V[i] ~ dlnorm(meanlog=log(V_m), varlog=V_v) # (L)

 ##

 ## quantity at t=0

 84

 Q_cen_0[i] ~ dlnorm(meanlog=log(Q_cen_0_mean), sdlog = log(Q_cen_0_sd))

 ##

 ## Call the ODE solver to get AUC_central for each subject

 ## prediction is plasma concentration AUC, in week * ng/ml

 Cmax_AUC[i,1:2] <- nimble_ode(y[1:nstates], times[1:ntimes],

 c(Dose_PP1M, F2[i], Duration_2,

 ka_PP1M[i], ka1_max[i], ka3_max[i],

 kamt1_50[i], kamt3_50[i], gamma[i],

 CL[i], V[i], PP3M_start, F3[i],

 Dose_PP3M, Q_cen_0[i]))

 }

}) # End myNimbleCode

End.

Fully Bayesian workflow in R (v3)

Fully Bayesian model-based VBE

v1: Based on paliperidone palmitate VBE workflow v4.

Uses statistical model v14, Cmax and AUC are data-based.

v2: Uses statistical model v15, which calculates AUC over the last

dosing period by integration.

v3: Uses statistical model v16, which calculates AUC over the last

dosing period by integration an calculates Cmax with many time points.

IDtag = "_3" # version number

===

Compile and run the model for many trial of many subjects,

get Cmax and AUC.

Parallelize

library(parallel)

N.cores = 5 # detectCores()

this_cluster = makeCluster(N.cores)

Create a function with all the needed code

run_allcode <- function(seed) {

 ##

 library(nimble)

 source("Statistical model v16.R")

 ## source("Cmax_AUC.R")

 ##

 N.subjects.v = 1000 # number of virtual subjects per arm

 ##

 Hr1 = 1 / (24 * 7) # one hour in weeks

 times = c(0, seq(53, 65, (65-53)/100)) * 168 # (hours)

 N.times = length(times)

 ##

 dose_pp1m = 150

 dose_pp3m = 525

 ##

 Q_cen_0_mean = 30 # geo mean

 Q_cen_0_sd = 1.5 # geo SD

 ##

 data = list()

 ##

 inits = list(Q_cen_0_mean = Q_cen_0_mean, # (mg)

 Q_cen_0_sd = Q_cen_0_sd, # (mg)

 Dose_PP1M = dose_pp1m[1], # (mg)

 Dose_PP3M = dose_pp3m[1], # (mg)

 Delta = rep(1, 6))

 ##

 constants = list(nsubjects_per_arm = N.subjects.v,

 Do_fit = 0, # 0: no Delta fit, > 0: fit

 SamEq3 = 1, # Boolean, leave at 1

 Duration_2 = 319, # (h)

 85

 PP3M_start = 17*7*24, # (h)

 ntimes = length(times),

 times = times,

 nstates = 5)

 ##

 Rmodel = nimbleModel(myNimbleCode, constants, data, inits, calculate=F)

 ## Cmodel = Rmodel

 Cmodel = compileNimble(Rmodel, showCompilerOutput=F)

 ##

 N.mtc.v = 200 # number of simulated virtual trials

 Node.names = Cmodel$getNodeNames(includeData=T)

 Delta.Cmax = Delta.AUC = rep(0, N.mtc.v)

 ##

 for (i in 1:N.mtc.v) {

 ## Simulate the trial

 Cmodel$simulate(nodes = Node.names)

 ## all.data = values(Cmodel, "C_plasma_obs")

 ## all.data = matrix(all.data, ncol=N.times, byrow = F) # subjects by row

 all.res = values(Cmodel, "Cmax_AUC")

 ##

 ## Cmax values

 Cmaxs = all.res[1:(2*N.subjects.v)]

 ref.Cmaxs = Cmaxs[1:N.subjects.v] # reference arm of the trial

 test.Cmaxs = Cmaxs[(N.subjects.v + 1):(2 * N.subjects.v)] # test arm

 ##

 Cmax.ref.mean = mean(log(ref.Cmaxs))

 Cmax.ref.sd = sd (log(ref.Cmaxs))

 Cmax.test.mean = mean(log(test.Cmaxs))

 Cmax.test.sd = sd (log(test.Cmaxs))

 Delta.Cmax[i] = Cmax.test.mean - Cmax.ref.mean

 ##

 ## AUC values

 AUCs = all.res[(2*N.subjects.v + 1):(4*N.subjects.v)]

 ref.AUCs = AUCs[1:N.subjects.v] # reference arm of the trial

 test.AUCs = AUCs[(N.subjects.v + 1):(2 * N.subjects.v)] # test arm

 ##

 AUC.ref.mean = mean(log(ref.AUCs))

 AUC.ref.sd = sd (log(ref.AUCs))

 AUC.test.mean = mean(log(test.AUCs))

 AUC.test.sd = sd (log(test.AUCs))

 Delta.AUC[i] = AUC.test.mean - AUC.ref.mean

 }

 ##

 save(list=c("N.mtc.v", "N.subjects.v", "Delta.Cmax", "Delta.AUC",

 "Cmax.ref.mean", "Cmax.test.mean", "Cmax.ref.sd", "Cmax.test.sd",

 "AUC.ref.mean", "AUC.test.mean", "AUC.ref.sd", "AUC.test.sd"),

 file=paste0("Delta Cmax & AUC model based_", seed,".Rsave"))

 return(1)

 ##

} ## End run_allcode

t.start = Sys.time()

chain_output <- parLapply(cl=this_cluster, X=1:N.cores, fun=run_allcode)

t.end = Sys.time()

t.end - t.start

Close the cluster when you're done with it.

stopCluster(this_cluster)

Post processing

Compute probabilities of declaring BE for various trial sizes

for (j in 1:N.cores) { # for each Monte Carlo block

 ##

 load(file=paste0("Delta Cmax & AUC model based_", j,".Rsave"))

 ##

 if (j == 1) {

 Delta.Cmax.all = Delta.Cmax

 Delta.AUC.all = Delta.AUC

 86

 } else {

 Delta.Cmax.all = c(Delta.Cmax.all, Delta.Cmax)

 Delta.AUC.all = c(Delta.AUC.all, Delta.AUC)

 }

}

length(Delta.Cmax.all)

Ratio.Cmax = exp(Delta.Cmax.all)

Ratio.AUC = exp(Delta.AUC.all)

Plot Delta Cmax distribution

xlims = c(0.6, 1.6)

pdf(paste0("Delta Cmax distribution", IDtag,".pdf"))

hist(Ratio.Cmax, breaks=10, axes=F, xlim=xlims,

 main="", xlab="Cmax geometric mean test to reference ratio")

rect(min(xlims), 0, 0.8, N.mtc.v, dens=10, col="red")

rect(1.25, 0, max(xlims), N.mtc.v, dens=10, col="red")

axis(1)

P.BE = (length(which((Ratio.Cmax <= 0.8))) +

 length(which((Ratio.Cmax >= 1.25)))) / (N.cores * N.mtc.v)

legend(0.8, N.mtc.v * 1.1,

 substitute(bar(P[BE]) == list(x), list(x = P.BE)), bty="n")

dev.off()

mean(Ratio.Cmax)

sd(Ratio.Cmax)

Plot Delta AUC distribution

xlims = c(0.6, 1.6)

pdf(paste0("Delta AUC distribution", IDtag,".pdf"))

hist(Ratio.AUC, breaks=10, axes=F, xlim=xlims,

 main="", xlab="AUC geometric mean test to reference ratio")

rect(min(xlims), 0, 0.8, N.mtc.v, dens=10, col="red")

rect(1.25, 0, max(xlims), N.mtc.v, dens=10, col="red")

axis(1)

P.BE = (length(which((Ratio.AUC <= 0.8))) +

 length(which((Ratio.AUC >= 1.25)))) / (N.cores * N.mtc.v)

legend(0.8, N.mtc.v * 1.1,

 substitute(bar(P[BE]) == list(x), list(x = P.BE)), bty="n")

dev.off()

mean(Ratio.AUC)

sd(Ratio.AUC)

Correlation plot

pdf("Correlation Ratio Cmax - Ratio AUC.pdf")

par(mar=c(5,5,2,2))

xlims = c(0.7, 1.6)

plot(Ratio.Cmax, Ratio.AUC, las=1, xlim=xlims, ylim=xlims, type="n",

 xlab="", ylab="")

rect(0, 0, 0.8, 2, lty=0, col="lightpink")

rect(1.25, 0, 2, 2, lty=0, col="lightpink")

rect(0, 0, 2, 0.8, lty=0, col="lightpink")

rect(0, 1.25, 2, 2, lty=0, col="lightpink")

rect(0, 0, 0.8, 2, dens=10, col="red")

rect(1.25, 0, 2, 2, dens=10, col="red")

rect(0, 0, 2, 0.8, dens=10, col="red")

rect(0, 1.25, 2, 2, dens=10, col="red")

par(new=T)

plot(Ratio.Cmax, Ratio.AUC, las=1, xlim=xlims, ylim=xlims,

 xlab=expression(delta[C[max]]), ylab=expression(delta[C[AUC]]))

dev.off()

End.

Fully Bayesian safe-space calculations in R

Fully Bayesian model-based VBE, safe-space calculations

 87

v1: based on workflow v4.

v2: try to go faster by starting from non-BE

IDtag = "_2" # version number

IDrun = 6 # run number

===

Compile and run the model for many trial of many subjects,

get Cmax and AUC.

Parallelize

library(parallel)

N.cores = 8 # detectCores()

this_cluster = makeCluster(N.cores)

Create a function with all the needed code

run_allcode <- function(seed, N.cores, IDrun) {

 ##

 Delta1.vals = seq(1.5, 0.8, -0.2/7)[9:22]

 Delta2.vals = seq(1.5, 1, -0.01)

 ##

 library(nimble)

 source("Statistical model v16.R")

 ##

 N.subjects.v = 1000 # number of virtual subjects per arm

 ##

 Hr1 = 1 / (24 * 7) # one hour in weeks

 times = c(0, seq(53, 65, (65-53)/100)) * 168 # (hours)

 N.times = length(times)

 ##

 Q_cen_0_mean = 30 # geo mean

 Q_cen_0_sd = 1.5 # geo SD

 ##

 dose_pp1m = 150

 dose_pp3m = 525

 ##

 data = list()

 ##

 inits = list(Q_cen_0_mean = Q_cen_0_mean, # (mg)

 Q_cen_0_sd = Q_cen_0_sd, # (mg)

 Dose_PP1M = dose_pp1m[1], # (mg)

 Dose_PP3M = dose_pp3m[1], # (mg)

 Delta = rep(1,6))

 ##

 constants = list(nsubjects_per_arm = N.subjects.v,

 Do_fit = 0, # 0: no Delta fit, > 0: fit

 SamEq3 = 1, # Boolean, leave at 1

 Duration_2 = 319, # (h)

 PP3M_start = 17*7*24, # (h)

 ntimes = length(times),

 times = times,

 nstates = 5)

 ##

 Rmodel = nimbleModel(myNimbleCode, constants, data, inits, calculate=F)

 ## Cmodel = Rmodel

 Cmodel = compileNimble(Rmodel, showCompilerOutput=F)

 ##

 Node.names = Cmodel$getNodeNames(includeData=T)

 ##

 Cmodel$Delta[1] = Delta1.vals[seed]

 index.D2 = which(Node.names == "Delta[2]")

 N.delta2 = length(Delta2.vals)

 Delta = matrix(0, nrow=N.delta2, ncol=6)

 ##

 BE = rep(NA, N.delta2)

 N.mtc.v = 1000 # number of simulated virtual trials

 stop_after_this_trial = FALSE

 ##

 88

 for (j in 1:N.delta2) {

 ##

 Cmodel$Delta[2] = Delta2.vals[j]

 Delta[j,] = Cmodel$Delta

 N.fail = 0

 for (i in 1:N.mtc.v) {

 ## Simulate the trial

 Cmodel$simulate(nodes = Node.names[-index.D2]) # Delta[2] not sampled

 all.res = values(Cmodel, "Cmax_AUC")

 ##

 ## Cmax values

 Cmaxs = all.res[1:(2*N.subjects.v)]

 ref.Cmaxs = Cmaxs[1:N.subjects.v] # reference arm of the trial

 test.Cmaxs = Cmaxs[(N.subjects.v + 1):(2 * N.subjects.v)] # test arm

 ##

 Cmax.ref.mean = mean(log(ref.Cmaxs))

 Cmax.ref.sd = sd (log(ref.Cmaxs))

 Cmax.test.mean = mean(log(test.Cmaxs))

 Cmax.test.sd = sd (log(test.Cmaxs))

 Delta.Cmax = Cmax.test.mean - Cmax.ref.mean

 ##

 ## AUC values

 AUCs = all.res[(2*N.subjects.v + 1):(4*N.subjects.v)]

 ref.AUCs = AUCs[1:N.subjects.v] # reference arm of the trial

 test.AUCs = AUCs[(N.subjects.v + 1):(2 * N.subjects.v)] # test arm

 ##

 AUC.ref.mean = mean(log(ref.AUCs))

 AUC.ref.sd = sd (log(ref.AUCs))

 AUC.test.mean = mean(log(test.AUCs))

 AUC.test.sd = sd (log(test.AUCs))

 Delta.AUC = AUC.test.mean - AUC.ref.mean

 ##

 ## Compute BE for this trial

 Ratio.Cmax = exp(Delta.Cmax)

 Ratio.AUC = exp(Delta.AUC)

 Cmax.yes = ((Ratio.Cmax > 0.8) && (Ratio.Cmax < 1.25))

 AUC.yes = ((Ratio.AUC > 0.8) && (Ratio.AUC < 1.25))

 BE.yes = Cmax.yes && AUC.yes

 ##

 N.fail = N.fail + as.integer(!BE.yes) # cumulated number of failures

 print(paste("trial", i, ", fails:", N.fail))

 if (N.fail > N.mtc.v * 0.05) {

 ## this Delta vector will not pass, stop

 BE[j] = FALSE

 break

 } else {

 if (i == N.mtc.v) {

 ## this Delta vector lead to pass, do not look at further Delta's

 stop_after_this_trial = TRUE

 }

 }

 } # end for ith trial

 ##

 if (stop_after_this_trial) {

 BE[j] = TRUE

 break

 }

 } # end for jth Delta[2] value

 ##

 IDnum = seed + N.cores * (IDrun - 1)

 save(list=c("N.mtc.v", "N.subjects.v", "Delta", "BE"),

 file=paste0("Safe-space model based_", IDnum,".Rsave"))

 return(1)

 ##

} ## End run_allcode

t.start = Sys.time()

chain_output = parLapply(cl=this_cluster, X=1:N.cores, fun=run_allcode,

 89

 N.cores=N.cores, IDrun=IDrun)

t.end = Sys.time()

t.end - t.start

Close the cluster when you're done with it.

stopCluster(this_cluster)

===============

Post processing

n.start = 17 # real useful work starts at 17

n.end = 52

for (j in n.start:n.end) { # for each Monte Carlo block

 ##

 if (!(j %in% 30:32)) { # weed out unneeded points

 myname = paste0("Safe-space model based_", j,".Rsave")

 load(file=myname)

 ##

 if (j == n.start) {

 Delta.all = Delta

 BE.all = BE

 } else {

 Delta.all = rbind(Delta.all, Delta)

 BE.all = c(BE.all, BE)

 }

 }

}

Plot safe space

pdf("Safe space points plot v2.pdf")

mycols = rep("orange", length(BE.all))

mycols[which(BE.all == F)] = "red"

mycols[which(BE.all == TRUE)] = "green"

mylims = c(0.7,1.5)

plot(Delta.all[,1:2], las=1, xlim=mylims, ylim=mylims,

 xlab=expression(delta[1]), ylab=expression(delta[2]),

 col=mycols, pch=15, cex=0.55)

lower limit

a = 1.265; b = -0.6 # y = a + b * x

abline(a, b, col="green")

upper limit

a = 1.950; b = -0.47 # y = a + b * x

abline(a, b, col="green")

dev.off()

pdf("Safe space region plot v2.pdf")

mycols = rep("orange", length(BE.all))

mycols[which(BE.all == F)] = "red"

mycols[which(BE.all == TRUE)] = "green"

mylims = c(0.7,1.5)

plot(Delta.all[,1:2], las=1, xlim=mylims, ylim=mylims, type="n",

 xlab=expression(delta[1]), ylab=expression(delta[2]),

 col=mycols, pch=15, cex=0.55)

rect(0.7, 0.7, 1.5, 1.5, col="green", bord=NA)

lower limit

a = 1.265; b = -0.6 # y = a + b * x

abline(a, b, col="green")

polygon(c(0.7, 0.7, (0.7-a)/b), c(0.7, a+b*0.7, 0.7), col="red", bord="red")

upper limit

a = 1.950; b = -0.47 # y = a + b * x

abline(a, b, col="green")

polygon(c(1.5, 1.5, (1.5-a)/b), c(1.5, a+b*1.5, 1.5), col="red", bord="red")

dev.off()

End.

 90

References

1. Samtani MN, Vermeulen A, Stuyckens K. Population pharmacokinetics of intramuscular

paliperidone palmitate in patients with schizophrenia: a novel once-monthly, long-acting

formulation of an atypical antipsychotic. Clinical Pharmacokinetics. 2009;48:585-600

(PMID19725593).

2. Magnusson MO, Samtani MN, Plan EL, Jonsson EN, Rossenu S, Vermeulen A, et al.

Population pharmacokinetics of a novel once-every 3 months intramuscular formulation

of paliperidone palmitate in patients with schizophrenia. Clinical Pharmacokinetics.

2017;56:421-433 (PMID27743205).

Reviewers' Comments:

Reviewer #1:

1. Line 48-49. The authors make a statement about arbitrarily limit the size of virtual trials is

suboptimal. In my experience and my understanding of the current practices, the size of a

virtual trial should mimic the size of the actual trial taking into account the knowledge of the

drug product as well as its estimated variability. The authors are requested to clarify what they

mean by this statement.

Precisely, we challenge the current practice of mimicking an actual trial size and demonstrate

the advantages of using a different approach where size is not a problem anymore. The usual

requirements for an actual trial are reasonable but they do not need to apply to a virtual trial.

We modified the text of the introduction to make this point clearer.

2. Line 59. The absorption parameter is a drug specific parameter. What should differ between

the test and reference product are the release characteristics of the test and reference

formulation.

You are right, but in the compartmental pharmacokinetic model used here, those parameters

aggregate drug-release and absorption phenomena. We have modified the text and call them

appropriately now.

3. Line 189: The authors state that they discarded the first 2500 iterations. The authors should

justify the use of the remaining 7500 iterations only instead of using the whole data sets and

whether the results would still be the same if using the whole data set or just the remaining

7500 iterations.

The iterations of the MCMC sampling procedure do not generate “data” but generate “samples”

from the joint posterior parameter distribution. Practically all the MCMC sampling procedure,

 91

including the one we used, need a warm-up (also call burn-in) period before converging to that

target distribution. The samples generated during that first period must be discarded. If kept,

they would produce spurious results. We have added a new figure (Figure 5) in the Appendix

to illustrate MCMC sampling convergence. The chains started from different random values

and converged in probability to the target distribution only after about 2000 or less iterations.

For all parameters, the first 2500 iterations were discarded to make sure that only values at

convergence were kept.

4. For the safe space calculations, the authors are requested to explain why the number of

subjects were not kept the same.

You are right, there is no particular reason to change the number of subjects for the partly

Bayesian workflow A safe space calculations. We redid the calculations with 130 subjects per

arms. They turn out to lead to the same results than with 500 subjects. The safe space

calculations for the fully-Bayesian workflow B are posterior probability calculations and should

use maximum precision; hence the higher number of subjects for workflow B. That comes at

the cost of longer calculation time, as mentioned in the text.

5. Any use of a model assumes that there are well-defined acceptance criteria for the model.

Did the authors use a prediction acceptance criterion above which the model is deemed

unacceptable. It is my experience that regulatory agencies expect to see a well-defined

acceptance criterion to decide on the validity of the model and its ability to be used for

regulatory decision making.

Yes, indeed, we followed the usual criteria. Overall, predictions were within a factor 2 of the

summary observations and the median estimates were within 25% of their observed

counterparts reported in Magnusson et al. This is now explained in the text and detailed with a

new Figure and Table in the Appendixs. We would like to point out that the paliperidone data

and model we used here have been accepted by FDA for the NDA, i.e., implicitly validated for

PK predictions. Furthermore, the model has been fitted by Magnusson et al., so that usual purely

predictive criteria do not apply very well, but we do not have the original data points to check

the model more finely.

6. For ease of reading, it is suggested to include some table of the results. It is difficult to assess

or review results presented in graphical form only.

Yes, we understand, but the space constraints are very hard to match in that case. We therefore

added three Tables, but placed them in Appendix: First, for model checking and to answer the

 92

previous question, we added a goodness of fit summary Table; Second, a Table summarizing

the power calculations has been added to the relevant section; Third, a Table of posterior

summary values for log (𝛿2) and 𝛿2 is now given in a new section of the Appendix.

Reviewer #2:

This manuscript by Brochot and Bois has been submitted for consideration in the AAPS Journal.

In this work, the authors describe a fully Bayesian model-model based virtual bioequivalence

(VBE) framework and compare the results to a data-based VBE workflow. The workflows are

illustrated using a hypothetical virtual paliperidone palmitate generic formulation, comparing

it to the reference using a prior published model.

Having taken time to carefully consider the manuscript, I believe that the work is certainly

interesting and the approach outlined could add benefit to the community. However, the

manuscript at the moment is not suitable for publication and further work is necessary.

I explain my concerns below:

1. Scientifically, some of the results do not appear to make sense to me. On page 13, in the large

virtual trial simulation, the partly Bayesian data-based workflow declares the hypothetical

formulation to be bioequivalent, and the fully Bayesian workflow declares it to be non-

bioequivalent. However, the marker shown on Figure 9 (right panel) shows the hypothetical

formulation to be within the safe space. This needs to be corrected as it presents a very

confusing story to the reader.

The results are a bit counter-intuitive, but not incoherent. The fully Bayesian workflow B,

indicates that on average, “bad luck” being excluded, bioequivalence should be obtained with

a large virtual trial simulation of size 130 (or even 500, see answer to question 4 of reviewer 1).

However, the data-based workflow A, judges BE only on the basis of one simulation and it falls

in the “grey area” when decisions can be inconsistent just because of luck, that is between the

red and green lines. So, in a way, the blue cross for workflow B marks just a combination of

parameter values; for workflow A it marks the same combination, but also a particular virtual

trial.

2. It is not clear to me why Paliperidone Palmitate was chosen to illustrate the concepts in this

paper. It is not clear why a complex long acting injectable is necessary, when perhaps a simpler

product may make it easier to demonstrate the concepts.

 93

The point is well taken and we basically agree, but we found the paliperidone data and published

model interesting, well documented and (importantly) accepted by FDA for the NDA, i.e.,

implicitly validated for PK predictions. There are also no generics for the TRIZA product

studied here and VBE seems to be the only feasible approach from an economic point of view.

Finally, a recent paper by Gajjar et al., which you mention below, has used the example of

paliperidone INVEGA formulation (once a month) to study bioequivalence metrics sensitivity

to various formulation parameters. We had failed to mention it because of the drastic space

limitation, but we do now in the revision. This seems therefore quite a topical issue. We are

afraid that for a simpler drug most people would say that a simple clinical trial would be enough

and not challenging and that going for VBE is not very interesting in that case...

3. The authors have used Cmax and AUC as metrics used to determine bioequivalence.

However, Cmin is also necessary in some products, for instance with the chosen example of

Paliperidone Palmitate. In addition, partial AUC’s are also necessary for some products based

on therapeutic and pharmaceutical considerations

(https://ascpt.onlinelibrary.wiley.com/doi/10.1002/cpt.2174). Indeed, partial AUC’s were

accepted as necessary by the FDA for Paliperidone Palmitate, the chosen case study in this

work. It would be prudent to extend the analysis to include Cmin and partial AUC’s.

Yes, for example Gajjar et al. in 2023 have discussed various metrics and their impact on BE

using sensitivity analysis. We did not use Cmin but note that we are using partial AUC at steady

state (we now mention it clearly in the paper). Gajjar et al. also studied PP1M, not PP3M, and

the results might be different. It might be interesting in the case of PP3M to assess BE with Cmin

also. However, this falls out of the scope of our work (long and complex enough to describe

already). We went for a simplification by using just Cmax and AUC. Nevertheless, we thank you

for your comment and we added a brief discussion of the possibility of using alternative metrics,

and mention Gajjar et al. work at that occasion, together with Lionberger et al. 2012 (we were

well aware of those publications, but space limitations again bit us).

4. Why was a cross-over study not considered or simulated?

Well, we stayed probably too close, for once, to reality, as a real cross-over BE trial for PP3M

is probably out of question for time and resources reasons. We agree that for VBE, a cross-over

design could be used (we now mention it explicitly in the discussion). We actually plan to

investigate this question, but it is out of the scope of this paper.

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fascpt.onlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fcpt.2174&data=05%7C01%7Cfrederic.bois%40certara.com%7Cbded8ede472e4f72902f08db92a3695e%7C7287abd30220456e98514352bae208c9%7C1%7C0%7C638265003094140255%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=yMPdK3IYjVbd%2FgBDwB0CZeOWMbaIe1TuLzpKulsRn2s%3D&reserved=0

 94

5. Figures such as figure 4 and figure 7 are difficult to interpret with many lines on top of each

other. The authors should consider alternative visualization of this data to help accurately show

their message.

We suspected that many readers would like to “see all the data” to get a feel for it (we do too).

We do not really like summarizing groups by averaging over subjects, because this can be

misleading, but in this case, we get rather clear pictures and we added them in Appendix to

answer your comment. You can now more clearly see the peril of relying only on a single virtual

trial. Note also that Figures 5 and 6 help a little bit in visualizing the abbreviated trial data.

6. The authors should comment and explain in detail whether they think this approach would

be accepted by regulatory bodies, and if not what the short comings in this method are.

We do not want to make assumptions about the acceptability of this approach from a regulatory

point of view, partly because the method can already be used internally by industry to orient

decisions (so regulatory bodies are not our sole target audience), and partly because we are not

a regulatory body and want to avoid perceived conflicts of interest. We trust the agencies to

review the literature and make their own judgments about proposed innovations. Indeed, we

will watch with interest those developments. We have just been awarded an FDA grant where

those issues will probably be discussed.

7. The authors should consider using covariates to adequately describe population variance,

and if not, should explain in detail why covariates are not necessary. Also, typically different

formulations have different variability in absorption, and as the absorption rate is the rate

determining step for a long acting injectable, the authors should explain in detail how this can

be accounted for.

We would like to take covariates into accounts, but the covariate data and full covariance matrix

were not published by the innovator company. We could not do a good job at that and preferred

to leave the covariate model out, at the expense of a slight likely overestimation of inter-subject

variability. We already explain that in the paper. Note also that it would be a second-order

refinement of the model and does not affect our overall results about the advantages of a fully

Bayesian approach. We also agree that different formulations may have different variability in

absorption. In a population PK context, the solution would be to estimate from the prior clinical

data and abbreviated trial a covariance matrix per formulation. In a population PBPK context,

the same approach could be used if a Bayesian approach is taken, even though we doubt that in

vitro evidence would be available on that difference. A simpler conservative approach would

 95

be to assume the possibility of differing variances and assess their impact by sensitivity analysis,

for example. We added a few sentences to the discussion to address this point.

8. In addition, the narrative is very difficult to understand and does not allow the results to be

adequately explained. Further explanation of the terms, concepts and results is necessary to

allow the interesting science to be available to the readership. The methods and results should

also be more carefully explained to allow the reader to follow the science better.

We tried to address this comment by improving the text in many places. We agree that the

concepts are unusual to many readers and we think that space is too short. We may have to

write a book at some point!

9. The paper also does not adequately take into account prior literature, which is very important

for understanding the context of this work and implications it can have for BE assessment. For

instance, there was recently an FDA workshop on model based approaches for long acting

injectables (https://www.complexgenerics.org/LAI2021/) with a summary provided in the

following paper: https://ascpt.onlinelibrary.wiley.com/doi/10.1002/psp4.12931. There have

also been previous workshop discussions summarized here:

https://accp1.onlinelibrary.wiley.com/doi/10.1002/cpdd.928. A data-based BE method using

population PK approaches based on Paliperidone Palmitate was recently published

(https://www.sciencedirect.com/science/article/pii/S0928098722001816), with the data-based

approach also previously applied to BE assessment of oral formulations

(https://link.springer.com/article/10.1007/s11095-011-0662-8). It would be interesting to see

how the results of this paper directly compare to the data-based approach published on

Paliperidone Palmitate.

Yes, we now quote the useful papers of Gajjar et al. and Lionberger et al. However, the Gajjar

paper does not directly compare because the products are different (they studied PP1M, not

PP3M). We also agree that the recent workshop reports do deserve to be cited and we added

them to the introduction.

10. The authors comment in the introduction that BE trials can be long an expensive – is this

always the case? Oral product trials may not be that long with short washout periods. The

authors may also benefit from gaining feedback from colleagues not directly involved in

modelling or colleagues not familiar with Bayesian approaches, since a publication on BE is

likely to be considered from a wide variety of readers in pharmaceutical sciences who may wish

to use the ideas for their own product development.

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.complexgenerics.org%2FLAI2021%2F&data=05%7C01%7Cfrederic.bois%40certara.com%7Cbded8ede472e4f72902f08db92a3695e%7C7287abd30220456e98514352bae208c9%7C1%7C0%7C638265003094140255%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=TZQV%2BA491EGpiS1sj%2B0pBx34u%2FDzQ%2FAn947r%2BFIIKxw%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fascpt.onlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fpsp4.12931&data=05%7C01%7Cfrederic.bois%40certara.com%7Cbded8ede472e4f72902f08db92a3695e%7C7287abd30220456e98514352bae208c9%7C1%7C0%7C638265003094140255%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=gbcbRRXlweve%2BIRfd1isvRn9hVO7cQWB67x55Y2knPw%3D&reserved=0
https://accp1.onlinelibrary.wiley.com/doi/10.1002/cpdd.928
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0928098722001816&data=05%7C01%7Cfrederic.bois%40certara.com%7Cbded8ede472e4f72902f08db92a3695e%7C7287abd30220456e98514352bae208c9%7C1%7C0%7C638265003094140255%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=N%2FdXzqmuewaXqNJRQB1ojV6C2HwhrklEUTlo%2BOQuDG8%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs11095-011-0662-8&data=05%7C01%7Cfrederic.bois%40certara.com%7Cbded8ede472e4f72902f08db92a3695e%7C7287abd30220456e98514352bae208c9%7C1%7C0%7C638265003094140255%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=156d6DsrlnghHmCZW%2FBDuJ7rUbzJavRmdplooDxfzj4%3D&reserved=0

 96

We agree with this statement and were careful to say that BE trials can be long, not that they

are necessarily long. We amended the introduction a bit to give an example and added a

reference.

Reviewer #3:

The proposed approach, once published, can have a significant impact on a very important

area: bioequivalence (BE) studies for long-acting injectables. We need to carefully scrutinize

the proposal presented here for virtual bioequivalence (VBE) studies in this regard. There are

some major flaws in the simulation plan for performance checks of the proposed approach and

theoretical framework before its publication.

1. Both the data-based workflow and fully Bayesian workflow require evaluations for type 1-2

error controls. While the authors correctly pointed out that the data-based workflow can

achieve this, they still need to test the likelihood of a Bayesian workflow leading to a difference

in conclusion when the underlying product is either bioequivalent (BE) or non-bioequivalent

(NBE). It is not true that the Bayesian workflow does not require such evaluation. It may be

necessary to define BE or NBE products upfront and be open to applying some subjectivity here.

We agree and you are right, but the question is quite deep. We did not mean to say that concerns

about making the right decision with an acceptable error rate disappear completely in workflow

B; it’s just that standard statistical test performances, stricto sensu, do not apply anymore. We

have added a sentence in the methods section presenting the workflow to make it clear. We

have actually performed type-I error analyses for the data-based workflow but did not show

them in the paper. We have now put them in Appendix and discuss them. For the model-

integrated workflow there is no large trial and associated statistical test. Conditionally on the

(posterior) distribution of formulation differences and associated posterior predictive

distributions of PK measures of drug absorption, we can obtain the probability that the

estimated formulation differences lead to unacceptable differences in drug absorption (Figure

8 of the paper). In our case study, if we declare bioequivalence and let the drug go to market,

there is a 35% chance that we release a non-bioequivalent product; if we do not declare

bioequivalence and block the product, there is a 65% chance that the product is in fact

bioequivalent in the population. So, it is a judgement call or a regulatory choice, but if we

adhere to the strict practice of controlling direct consumer risk (at 5%) we would reject

bioequivalence, with a relatively high direct producer risk. A deeper problem is that in a VBE

 97

framework, either data-based (workflow A) or model-integrated (workflow B), there is very

little specific clinical evidence (only an abbreviated trial) but we have the help of a validated

(i.e., as good as possible) structural model and in vitro data. Usual BE trial analyses also make

assumptions and have some untold model lurching in the back (like when using drug plasma

concentrations when we want to assess bioequivalence of a gastro-intestinal-tract-acting drug),

but the issue is more glaring in VBE assessment. A further problem we, as authors of this paper,

face is that we present a doubly virtual BE analysis. We simulate the abbreviated trial and the

“ground truth” of our case study is laid bare for everyone to compare to the results of workflows

A and B. Readers can immediately see the incoherences between “truth” and “decision”: the

data-based workflow leads to a correct decision if we know the truth, but an incorrect decision

given the information from the abbreviated trial; On the contrary, the model-integrated

workflow decision is correct, given the abbreviated trial, but incorrect given the ground truth.

The fact is that in a “real life VBE assessment”, we will only get the model, the prior, and the

abbreviated trial data; ground truth will be inaccessible to us. So, we will always be at the mercy

of incoherent abbreviated trial and large trial simulations. What we show, is that on average the

Bayesian workflow is more coherent and safer for everyone (producers and consumers). In a

way, in a data-based VBE framework, type I and type II calculations on the virtual large trial

can be a smoke screen, giving a false sense of security, as if they were dispelling the only source

of potential error and masking the real issues of VBE (model quality). So, we should not

conduct a VBE assessment as a BE assessment and should not judge a VBE assessment like a

BE one. The model structure and correct parameterization are very important for both data-base

and model-integrated workflows. We had mentioned that already, together with more obscure

and technical considerations on the use of added-value-of-information calculation to assess the

impact of the size of the abbreviated trial. This was not making justice to the issue you raised

and we have extended and re-organized the discussion to fully answer your point.

2. In the simulation, the authors used a parallel study design, but the most popular design used

in practice is still the steady-state cross-over study design, even considering its long study

duration, high cost, and dropout rates. Simulations need to be conducted with the cross-over

study design.

They do not really need to be done, but can be done, and we now present corresponding results.

3. In theory, a correctly optimized data-based approach can provide reasonably comparative

power. Please state the reasons why this would be the case under some scenarios.

 98

Yes, a correctly optimized data-based approach with good prior knowledge of the difference

between formulations and the best possible design would have reasonable power. We have

added that point to the text of the results’ section but note that power is often computed using

the assumption that products are strictly bioequivalent (in fact, identical). If deviations of Cmax

or AUC by say 5% are allowed, power drops down already as shown on the power plot in

Appendix, while actually a deviation by up to 20 to 25% should be possible without infringing

the BE definition; however, our power plot shows that in such cases reasonable power would

be reached only at very large trial sizes.

4. When generating virtual abbreviated BE data for methodology performance checks, the

authors assumed no changes in pharmacokinetic (PK) parameters for the reference product.

This is invalid since the field has been witnessing significant variations between studies, even

for PK. The authors need to re-generate abbreviated virtual BE data with additional variations

from the original PK model, informed by new drug development.

As we mentioned above, this is by no mean intended to be for a regulatory assessment of our

model and even less whether a given generic product, which does not exist, is BE or not. We

are just presenting new concepts and methodology. The model did simulate a totally different

sample from the Janssen original studies and generating a new sample and redoing all

calculations will not bring anything substantive to the work. Conclusions about safe-space

differences between the two workflows, which is probably our most important contribution,

will not be affected in any way by new simulations because we already average over many

simulations. We would come up with a different abbreviated trial, a different posterior

distribution of difference between test and reference and then a different large trial, and

potentially different decisions about product bioequivalence. But even regulatory agencies do

not require redoing clinical trials just because results might be different and the same should

apply to virtual trials. There would be no end to that, what would be the point? Again, this is

not a VBE assessment for a product; this is intended to be a discussion of overarching issues in

VBE. Computational asymptotics could be tried on the abbreviated trials but this would amount

to added value of information calculations which, as we indicated in the paper already, would

be interesting but beyond its scope. We have added a discussion of the trial simulations in the

discussion to make this point clearer for all readers.

Below are editorial recommendations:

5. Virtual trials: change to virtual studies

 99

“Studies” or “trials” are used in the literature. “Studies” are more general and “trials” is more

specific of a test of hypothesis (BE or not), so we do prefer trials. We made sure we are

consistent throughout.

6. "Virtual Trial Comparisons" is confusing by meaning and should be revised.

Yes, we replaced that, including in the paper title, by “virtual comparative trial” which seems

more standard.

7. Line 22: Please by specific on what circumstances "BE trials can be long and very expensive".

Yes, we amended the text with an example and added a reference.

8. Model-based BE: change to Model integrated BE, as currently defined for BE assessment.

Well, at least as defined by FDA, for example in “Establishing the Suitability of Model‐

Integrated Evidence (MIE) to Demonstrate Bioequivalence ...” by Gong et al., which we now

cite. For the sake of uniformity, we made the requested change everywhere.

9. Line 47: It states: "At the limit, the standard statistical tests would need to operate with zero-

length confidence intervals, and power analyses become moot." I do not think this is true. FDA

would recommend a Modeling Analysis Plan ahead of time where the applicant need to specify

the virtual study sample size.

Yes, FDA would probably do that, but that is precisely what we discuss and propose to improve

upon, based on the fact that virtual trial sizes are practically unlimited and that asymptotics-

based tests are not applicable at the (infinity) limit. That is just a coherence argument.

10. Line 51: "Limiting arbitrarily the size of virtual trials is sub-optimal in terms of decision

making. It lowers power and affects both producers and consumers because a safe product,

potentially less expensive, might not be approved when it could be" is an over-statement. The

modeling & simulation plan always estimate type-I and type-II errors to make sure a reasonable

risk control for both consumers and firms (producers).

Reasonable maybe, or at least borne with because losses from increased producer risks are

recouped later by higher drug prices, but sub-optimal certainly, as we show. Those are not

incompatible statements.

11. Line 79: "If the model needs to be improved, recalibration using the abbreviated trial data

can be tried. " It is a must step. You cannot directly use a model from literature without any

update for regulatory use.

 100

Yes, we agree and that was obvious to us. Our point was technical though, and we meant

Bayesian recalibration, not just simply updating, manually or otherwise. We have modified the

sentence to make it clearer.

12. Line: 104: "Questions about type I and type II errors of the statistical tests for a simulated

trial disappear from our concerns" is an overstatement. Type I and II errors will still need to

be evaluated in a different form. It will not disappear when using a Bayesian approach.

Yes, this was also the gist of the first point you made and which we answered above.

13. Please define what is "safe space analysis" in the first place.

Yes, this is done at the first occurrence of the term, at the end of the introduction. We added a

reference for more details.

14. Line 171: "Parameter 3, was determined to be the most influential on Cmax and AUC". With

a constant CL, you would expect the only parameter that impact on AUC would be

bioavailability. Please clarify.

Usually yes, but we have a product where the rate of absorption conditions the decay phase

(flip-flop) and we are using partial AUC at steady-state. So, the release rates condition the

trough concentrations, and therefore Cmax and partial AUC.

15. Line 175: "Because our population PK model has strong prior information on the reference

formulation parameters, a Bayesian approach is well suited to estimate the value of the

difference 2. Metropolis-Hastings (a.k.a., random walk) Markov-chain Monte Carlo (MCMC)

sampling was used to obtain a sample of parameter values from their joint posterior

distribution given the abbreviated trial data. We fixed the population means and variances to

the central values (MLE values given by Magnusson et al.) of their prior distributions." It is a

dangerous move to assume that there is no PK parameter change for the reference product

across trials. I strongly recommend an evaluation scheme that there will be PK variabilities

across studies.

This comment is similar to point 4 above and our answer would be the same. It would be a

refinement of the approach and we discuss it.

 101

Reviewer #4:

1. The rationale for this research stated in the first sentence of the abstract "The recent

emergence of virtual trial comparisons, ..., begs for formalization of their analyses" makes no

sense. Comparisons cannot beg - only humans can beg. It appears that the rationale or

motivation for the research in this report is based upon the authors comments made in lines 45-

55 in the Introduction.

Yes, but grammatically, in that sentence, it is the “recent emergence” that “begs”. Arguably,

this figure of style may seem obscure, as emergences do not beg either. So, we have amended

the sentence to make it clearer. What we write in lines 45-55 of the text is summarized just after

the revised sentence in the abstract.

2. There are numerous terms expressed in this manuscript that are unconventionally employed,

mostly undefined in the manuscript and confusing, including "safe space analyses", "data

streams", "calibration", "abbreviated BE trial", "CQA safe-space analyses", "reference

formulations' critical quality attributes (CQA)", "workflow", etc. Their undefined usage makes

the entire manuscript hard to understand.

We are sorry for the jargon. We define “safe space analyses” at the first occurrence of the term,

at the end of the introduction; we added a reference for more details. We replaced “data streams”

by “kinds of data”. Bayesian calibration is approximately equivalent to model fitting; we precise

it in the text at the first occurrence now. “Abbreviated trials” are used in the biosimilars

literature (e.g., Wu et al., 2018, PLoS ONE 13: e0208354); we now precise their meaning

(small-size studies) at the first occurrence. CQA is the abbreviation of the rather clear “critical

quality attribute” defined by FDA since at least 2012 (www.fda.gov/media/83904/download),

see also Pepin et al., 2021, J. Pharm. Sci. 110:555, for example. Our use of workflow is not

really unconventional.

3. The description of the case study analyses, manuscript figures, and Appendix together are

poorly integrated, so that the core findings are obscure.

With limited space we cannot present all the useful results in the body of the paper (we even

had to add some more to answer this review) and we agree that going back and forth between

the text and the Appendix is unwieldy. But there is not much we can do. We tried to improve

the text flow though. We hope it is better now.

http://www.fda.gov/media/83904/download

