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ABSTRACT 

The detection and classification of the type of fault is an 

essential technique for the improvement of electricity grids 

due to its potential to improve the reliability of supply and, 

therefore, its quality. This paper reports a method to 

obtain an extended database of  fault signals in order to 

use Neural Networks (NN) to process them. The need of a 

large database for the training process is an inherent need 

for the right working of a NN. In this type of chaotic nature 

signals, it is impossible to record enough  real ones and, 

even simulating is near unfeasible task due to the variety 

of the causes that produces faults events. The proposed 

solution is to obtain a short database of simulated signals 

from a real modelled electrical grid and extend this 

database by means of GAN. This technique simplifies the 

process to obtain the database of fault signals. 
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1 INTRODUCTION 

The use of neural networks are giving good results in the 

field of detection, classification, and localization of faults 

in distribution lines [1]–[4]. 

During the corresponding training process, a series of 

examples of labelled signals are shown to the Neural 

Network (NN). Then, NN learns certain features in order 

to recognize a new example shown to it. This training 

process typically requires tens of thousands of examples to 

correctly train the NN and avoid the well-known 

phenomenon of overfitting. When this last happens, the 

NN learns the few examples shown and is unable to 

generalise.  

In distribution lines, in fault classification and location 

problems, obtaining a large database of real signals is a 

very complex process. The fault is usually a catastrophic 

and chaotic event (tree fall, lightning, etc.), so it is difficult 

to reproduce, predict, collect, and label.  

Model the real distribution line with appropriate software 

and simulate the faults could be an option. However, 

obtaining tens of thousands of examples is practically 

unfeasible because it takes a lot of time. In addition, 

selecting all the different situations by hand to reproduce 

all possible events is an almost impossible task.  

These are the main reason because data augmentation is 

intended to increase the number of examples. There are 

two basic techniques among others, by adding slightly 

modified versions of existing examples, or by adding 

synthetic examples created from existing ones. Modifying 

existing examples is based on applying changes such as 

rotations, symmetries, scaling, etc. In case of example 

synthesis, new examples are obtained by using generative 

adversarial networks (GAN).  

Unlike other problems related to image classification 

(animal detection in photos, etc.) here, the images (Fig. 1) 

are a transformation [5] of temporal signals[6](Fig. 2). 

Classical data augmentation techniques cannot be applied 

since the effects over the information contained in the 

temporal signal would be unpredictable.  

 

 
Figure 1. Original signal          Figure 2. Original time signals  

transformed into image. 

 

Generative Adversarial Network (GAN) is a branch of 

machine learning systems discovered in 2014 [7]. In GAN, 

two neural networks compete against each other.  

For an existing database, the GAN will be trained to 

generate new data with the same characteristics as the 

training data. For example, a GAN trained with images of 

people can generate new images that look real to humans, 

with many lifelike attributes. GAN is composed of two 

neural networks (Fig.3), a generator and a discriminator.  

 

 
 

Figure 3. Architecture of the GAN  
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The generator produces examples while the discriminator 

evaluates them. Training continues until the discriminator 

is no longer able to determine whether the displayed 

example is real or generated. The training objective of the 

generator is to decrease the discriminator's error (i.e., to 

"fool" the discriminating system by creating new examples 

that the discriminator believes to be real).  

A set of real data examples serves as a reference for the 

discriminator. Generally, the generator generates the 

examples from random information. The examples 

generated are then evaluated by the discriminator. 

Backpropagation is applied in both systems. While the 

discriminator becomes progressively more adept at 

detecting fake images, the generator system becomes 

progressively more adept at generating better images.  

Some of the most useful applications of GANs are 

enhancing the resolution of images [8], modifying the 

appearance of an image [9][10],  or generating images 

synthetically [11][12]. 

Here we find several types of GAN: Linear GAN, 

Convolutional GAN (CGAN) [13], Conditional GAN 

(cGAN) [13], even Conditional Deep Convolutional GAN 

(cDCGAN)[14]. 

In this paper, we intend to address data augmentation using 

GAN[15][16]. In this way, we want to introduce versatile 

examples. Here, it is the GAN itself during its training, 

which manages to extract the hidden information, and by 

generating each new example from noise, the GAN adds 

variability without losing the essence that characterizes 

each class (type of fault). 

2 PROPOSED SOLUTION 

This section explains the complete process (Fig. 4). It is 

divided into two parts: transformation of time signals to 

images and generation of examples using GAN. 

In our case, we start from time signals. These signals come 

from the response of the electrical network to pulse 

injection (TDR technique). For each example, we have 

three signals (coming from each of the R-S-T phases of the 

electrical network). After digitization, we have 12,000 

samples (4,000 x 3). Then, signals are transformed into 

images for better and easier data processing by 

convolutional neural networks. 

The transformation used is GAF (Gramian Angular Field). 

In the GAF transformation, the time series is represented 

in a polar coordinate system. The amplitude of the signal 

is encoded as the angular cosine, and the time stamp as the 

radius. This information is collected in the form of a matrix 

in which the relationships between the different time 

instants can be identified. In this matrix, each element is 

either the cosine of the sum of the angles (GASF) or the 

sine of the difference of the angles (GADF). The GASF 

transform has the advantage over the GADF transform that 

the time signal can be reconstructed from the image. This 

property makes it possible to compare the original signals 

with the transformed ones.  

In the process of transformation from time series to 

images, we can also reduce the dimensionality of the 

images. The algorithm used is called PAA (Piecewise 

Aggregate Approximation). With PAA, we try to reduce 

the dimensionality as much as possible to improve the 

subsequent training processes. 

We have processed the images starting from their initial 

dimensionality (4000x4000x3) and we have progressively 

reduced it to a dimensionality of 128x128x3. With this 

reduction we have been able to reduce the training time of 

the GAN, as well as the subsequent processing by NN 

without reducing the accuracy in the classification of the 

different classes.    

 
Figure 4. Process block diagram 

At the end, GAN has been used to generate the extended 

database.  

GANs are difficult neural networks to training and suffer 

from some inherent problems in their structure [15][16]. 

One of them is mode collapse. In this case, the generator 

learns to generate a few examples from the data 

distribution but fails to learn many others. In the worst 

case, the generator simply produces a single example. 

Another typical problem with GANs is the vanishing 

gradient problem. This occurs when training these GANs 

and the gradient becomes infinitely small. This, in the 

worst case, can cause the neural network to stop training 

and evolving to the minimum. 

On the other hand, and as already explained, GANs are 

successfully used in applications where it is required to 

generate examples of a very high quality, which are 

practically indistinguishable from the real ones. To 

achieve this, we would need to train GANs with complex 

structures (cGAN, cDCGAN, etc...). 

Having said that, and having the chance to choose different 

alternatives, the GAN tested in this work are based on: 

 

• Linear GAN,  

• Conditional GAN (cGAN) 

• Convolutional GAN (CGAN) 

• Conditional Deep Convolutional GAN (cDCGAN) 

 

In general, CGANs are more powerful for image training 

than linear GANs, although this power also has a trade-off 

in training time and parameterization difficulty. 

On the other hand, Conditional GANs (cGAN and 

cDCGAN) have the advantage that all classes can be 

trained at the same time. This is done by introducing the 

class type as additional information to the generator. 

This, a priori, is an advantage, but this type of GAN has a 

greater tendency to present mode collapse. In our case, we 

had to train a linear GAN by training each class separately. 



 27th International Conference on Electricity Distribution Rome, 12-15 June 2023 
 

Paper n° 10104 

 
 

CIRED 2023  3/5 

4 RESULTS 

 
First, we tried to implement a Conditional Deep 

Convolutional Generative Adversarial Networks 

(cDCGAN) to try to train all classes at once.  

We tried first it with some known state-of-the-art database 

such as MNIST. With this database, the GAN converges 

correctly.  

However, with our database, we had the problem of mode 

collapse. Mode collapse manifests itself because although 

the input of the generator is random, the generated images 

are always the same, i.e. the generator specializes in 

generating the same image of each class. 

We tried to apply some of the existing techniques to avoid 

mode collapse[17], [18]. We try for example to adjust the 

learning rate of the GAN, since, as a general rule, lowering 

the learning rate can make the problem disappear. 

Another method we tried was known as label smoothing, 

i.e., assigning a value of "0.9" to real labels instead of a 

"1". This usually makes the discriminator not too confident 

in its classification, which sometimes avoids mode 

collapse. 

Another way to try to avoid the mode collapse is to 

implement the Wasserstein GAN, or WGAN[19], [20]. 

This is an extension of the GAN that seeks an alternative 

way to train the generator model. The modification over 

the GAN basically boils down to using a linear activation 

function in the output layer of the discriminator. Also, it 

uses the Wasserstein loss (RMSProp) to train the 

discriminator and generator instead of ADAM and SDG 

respectively and updating the discriminator more times 

than the generator. 

But when applying these techniques, either the cDCGAN 

did not converge correctly (Fig. 6), or it converged but 

mode collapse occurred and generated the same image for 

each class. 

 
Figura.6 Training cDCGAN 

We also tried to train a cGAN, i.e., a convolutional but not 

conditional GAN. The result was not good either. We still 

had mode collapse. We tried to train the cGAN without 

dimensionality reduction, i.e. with 4000x4000 images, to 

see if the problem was the loss of information in the 

dimensionality reduction. The problem was that GAN 

training with high dimensionalities is state of the art and 

they have convergence problems, so this didn’t work 

either. The conclusion is that our images have little 

variability as they are transformed images of temporal 

signals very similar to each other. 

In the end, we tried to train an independent linear GAN for 

each class with images of 128x128 dimensionality. 

This finally made it possible to train all classes and 

generate a database of 2000 examples of each class 

different from each other. 

For our data augmentation objective, we need to have 

sufficient variability to have distinct examples and we also 

need to be able to generate many examples in a robust way 

(without mode collapse). Also, it is desirable that does not 

require a large amount of computational cost. Thus, it has 

been decided to use a GAN formed by linear layers (Fig. 

3) and apply a dimensionality reduction of the images that 

allows us to continue to successfully classify the different 

types of faults (128 x 128 x 3). Figure 7 shows the training 

of the linear GAN in which it can be seen that after the 

epoch 1000, the discriminator loss is around 0.5, while the 

generator is around 1.5. These values are typical of a 

correct GAN training. 

 
Figura.7 Training Linear GAN 

The following figures show four examples of signals 

(images) from the original database (Fig. 8) and synthetic 

examples generated by the GAN (Fig. 9). 

 

 
Figure 8. Original examples 

 
Figure 9. Synthesized examples generated by the GAN 
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Thus, with the generation of data augmentation by GAN, 

we are able to introduce versatility of examples, while 

maintaining the essence that characterizes each class (type 

of fault). In this case, it is the GAN itself during its 

training, which manages to extract the hidden information. 

We have also demonstrated that the dimensionality of the 

original signals can be reduced and that a very simple 

version of GAN (linear GAN) can be trained, avoiding the 

inherent problems of mode collapse in this type of neural 

networks. 

In the literature, there are several metrics used to measure 

the quality with which GANs generate synthetic images. 

The parameters that are usually measured are:  

• Creativity: non-duplication of the actual images. 

• Consistency: the generated images must have the 

same style. 

• Diversity: the generated images are different from 

each other. 

The main parameter is called Likeness Score (LS), wich is 

(based on Euclidean distance) to analyse how two classes 

of data are mixed together.  

In our case, the LS metric yields values very low, which is 

to be expected since, as we have said, the generated images 

have a very high variability respect to the original ones, 

which results in a low "quality" from the point of view of 

the LS metric. 

In our experiment, we have used as metric the distance 

based on the Contrastive Learning. This metric is based on 

the percentage of success obtained in the classification of 

the different types of faults between the original images 

and those synthetically generated by the GAN. 

We have a database of 200 original examples classified in 

5 classes (0, 1, 2, 3, 4), with 40 examples of each class. In 

addition, a database of synthetic examples generated by 

our linear GAN is also available. These last are 10,000 

examples also classified in 5 classes (0, 1, 2, 3, 4), with 

2,000 examples for each class. 

The tables below show the percentage of success in 

determining whether a class belongs to the class to which 

it is being compared. The first table (Table I) compares 

synthetic examples generated by GAN. Each class is 

compared with 384 different images from its own class and 

with 96 images from each of the other classes. The second 

table (Table II) compares original examples with synthetic 

examples generated by GAN. Each class is compared with 

28 examples from its own class, and with 8 examples from 

each of the other classes. 

CONCLUSIONS 

Data augmentation is a widely used tool, with excellent 

results, in the field of machine learning. Being able to have 

a strongly extended training set of examples leads to more 

robust and better performing learning processes. 

 

 
Table I. Comparison of synthetic examples vs synthetic 

examples  

    
Table II. Comparison of original examples vs synthetic 

examples 

Normally standard techniques such as rotations, scaling, 

etc. can be used, which unfortunately in some other cases 

is not possible. Therefore, GANs are becoming a very 

feasible option to generate these new examples, and to 

extend the number of training examples. 

In conclusion, we can say that the proposed method 

manages to increase the signal database in an efficient way 

and solves the problem of this type of signals due to the 

difficulty to obtain them in field, or even simulating them 

by means of a model of the electrical grid. 

In this article we start from a very small database of 200 

examples, and finally get a set of 10,000 new examples 

with sufficient variability. Finally, all of this is backed up 

by a classification process with excellent results.  
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