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Abstract. 

A simple and innovative approach is presented to solve Collatz’s conjecture, based 

on an equivalence relation and its corresponding equivalence classes. As a consequence, 

it is demonstrated that the union of all equivalence classes forms the set of odd numbers. 
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1 Introduction 

The Collatz's conjecture, also known as the 3 � + 1 problem, is a famous unsolved 

problem in mathematics which consists of the following: if a positive integer � is even, it 

is divided by two. If it is odd, it is multiplied by three and one is added. This operation can 

be expressed as: 

���� = 
 �/2        � ≡ 0 ���� 2�
3 � + 1    � ≡ 1 ���� 2� 

In this way, by repeatedly applying the function ����: ℕ + 1 →  ℕ + 1, with ℕ ≔
{0,1, ,2 … }, to any positive integer, we invariably reach the number 1, regardless of the 

initial chosen number. This process occurs within a finite number of steps. Let � ∈ ℕ + 1, 

we use the definition of Collatz orbit given in [1], ���ℕ��� ≔ {�, ����, ����� … }. Let 

���� !��� ≔ �"� ���ℕ��� = "��#∈ ℕ���$���, then the Collatz conjecture is expressed 

as ���� !��� = 1 for every � ∈  ℕ + 1. 

If the previous statement were false, it would mean that there exists a number � ∈
 ℕ + 1 that generates a cycle where the number 1 does not belong to its cycle, i.e., 

���� !��� ≠ 1. This would imply that the sequence enters a cycle that does not contain 

the number 1. Furthermore, the cycle could potentially increase indefinitely. 

For example, if we start with � = 7 and apply the function repeatedly, we obtain 

the following sequence of numbers until reaching 1: 7 → 22 → 11 → 34 → 17 → 52 →
26 → 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1. Thus, its orbit would be 

���ℕ�7� = {7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1}. 
In [1], the function ,��!: ℝ → ℝ is defined such that for every positive integer � ∈

ℕ\{0}, we have ,��!��� = /012
�3 , where � is the largest natural number such that 2! 

divides 3� + 1, resulting in an odd number if � is odd. In this paper, we will always consider � 

to be an odd number. Thus, we can define the Collatz orbit for this new function as follows: 

 ����ℕ12��� ≔ 4�, ,��!5���, ,��!6 7,��!5���8 … 9. This corresponds to the formulation 
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known as Syracuse, so the Collatz conjecture can be expressed as �"� ����ℕ12��� = 1 

for every � ∈ 2ℕ + 1. This Syracuse orbit ����ℕ12���  corresponds to the Collatz orbit 

but for odd numbers. Thus, in the previous example, we obtain the sequence 

����ℕ12�7� = {7, 11, 17, 13, 5, 1}. 

From the direct observation of the odd numbers that reach 1 after applying the 

function only once ,��!, it is observed that there is recursion between them. For 

example, consider the odd numbers � = 1, 5, 21, 85, 341 … then 5 = 4 : 1 + 1;   21 =
4 : 5 + 1;   85 = 4 : 21 + 1;   341 = 4 : 85 + 1; in general �$12 = 4�$ + 1, obtaining 

the general term of the series as 4$ + 2
/ �4$ < 1� ∈ 2ℕ + 1. 

This fact reveals a structure or pattern that is generated by the repeated application 

of the function ,��!. Clearly, the numbers in this series satisfy that ,����$12� =4$ +
2
/ �4$ < 1�> = 1. 

Due to this, we can consider that the series of nodes thus defined belongs to the 

same branch. See figure 1. 

 

Figure 1. Representation of a branch with its nodes. Nodes 

that are multiples of three are marked with a black circle. 

Thus, the distribution of odd numbers is ordered in the branch according to the 

number of 2�$ required to belong to it. For example, for ,����1� = 1 with 2�, ,��?�5� =
1 with 2?, ,��@�21� = 1 with 2@, ,��A�85� = 1 with 2A, so the number 2�$ varies but it 

is clear that 1, 5, 21, 85 reach 1 in one step (a single application of ,��!), hence they 

belong to the same branch. 

In general, and as a consequence of this result, we can consider all numbers �, B ∈
2ℕ + 1 that satisfy the following equation ,��!C��� = ,��!D�B�, which means that 
/012
�3C = /E12

�3D . If we solve for  �, we obtain � = 2!CF!D  B + 2
/ �2!CF!D < 1�. Since � and B 

are odd numbers, it can be deduced that �0 < �G must be a natural and even number, 

that is, �0 < �G = 2 H with H ∈ ℤ. Rewriting it, we obtain � = 2�$ B + 2
/ �2�$ < 1�. The 

sign of H will be determined by the relation between � and B. If � J B, then this implies 

that H K 0. On the other hand, if � K B then necessarily H J 0 since both � and B have 

to belong to 2ℕ + 1. For example, if � = 1 and B = 5 we have that 1 = 2F� 5 +
2
/ �2F� < 1�, in this case H = <1. 

In this way, we can establish the following relation: let �, B ∈ 2ℕ + 1 be given. 

Then, �~B if ,��!C��� = ,��!D�B� for suitable �0 and �G. This relation is one of 

equivalence relation since it is reflexive, symmetric and transitive, and its proof is trivial. 
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This equivalence class allows us to regroup the elements into equivalence classes and 

consider subsets or equivalence classes accordingly. 

2 Nodes and Branches 

Definition 2.1. The equivalence classes, which we will call branches, are defined as 

M��� ∶= 4� ∈ 2ℕ + 1 | � = 4$� + 2
/ �4$ < 1�, H ∈ ℤ9. The number  � ∈ 2ℕ + 1 is 

taken as the initial node of the branch. 

Clearly the equivalence relation holds for any � ∈ M���, since ,��!��� =
 ,��! =4$� + 2

/ �4$ < 1�> = ,��!F�$���. 

As mentioned earlier, the initial node of the equivalence class can be any element 

from it. The only thing to consider is the sign of H so that all members of the class belong 

to 2ℕ + 1. 

Proposition 2.1. Let � ∈ M��� then � ∈ M��� and vice versa. Therefore, M��� =
M���. 

Proof. Assuming that � ∈ M���, then � = 4$� + 2
/ �4$ < 1�, so if H K 0, solving for 

�, � = 4F$� + 2
/ �4F$ < 1� thus � ∈ M���. The same reasoning applies for H J 0. 

Therefore, M��� ⊆ M���. By exchanging � with �, the other inclusion is demonstrated.

□ 

For example, let � ∈ M�1� then we have that 1 is the initial node of the branch and 

thus � = 4$ + 2
/ �4$ < 1� and H could be H = 0,1,2 … such that � ∈ 2ℕ + 1 and so 

M�1� = {1, 5, 21, 85, 341 … }. If we consider the element 85 as the initial node, we 

obtain the same branch. Let � ∈ M�85� then � = 4$  85 + 2
/ �4$ < 1� and H could be H =

<3, <2, <1,0,1,2… and so M�85� = {1, 5, 21, 85, 341 … }. 

By convention, the smallest element in the branch will be considered its canonical 

representative, meaning for M���, the odd number � will be the smallest among all 

elements in the branch, so M��� = 44$� + 2
/ �4$ < 1� |H = 0,1 … 9. Based on this 

convention, a node can be defined as M$��� ∶= 4$� + 2
/ �4$ < 1� for H = 0,1… For 

example, for branch M�3�, we have the nodes MQ�3� = 3, M2�3� = 13, M��3� = 53 and so 

on. 

Consider the equivalence class for odd numbers 2ℕ + 1 as follows: R�S? =
{� ∈ 2ℕ + 1 ∶ � ≡ � ���� 4�} 

So, 2ℕ + 1 is divided into two equivalence classes corresponding to the possible 

two remainders when dividing any odd number by 4: R1S?, R3S?. It is evident that 

R1S?⋃R3S? = 2ℕ + 1. 
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Proposition 2.2. Odd numbers in the form of 4� + 1, where � is odd, correspond to 

nodes M$��� with H K 0 from their respective branch M���, where � ∈ R3S? or � takes 

the form � = 4� + 1 with � even. 

Proof. From the expression M$��� = 4$� + 2
/ �4$ < 1�, it is observed that for 

values H K 0, we obtain the set of numbers 4� + 1 for H = 1; 4�4� + 1� + 1 for H = 2; 

4�4�4� + 1� + 1� + 1 for H = 3, and so on, which are clearly odd and of the form 4U +
1 with U odd. From the definition of the branch and following the adopted convention, it 

is now clear that or MQ��� = � for � ∈ R3S? or � = 4� + 1 with � even, because if it 

were otherwise, meaning � = 4� + 1 with � odd, we could simply take the first odd 

number in the series �V12 = �WF2
?  with �Q = � that satisfies being odd and of the form 

4U + 1 with U even o �V12 ∈ R3S?. In this way, the branch representative is obtained with 

�V12 ∈ R3S? o �V12 = 4� + 1 with � even, being the smallest element of the branch that 

represents it. □ 

For example, for � = 4053 ∈ R1S?. As 4053 is odd, we choose �2 = �XF2
? =

?QY/F2
? = 1013, which means � = 4053 = 4 : 1013 + 1. Since 1013 is odd, we choose 

�� = �5F2
? = 2Q2/F2

? = 253, which means 1013 = 4 : 253 + 1. As 253 is odd, we 

choose �/ = �6F2
? = �Y/F2

? = 63, which means 253 = 4 : 63 + 1. Since 63 ∈ R3S? then 

4053 ∈ M�63� and M/�63� = 4053. From this proposition, an algorithm has been 

developed for the repeated application of the function ���� in order to obtain the orbit 

of any odd number (See appendix). 

In summary, when considering the modulo-4 equivalence classes for odd numbers, 

we can categorize the nodes into two types: the initial nodes of a branch and those that 

do not generate a new branch. In other words, initial nodes encompass all odd numbers 

of the form � ∈ R3S? or � = 4� + 1 with � being even, while the rest of the nodes fall 

into the category � = 4� + 1 with � being odd. 

What sets branch M�1� apart from the others is its unique property that its initial 

node remains unchanged when the ,��! function is applied. As indicated above, 

,��!�x� = 1 for any node � belonging to branch M�1�. This property is what precisely 

distinguishes it as the primary branch. In contrast, this characteristic is not met in the 

other branches, as applying ,��! to any node in a branch other than M�1� results in a 

node that does not belong to the same branch as the original node. For example, for 

M�3� = {3, 13, 53, 213 … } and ,��2�3� = 5, it transitions to the branch of 1. See figure 

2. 
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Figure 2. Representation of two branches with its nodes. 

Proposition 2.3. The only node that remains invariant when applying the ,��! 

function once is node 1. That is, let � ∈ M��� if ,��!��� = � for some � ∈ ℕ\{0} then 

� = 1 and � = 1. 

Proof. Just apply the function once ,��!,  ,��!���  =  ,��! =4$� + 2
/ [4$ < 1\>  =

3=4H�+1
374H<18>+1
2� = 4H�3 �+1�

2� = 3 �+1
2�<2H = �, then  � = 2

�3]6^F/ and since it has to be an odd 

number and a positive integer there is only one solution that corresponds to � < 2H = 2, 

that is, � = 2H + 2 and therefore � = 1, thus � ∈ M�1� and since MQ�1� = 4Q +
2
/ �4Q < 1� = 1 then � = 1.        □ 

When applying the function ,��! to any number other than 1, we obtain another 

number that can be considered one step closer to the branch that contains the number 

1. In other words, when applying the function ,��!, it switches from one branch to 

another and the latter will be closer to the node 1. Similarly, we can think that the inverse 

function of ,��! applied to a node results in a node that is one step further away from 

the node 1. Therefore, we can consider the inverse function of ,��! defined as 

,��!F2: 2ℕ + 1 → 2ℕ + 1 such that ,��!F2��� ≔ �3 �F2
/ . 

Proposition 2.4. For every node M$��� ∈ 2ℕ + 1 not divisible by three with H _ 0, 

belonging to any branch M���, another branch comes out with infinite nodes, that is, if 

M$��� ≡ 1 ���� 3� or M$��� ≡ 2 ���� 3� there exists ` ∈ 2ℕ + 1 such that 

,��!�`� = M$���, equivalent ,��!F2[M$���\ = `. And if M$��� ≡ 0 ���� 3� no 

branches come from those nodes. 

Proof. Let � be any node, consider the only three possible situations  

1) Suppose that M$��� ≡ 0 ���� 3�, then let  ` be its superior node, that is 

` = ,��!F2[M$���\ = �3 a^���F2
/  then according to the remainder of `, we have 

that  
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a. If ` ≡ 0 ���� 3�, that is ` = 3`Q, with `Q ∈ ℕ, then 3`Q = �3 a^���F2
/ , which 

simplifies to 2! M$��� = 3�`Q + 1; in order words, 2! M$��� ≡ 1 ���� 3�, 

which is not possible. 

b. If ` ≡ 1 ���� 3�, that is ` = 3`Q + 1, with `Q ∈ ℕ, then 3`Q + 1 = �3 a^���F2
/ , 

which simplifies to 2! M$��� = 3 �3`Q + 1� + 1; in order words 2! M$��� ≡
1 ���� 3�, which is not possible. 

c. If ` ≡ 2 ���� 3�, that is ` = 3`Q + 2, with `Q ∈ ℕ, then 3`Q + 2 = �3 a^���F2
/ , 

which simplifies to 2! M$��� = 3 �3`Q + 2� + 1; in order words, 2! M$��� ≡
1 ���� 3�, which is not possible. 

This make clear that if M$��� ≡ 0 ���� 3�, it does not have a superior node. 

2) Suppose M$��� ≡ 1 ���� 3�, then let ` be its superior node, which means 

` = ,��!F2[M$���\ = �3 a^���F2
/ . As M$��� ≡ 1 ���� 3�, we can write M$��� =

3�Q +  1, with �Q ∈ 2ℕ since M$��� is odd. Therefore, ` = �3�/�X1 2� F2
/ =

/  �3�X1 �3 F2
/ = 2!�Q +  �3 F2

/ ∈ 2ℕ + 1 if � ∈ 2ℕ\{0}, as in that case  
 �3 F2

/  will 

be an odd and integer number. In this way, the branch M�`� is associated with the 

node M$���. 

3) Suppose M$��� ≡ 2 ���� 3�, then let ` be its superior node, which means 

` = ,��!F2[M$���\ = �3 a^���F2
/ . As M$��� ≡ 2 ���� 3�, we can write M$��� =

3�Q +  2, with �Q ∈ 2ℕ + 1, since M$��� is odd. Therefore, ` = �3�/�X1 �� F2
/ =

/  �3�X1 �3b5 F2
/ = 2!�Q +  �3b5 F2

/ ∈ 2ℕ + 1 if � ∈ 2ℕ + 1, as in that case  
 �3b5 F2

/  

will be an odd and integer number. Hence, there exists ` ∈ 2ℕ + 1. In this way, 

the branch M�`� is associated with the node M$���. □ 

In summary, for each node M$��� ∈ 2ℕ + 1 where H _ 0, not divisible by three, 

of a branch M���, there exists a unique branch M�`� whose initial value ` depends on 

this node M$���, where the value of ` can be expressed as: 

 If M$��� ≡ 1 ���� 3� then ` = �3 a^���F2
/ , for � = 2 the value of ` = ? a^���F2

/ . 

Since M$��� ≡ 1 ���� 3�, we can write M$��� = 3�Q +  1, with �Q ∈ 2ℕ, and 

therefore ` = 4 �Q + 1, where �Q is even. Thus, this associates the node 

M$��� with the branch M 7? a^���F2
/ 8. 

 If M$��� ≡ 2 ���� 3� then ` = �3b5a^���F2
/ , for � = 1 the value of ` =

� a^���F2
/ . Since M$��� ≡ 2 ���� 3�, we can write M$��� = 3�Q +  2, with 

�Q ∈ 2ℕ + 1, and therefore  ` = 4 �Q + 3. Thus, this associates the node 

M$��� with the branch M 7� a^���F2
/ 8. 

Clearly, each associated branch is unique and distinct since all nodes are different. 
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For example, let's assume M$��� = 341. Since 341 ≡ 2 ���� 3�, then ` =
� a^���F2

/ = 227. The branch obtained is M�227�. Then MQ�227� = 227, M2�227� = 909, 

and so on, graphically, see figure 3. 

  

Figure 3. Representation of three branches with its nodes. 

In both cases it is verified that 341 are in the orbit ����ℕ12�227� = {227, 341, 1 } 

and ����ℕ12�909� = {909, 341, 1 }. 

Each node � is not a multiple of 3 (� ≢ 0  ���� 3�� generates a distinct 

equivalence class (branch) and each branch has its own nodes. 

Proposition 2.5. Let n, m ∈ 2ℕ + 1 consider the distinct branches M��� and M��� 
with � ∉ M��� then  M��� ∩ M��� = ∅. 

Proof. Assume that there exists an odd number � ∈ M��� ∩ M���, then � =
4$� + 2

/ �4$ < 1� = 4y� + 2
/ �4y < 1� with H ≠ �; simplifying 2�$� = 2�y� + 2

/ �2�y <
2�$� and so � = 2�yF�$� + 2

/ �2�yF�$ < 1�; which implies that � ∈ M��� which cannot 
be by hypothesis, therefore there is no � that belongs to the intersection.□ 

3 Conclusion 

Based on what has been said above, one can consider a tree-shaped structure, 

formed by the different branches that emerge from the nodes, with node 1 as the initial 

node. In other words, the main branch can be assigned to the one that contains the initial 

node 1, considering this branch as the tree trunk, where at each node not divisible by 3, 

a branch with an infinite number of nodes emerges, which in turn contain nodes from 

which branches arise, and so on. Each branch represents an equivalence class, and the 

union of all equivalence classes forms the set of odd numbers. 

Lemma 3.1. Let � ∈ R3S?⋃{4� + 1 with � ∈ 2ℕ} then ⋃M��� = 2ℕ + 1. 

Proof. The inclusion ⋃M��� ⊆ 2ℕ + 1 is obvious from the very definition of M���. 

Let us see that 2ℕ + 1 ⊆ ⋃M��� . Let � ∈ 2ℕ + 1, according to proposition 2.2, either 

� ∈ R3S? or � takes the form � = 4U + 1 with U even, in both cases, there exists a branch 
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M��� that contains it, and � = MQ���. In addition, since numbers of the form 4U + 1 with 

U odd belong to M��� for some m, the inclusion holds.     □ 

In this way, a set of infinite branches with infinitely many nodes is obtained. Nodes 

only belong to one branch by proposition 2.5. In addition, the branches are 

interconnected by the initial nodes of each branch by proposition 2.4 and the only initial 

node that is in its own branch is 1, which shows that there are no unconnected branches 

or unconnected nodes that generate another independent tree and this is because the 

union of all branches is the set of odd numbers. Furthermore, it is clear that the orbit of 

any odd number indicates the passage from one branch to another, each time the ,��! 

function is applied, it jumps from one branch to a lower one. This indicates that every 

orbit ����ℕ12��� contains the number 1, thus fulfilling the conjecture. 

For example, consider the node � = 1643861; this node belongs to the branch of 

M�401� since 1643861 = 4$ 401 + 2
/ �4$ < 1� with k = 6, that this M@�401� =

1643861. The branch of M�401� starts at node 301, because ,����401� = 301. This 

node belongs to branch M�75�, this branch starts from node 113 and finally, node 113 

starts from node 85 which is in the main branch. Its orbit is ����ℕ12�1643861� =
{1643861, 301, 113, 85, 1 }. See figure 4. 

 

Figure 4. Representation of a part of the tree where node 1643861 and 

the lower branches appears 

Appendix 

Building upon proposition 2.2, we have devised a straightforward algorithm for 

generating a sequence akin to the orbit of [1]. When presented with any odd number, 
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our objective is to ascertain its respective branch. Once the branch is identified, along 

with the node governing it, we proceed to compute the node from which that branch 

originates. This process is iteratively repeated until we arrive at the primary branch, M�1�. 

During the course of iteration, should we encounter a node conforming to the 

pattern 4U + 1, where U is an odd integer, we will search for the node representing that 

branch. This node can take on the form 4U + 1 with an even U or 4U + 3 with any U. 

Consequently, the trajectory we obtain offers an alternative, yet nearly identical solution 

to the orbit of [1]. The difference lies in the iteration's focus on the primary nodes within 

the branches. Convergence is unequivocally assured due to the interconnected nature of 

all branches.  

Next, we present the BC and C algorithms: the BC Algorithm, based on the previous 

description, and the C Algorithm, renowned for its applicability in orbit calculations. 

Algorithm BC 

Input: n: number odd 

Output: nb: number of iterations until reaching 1  

while n is not equal to 1 

if �����, 4� is equal to 1  % � ≡ 1 ���� 4� class R1S?  

� ← �� < 1�/4  
if �����, 2� is equal to 0  % initial node of branch is identified 

� ← �3� + 1�/4  

else 

� ← �     % node of branch 

endif 

else      % � ≡ 3 ���� 4� class R3S?  

� ← �3� + 1�/2  
endif 

 �M ← �M + 1    % iterations 

endwhile 

 

Algorithm C 

Input: �, number odd 

Output:  ��, number of iterations until reaching 1  

while � is not equal to 1 

if �����, 2� is equal 0 

� ← �/2  
else 

� ← �3� + 1�/2  

end 

�� ← �� + 1     % iterations 

endwhile 
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Two simple cases are presented, in the table 1, to highlight that the obtained 

orbits are different. In the first case, the BC algorithm passes through node 3 since it is 

the main node ofM2�3� = 13, it is worth noting that the number of iterations is lower in 

BC. In the second case, node M?�1� = 341  belongs to the branch of 1, hence it passes 

through the rest of the nodes in that branch M�1� = {1,5,21,85,341 … }. In this case, the 

number of iterations with the C algorithm doubles due to the number of times it has to 

divide by 2 when the number is even. 

 

 BC C 

 Number of 

iterations 

Orbit Number of 

iterations 

Orbit 

� = 7 7 7, 11,17,13,3,5,1  12 7, 11, 17, 13, 5, 1  

� = 909  7 909,227,341,85,21,5,1 14 909,341,1  

Table 1. Number of iterations to reach 1 and orbit for BC and C algorithms. 

 

The behavior of both algorithms with respect to large odd numbers is reflected in 

Table 2. As can be seen, the number of iterations for the BC algorithm is lower in all 

cases. 

 

 BC C 

� = 2�� < 1 664 937 

� = 2��� < 1  5528 7841 

� = 2���� < 1  60810 86278 

� = 2����� < 1  608902 863323 

Table 2. Number of iterations to reach 1 for BC and C algorithms. 

 

In Table 3, the execution times for all odd numbers are displayed for each of the 

algorithms, according to the range shown. Time is measured in seconds. As can be seen, 

the execution time is lower for the BC algorithm. 

 

 BC C 

� = 1 to 2�Q < 1, step 2 244.17 309.32 

� = 2�Q < 1 to 2�2 < 1, step 2 335.88 379.37 

Table 3. Time in seconds for both algorithms to reach 1 within that range of numbers. 
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