The aim of this work is to build Boolean models to simulate specifically prostate
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cancer in individual patients or clones. That way, we seek to understand by which

means the cells become cancerous and propose appropriate drug interventions to

personally treat the patient.

This involves the following steps:

build a network of the signaling pathways that include frequently altered

genes In prostate cancer,

NINOPIECISE

This work is part of PrECISE, a project which studies prostate

cancer and aims at:

identify new molecular processes to complement the network, in particular

with gene set quantification, and search detailed interactions supported by

literature relevant in these pathways,

derive a Boolean model describing the network dynamics in specific contexts,

and estimate time evolution of phenotypic probabilities with MaBoSS.

A published model [1] is extended using both pathway databases

and the literature, and is made more specific to our cohort of
patient data by applying gene set quantification methods.
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Datasets (TCGA + PrECISE)

Significant pathways are identified
from a predefined list of gene sets.
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MaBoSS [4] Is a probabilistic

Mo

framework based on continuous
time Markov chains, used to
estimate time evolution of state

probabilities In logical models.
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The effect of several drugs on the model can be
simulated and compared to experimental observations.

Predictions made under this framework are intrinsically
accompanied by a mechanistic explanation and can
provide a support to incorporate patient-specific
molecular data.

www.pypath.omnipathdb.org
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