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Motivation

= Human-natural systems: dynamic two-way interactions
between human components (e.g., economic, social) and
natural (e.g., hydrologic, atmospheric, biological, geological)

= \When planning for human-natural systems, there exists a
tension between ensuring rigorous assessment of
complexity and uncertainty, as well as usability of outcomes

m This talk presents a framework for narrative scenario
discovery to address this gap




Human-natural
systems are
shaped by
many complex
feedbacks and
interactions




Deep
uncertainties
confound our
assessment,
especially
when looking
into the future
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W Fossil-fueled development Regional rivalry

Scenarios help
us reduce this
complexity to
narrative
descriptions of
the future

Sustainability InequalityB/



But they bring
several problems:
they only
represent a small
number of all the
future possibilities
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But they bring
several problems:
they might be
biased by those
involved in
crafting them




Exploratory
modeling
approaches try to
overcome this by
investigating
large numbers of
hypothetical
futures




The Upper Colorado River Basin (UCRB)
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Cumulative yearly statistics of the Colorado
Division of Water Resources (2012)
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The Upper Colorado River Basin (UCRB)
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Gets all water
demands met
before others

o Water right user

G
3 Water district

Gunnison omm——
River an——



" How vulnerable are these water users to future climatic
stress, increasing water demands and other uncertain
drivers?

® Can we identify which stressors are most consequential
for these users and under what conditions?

COLORADO
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Exploratory experiment for the Upper Colorado

River Basin
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Exploratory experiment for the Upper Colorado

River Basin

Assessed conditions result
in very different impacts to
water users in the basin

(a) Senior-right irrigation user (b) Median-right irrigation user (c) Junior-right irrigation user
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Classify potential futures into
‘successes’ and ‘failures’
using uncertain factors as
predictors
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But this faces a couple problems

1. We don’t keep track of key dynamic processes that result in each
scenario’s failure

Different dynamics
/ result in the same mean
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But this faces a couple problems

2. We lose the narrative simplicity of a small number of key scenarios

“Of course we’ll make a decision ...
once we have considered the 5243 factors.”

Shift in snowmelt timing (-)

50
40
30
20 @&

10§ -

$980 0.990  1.000 1.010  1.020

Change in mean dry flow (x)



So, we want to utilize
the analytical rigor
provided by exploratory
modeling

...Io establish narrative
scenarios that describe
key impacts

...while keeping track
of fundamental
dynamic processes
that get us there.
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FRamework for Narrative Scenarios and

Impact Classification (FRNSIC)
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FRamework for Narrative Scenarios and

Impact Classification (FRNSIC)

Formulation of:
=| Uncertain futures
Impact m.easur.es Problem
Key relationships framing

(

Narrative
scenarios
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FRamework for Narrative Scenarios and

Impact Classification (FRNSIC)

System simulation
across all candidate
states of the world

| | Evaluation
across many
states of

the world

Narrative
scenarios
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FRamework for Narrative Scenarios and

Impact Classification (FRNSIC)

Classification of:
@ dynamic properties

Multi-trait ﬁ .
Impact groups
, | | | classification DUI P 9 P
Narrative

scenarios




|dentification of
narrative
scenarios of
dynamic states
and impacts

Multi-trait

storyline
discovery |\/

Narrative
scenarios

FRamework for Narrative Scenarios and
Impact Classification (FRNSIC)
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The Upper Colorado River Basin (UCRB)

o Water right user

{3 Water district

Gunnison
River

Demonstrate hypothetical planning context
where the FRNSIC might be used 22



- Low water levels of Lake Granby on Friday, May 14, 2021, in Granby. °*
- Hugh Carey, The Colorado Sun
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Narrative planning scenarios
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Implementing the Water Plan in A |
the UCRB and local concerns @ ROUNDTABLE

* Charged with water planning for the Colorado River
Basin within Colorado.

* As part of a statewide initiative to develop
Colorado’s Water Plan, completed its own Basin
Implementation Plan to address water needs within
the basin.

* Allocates funding to address the basin’s water
challenges.

~

VOLUME 1 ¢ JANUARY 2022

cnlonnn“ « Members include people from agriculture, domestic

water providers, environmental and recreation
entities, state agencies, and interested citizens.

28
https://www.coloradobasinroundtable.org/about/



Table 1.

Key Future Water Management Issues and Challenges in the Colorado Basin
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acres in the Colorado Basin.
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* |nan uncertain future,

maintaining ows
suppor ve of recre  on
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Using FRNSIC in a hypothetical
planning context for the UCRB

|dentify drought
planning scenarios range of plausible

that capture key Problem | | | Evaluation drought futures
local impacts and framing across many

their drivers to help states of

) the world
inform future % }

Consider broad

adaptation |ldentify key drivers
and impacts on local
o agricultural users and

Scenarios Multi-trait g

storyline |\/ ”| Multi-trait downstream deliveries

are narrative | discovery classification
Narrative

descriptions SCenanios

of both %
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Using FRNSIC in a hypothetical
planning context for the UCRB

|dentify drought

planning scenarios

that capture key Problem
local impacts and framing

their drivers to help
inform future
adaptation

Narrative
scenarios

|
|
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Exploring internal variability gives rise to

previously unseen drought conditions

Historical observations Synthetically generated flows
(a)
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4000- 4000 - 4000-
1920 1940 1960 1980 2000 0O 20 40 60 80 100 0O 20 40 60 80 100
Year Year in realization Year in realization
Drought period — Streamflow — Entire period mean (n)
— Rolling mean -- Drought threshold (p - 0.50)

Synthetic streamflow sequences with same statistical properties can
show more decades of drought than those experienced
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Different
periods
might
experience
different
distributions
of
conditions

=

Changing system properties

affect how we classify drought
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Establishing a
drought
threshold
during a wet
period would
mean more
drought years
are classified
in the future.
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FRamework for Narrative Scenarios and Impact

Classification (FRNSIC)

Consider broad
range of plausible
| | Evaluation drought futures

across many
states of
the world

Narrative
scenarios

|
|
|
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Statistically varying dry and wet
properties of streamflow

Streamflow
properties
under dry
conditions
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Environmental
systems
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Streamflow
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FRamework for Narrative Scenarios and Impact

Classification (FRNSIC)

|dentify key drivers
and impacts on local
agricultural users and
| | | Multi-trait downstream deliveries

classification

Narrative
scenarios
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-
Classify temporal dynamics of each SOW @

SOWs with
the same
variability in
dry conditions
as historical
experience

SOWs with the
same average
dry conditions
as historical
experience

SOWSs with as
many drought
years as
historical
experience
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Classify temporal dynamics of each SOW @
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I‘i! Classify temporal dynamics of each SOW @

Drought
occurrence

Average .
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Classify temporal dynamics of each SOW @

VS = {Sij (S S|O76 < Oq. < 138}
Overlap sets where ’ ‘

both conditions are met

@ MS = {Si,j S S|099 < ,lel. < 101} DS = {Si,j € Sldl,] < 30} 41



-
Classify temporal dynamics of each SOW

SOWSs within the experienced SOWSs with plausible

historical context changes in
hydroclimatic
conditions




-
FRamework for Narrative Scenarios and Impact

Classification (FRNSIC)

|dentify key drivers
and impacts on local
agricultural users and
| | | Multi-trait downstream deliveries

classification

Narrative
scenarios
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Classify impacts of each SOW

No Yes
Are basin downstream
deliveries lower than history?
No Yes No Yes
Were more than
50% of users short?
No | Yes No | Yes No | Yes No | Yes
Were they
short more

than 10%7?

il
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Classify impacts of each SOW @

Are basin downstream Hierarchical
deliveries lower than history? color scheme

for groups of
impacts
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m Classify impacts of each SOW @

Yes Yes

Were more than
50% of users short?

il
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m Classify impacts of each SOW @

Yes Yes

Were they
short more
than 10%7?

il
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B
m Classify impacts of each SOW 1

Yes Yes
Were more than
50% of users short?
Yes Yes
Were they
short more

than 10%7?
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Classify impacts of each SOW

NO NO

Were more than
50% of users short?

NO NO

Were they
short more
than 10%7?
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Classify impacts of each SOW @
Basin deliveries

<=
/ AN P10
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|dentification of
narrative
scenarios of
dynamic states
and impacts

Multi-trait

storyline
discovery |\/

Narrative
scenarios

FRamework for Narrative Scenarios and
Impact Classification (FRNSIC)
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Combining both to identify narrative
storylines
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Combining both to identify narrative
storylines

Variance
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Combining both to identify narrative

storylines y
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Summarizing changes in Impacts

_Basin deliveries s

. <R Y Variability
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Summarizing changes in Impacts

_Basin deliveries s

. <R Y Variability
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Summarizing changes in Impacts

_Basin deliveries s
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COLORADO BASIN

Implications for UCRB 8- NDTARLE

SOWs within the experienced If planners expect future conditions
historical context to be like the past
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COLORADO BASIN

& ROUNDTABLE

If planners expect future conditions
to be like the past

Drought
1.5 period
Basin deliveries downstream 1.0 W\'\

(x historical 10 percentile) = Historical 10t

The Unknown Normal 054 | | |  percentile
 Downstream deliveries drop
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Implications for UCRB
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COLORADO BASIN

Implications for UCRB 8. UNDTARLE

If planners expect future conditions to change

SOWs with plausible changes
in hydroclimatic conditions
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o o
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I i COLORADO BASIN
Implications for UCRB aROU NDTARLE

SOWs with plausible changes If planners expect future conditions to change

in hydroclimatic conditions
“ Drought
Basin deliveries downstream //\J\,\//\/\\p:i;/\

(x historical 10" percentile) 1 Historical 10
The Unforeseen percentile \J
Struggles:
o s . 7.5 A
Similar but exacerbated impacts Cumulative basin shortages .
. . . . h . .
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20 40 60 80 100
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Basin deliveries
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Basin deliveries
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SOWs with plausible
changes in hydroclimatic
conditions

Basin deliveries downstream
(x historical 10" percentile)

Drought
period

Historical 10"
percentile

20 40 60 80 100
Year

7.5 1
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The Unforeseen Struggles across scales

Cumulative basin shortages
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Basin deliveries
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SOWs with plausible
changes in hydroclimatic
conditions
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Do these thresholds represent everyone’s risk
aversion?

Examine the implications of
alternative performance metrics
on the discovery of
consequential scenarios
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W If too many water users
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0 50 100 O 50 100
Year Year
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Distribution
of impacts
across
different
thresholds

“u

1x

2X

®

®

1

~ Frequency of historical 10" percentile basin deliveries

>=5% >=7%

— . >=25% User
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50%
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Distribution
of impacts
across
different
thresholds

~ Frequency of historical 10" percentile basin deliveries

2X

10x

Allow us to reflect
different levels of
stakeholder risk

aversion or experience

Even though these are

very extreme impact

thresholds, most SOWs

meet at least one

>=5%

>=7%

>=25%

>

>=10%

>=75%

Shortage level

User
threshold
=50%
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Take-home messages

m FRNSIC addresses a gap between the rigor of exploratory
modeling and the usability of traditional narrative scenarios

= Narrative scenarios capture both dynamic properties and
impact groups

m Examining alternative combinations of impact thresholds
allows us to address decision-relevance for systems with
many actors

68




INTEGRATED
MULTISECTOR
MULTISCALE
MODELING

Thank you!

Find me at:

DA hadjimichael@psu.edu
https://www.hadjimichael.info/
§) @a_hadjimichael

This research is supported by
the U.S. Department of Energy,
Office of Science, as part of
research in MultiSector
Dynamics, Earth and
Environmental System
Modeling Program
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Hydrologic Model - Synthetlc Generator
@AGUPUBLICATIONS

Water Resources Research

RESEARCH ARTICLE A hidden Markov model combined with climate indices
10.1002/2014WR015567 for multidecadal streamflow simulation

12

C. Bracken2, B. Rajagopalan'-3, and E. Zagona4 10
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Historical distribution of demands and shortages

Demands and shortages are disporportionally shared among water districts

(a) Share of demands (b) Share of shortages

70
Total: 148 Million m3

Total: 3309 Million m?3

Percentage share (%)

-

(c) Change in share

35 WD
30 —72
25
20
10
__39
5><' 5370
- 36
0] 52
Demands Shortages



(@) Water right priority and allocation per water district

9250 m3/s 370,045 m3/s

Bubble size indicates °

° ./ size of allocation
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20000 ,
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eee p y’ 10000 °

\ Lower priority admin no.
indicates higher seniority

not entirely
explained by
water rights .
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(b) Shortage as a percentage of demand per water district
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