

Improved validation and feature extraction for JP2 (JPEG 2000
Part 1) images: the jpylyzer tool
Johan van der Knijff 1,2, René van der Ark 1, Carl Wilson 3

1KB/ National Library of the Netherlands, The Hague, the Netherlands; 2Open Planets Foundation, Boston Spa, UK; 3The British
Library, Boston Spa, UK

Abstract
This paper presents ‘jpylyzer’, a dedicated software tool for

validation and feature extraction of JP2 (JPEG 2000 Part 1)
images. We first discuss the importance of format validation, and
show that for the JP2 format, current tools have deficiencies that
make their use in a preservation context problematic. We describe
the main characteristics of the new jpylyzer software, and provide
some case studies that illustrate its utility in operational imaging
workflows.

Introduction
JP2 (or, JPEG 2000 Part 1) is becoming increasingly popular

in the cultural heritage sector as a format for access and long-term
archival storage of digital image data. Examples include (but are
not limited to) the National Library of the Netherlands [1], the
British Library [2], the Wellcome Library [3], Library of Congress
[4], the National Library of Norway [5], and the National Library
of the Czech Republic [6]. These institutions are using JP2 as a
master format for mass digitization projects, and some have also
started migrating their existing image archives (which are typically
in TIFF format) to JP2.

Both digitization and migration involve imaging workflows in
which quality assurance is an essential component. One important
aspect of this is a check that ensures that the created JP2s are
compliant with the format’s specification, which is defined by Part
1 of the JPEG 2000 standard [7]. Also, JPEG 2000 leaves one with
a wide range of encoding options, which can be optimized to the
envisaged use of the images. These options are typically defined
using institute-specific profiles. The verification of these options is
thus also an important aspect of the quality assurance component.

Previous work has shown that some encoders produce JP2s
that contain (often subtle) deviations from the standard. Some
encoders generate files that are not even JP2s at all, but instead
JPX (JPEG 2000 Part 2) images (which, in some cases, can be
virtually indistinguishable from JP2) [8],[9]. Corrupted images that
are the result of hardware failure (e.g. brief network interruptions
or malfunctioning hard disks) are another concern.

Importantly, neither non-compliance to the standard nor
corruption automatically implies that an image cannot be displayed
in a viewer. For instance, any JP2 viewer will be able to display
most JPX images. However, such images may contain embedded
ICC profiles that the viewer will simply ignore, which means that
they will be lost if such tools are used to migrate the image to
some other format. In addition, a JPEG 2000 image typically

contains several approximation scales (e.g. quality layers,
resolution levels), and often the lower level approximations can be
displayed without loading the image as a whole. In combination
with JPEG 2000’s error resilience features, this means that viewers
may render a damaged JP2 without complaining.

Compliance with the format’s specification can be tested
using format validator tools. Ideally such tools should be able to
detect most forms of file corruption as well. As no sufficiently
thorough validator exists for JP2, in this paper we present a
software tool that is aimed at bridging this gap. The jpylyzer tool is
a strict, thorough JP2 validator. It also performs comprehensive
feature extraction, which can serve as input for the verification of
images against institute-specific encoding profiles.

Outline of this paper
The remainder of this paper is organized as follows. First we

give an overview of the general structure of the JP2 format,
illustrating the fundamentals of validation in the process. Then we
summarize the current state of the art of JP2 validation and feature
extraction, and from this we argue that the current situation
justifies the development of a new, better tool. We then outline the
main philosophy and features of jpylyzer, including a note on its
envisaged role in quality assurance workflows. We also cover the
tool’s inherent limitations. Next we move on to a number of case
studies that demonstrate the utility of jpylyzer in a variety of
practical settings, including operational imaging workflows.
Finally, we outline some envisaged future directions of jpylyzer’s
development.

Structure of JP2 and basis for validation
At the top level, a JP2 file is made up of a collection of

building blocks known as ‘boxes’. Some boxes (‘superboxes’) are
containers for other boxes. Figure 1 gives an overview of the top-
level boxes in a JP2 file. Some of these are required, whereas
others (indicated with dashed lines in the Figure) are optional. The
order in which the boxes appear in the file is subject to some
constraints. For example, the first box in a JP2 must always be a
'Signature' box, followed by a 'File Type' box. Some boxes may
have multiple instances (e.g. the 'Contiguous Codestream' box),
whereas others must be unique (e.g. the 'JP2 Header' box). These
constraints, which are all precisely defined by the format’s
specification, provide a first set of criteria that a validator should
check at the highest level. For convenience we will refer to this as
‘level 1 validation’ in the remainder of this paper.

Figure 1. Top-level view of a JP2 file. Boxes with dashed borders are

optional. 'Superbox' denotes a box that contains other box(es).

All boxes are defined by a generic binary structure, which
comprises 1) a fixed-length ‘box length’ field that indicates the
total size of the box (in bytes); 2) a fixed-length ‘box type’ field
that specifies the type of information that can be found in this box;
and 3) the actual contents of the box (in case of a ‘superbox’ this
will hold its child boxes, which can be parsed recursively). In
some cases a box will also contain an ‘extended box length’ field,
which is needed if the size of a box exceeds the maximum value
that can be stored in the 4-byte ‘box length’ field.

Again, the format specification provides a detailed
description of the contents of each box, its included fields, and the
allowed values for each field. For example, the ‘Colour
Specification box’ (which is a child of the ‘JP2 Header box’)
contains a field that specifies how the colour space of an image is
defined. Its value must either be 1 (‘enumerated colourspace’) or 2
(‘restricted ICC profile’). Such constraints provide a lower level
set of criteria that should be included in the validation process. We
will call this ‘level 2 validation’.

Finally, there are several instances where the information in
one box must be consistent with another box. As an example, most
of the fields in the ‘Image Header box’ (again a child of the ‘JP2
Header box’) are redundant with information in the ‘Contiguous
Codestream box’. Validation should include checks to establish the
consistency between the two boxes (‘level 3 validation’).

Tools for JP2 validation
To the best of our knowledge, the only tool that is currently

available for validating JP2 is JHOVE (JSTOR/Harvard Object
Validation Environment) [10]. It provides validation functionality
for 12 file format classes, and includes a JPEG 2000 module which
handles both Part 1 (JP2) and Part 2 (JPX) images. JHOVE’s
documentation reveals that most of its validation involves a
relatively shallow check of the general box structure (‘level 1
validation’), whereas only a very limited number of individual
fields are validated (‘level 2’). Importantly, it does not validate the
contents of the image codestream, and the documentation does not
mention any consistency checks (‘level 3’).

We conducted a number of experiments in which we
deliberately removed codestream data from a JP2. In one of these
tests we trimmed a 2 MB file down to only 4 kilobytes; according
to JHOVE 1.6 this file was ‘well-formed and valid’ JP2. We also
ran a test on images that were created using Adobe’s JPEG 2000
plugin (version: 2.0, 2007) that comes with Photoshop CS4. This
plugin produces files that contain features from JPEG 2000 Part 2
(JPX), and which are not permitted in JP2. Both Parts 1 and 2 of
the standard use the ‘brand’ field in the ‘File Type box’ to identify
whether a file is JP2 or JPX. However, Adobe’s plugin
erroneously uses the JP2-specific value, even though the files are
technically JPX. According to JHOVE however these files are also
‘well-formed and valid’ JP2. In another test we changed the image
height field in the ‘Image Header box’, making it inconsistent with
the codestream. Again, this wasn’t picked up by JHOVE.

Summarizing, JHOVE’s validation functionality is rather
limited, and the tool will often judge files that contain major
defects with respect to the format specification to be ‘well-formed
and valid’ JP2.

Tools for JP2 feature extraction

ExifTool
ExifTool [11] is an open source command-line tool for

reading, writing and editing meta information for a wide variety of
file formats. It does also support JP2; however, it does not extract
any codestream information, such as progression order, number of
quality layers, wavelet transformation type (lossless vs lossy), and
so on.

Kakadu
Kakadu’s ‘kdu_expand’ tool can be used to extract detailed

codestream information (using its –record switch), but its output
does not include any information from the other header boxes [12].
Besides, the software is released under a somewhat restricted
license.

JHOVE
JHOVE [10] provides detailed information from both JP2’s

header boxes and the codestream. Its output can be difficult to
interpret because most properties are reported as literal
representations of the header fields. As an example to illustrate
this, JHOVE’s JP2 output includes the reportable
‘ProgressionOrder’, which is represented as an integer number.
These numbers correspond to descriptive values. For instance, a
value ‘2’ denotes ‘RPCL’ progression order. JHOVE only
provides the number here, with no reference to its interpretation.

The same applies to most other codestream properties, which
makes their interpretation rather challenging (especially since the
codestream specification is not freely available).

ImageMagick
ImageMagick [13] includes an ‘identify’ tool that extracts

meta-information for many image formats. It only provides very
limited information for JP2 images. This appears to be largely
related to its dependency for JP2 on the open source JasPer library
[14], which does not support all features of the format (e.g. the
'Resolution box' is not even supported at all). Besides, the library
has serious performance issues (both in terms of speed and
stability), meaning that ImageMagick is not very useful within this
particular context.

Roundup
Summarizing, a number of tools are available for feature

extraction. However, these tools either provide partial coverage of
JP2’s feature set, or produce output that –to most users- is difficult
to interpret.

Jpylyzer: general philosophy and features
The lack of any reliable tool for JP2 validation prompted us

to the development of a new tool called jpylyzer. The overall
objective was to develop a strict validator that adheres closely to
the format specification. Its main use cases are to:
 verify whether an encoder produces standard-compliant JP2s;
 detect JP2s that are corrupted (e.g. images that are truncated

or have missing data).
Since such an exhaustive validation implies that (nearly) all

boxes and header fields are read and analyzed, it was obvious to
include functionality for reporting these properties, making
jpylyzer also an elaborate feature extractor. Unlike JHOVE,
jpylyzer’s scope is restricted to the JP2 format only (although its
feature extraction functionality will work with JPX for features
that are shared with JP2). It also extracts meta-information from
ICC profiles that may be embedded in a JP2. In addition, the
validation functionality includes checks that verify the integrity
and completeness of image codestreams.

The main philosophy behind jpylyzer was to create a tool that
is lightweight, simple and performant. In a nutshell, jpylyzer’s
validation process is defined as a series of tests that either return
‘True’ or ‘False’. A file is deemed ‘valid’ JP2 if it passes every
single test, and ‘not valid’ otherwise. The tests include a
verification of the general box structure (‘level 1’), tests on the
validity of individual fields (‘level 2’) and a number of consistency
checks (‘level 3’). As we wanted to make things as transparent to
the user as possible, the software is accompanied by a
comprehensive User Manual, [15] that documents every single test
that is part of the validation process, as well as every extracted
feature. The manual also provides more general background
information on JP2 and validation.

Figure 2 gives an example of jpylyzer’s output, which is
reported as XML. From top to bottom, the Figure shows some
general file information, the outcome of the validation process
(‘isValidJP2’, which is either ‘True’ or ‘False’), the properties of
the codestream’s ‘coding style default’ header, and the calculated
compression ratio. Note that the Figure only shows part of the
output, and that the results of the individual tests and most other

properties are collapsed (i.e. hidden) here, although they are
included in the output.

Figure 2. Example of jpylyzer output, see main text for explanation.

Robustness is particularly important: files that are damaged,
malformed or that even are of a completely different format
altogether, are handled gracefully, and should never result in
crashes.

Jpylyzer is written in Python. To ensure sustainability of the
code over time while simultaneously making it widely supported
on current systems, we created code that is fully compatible with
both Python 2.7 and Python 3.2 (and more recent). It is released
under a permissive (GNU Lesser) open source license, and we
took particular care in producing understandable, heavily
commented source code. Acknowledging that not all users may
wish to install Python on their systems, we also provide self-
contained binary packages for Windows.

Limitations of jpylyzer
Even though jpylyzer’s analysis of JP2 is very

comprehensive, the tool should not be seen as a ‘one stop’
solution. First of all, it is important to stress that if a file passes all
tests, this should be seen as an indication that it is probably valid
JP2. This (intentionally) implies a certain degree of remaining
uncertainty, which is related to the following. First of all, jpylyzer
(or any other format validator for that matter) 'validates' a file by
trying to prove that it does not conform to the standard. It cannot
prove that that a file does conform to the standard. In addition,

jpylyzer is not capable of ’validating’ the actual image data (i.e.
the compressed bitstream segments). Doing so would require
decoding the image as a whole, and this is completely out of
jpylyzer’s scope. In the case of a TIFF to JP2 imaging workflow,
this could imply a quality assurance component that includes a
check by jpylyzer, accompanied by a rendering test or a pixel-wise
comparison of the source and destination images.

In the following sections we present four case studies that
serve to illustrate the utility of jpylyzer.

Detection of damaged JP2s at British Library

The JISC 1 Newspaper Collection
JISC 1 was a project funded by the Joint Information System

Comittee which digitized 275,000 19th Century newspaper issues
held by The British Library (BL). Digitization was performed by
an external partner, who delivered:
 a master 8-bit greyscale TIFF image for each of the 2 million

pages
 a service monochrome TIFF for each page
 a service TIFF for each article
 an XML metadata file for each page and article

Conversion to JP2
The 2 million TIFF master images comprised 80 TB in total,

and were to be ingested into The British Library's Digital Library
System (DLS), which creates 4 copies of each item in order to
protect against corruption and disaster. In order to save money on
storage costs for the master images, it was decided to convert the
8-bit TIFFs to the JP2 format. This was an emerging preservation
format, and reduced the size of the master image collection to 45
TB, yielding a total storage saving of 140 TB (4 x 35 TB). This
conversion was implemented as an ingest workflow that converted
each master TIFF to a JP2, and then used JHOVE 1.6 to validate
the converted image before ingest into DLS.

Post ingest issues
The ingest of 2 million images was not without errors. While

investigating some of the issues that had had ingest problems, it
was noticed that some "noisy" images had been produced. In spite
of this, JHOVE had indicated that these files were valid. This
raised the possibility that some percentage of the ingested master
images were not valid JP2 files. Examination of the ingested
master images revealed some very small files which were corrupt,
but some of the original examples were of the expected size and
were also broken. It was not clear if there was a suitable tool for
validating the images held in DLS.

Analysis of BL JP2 Collections
Early in 2012 jpylyzer was tested against the broken image

sample set, and it identified every broken image. It was then used
to validate every single master image in the collection. This was
performed as a single thread on a 3 year old Xeon server.
Performance testing suggested this should complete in less than a
month.

The validation completed in 3 weeks, and found 676 invalid
JP2s in the entire collection, an error rate of 0.03%. The TIFF
originals for the collection are still held on an intermediate store,
and can be used to re-generate the broken JP2s.

Following this, jpylyzer was used to validate the British
Library’s JISC 2 newspaper collection, as well as its 19th Century
book collection. This revealed a further 3 invalid JP2s for JISC2,
and none for the 19th Century books. The table below shows some
performance statistics for these analyses. These figures include the
time that was needed to unpack the images from a ZIP container,
so the actual times for the jpylyzer analyses (which were not
recorded separately) are significantly less.

Performance statistics jpylyzer analysis of BL JP2 collections

Collection
JISC 1
newspapers

JISC 2
newspapers

19th Cent.
books

of images 2,152,116 1,161,210 22,507,396
Total size
(TB) 45 25 15
Av. image
size (MB) 21.8 22.7 0.7

of threads 1 1 3

Time (days) 21 11 21
Images /day /
thread 100,000 100,000 300,000
TB / day /
thread 2 2 0.25

Metamorfoze migration at KB
‘Metamorfoze’ is the Netherlands' national programme for the

preservation of paper heritage. It is a collaborative effort of the
National Library of the Netherlands (KB) and the National
Archives of the Netherlands [16]. It employs digitization as one of
its conservation methods (preservation imaging). Thus far,
Metamorfoze has been using uncompressed TIFF as its
preservation format. This has resulted in about 90 TB worth of
TIFF images being stored at the KB by October 2011. With a
further 56 TB arriving over 2012, this will result in 146 TB by the
end of 2012.

The KB is preparing to migrate these images to lossless JP2,
as this would result in a significant reduction in storage costs. One
particular risk of such a large scale migration is that hardware
failure may result in corrupted images. Since some of the
Metamorfoze material is irreplaceable (because the paper originals
are in poor shape), it is vital to have a workflow that includes
checks that ensure the integrity of the migrated images.

To this end, the Metamorfoze migration workflow will use
jpylyzer to verify that each created image is valid and intact JP2. In
addition, jpylyzer’s feature extraction output is used to check that
each image’s encoding options (compression type, number of
decomposition levels and quality layers, progression order, tile-
and codeblock size, error resilience markers) match a pre-defined
profile. Finally, a pixel-wise comparison is done between each JP2
and its source TIFF image. Images that fail any of these tests are
added to an error log, and the associated batches will not pass the
quality control. Interestingly, some initial tests of the migration
workflow yielded images that did not pass jpylyzer’s validation,
with jpylyzer reporting an incomplete image codestream. The
problem could be traced down to a software-related error that
occurred while copying files over a network connection. This
resulted in files that had some trailing kilobytes missing. Even

though this particular problem is unlikely to occur in an
operational production environment, it does demonstrate jpylyzer’s
effectiveness in detecting such errors.

Quality control at Wellcome Library
The Wellcome Library is preparing to use jpylyzer for

validating JP2 images, both those that are produced internally as
well as those received from external suppliers. They will also use
the tool’s output to verify that the technical characteristics of the
images match a profile that defines aspects such as compression
ratio, progression order and the number of quality layers. To this
end, the profile is coded as an XML schema. This reduces the
verification process to validating jpylyzer’s output file for each
image against this schema [17].

Detection of non-compliant images
In our discussion of JHOVE we already mentioned the issue

of the problematic JPX files that are produced by Adobe
Photoshop. These files are easily mistaken for JP2; however,
validating these files with jpylyzer will confirm that they are not
valid JP2.

Conclusion and future directions
The development of jpylyzer was triggered by a lack of tools

that are able to check the integrity and validity of JP2 files, a
format that is becoming increasingly important in archival and
preservation imaging. The first experiences described in this paper
demonstrate the potential role and value of this tool in a variety of
imaging workflows.

We consider the software to be in beta stage at this point.
Further testing is needed to ensure its stability under as wide a
range of potential image malformations as possible. Also, several
improvements that will make the validation of image codestreams
even more thorough are under way.

At the time of writing, efforts are ongoing to create Debian
packages for a range of Linux-based architectures [18], [19]. This
should simplify the installation process, remove any dependencies
on Python, and ultimately we hope that this will contribute to the
further adoption of the tool.

Finally, jpylyzer is hosted by the Open Planets Foundation.
This ensures the involvement of a wider community in its
maintenance and further development. This is an important
safeguard towards the long-term support and sustainability of the
software.

Acknowledgements
Christy Henshaw (Wellcome Library), Ross Spencer (The

National Archives), Wouter Kool, Reinier Deinum (both KB) are
all thanked for providing valuable feedback, some of which has
served as input to this paper. Dave Tarrant (University of
Southampton/Open Planets Foundation), Miguel Ferreira, Rui
Castro, Hélder Silva (KEEP Solutions) and Rainer Schmidt
(Austrian Institute of Technology) are thanked for initiating the
work on Debian packages for jpylyzer (which is ongoing at the
time of writing). Lars Buitinck (University of Amsterdam) is also
thanked for contributing to the code.

Jpylyzer downloads

For more information on jpylyzer, including source code,
binaries and documentation, please follow the links below.

Open Planets Foundation
http://www.openplanetsfoundation.org/software/jpylyzer

Github repository
https://github.com/openplanets/jpylyzer/

Funding
This work was partially supported by the SCAPE Project. The

SCAPE project is co-funded by the European Union under FP7
ICT-2009.4.1 (Grant Agreement number 270137).

References
 [1] R. Gillesse, J. Rog & A. Verheusen, Alternative File Formats for

Storing Master Images of Digitisation Projects. Koninklijke
Bibliotheek, Den Haag (2008).
http://www.kb.nl/hrd/dd/dd_links_en_publicaties/publicaties/Alternat
ive_File_Formats_for_Storing_Masters_2_1.pdf.

[2] R. McLeod, & P. Wheatley, Preservation Plan for Microsoft —
Update Digital Preservation Team. The British Library, London
(2007).
http://www.bl.uk/aboutus/stratpolprog/ccare/introduction/digital/digpr
esmicro.pdf

[3] C. Henshaw, We need how much storage? Wellcome Library, London
(2010). http://jpeg2000wellcomelibrary.blogspot.com/2010/06/we-
need-how-much-storage.html

[4] R. Buckley, & R. Sam, JPEG 2000 Profile for the National Digital
Newspaper Program. Library of Congress, Washington (2006).
http://www.loc.gov/ndnp/guidelines/docs/NDNP_JP2HistNewsProfil
e.pdf

[5] National Library of Norway, Digitization of books in the National
Library — methodology and lessons learned. National Library of
Norway, Oslo (2007).
http://www.nb.no/content/download/2326/18198/version/1/file/digitiz
ing-books_sep07.pdf

[6] B. Vychodil, JPEG2000 - Specifications for The National Library of
the Czech Republic. Seminar JPEG 2000 for the Practitioner,
Wellcome Trust, London (2010).
http://www.dpconline.org/component/docman/doc_download/520-
jp2knov2010bedrich

[7] ISO/IEC, Information technology — JPEG 2000 image coding
system: Core coding system. ISO/IEC 15444-1, Second edition.
ISO/IEC, Geneva (2004). http://www.jpeg.org/public/15444-
1annexi.pdf ("Annex I: JP2 file format syntax" only)

[8] ISO/IEC, Information technology - JPEG 2000 image coding system:
Extensions. ISO/IEC 15444-2, First edition. ISO/IEC, Geneva (2004).
http://www.jpeg.org/public/15444-2annexm.pdf ("Annex M: JPX
extended file format syntax" only)

[9] J. van der Knijff, JPEG 2000 for Long-term Preservation: JP2 as a
Preservation Format. D-Lib 17, 5/6 (2011).
http://www.dlib.org/dlib/may11/vanderknijff/05vanderknijff.html

[10] JHOVE - JSTOR/Harvard Object Validation Environment.
http://hul.harvard.edu/jhove

[11] P. Harvey, ExifTool. http://www.sno.phy.queensu.ca/~phil/exiftool/
[12] D. Taubman, Kakadu. http://www.kakadusoftware.com/
[13] ImageMagick. http://www.imagemagick.org
[14] M. Adams, JasPer. http://www.ece.uvic.ca/~frodo/jasper/
[15] J. van der Knijff, Jpylyzer: validator and properties extractor for

JPEG 2000 Part 1 (JP2), User Manual. KB/National Library of the
Netherlands / Open Planets Foundation. Latest version available
from: https://github.com/openplanets/jpylyzer/downloads

http://www.openplanetsfoundation.org/software/jpylyzer

[16] Metamorfoze. http://www.metamorfoze.nl/programme
[17] C. Henshaw, pers. comm.
[18] M. Ferreira, Sustainability and adoption of preservation tools. Open

Planets Foundation (2012).
http://www.openplanetsfoundation.org/blogs/2012-02-15-
sustainability-and-adoption-preservation-tools

[19] D. Tarrant, Turning GitHub Code into Debian Packages - The OPF
Way. Open Planets Foundation (2012).
http://www.openplanetsfoundation.org/blogs/2012-03-08-turning-
github-code-debian-packages-opf-way

Author Biography
Johan van der Knijff holds an MSc in Physical Geography from

Utrecht University (1998). He previously worked on the development of

hydrological simulation models. His current job as a digital preservation
researcher at the KB focuses on preservation-related aspects of file
formats. He is also liaison to JPEG on behalf on the Open Planets
Foundation.

René van der Ark received his MA in Information Science from the
University of Groningen in 2008, specializing in comparative statistics and
spatial linguistics. Since 2009 he has been active as a research
programmer in the employ of the KB (National Library of the Netherlands).

Carl Wilson has worked as a software developer and requirements
analyst for 20 years, 14 of them at The British Library. He has worked on
digital preservation projects since 2003, including the PLANETS, and
SCAPE projects, particularly focusing on the identification and validation
of preservation file formats.

