

Algorithms for progressing crystallographic fragment hits at XChem Fragment merging using the Fragment Network AVIDD Open Science Forum

Stephanie Wills

DPhil student in the Oxford Protein Informatics Group (OPIG) and Centre for Medicines Discovery (CMD)

University of Oxford

Supervised by Dr Ruben Sanchez-Garcia, Prof Frank von Delft and Prof Charlotte M. Deane

Overview

Background

- Fragment-based drug discovery
- Fragment-to-lead progression
- Catalogue search

Published work

- Fragment merging using the Fragment Network
- Current work
 - Expanding the chemical space used to find merges
- Deployment of algorithms for active campaigns

Background

Fragment-based drug discovery

Advantages

- Higher hit rates
- Smaller library sizes
- Cover a greater proportion of chemical space
- Greater control over further synthesis and property optimization
 - Step-by-step iterative process

• High μM to low nM affinity

Once we have fragment hits, what can we do with them?

Methods for elaborating fragment hits

- How can we use data from fragment screens to identify compounds that recapitulate atoms seen in the fragments?
- Structure-guided optimization
 - Increase potency
 - Maximize number of interactions
 - Elucidate structure-activity relationship (SAR)
- Three main approaches to fragment elaboration

Fragment screening using X-ray crystallography

- **Biophysical techniques** typically used to detect weakly binding fragments
- Fragment screening with X-ray crystallography allows:
 - Confirmation of **binding pose**
 - Maps possible interactions
 - Structure-guided optimization

Fragment merging is highly efficient for increasing potency

- Fragment merging and linking are efficient approaches for increasing potency
- Merging can lead directly to **on-scale affinity**

The COVID Moonshot Consortium. ChemRxiv **2020**; https://doi.org/10.26434/chemrxiv-2021-585ks-v2. Resnick, E. et al. *J. Am. Chem. Soc.* **2019**, 141, 22, 8951-8968; https://doi.org/10.1021/jacs.9b02822. Gahbauer, S. et al. *PNAS* **2023**, 120, 2, e2212931120; https://doi.org/10.1073/pnas.2212931120.

What are the existing approaches for identifying follow-up compounds?

- Existing approaches
 - Manual design
 - Difficult to scale-up
 - *De novo* design
 - Limited by synthetic accessibility
 - Catalogue search
 - Similarity and substructure search
 - Rapid and cheap identification of follow-up compounds
 - Lacks formalized workflows

All compounds we can get or make

Compounds we can get quite easily

Compounds that make sense

<u>Aim</u>: Improve the efficiency with which we sample this area of accessible chemical space

Compounds

we can get

very easily

Fragment merging using the Fragment Network Pipeline v1

pubs.acs.org/jcim

🔤 😳 💽

Article

Fragment Merging Using a Graph Database Samples Different Catalogue Space than Similarity Search

Stephanie Wills, Ruben Sanchez-Garcia, Tim Dudgeon, Stephen D. Roughley, Andy Merritt, Roderick E. Hubbard, James Davidson, Frank von Delft, and Charlotte M. Deane*

The Fragment Network

- First described in 2017 by Astex Pharmaceuticals
- Architecture
 - Nodes represent molecules
 - Edges represent transformations
 - More chemically intuitive
- Populated with commercial catalogues
- >120M compounds at time of publishing
 - Current version contains >200M compounds

The Fragment Network

- First described in 2017 by Astex Pharmaceuticals
- Architecture
 - Nodes represent molecules
 - Edges represent transformations
 - More chemically intuitive
- Populated with **commercial catalogues**
- >120M compounds at time of publishing
 - Current version contains >200M compounds

Example transformations for nsp13 hit fragments

Aims

- Can the Fragment Network be used to find **purchasable fragment merges**?
- Can we find merges that **maintain substructures** of the crystallographic fragment hits?
- Can we find merges that **recapitulate the binding pose and interactions** of the parent fragments?
- Do merges identified by the Fragment Network have any use beyond those identified using a more **traditional similarity search**?

Methodology

- We compared the ability of the Fragment Network and a more traditional, fingerprint-based similarity search to find fragment merges
- Four test systems (XChem targets) were used
 - SARS-CoV-2 main protease (Mpro)
 - SARS-CoV-2 helicase non-structural protein 13 (nsp13)
 - *P. gingivalis* dipeptidyl peptidase 11 (DPP11)
 - Human poly(ADP-ribose) polymerase 14 (PARP14)
- Retrospective analyses with existing experimental data was performed
 - Inhibitors of Mpro proposed by the COVID Moonshot project (COVID Moonshot Consortium, ChemRxiv, 2020)
 - Inhibitors of *M. tuberculosis* transcriptional repressor protein EthR (Nikiforov et al., Org. Biomol. Chem., 2016)

Pipeline: enumerating fragment pairs for merging

- Fragment screening data available to download from Fragalysis
- All pairs of compounds enumerated for querying the database
 - Remove pairs that are too far apart or similar

Pipeline: querying the database to find merges

- A number of **hops are made from the seed fragment** to generate diversity
- The second fragment is decomposed into substructures
- An expansion is made from the seed fragment in which a substructure from the other fragment is incorporated
- The query retrieves compounds that contain substructures from both parent fragments

Pipeline: finding merges using a similarity search

Pipeline: filtering proposed fragment merges

2D filters •

> Cheaper filters (molecular descriptors, rule out of expansions) ٠

3D filters •

- More computationally intensive ٠
- Generate compounds based on the conformation of the parent fragments ٠ using Fragmenstein
 - ٠
 - ٠
 - Filter out those with **energetically unfavourable** conformations ٠

DPP11

nsp13

The two search techniques show complementary results

• The search methods operate in **different areas of chemical space**

PARP14

	Number of hits	Search type ^a	Before filtering	After filtering	% filtered	Number of overlap
DPP11	11	FN	22,903	198	0.9	8
		SS	85,919	271	0.3	
PARP14	13	FN	48,320	70	0.1	0
		SS	78,116	56	0.1	
nsp13	9	FN	36,239	503	1.4	1
		SS	40,102	530	1.3	
Mpro	19	FN	109,012	952	0.9	4
		SS	169,424	918	0.5	

Mpro

Low-dimensional representations of chemical space occupied by filtered compounds (using T-SNE plots)

The two search techniques show complementary results

• The search methods identify merges for fragment pairs not represented by the other

The two search techniques are suited to identifying different types of merge

- Merging opportunities classified according to degree of overlap between two fragments
- The two search techniques differ in the types of merge they identify
- The Fragment Network is more efficient at identifying types 3 & 4
 - Hypothesis for merging is non-obvious
 - Unclear which substructures should be used in the final merge

3 . Partially overlapping merges (no overlapping ring)

4 . Non-overlapping fragments

The Fragment Network identifies known and potential binders against Mpro

- Literature examples of manually designed merges used as test cases
 - Crowd-sourced designs for SARS-CoV-2 Mpro from COVID Moonshot project
 - 5 fragments used as inspiration for manual design of 24 compounds (collective label: TRY-UNI-714a760b)
 - 8 compounds with IC_{50} values
- Fragment merging pipeline run on the five fragments and the results compared against compounds with experimental data

The COVID Moonshot Consortium. ChemRxiv **2020**; https://doi.org/10.26434/chemrxiv-2021-585ks-v2. PostEra. Mpro activity data https://covid.postera.ai/covid/activity_data.

The Fragment Network identifies known and potential binders against Mpro

• The Fragment Network identifies a known binder against Mpro

Fragmenstein-predicted structure of known binder shown in white

The Fragment Network identifies known and potential binders against Mpro

- The Fragment Network identifies several **close analogues** of known binders against Mpro
- Fragmenstein-predicted **poses match crystal structures**

The Fragment Network identifies known and potential binders against EthR

- Manually designed merges against *M. tuberculosis* transcriptional repressor protein **EthR**
- Two fragments hits each bind in two conformations (Nikifirov et al, Org. Biomol. Chem., 2016)
- Manually designed merges 4 and 5 overlap with parent fragments
- Fragment merging pipeline run for the two fragments and poses generated using all combinations of fragment conformations

The Fragment Network identifies known and potential binders against EthR

• The Fragment Network identifies known binder after filtering (compound 4)

Crystal structure of known binder shown in cyan Fragmenstein-predicted structure shown in white

The Fragment Network identifies known and potential binders against EthR

• The Fragment Network identifies **close analogues** to several other known binders

Fragmenstein-predicted structure shown in white

Summary

- We provide a **flexible pipeline for finding purchasable follow-up compounds** for crystallographic fragment hits using merging and linking-like strategies
- The Fragment Network identifies merges that maintain exact substructures of the parent fragments
- The Fragment Network search is complementary to a more traditional fingerprintbased similarity search and can be used to increase the productivity of a catalogue search
- The Fragment Network is **able to identify potential binders** against two targets
- The Fragment Network search provides a **more computationally efficient** approach to searching large chemical libraries

Expanding the chemical space explored by the Fragment Network search Pipeline v2

Motivations

- How can we **maximize the chemical space** explored by fragment merging techniques while still remaining **faithful to the parent fragments**?
- The first iteration of the Fragment Network merging pipeline **fails to find catalogue-based merges for certain pairs of fragments**
- Can we **improve the hit rate** by looking for merges that **recapitulate interactions** of the parent fragments without incorporating the exact substructures?
- Can we do this in a **computationally efficient** way without screening an entire library of compounds?

Expanding the search to 'imperfect' merges

- 'Imperfect' merges
 - How can we identify merges that **replicate pharmacophoric properties** of the parent fragments without incorporating exact substructures?
 - Can we still remain close enough to the parent fragments to ensure that the binding pose is maintained?

Pipeline for identifying imperfect merges

Enumerate compatible substructure for merging

Initial results for imperfect merging pipeline

Enterovirus D68 3C protease

- Enumeration of substructure pairs
 - 24 fragments binding to catalytic site
 - 404 fragment pairs after applying distance and overlap filters
 - 368 substructure pairs for querying
 - Representing 155 fragment pairs
- Querying
 - Fragment Network queried for merges replacing one substructure using similarity calculation
 - Pharmacophore fingerprint used to find similar substructures

Fragment hits

- Filtering
 - Conformers generated for a maximum of 500 merges per fragment pair (20,914 compounds placed)
 - Top 30 merges for each pair subject to reverse query and alignment (9,419 additional compounds placed)
 - 417 compounds with SuCOS (shape and colour score) > 0.55

Replace both substructures

Perfect

merge

Replace one

substructure

Example merges

Deployment of fragment elaboration algorithms at XChem

Using ASAP to validate the approach

- Work being done to establish process for **Aim 4** for ASAP targets
- Enables prospective validation for design algorithms

Enterovirus D68 3C protease

Summary

- 1231 compounds screened
- 126 hits identified in 4 sites
 - 1. Catalytic site Monomer A
 - 2. R19 & Y48 Pocket Monomer B
 - 3. ASU interface
 - 4. C60 Both monomers

18 hits Predominantly in S1 and S2

Pipeline for designing and ordering compounds

Compound design Compounds are proposed using direct enumeration from catalogues or by generative models plus analogue search **STARTING HITS** Hit 2 SHAPE & COLOR OE ROCS LINKERS/MERGERS WITH JUMP INTO CATALOGUE Fragmenstein & STRIFE & SmallWorld enumeration SmallWorld enumeration LINKERS BY SUBSTRUCTURE-BASED **CATALOGUE ENUMERATIONS** Fragment Network Arthor Enumeration Enumeration with lax SMARTS

interactions (PLIP), etc. Medicinal chemists Compounds are sanity checked and curated by medicinal chemists **Compound ordering** Process established for ordering compounds from Enamine

Multifactor ranking

Compounds from design

algorithms are scored using

shape and colour, predicted

Compound designs accessible on Fragalysis

- Enterovirus D68 3C protease used as an initial target
- Pipeline established for designing, ordering and assaying compounds from Enamine
- First iteration took 7 weeks from design to new structures
- More data incoming from further iterations and targets
- Compounds will feed into next-generation of work that explores moving away from the catalogue for SAR exploration

https://fragalysis.diamond.ac.uk/

Pipeline for designing and ordering compounds

Summary

- The Fragment Network merging tool provides a **pipeline for finding merges** from the **catalogue** that **recapitulate substructures** from **crystallographic fragment hits**
- We show initial development on an updated pipeline that **expands the chemical space** explored for finding these merges using **pharmacophores** without the requirement for performing a virtual screen on an entire library of compounds
- The ASAP projects have helped to develop a **workflow for ordering follow-up compounds on a rapid timescale**, moving from compound design to structures in a matter of weeks, and providing **validation for the design algorithms** used at XChem

Acknowledgements

- Ruben Sanchez-Garcia (OPIG)
- Charlotte Deane (OPIG)
- Frank von Delft (DLS & CMD)
- Tim Dudgeon (Informatics Matters)
- Rod Hubbard (Vernalis)
- Steve Roughley (Vernalis)
- James Davidson (Vernalis)
- Andy Merritt (LifeArc)

- Matteo Ferla (OPIG & XChem)
- Warren Thompson (XChem)
- Kate Fieseler (OPIG & XChem)
- Lucy Vost (OPIG) •
 - Beth MacLean (XChem)
 - Ryan Lithgo (XChem)
 - Ed Griffen (Medchemica)
 - Tryfon Zarganis-Tzitzikas (CMD)

AND MANY MORE...

Thank you for listening