
Optimizing a Natural Language
Processing pipeline for the automatic

creation of RDF data

Dambowy, Nils

Bachelor Thesis

Institute for Computer Science
Goethe University Frankfurt

supervised by:
Dr. Karsten Tolle

Contents
1 Introduction 1

1.1 Problem description . 1
1.2 Thesis structure . 2
1.3 Related work . 2

2 Background 3
2.1 Corpus Nummorum and the D4N4 . 3
2.2 Natural Language Processing . 5

2.2.1 Named Entity Recognition . 5
2.2.2 Relationship Extraction . 8

2.3 MySQL.connector . 10
2.4 Resource Description Framework . 11
2.5 RDFLib . 12
2.6 D2RQ . 13

2.6.1 D2R Mapping Language . 13
3 Assignment 15

3.1 Current state of the pipeline . 15
3.2 Process and Challenges . 15
3.3 Implementation of the revised pipeline . 17

4 Results 20
4.1 Output . 20
4.2 Comparison to the previous pipeline . 23

5 Conclusion and outlook 26
6 List of figures 28
7 Literature 28

Erklärung zur Abschlussarbeit
gemäß § 25, Abs. 11 derOrdnung für denBachelorstudiengang Informatik vom06. Dezem-
ber 2010:
Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne Benutzung anderer
als der angegebenen Quellen und Hilfsmittel verfasst habe.

Frankfurt am Main, den 04. Mai 2023 Dambowy, Nils

Abbreviations
CN Corpus Nummorum

RDF Resource Description Framework

NLP Natural Language Processing

NER Named Entity Recognition

RE Relationship Extraction

1 Introduction
Numismatics is the academic discipline focussing on the study of different forms of currency,
including e.g. coins, paper money or medals. Numismatists made it their task to collect, pre-
serve and categorize these archaeological findings and thereby play an important role in the
enlightenment of our history. This is because the coins can give us an idea of the time period
they were used in. Additionally, if we know where the coin was made and where it was found,
we can also learn about the mobility of people during that time. Today, most numismatic insti-
tutions have to go through the challenge of finding an adequate way of managing their data and
mostly1 rely on databases. In this thesis, I am focussing on the Corpus Nummorum database,
which will be further explained in a later chapter.

Currently working with this database is theD4N4 (Data quality for Numismatics based on Natu-
ral language processing andNeural Networks) project, which goal it is to improve the assignment
of existing data (descriptions or images) to the CN portal and nomisma.org2. The assignment
is improved through two different ways. First, Natural Language Processing is used to assign
the coins based on their description, and then image recognition is employed. Furthermore, the
project aims to continue the development and implementation of tools useful for numismatic
research portals. One of these tools is the subject of this thesis.

1.1 Problem description

In this thesis, I want to optimize a currently existing Natural Language Processing pipeline,
which will be described in more detail in chapter 3.1. The pipeline consists out of two parts.
First Natural Language Processing is used to extract named entities (see Named Entity Rela-
tionship) and to createword relationships (seeRelationshipExtraction) out of theCN database.
Afterward, the results are written back again. Lastly, with the new data and the program D2RQ
Resource Description Format data is being created with the aim to be published later. Cur-
rently, the whole process, from the execution of the notebooks to the setup of the D2RQ program,
has to be done manually. To improve this, the goal of this thesis is to refine the state of current
pipeline by automating the process of the NLP and creation of RDF data without having to on
extra tools like D2RQ. At the end, the whole execution of the pipeline should require as little
human input as possible. When given a coin description as an input it should return the results
in the RDF format.

1http://nomisma.org/datasets
2http://nomisma.org/

1

1.2 Thesis structure

In the following chapter I am going to discuss the CN project and its successor, the D4N4
project. The MySQL database the pipeline is working with originates with coin data from this
project. Furthermore, in chapter 2 technical background information about the different tech-
nologies used is given to understand the functionality of the new and old pipeline. Afterwards,
in chapter 3, I will explain in more detail the old version and the revised version of the pipeline.
Furthermore, the implementation of the revised one is discussed. In chapter 4 both pipelines
will also be compared. Chapter 5 leaves room for the conclusion and the outlook.

1.3 Related work

In the bachelor thesis ”Natural Language Processing to enable semantic search on numismatic
descriptions”(Klinger, 2018) the first version of notebooks used in the pipeline was developed.
These notebooks first allowed the processing of the data using NLP. Below you can see the
version of the natural language processing pipeline, which was developed in the bachelor thesis.
The pipeline will also be explained in more detail in a later chapter.

Figure 1: Scheme of the current pipeline
version

This version was later modified by (Deligio and
Gencer, 2021) in their master thesis”Natural
Language Processing auf mehrsprachigen
Münzdatensätzen - Untersuchung der Qualität,
Datenqualität und Übertragbarkeit auf andere
Datensätze”. In their thesis they aimed to
improve the current state of the notebooks by
adding new entities and their relations to other
entities to the NLP. Furthermore they added
German translations to the previously existing
entities and relations(Deligio and Gencer,
2021,p.3 Aufgabenstellung I.). To complete
the overall pipeline and achieve the current
state, Sebastian Gampe and Dr. Karsten Tolle
from the Big Data Lab at Goethe University
implemented the last step of the pipeline,
which makes use of the D2RQ program in
order to create RDF triples. Additionally,
they also made adjustments and continued the
development of the notebooks.

2

2 Background

2.1 Corpus Nummorum and the D4N4

Corpus Nummorum:
The Corpus Nummorum (CN) is a research database, which is the result of the joint work of the
Münzkabinett Berlin, Berlin-Brandenburg Academy of Sciences and Humanities (BBAW) and
the Big Data Lab of Goethe University, with the motivation to offer ancient Greek coinage for
research purposes(Corpus Nummorum site n.d.). It contains information about coins with origin
in the regions of Lower Moesia, Thrace, Mysia, and the Troad. Added together, the database
contains information about approx. 28,000 publicly accessible coins, 17,000 coming from the
area of Thrace and 11,000 from the remaining regions. It is also possible to contribute coins to
the database yourself.

Figure 2: An example of a coin in the
database

All of this information is accessible through the
CNOnline website by using the provided search
tool, which lets you filter coins by e.g. epoch,
tribe, weight or material. Besides the mentioned
characteristics, the CN offers textual descrip-
tions of the depicted images on the front- and
back side of the coins. To allow a better com-
parison between different coins, all properties
have to be entered in accord to a standardized
scheme.1 This not only guarantees the previ-
ously mentioned upsides but also makes enter-
ing coins more accessible since e.g. volunteers
do not have to worry about having to come up
with a scheme themselves. The scheme offers
guidelines for describing the obverse and re-
verse of the coin, figures or architecture, por-
traits, scenes or some general information on
how properly describe a coin. After a submit-
ting a coin, it has to be reviewed before it is pub-
lished and added to the database.

1https://www.corpus-nummorum.eu/pdf/ExternalCoinEntry.pdf

3

D4N4:
The D4N4 is a research project and successor of the Corpus Nummorum project. The Name
of the project is abbreviated from ”Data quality for Numismatics based on Natural language
processing and Neural Networks”. The project aims to improve the usage of the many available
images and descriptions of coins by classifying and assigning them to the different databases
(D4N4 project site n.d.). The project was officially launched in July of 20211 and is the result
of a collaboration between the Münzkabinett Berlin, Berlin-Brandenburg Academy of Sciences
and Humanities (BBAW), and the Big Data Lab of Goethe University. The main objective of the
project is to advance the development of tools needed for numismatics. By improving the quality
of data through classification and assignment of coins, the D4N4 project will provide researchers
with tools for conducting analyses of numismatic data. The D4N4 project utilizes technologies
such as Natural Language Processing and Neural Networks to analyse large amounts of data in
a more efficient way. The project’s focus on developing and improving tools for numismatics is
a critical step towards advancing the field and providing researchers with the necessary tools to
make new discoveries.

1https://www.corpus-nummorum.eu/news/1344?lg=en

4

2.2 Natural Language Processing

NLP deals with the processing of natural language. The term natural referring to the creation
of the language which was natural e.g. through human conversation, unlike artificially created
languages like programming languages. In Natural Language Processing, the language is given
as input in text form for analyzation (Bird, Klein, Loper, 2009). To extract information such as
entities, persons, places etc. out of natural text and process these, two different NLP-techniques
are being used - Named Entity Recognition and afterwards Relationship Extraction.

2.2.1 Named Entity Recognition

In Named Entity Recognition(NER), natural text is being analysed for named entities. Named
entities are words which give reference to a real world object using a proper noun, which identify
only one object. Examples for that could be places, names, objects or organisations. (Bird,
Klein, Loper, 2009) suggested the following types of named entities (Fig. 3):

Figure 3: Types of named entities

Example - Recognition of named entities:

Yesterday in Frankfurt, John Smith met up with his friend Anna Mayer.

NER would then find the following entities in the sentence:

• Frankfurt as a LOCATION

• John Smith as a PERSON

• Anna Mayer as a PERSON

In the case of the NER pipeline used in the D4N4 project this could look like this:

5

Input:

Artemis standing right, wearing long garment, holding two arrows in right hand and bow in
left hand.

Output:

Artemis PERSON standing right, wearing long garment OBJECT, holding two arrows
OBJECT in right hand and bow OBJECT in left hand.

As shown in the example NER takes a description of a coin as input, finds the named entities and
then labels them. Altogether there are four different labels, which are being assigned: PERSON,
OBJECT, ANIMAL or PLANT.
It does that bymaking use of the spaCy package. spaCy is an open-source python libary 1 that of-
fers different tools for processing natural language including the class EntityRecognizer2 which
annotates named entities in a given natural text (Klinger, 2018, chapter 4.1, p.14). The output
then consists out of a list of triples. These triples represent the respective found named entity
and contain the first position, start, and the last position of the NE, end. Lastly, the assigned
label is saved in the triple. However, it was still necessary to train the named entity recognizer.
For that P.Klinger implemented a four step NER workflow, which can be seen below:

Figure 4: NER workflow

1https://spacy.io/
2https://spacy.io/api/entityrecognizer

6

After training (step 3 in the workflow), the NE recognizer is tested using the test data set. After-
wards the output is divided into two different groups - ground truth-matching predictions and
non ground truth-matching predictions. Annotations that were predicted correctly were put in
the first group and otherwise were put in the latter(Klinger, 2018, ch.4.2, p. 15). However, C.
Deligio and K. Gencer noted the risk of false positives due to manual assignment of groups.
”This comes about because the annotation, i.e. the ground truth, is created through a manual
process that only reflects the current state of knowledge about accepted entities.”(Deligio and
Gencer, 2021, ch. 4.3.1, p.37, translated). As a solution, C. Deligio and K. Gencer suggested
reviewing the latter list manually. During this process the false positives can be subsequently
added as new entities. As indicated in figure 4, the workflow can be repeated until it produces
satisfying results for all four entities.

7

2.2.2 Relationship Extraction

In text, words are connected over different relationships. With RE it is possible to identify and
extract these relationships(Bird, Klein, Loper, 2009).
Example:

A car is a vehicle.

As seen above, the fragment ’is a’ is the relationship connecting the subject and the object and
would be recognized by the Relationship Extraction.

In the current version of the pipeline, the RE takes as input a design plus a subject and an object.
For one design the cross-product of the different found named-entities is created and passed as
an input to the RE together with the design where the entities originated from. Afterwards it
tries to establish a relationship between the subject and object using the input (Klinger, 2018,
chapter 4). The output then consists out of the relations which are annotated in a triple form
(NE1, α, NE2), where α is the sequence of words that connects the two entities NE1 and NE2
(Bird, Klein, Loper, 2009, ch7.6).

Input:

(”Artemis standing right, wearing long garment,holding two arrows in right hand and bow
in left hand.”, ”Artemis”, ”garment”)

(”Artemis standing right, wearing long garment,holding two arrows in right hand and bow
in left hand.”, ”Artemis”, ”arrows”)

(”Artemis standing right, wearing long garment,holding two arrows in right hand and bow
in left hand.”, ”Artemis”, ”bow”)

Output:

(”Artemis”, ”wearing”, ”garment””)

(”Artemis”, ”holding”, ”arrows”)

(”Artemis”, ”holding”, ”bow”)

In the version, developed in her thesis, P. Klinger used an approach which can be understood as
a multiclass problem. Due to the size of the design dataset being too small, different approaches
did not seem viable(Klinger, 2018, chapter 4.2, p. 16). Since the types of relation were already
known, P.Klinger decided to assign different classes for the respective relations.

8

Figure 5: The proposed relations by P. Klinger

With the classes created, the task of extracting the relationship was reduced to asking if a given
pair of named entities has a certain relation or not. Note that a named entity pair has the bottom
class in figure 5 as the relation when there is no existing relation between the named entities. In
the version developed by P. Klinger only named entity pairs, where one entity was labeled as a
person (subject) and the other one was labeled as an object (object), were considered. As a result
only those designs, that contained these named entities were annotated by the RE(Klinger, 2018,
chapter 4.2, p.16). Another point P. Klinger had to take into consideration was that not all exist-
ing relations contained one of the created classes (see figure 5) which led to the implementation
of semantic clusters, which are groups that contain relations that are semantically equivalent.
With these groups created even edge cases like ”Nike in biga, right”, were correctly annotated
as [”Nike”, ”standing”, ”biga”].

Continuing the work of P. Klinger, in their master thesis ”Natural Language Processing auf
mehrsprachigen Münzdatensätzen - Untersuchung der Qualität, Datenqualität und Übertrag-
barkeit auf andere Datensätze” C. Deligio and K. Gencer introduced new labels (ANIMAL,
PLANT) to the RE. This led to the creation of new named entity pairs, where the subject can
exist as an ANIMAL, PERSON or anOBJECT. Since coin descriptions with the subject being la-
beled as PLANT were not common in the dataset, PLANT was not added to the possible subjects.
Furthermore, they expanded the classes of relations to 18 different classes and implemented the
RE for coin descriptions in the German language(Deligio and Gencer, 2021).

9

2.3 MySQL.connector

In order to retrieve the data that is stored in the MySQL database, the MySQL.connector library
is used, which is offered1 by MySQL themselves. The package allows the script to access the
data by using SQL queries. In order to that, a connection to the database has to be established,
and a cursor has to be initialized. Both can be seen in the example below.
Example:

1 mydb = mysql.connector.connect(
2 host = "localhost",
3 user = "USERNAME",
4 password = "PASSWORD",
5 database="DB_NAME"
6)
7 cursor = mydb.cursor(buffered=True)

With a working database connection and cursor it is now possible to use the MySQL cursor
to send SQL queries and retrieve data. Note that the cursor has the argument buffered set to
True, in order to enable buffering2 for this cursor. The cursor now automatically fetches the
complete result from the server, which useful when iterating over the fetched results (MySQL
Connector/Python Developer Guide n.d.). Implementing the same function with an unbuffered
cursor would require fetching the result(using for example cursor.fetchall()) and then saving it
in another variable. This means that by using a buffered cursor, those lines are saved when it
comes to that special case. Below you can see an example for how data is retrieved from the
MySQL database using the cursor:
Example:

1 cursor.execute("Select id_design from d2r_coin_obv_design where id_coin =
'3941';")

2 query_result = cursor.fetchall()

The result, with id = 3941, would be [(10,)]. In order to access the retrieved data the variable
query_result has to be indexed accordingly. In this example, query_result[0][0] would yield the
wanted result.

1https://dev.mysql.com/doc/connector-python/en/
2https://dev.mysql.com/doc/connector-python/en/connector-python-api-mysqlcursorbuffered.html

10

2.4 Resource Description Framework

A Resource Description Framework, often abbreviated as RDF, is a standardized model which
is most commonly used in the context of the Semantic Web. It is used to describe or exchange
graph data. In an RDFmodel, data is represented as a directed graph, which consists out of triple
statements (Resource Description Framework (RDF): Concepts and Abstract Syntax n.d.).
A triple graph statement is made out of the following components:

• A node for the subject

• A node for the object

• A predicate connecting the two nodes
S
Fire

O
wood

burns

For each of the triple statements exists such graph relationship, and altogether they make up
the RDF model. Statements inside the RDF model that refer to the same subject or object are
connected and form a semantic network.

Internally the components of the statement can be represented in different ways. A subject can
be either a URI reference or a blank node, an object can be either a URI reference, blank node
or a literal and a predicate can exist only as a URI reference(Resource Description Framework
(RDF): Concepts and Abstract Syntax n.d.). A Uniform Resource Identifier reference, often
shortened to URI ref, is a Unicode string that only is made up from characters out of the ASCII
Alphabet(IETF n.d.). It is constructed out of five elements: scheme, authority, path, query and
fragment.
Altogether, the generic URI syntax looks like this:

foo://example.com:8042/over/there?name=ferret#nose1

This shows the similarity to the more popular URL, which is a special case of an URI. A blank
node is a node that is neither a URI ref nor a literal, that’s why it is also called an anonymous
resource. It contains no information. A literal is used to represent values such as numbers, text
strings or dates. Literals can also have a data type in order to further specify their value. For
example, the value ”42”, could be given the data type xsd.string to be represented as a string or
xsd.integer to be seen as a number. It is also possible to add a language tag to a literal(RDF 1.1
Concepts and Abstract Syntax 2014).

1Example taken from: https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

11

2.5 RDFLib

RDFLib is an open-source1 python package created for working with RDF. It allows the user
to conveniently add information to a RDF graph and offers different parsers/serializers to work
with. It was initially created in 2002 and is still being maintained/updated with the latest major
version being published in 2021.
Example:2

1 from rdflib import Graph , URIRef , Literal , FOAF
2 from rdflib.namespace._XSD import XSD
3

4 g = Graph()
5

6 g.add((
7 URIRef("http://example.com/person/nick"),
8 FOAF.givenName ,
9 Literal("Nick", datatype=XSD.string)
10))
11

12 g.serialize(destination="output.nt", format="nt", encoding="utf -8")

In this example the structureGraph is being introduced, it functions as the primary interface/con-
tainer when working with RDFLib. It contains all of our triples and allows to perform common
set-operations (like add(), to add triples). In this example we are adding one triple to the graph.
The triple is made out of a URI-reference, the property FOAF.givenName and a Literal, which
was explained in chapter 2.4. FOAF stands for Friend Of A Friend and is a vocabulary com-
monly used in the semantic web to represent people and their relationships. FOAF.givenName
is a property in the FOAF vocabulary and used to represent the given name of a person. After
adding the triple to the graph, the information can be serialized using the different serializers. In
the example N triples was chosen as the serializer which converts the RDF data to the N-Triples
format3. Each line of an N-Triples file represents a single RDF triple, with each part of the triple
separated by a whitespace and terminated with a period.

Output:

1 <http://example.com/person/nick>
2 <http://xmlns.com/foaf/0.1/givenName >"Nick"^^
3 <http://www.w3.org/2001/XMLSchema#string > .

Note that due to the width could not be displayed as one line.

1https://github.com/RDFLib/rdflib
2Example taken from the RDFLib documentation
3https://www.w3.org/TR/n-triples/

12

2.6 D2RQ

To create a RDF graph from the database used in the pipeline, D2RQ is used. D2RQ is an
abbreviation for Database to RDF Query and is an open source mapping tool which allows one
to access their data as a RDF graph without having to store it in an RDF format in the database.
It consists out of:

• the D2RQ mapping language,

• the D2RQ server and

• the D2RQ engine.

In order to create RDF graphs with D2RQ, firstly a mapping file has to be created (D2RQ -
Getting started n.d.). The D2RQ mapping language will be further discussed in the following
chapter. With the mapping file created, it is now possible for us to map the database content to
RDF.

2.6.1 D2R Mapping Language

The D2RQ mapping language is a declarative language used to map the content from the D4N4

database to RDFS vocabularies(D2RQ mapping language documentation n.d.) and is thereby
responsible for how the virtual RDF graph is structured. When revising the current pipeline it
was crucial to have an understanding of the mapping language since its functionality had to be
replicated using RDFLib. In order to give a better understanding of the pipeline, one needs to
discuss how the D2RQmapping language is used to create the RDF graph. An explanation about
the complete RDF graph with images can be found in chapter 4. In the mapping file the most
commonly used functions, that are provided by D2RQ, are the PropertyBridge and ClassMap.

Example - ClassMap:

1 map:coins a d2rq:ClassMap;
2 d2rq:dataStorage map:database;
3 d2rq:uriPattern "https://www.corpus -nummorum.eu/coins/@@data_coins.id@@";
4 d2rq:class nmo:NumismaticObject;
5 d2rq:condition "data_coins.publication_state = 1";
6 .

In the example we are creating the ’d2rq:ClassMap’ coins, which represents one or multiple
classes in the D2RQ mapping language. Instances of the class are being handled in accord to
the definition in ’d2rq:ClassMap’ by the D2RQ mapping language (D2RQ mapping language

13

documentation n.d.). In the next line reference to where the data is stored is given by mapping
the database to ’d2rq:dataStorage’. In this case database is a variable defined earlier which rep-
resents a connection to the database. After this a reference to the resource is given by passing
an URI pattern and an RDFS Class is being created. Every instance created from the ClassMap
will also be an instance of this class. Lastly we are limiting the mapped coins to those with the
value set accordingly, it functions as a SQL WHERE statement. When looking at the mapping
language visually, creating this ClassMap means that every entry of the database will be repre-
sented in the graph as a node with a specific URI reference. However, only the coins which are
ment to published will be mapped, which is the job of the last line.

Example - PropertyBridge:

1 map:individualcoins_coin a d2rq:PropertyBridge;
2 d2rq:belongsToClassMap map:Coins;
3 d2rq:property nmo:hasObjectType;
4 d2rq:uriPattern "http://nomisma.org/id/coin";
5 .

This example deals with the other common function - PropertyBridge. With these functions it is
possible to attach information to the classes/resources (D2RQmapping language documentation
n.d.). In order to do that a reference to the associated class has to be given. This can be achieved,
as seen in the second line, by using d2rq:belongsToClassMap. In the following row we can
specify the RDF property which should connect the information to the resource. In the last line
we can pass the value of the property bridge. Visually the property bridge looks like this:

URI pattern coins
nmo:hasObjectType

14

3 Assignment

3.1 Current state of the pipeline

At the current state the steps of executing the pipeline are associated with a lot of manual work,
starting from the manual execution of the NLP notebooks to the running of the D2RQ applica-
tion. At the beginning of the pipeline the NER is being executed. This is crucial since the RE
relies on the output of the NER, which builds the foundation of the RE. Both NER and RE are
located in separate python notebooks and have to be started separately. Every design saved in
the database is loaded by the notebooks to be worked with and NER is being applied to each
of them. The resulting output consists out of a tuples packed in a list. These tuples are made
out of the respective design and the found named-entities. Afterwards, RE follows, taking the
previous output as an input and attempting to establish a relationship between the found entities
of the respective description. With completion of the RE the output takes the form of triples
(Subject, Predicate, Object). These are then uploaded to the MySQL database. The last step of
the pipeline is the one, which requires the most amount of manual work and thereby offers the
most room for improvement. In order to create the RDF data, the program D2RQ is used. As
mentioned, D2RQ lets us create the RDF data through a connection between the database and
the D2RQ program. It allows us to apply a mapping via the command line, which will map the
contents of our database to RDF.

3.2 Process and Challenges

When I first started the planning for this thesis, I faced the challenge of becoming familiar with
the D2RQ mapping language and gaining an understanding of the database itself. In order to
identify areas for improvement, it was necessary to understand how the different components of
the pipeline interacted with each other. However, the large size of the mapping file and database
created initial obstacles. By referring to the D2RQ documentation and comparing the output of
the pipeline to the mapping file, I gained a better understanding of how the mapping works. Due
to the size of the database, the initial output was limited to only one coin, which allowed me to
directly identify the origin of RDF triples in the output. Additionally, I divided the output file
into different sections based on their subject and then assigned each section the corresponding
mapping, which provided a blueprint for the structure of the output. Since the D2RQ mapping
file had comments for each mapping, I could use these as an indicator for the mapping.

15

Example:

1 # Coins identifier
2 <https://www.corpus -nummorum.eu/CN_3941 > <http://purl.org/dc/terms/

identifier > "coin_id=3941" .
3 # Coins property bridge
4 <https://www.corpus -nummorum.eu/CN_3941 > <http://nomisma.org/ontology#

hasObjectType > <http://nomisma.org/id/coin> .
5 # Coins classmap
6 <https://www.corpus -nummorum.eu/CN_3941 > <http://www.w3.org/1999/02/22-rdf-

syntax -ns#type> <http://nomisma.org/ontology#NumismaticObject > .
7

8 # Coins --> Reverse (map coin_reverse)
9 <https://www.corpus -nummorum.eu/CN_3941 > <http://nomisma.org/ontology#

hasReverse > <https://www.corpus -nummorum.eu/CN_3941#reverse > .
10

11 # Coins --> Obverse (map coin_obverse)
12 <https://www.corpus -nummorum.eu/CN_3941 > <http://nomisma.org/ontology#

hasObverse > <https://www.corpus -nummorum.eu/CN_3941#obverse > .

This knowledge enabled me to take the first step in developing a new version of the pipeline,
starting with replicating the functionality of the D2RQ program, with the rest to be programmed
later on. This part of the pipeline, called create_rdf_graph, will be discussed in more detail in
chapter 3.3. While developing the script, I encountered issues with the RDFLib output not being
in the same order as the output produced by the D2RQ program, resulting in the tedious process
of rearranging the lines. When rearranged I could then compare my output to the expected
output line for line to look for any differences. Another obstacle was the fact that some triples in
output file that was created by the D2RQ program were doubled and had to be found and deleted
manually, making the process more time-consuming. After implementing a major part of the
mapping file, I repeated this process and compared the output to ensure that every triple was
created by my script. This process, along with the time it took to understand the mapping, took
the most time during the initial stages of development. Since I only used basic functions from
the RDFLib package, this part of the implementation process ran smoothly and I encountered
no major issues. After replicating the D2RQ program, I continued to test the script on other
coins. Initially, I only used one coin when developing the script, but when testing it on other
coins, I encountered multiple issues with the SQL queries that I was not aware of when dealing
with only one coin since not every SQL query from the script was executed or discrepancies in
the database were found. This was for example because of a spelling error in the query or the
data was not accessed the right way. Furthermore, running the script for all coins allowed me
to find formatting errors like ’YearOfEmperor’ instead of ’YearOfTheEmperor’ in the database

16

which resulted in SQL queries not working properly. After reporting these kinds of errors to
Sebastian Gampe I could make the necessary changes in the database. With the RDF part of
the new pipeline working, I continued the development of a Python notebook that would handle
the execution of the NLP notebooks and my script. For this task, I was able to work with the
existing code from the NLP notebooks. However, I needed to make some changes. As the
user only provides the pipeline with an id, I created a function that loads the coin description
based on their id. In the notebooks developed by P. Klinger, every design in the database was
loaded, which is not efficient because not every design is needed when one is only working with
a subset of coins. This led to the development of the function load_designs_with_id, which
allows loading designs using the id. Since the previous function was located in the cnt-package,
developed by P. Klinger, I implemented the new function in the same location. If the function
receives the parameter all instead of an array of ids, it used the original function developed
by P.Klinger which simply loads all existing designs. When testing all coins in the database
the modified pipeline took approximately 2 hours to run with most of the time being spent on
create_rdf_graph script.

3.3 Implementation of the revised pipeline

To optimize the pipeline, at first the different areas of improvement had to be identified. In order
to reduce the required input by the user the pipeline should be automated and require as little
as possible human input. Additionally the pipeline should run efficiently and use the minimum
amount of resources. To achieve this the functionality of both notebooks was replicated and
merged into one notebook - called start_pipeline. Furthermore through a new python script cre-
ate_rdf_ graph the function of the D2RQ program was replicated. This python script, like the
scripts used in the NLP notebook, was imported into the main notebook and is executed after the
NLP. To execute the revised pipeline the user simply has to specify the ids of the coins (either
by listing them or entering ”all” as the parameter) and run the notebook.
start_pipeline:
This script handles the whole execution of the pipeline and is the place where the user needs to
specify the coins he wants to pass into the pipeline. This is done by either listing the respective
ids or by passing ’all’ as a parameter, which then loads all coin descriptions of the database.
Firstly a database connection is created using the my-sql.connector package and then the neces-
sary designs are loaded from that database. Since this functionality was only implemented for
all coins in the previous version a new function, called load_design_with_id had to be added
into file io.py. This function is built out of the existing function load_designs_fromd_db, how-
ever it now lets the user specify the coin or coins from which the designs will then be loaded.
Instead of simply loading all designs, the function now iterates over the given array of coin ids
and selects the respective design ids. With these design ids the description can now be selected

17

and the concatenated dataframe, that contains the descriptions, is returned. Since the output of
both function is identical both function can be used for the same thing. Afterwards the models
used for the NLP are specified. In the following section the models that are used to apply the
NLP to different designs are loaded and the NLP is applied to the loaded designs. Lastly the
function create_graph is executed which has its origin in the file create_rdf_graph.

create_rdf_graph:
The file create_rdf_graph.py consists out of the multiple function which all together create the
RDF output. Similar to the D2RQ mapping language it takes the data, which was uploaded to
the database, and create RDF triples by adding them to a graph. After the process of adding
triples is finished, the graph is serialized and with that the output file is created. In the context
of the pipeline the function create_graph is used as an entry point. This function creates the
variables used through out the different functions, like the RDF graph or the MySQL cursors for
example. Afterwards the function iterates over the given array of ids and executes the respective
functions. First the general information of the coin and the first connections to the obverse/re-
verse designs are mapped with the function map_coin. Secondly, the function map_designs is
called. This functionmaps the ids and the descriptions of the obverse and reverse designs to their
respective sides. Afterwards the two NLP functions are called which task it is to map the result
of the NER and RE - map_reverse_nlp and map_obverse_nlp. Although they access different
tables, both function in the same way. In theory it would have been possible to merge the two
functions into one, however this would have come with at the cost that the code would have been
less readable since every SQL query would have to be formatted accordingly. Both functions
consist of a NER and a RE part. They use the data that was previously uploaded into the tables
cnt_pipeline_ner_url and cnt_pipeline_url to retrieve the data for the triples. The process and
the functionality of the functions can be seen well at the following example:

1 ##########################
2 # Coin g e n e r a l i n f o rm a t i o n
3 ##########################
4 c u r s o r . e x e c u t e (” S e l e c t i d from d a t a _ c o i n s where i d = {} ; ” . f o rma t (i n t (i d)))
5 q u e r y _ r e s u l t = c u r s o r . f e t c h a l l ()
6 c o i n _ i d = check_ fo r_none (q u e r y _ r e s u l t , ” S e l e c t i d from d a t a _ c o i n s where i d = { } ; . f o rma t (i n t (i d)) ”)
7 p a t t e r n = ” h t t p s : / /www. corpus −nummorum . eu /CN_”+ s t r (c o i n _ i d [0] [0])
8
9 # co i n p r o p e r t y b r i d g e s
10 g . add ((URIRef (p a t t e r n) , URIRef (p r e f i x _ d i c t [”nmo”]+ ” hasOb jec tType ”) , URIRef (p r e f i x _ d i c t [”nm”]+ ” co i n ”)))
11 g . add ((URIRef (p a t t e r n) , URIRef (p r e f i x _ d i c t [” dc t e rms ”]+ ” i d e n t i f i e r ”) , L i t e r a l (” c o i n _ i d =”+ s t r (i d))))
12 g . add ((URIRef (p a t t e r n) , URIRef (p r e f i x _ d i c t [” r d f ”]+ ” t ype ”) , URIRef (p r e f i x _ d i c t [”nmo”]+ ” Numismat i cObjec t ”)))
13 # Coin −> obv e r s e _ c o i n
14 g . add ((URIRef (p a t t e r n) , URIRef (p r e f i x _ d i c t [”nmo”]+ ” hasObver se ”) , URIRef (” h t t p s : / /www. corpus −nummorum . eu /CN_{}# obve r s e ” .

f o rma t (s t r (i d)))))
15 # Coin −> r e v e r s e _ c o i n
16 g . add ((URIRef (p a t t e r n) , URIRef (p r e f i x _ d i c t [”nmo”]+ ” ha sReve r s e ”) , URIRef (” h t t p s : / /www. corpus −nummorum . eu /CN_{}# r e v e r s e ” .

f o rma t (s t r (i d)))))

In the example you can see a snippet of themap_coin function. In the first section the necessary
informations are retrieved using the MySQL.connector package and its cursor. With the cursor

18

we are able to retrieve the data from the database using SQL Querys. Afterwards the data has to
be retrieved from the cursors using the function .fetchall(). The output is then saved to a vari-
able. Above we are retrieving the coin id from the database, which makes sure that the given id
actually exists as a coin the database. With the id saved to the variable coin_id, the URI-pattern
used in the triples is defined. Lastly the triples are created using the information we retrieved
before. The comments display the mapping which was originally used in the D2RQ mapping
file. For example ”Coin -> obverse_coin” refers to the connection between the coin node and
the coin_obverse node. Due to that the user should be able to easily identsify what entities are
being mapped in the lines following the comment. After completion the iteration process the
last triples are added with the functions create_hierarchy and create_prop_class. All the triples
created by these two functions exist independently from the input IDs and are always part of the
output. Since they do not depend on the input, it is not necessary for the functions to be included
into the iteration process. The last step of the script and thus the last step of the pipeline is to
serialize the graph. After that the output file can be found in the folder where the start_pipeline
script is included.

How to change the mapping:
Depending on what should be changed in the mapping, either (a) one of the existing functions
has to be modified or (b) a new function containing the desired mapping has to be created. At
the moment the respective mapping functions are executed after each other in the main function
and any new mapping function has to be added in order to be executed by the script. It is also
possible to comment out functions in order to avoid a part of the mapping. When it comes to (a),
the dividing of the mapping process into multiple functions and adding in-depth comments im-
proves the readability of the code and allowing the user to easily identify where what part of the
mapping is located. After locating the part that should be changed, it is possible to change the
mapping in two different ways - either modify the SQL query or modify the RDFLib statement.
Modifying the SQL query changes what data is retrieved from the database and modifying the
RDFLib statement changes how the retrieved data is accessed. When it comes to (b), the new
function has to be passed certain arguments (for example the RDF graph or the MySQL cursor).
The mapping process then functions in the same manner as explained in (a). Depending on what
information from the database should be mapped, a SQL query retrieving that information has
to be created. Afterwards, the information can be processed and added as a triple to the graph
by using the RDFLib library.

19

4 Results

4.1 Output

In this chapter I would like to describe the resulting RDF graph created by the pipeline. Ini-
tially, each coin is assigned to the class Coin, which means that the coin is represented as a
node in the graph. Furthermore, each instance, i.e. each coin, now has a URI pattern that
refers to the corresponding page in the Corpus Nummorum Online. This URI takes the form
’https://www.corpus-nummorum.eu/CN_id’, where id is the respective id of the coin. The URIs
appended in the RDF are specific to the CN and have their origin there. Additional information,
such as the respective id, is also assigned to the coins. In the next step, the respective designs,
meaning the descriptions of the images, are assigned. A distinction is made between the obverse
and the reverse, which is also reflected in the RDF graph. There is a node in the graph for both
sides. These two nodes are connected to the coin via the properties ’hasObverse’ and ’hasRe-
verse’, which assign the respective side to the coin. Further information that is appended now
either relates to the entire coin or to the respective side. As with the coin in general, information
such as the actual description (German/English), id, publisher, and title of the design is also
attached to the designs.

20

Figure 6: Visualization of the general part.

21

Now, the results of the NLP are added to the RDF graph. For each side of the coin, two nodes are
attached to the respective design, which function as containers for the NLP results. They have
the class rdf:bag3, one of three possible container classes in RDF. In the context of the pipeline,
the bags themselves consist of a so-called blank node and do not carry any information. They
are used to establish a connection between the NLP results and the coin sides. The connection
is made once through the property ’hasIconography’ and once through ’hasAppearance’. Ad-
ditionally, it is the task of these bags to store all the entries that were uploaded to the database
by the NLP. Starting from the blank node, which can be reached via ’nmo:hasIconography’, the
various entries are attached. The entries themselves consist of three different nodes, represent-
ing subject, predicate, and object and containing the results from the RE. In the case of coin
3941, the appropriate URI for the entities ’Anchialos’, ’wearing’, and ’taenia’ are now attached
to it. Furthermore, the URIs for the entities ’Asklepios’, ’holding’, ’serpent’ and ’Asklepios’,
’holding’, ’staff’ are attached to the other design. The results from the NER are held by the
bag connected by ’nmo:hasAppearance’. Each found named entity gets its own node, which is
connected to the bag via ’rdf:li’.

Figure 7: Visualization of the NLP section

3https://www.w3.org/TR/rdf-schema/#ch_bag

22

4.2 Comparison to the previous pipeline

In comparison to the old version of the pipeline, the new version improves the old version by au-
tomating the whole execution process of the NLP notebooks and the RDF creation part. Thereby,
the required human input is minimized. The D2RQ mapping has now been replaced by an alter-
native, which is better maintainable and expandable due to its implementation in python and the
simplicity of the script. In cases where the RDF output for a specific subset of coins is required:
It can now be accomplished more conveniently through the use of the create_rdf_graph script.
By passing the corresponding coin id’s to the script, the output can be generated. This function-
ality streamlines the data creation process, eliminating the need for adjusting the mapping file
and searching of entity id’s. Additionally, the NLP part of the previous pipeline version was in-
tegrated into the start_pipeline script, which automatically executes the NLP for the respective
coin descriptions. Regarding the execution time, the D2RQ program required 3 hours and 33
minutes to create the RDF data for all coins in the database on a system equipped with an Intel
Core i5-2500K @ 3.30 GHz and 16 GB of DDR3 RAM. In comparison, the updated version
accomplished the same task in 1 hour and 42 minutes, which includes the execution of the NLP
notebooks.

For an easier comparison, I converted the output of both pipelines from N-Triples to Graphviz
using this4 website. Afterwards, I loaded both graphs into the programGephi5to get an overview
of both graphs. In Gephi I then used the ’Yifan Hu’ layout on both graphs. Below you can find
the main part of both RDF graphs.

Figure 8: Visualization of the D2RQ output for coin 3941

4https://www.easyrdf.org/converter
5https://gephi.org/

23

Figure 9: Visualization of the create_rdf_graph output for coin 3941

As seen in both images, the graphs are made out of three different types of coloured nodes.
Overall, there are 282 nodes in both graphs with 7 being green, 144 being blue and 131 being
black. The green nodes represent blank nodes. In the mapping these nodes, act as containers
for the result of the NLP. The black nodes are used to highlight literals. Lastly, the blue nodes
represent URI references. Most of the blue nodes are centred around a single node ’rdfs:Class’
which, by using the connection ’rdf:type’, gives the different classes their types. These different
classes can be seen as the ’blue ring’ that surrounds the centre node. Around the blue nodes, and
forming a ’black ring’ are the nodes with their origin in the nlp_hierarchy table. These nodes
are mostly connected to the blue nodes via ’skos:prefLabel’.

Branching out on the top left of both graphs one can see the nodes related to the design of both
reverse and obverse of the coin. Also the general information of the coin is located, and the
blank nodes are located there. The nodes which contain the URI reference to the designs can be
seen in both nodes as the two nodes in the top left. Afterwards the side (obverse/reverse) is being
assigned to them, along with further information. Indicated as rectangular shapes are parallel
edges. Parallel edges occur if there is more than one edge between two nodes. These can carry
different weights in Gephi, which results in the edge being displayed thicker. As an example:
In our case this happens once, because the word ’staff’, with the URI reference: https://www.
wikidata.org/wiki/Q10971443, is connected to the class ’Tools’ multiple times.

24

https://www.wikidata.org/wiki/Q10971443
https://www.wikidata.org/wiki/Q10971443

Once because the word ’staff’ is recognized by the NER and thereby it’s category(’Tools’) is
added to graph.

1 <https://www.wikidata.org/wiki/Q10971443 >
2 <http://www.w3.org/1999/02/22-rdf-syntax -ns#type>
3 <https://www.wikidata.org/wiki/Q39546 > .

And once again, because ’Staff’ is part of the nlp_hierarchy table and a subclass of ’Tools’:

1 <https://www.wikidata.org/wiki/Q10971443 >
2 <http://www.w3.org/2004/02/skos/core#prefLabel >
3 "Staff"^^<http://www.w3.org/2001/XMLSchema#string > .
4

5 <https://www.wikidata.org/wiki/Q10971443 >
6 <http://www.w3.org/1999/02/22-rdf-syntax -ns#type>
7 <http://www.w3.org/2000/01/rdf-schema#Class > .
8

9 <https://www.wikidata.org/wiki/Q10971443 >
10 <http://www.w3.org/2000/01/rdf-schema#subClassOf >
11 <https://www.wikidata.org/wiki/Q39546 > .

25

5 Conclusion and outlook
At the beginning, the objective of this bachelor thesis was defined as optimizing the existing
version of the pipeline. The aspects requiring improvement were identified as the manual ex-
ecution of the pipeline and the utilization of the D2RQ program for the generation of RDF
data. Thereby, the task of this thesis was (a) to minimize the required human input and (b) to
replicate the functionality of the D2RQ program in such a way that it is easier maintainable in
the future and no complex mapping file is required. (a) was achieved through the merging of
both NLP notebooks, which were initially developed by P. Klinger in her thesis, into the script
”start_pipeline” and the development of a new function - load_design_with_id that allowed to
load the design for the specified ids. This reduced the required input to entering the desired coin
ids and starting the script.
When it comes to point (b), this thesis introduced the script ”create_rdf_graph” which in the re-
vised version of the pipeline handles the creation of the RDF data. It makes use of the libraries
mysql.connectorand RDFLib to do so. With the first package the script retrieves the data from
the MySQL database using SQL queries, afterwards the data is processed and then added to the
RDF using the second library.

With completion of the mapping process, the script then creates the RDF output. In chapter 4.2
the differences between the two pipeline version were highlighted, showing the improvement of
the RDF creation process due to the new pipeline. Overall, improvements were not only made
in the previously mentioned areas, but also in terms of the execution time. In the future, the
pipeline can be improved in different ways. Since most of the execution time is spent on the
”create_rdf_graph” script, cutting down the execution time of this script would yield the most
improvement. Additionally, making the script previously mentioned script even more readable
and reduce amount of lines would improve the maintainability.

26

Appendix
A USB stick containing the implementations of the pipeline discussed in this thesis is attached.
The start_pipeline script can be found in the ’code’ folder and the create_rdf_graph script and
the function load_design_with_id, located in the file io.py, can both be found in the ’cnt’ folder.
Furthermore, a SQL file containing the database, the Gephi files for the visualization and the
D2RQ mapping file are included.

27

6 List of figures
• Figure 1 - Scheme of the current pipeline version: Taken from ((Klinger, 2018), chapter
4 page 13).

• Figure 2 -Web view of the database: Taken from http://d2rq.org/getting-started.

• Figure 3 - Types of named entities: Taken from ((Bird, Klein, Loper, 2009), chapter 4
page 14).

• Figure 4 - NER workflow: Taken from ((Klinger, 2018), chapter 7.5).

• Figure 5 - The proposed relations by P. Klinger: ((Klinger, 2018), chapter 4 page 17).

• Figure 6 - Visualization of the general part: Created by me using the website lucidchart.

• Figure 7 - Visualization of the NLP section: Created by me using the website lucidchart.

• Figure 8 - Visualization of the D2RQ output for coin 3941: Created byme using the Gephi
software.

• Figure 9 - Visualization of the create_rdf_graph output for coin 3941: Created by me
using the Gephi software.

7 Literature

Bird, Klein, Loper (2009).Analyzing Text with the Natural Language Toolkit. https://www.nltk.org/book/,
Accessed: 01.04.2023.

Corpus Nummorum site (n.d.). https : / / www . corpus - nummorum . eu / about. Accessed:
19-03-23.

D2RQ - Getting started (n.d.). http://d2rq.org/getting-started. Accessed: 03-04-23.
D2RQ mapping language documentation (n.d.). http://d2rq.org/d2rq- language. Ac-

cessed: 03-04-23.
D4N4 project site (n.d.). http://www.bigdata.uni- frankfurt.de/d4n4/. Accessed:

18-03-23.
Deligio, Chrisowalandis andKerimGencer (2021).Natural Language Processing auf mehrsprachi-

gen Münzdatensätzen. Master Thesis.
IETF (n.d.). https://www.ietf.org/rfc/rfc2396.txt. Accessed: 03-04-23.
Klinger, Patricia (2018).Natural Language Processing to enable semantic search on numismatic

description. Bachelor Thesis.

28

http://d2rq.org/getting-started
https://www.corpus-nummorum.eu/about
http://d2rq.org/getting-started
http://d2rq.org/d2rq-language
http://www.bigdata.uni-frankfurt.de/d4n4/
https://www.ietf.org/rfc/rfc2396.txt

MySQLConnector/PythonDeveloperGuide (n.d.). https://dev.mysql.com/doc/connector-
python/en/. Accessed: 22-02-23.

RDF 1.1 Concepts and Abstract Syntax (2014).
Resource Description Framework (RDF): Concepts and Abstract Syntax (n.d.). https://www.

w3.org/TR/rdf-concepts. Accessed: 03-04-23.

29

https://dev.mysql.com/doc/connector-python/en/
https://dev.mysql.com/doc/connector-python/en/
https://www.w3.org/TR/rdf-concepts
https://www.w3.org/TR/rdf-concepts

	Introduction
	Problem description
	Thesis structure
	Related work

	Background
	Corpus Nummorum and the D4N4
	Natural Language Processing
	Named Entity Recognition
	Relationship Extraction

	MySQL.connector
	Resource Description Framework
	RDFLib
	D2RQ
	D2R Mapping Language

	Assignment
	Current state of the pipeline
	Process and Challenges
	Implementation of the revised pipeline

	Results
	Output
	Comparison to the previous pipeline

	Conclusion and outlook
	List of figures
	Literature

