
 

 
 

Analytics and Optimization Techniques on Feeder 

Identification in Smart Grids 

 

 

Larraitz Aranburu  

Dep. de Matemáticas 

UPV/EHU 

Leioa (Bizkaia), Spain 

larraitz.aranburu@ehu.eus 

Aitziber Unzueta  

Dep. de Matemática Aplicada 

UPV/EHU 

Blbao (Bizkaia), Spain 

aitziber.unzueta@ehu.eus 

 

M. Araceli Garín  

Dep. de Métodos Cuantitativos 

UPV/EHU 

Blbao (Bizkaia), Spain 

mariaaraceli.garin@ehu.eus

Juan I. Modroño  

Dep. de Métodos Cuantitativos 

UPV/EHU 

Bilbao (Bizkaia), Spain 

juan.modrono@ehu.eus 

Aitor Amezua 

ZIV Automation 

Zamudio (Bizkaia), Spain 

aitor.amezua@zivautomation.com 

 

 

 

 

  

Abstract— One of the problems faced by electric power 

distribution system operators is to know with certainty the 

actual location of all their assets in order to manage properly the 

grid and provide the best service to their customers. In this 

work, we present a procedure for the identification of low 

voltage feeders or distribution lines in smart grids that is based 

on the mathematical formulation of the problem as an 

optimization model. In particular, we define the model with 0-1 

variables (as many as meters to be identified in the different 

feeders) and with as many restrictions as the number of points 

in time that are considered. Given the large size of the problem 

in practice, the use of conventional optimization software 

becomes unfeasible. Based on this approach, and making use of 

the linear relaxation of the problem, some analytics over the 

coefficients (i.e., meter loads) and the special structure of the 

problem itself, we have developed an iterative procedure that 

allows us to recover the entire solution of the initial model in an 

efficient way. We have carried out a computational experience 

on a set of anonymized real data, obtaining results that support 

the efficiency of the proposed procedure. 

Keywords— connectivity model, integer optimization, iterative 

algorithm, linear relaxation, smart meter datasets. 

I.INTRODUCTION  

ELECTRICITY distribution system operators need to 
know with certainty the real location of all their assets to 
adequately operate the grid and provide the best possible 
quality of service. Particularly, revenue meters installed in 
clients’ premises and therefore the contribution of each user 
with respect to the total load of each feeder or distribution line 
are valuable data. Mapping customers (using meters) to 
feeders and phases is important for several reasons, including 
load balancing among feeders and phases. The loads on the 
three phases of a transformer must be balanced for grids to be 
efficient, see [20]. By identifying which customer is on which 
phase, those can be then rearranged among the phases to 
balance the load.  

Additionally, accurate information is needed to locate 
energy losses due to theft or unmetered locations in the 
distribution network, see [2] and [12]. Notwithstanding the 
aforementioned benefits, up-to-date connectivity information 

is required to correctly evaluate the impact of an eventual 
outage and to provide punctual information to customers. 

[3] presents a phase identification system based on a 
unique signal injected into the phase line. The main criticism 
that has been made of these types of signal injection methods 
is that they require hardware equipment to receive and 
transmit signals to the different points of the grid, which 
significantly increases costs. There are also analytical 
techniques that make use of available data of smart meters, see 
[5], [1], and [19]. These works exploit the principle of 
conservation of the energy and use optimization approaches in 
a similar way to the method presented in this work. In [19], 
and as an extension of the two other works, the impact of 
correlations among customer loads on the performance of 
phase inference is added. In all of them, and using 
experiments, the same result introduced in [16] is shown, 
where it is proved that under certain conditions, the 
probability that a linear relaxation system of an integer one 
returns a unique integer solution is high. In particular, this 
probability increases when the number of measurements is at 
least twice as great as the number of customers. However, in 
some cases, this convergence can be very slow and it is 
necessary to increase significantly the number of time 
measurements, before obtaining a good approximation of the 
integer solution. This increase in the dimensions of the 
problem means that even using powerful optimization 
software, the time needed to reach a solution may grow 
exponentially. 

[20] and [22] propose voltage-based techniques to infer 
customer phase. These methods rely on voltages measured 
and are based on linear regression and basic voltage drop 
relationships. However, not all utilities record customers’ 
voltage measurements in short time intervals or even provide 
the kind of precise data needed to be able to use these models. 
Therefore, although these methods may be mathematically 
simpler, obtaining good results requires more demanding data 
collection and recording, as well as the use of geographical 
information systems. 

In this work, we present a procedure for the feeders or 
distribution lines to customers mapping problem in smart 
grids that is based on the mathematical formulation of the 
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problem as an optimization model. It could easily be 
generalized to the phase identification problem. In particular, 
the model is defined with 0-1 variables (as many variables as 
meters to be identified throughout the different lines) and with 
as many restrictions as time measurements are available in 
addition to those requiring the identification of each meter on 
a single line. Given the large dimensions arising in virtually 
any real case, the use of conventional optimization software 
becomes unfeasible. 

During the second half of the last century, a whole theory 
was developed around the reformulation of optimization 
models with 0-1 variables as linear models, due to the 
impossibility of solving them with conventional software 
tools. The idea was to try to extract as much information as 
possible from the structure of the problem, generating new and 
tightened constraints (cuts) that, added to the linear problem 
would achieve an equivalent but stronger reformulation of its 
feasible region (i.e., with the same 0-1 integer solutions). The 
integer solution would be obtained by solving such 
reformulated problem. Some references in relation to this 
theory are [8], [18], [10], [9], [14], [13] or [17], among many 
others. 

 Based on this approach, we develop an iterative procedure  
which, making use of the linear relaxation of the problem, 
allows to recover the integer solution in an efficient way. 

The main contributions of this work can be enumerated as 
follows: 

1) We propose a new scheme based on analytics and 
mathematical optimization  for feeder mapping in distribution 
networks. 

2) We develop an iterative solution procedure for grid 
mapping in both a noiseless and several noisy (energy losses, 
missing loads, incorrectly assigned measurements...) cases. 
This procedure requires, on the one hand, the linear relaxation 
of the original problem with a strategy of progressive 
incorporation of measurement constraints for different time 
periods. On the other hand,it includes a prioritisation strategy 
which  is established to firstly identify the meters with the 
largest consumptions, taking into account the different 
solutions obtained in previous iterations, the analysis of the 
highest consumptions and, the progressive incorporation  and 
implementation of a new set of valid inequalities (cuts) to the 
problem. 

The rest of the paper is organized as follows. Section II 
presents the motivation, and the data sources, then introduces 
the mathematical formulation based on optimization, and 
finally introduces all the features that will be used in order to 
guarantee an effective resolution of the problem. Section III 
presents the empirical evaluation results relative to the 
noiseless and noisy variants. Section IV concludes and 
outlines future research plans. 

II.DISTRIBUTION NETWORK TOPOLOGY 

Electric power is generated at bulk generation power 

plants, utility-scale renewable generation plants and 

distributed energy resources. Electricity is transmitted mostly 

using high voltage three-phase alternating current towards 

electrical substations. Transformer substations transform 

high voltage into low voltage and, then, electricity is 

distributed in 3 phases, using 4 wires, usually labeled as R, S, 

T and N. Low voltage switchboards are used to split the 

output of the distribution transformer into a number of 3-

phase, 4-wire feeders, usually between 4 and 8 feeders per 

transformer. Then, power is carried to customers’ premises 

where load meters are installed at the connection point 

forming a distribution grid. Each feeder supplies power to an 

average of 50-200 customers, what means a range from 1 to 

2,000 clients per substation, who are connected mostly to one 

single phase of the transformer (namely phase R, S, or T) and 

to the neutral conductor N. Customers with larger loads are 

connected simultaneously to the three phases and the neutral. 

A. Data sources and information 

In this work, we make use of real and synthetic smart 
meter datasets in order to develop an efficient procedure for 
feeder identification. We use a dataset of anonymized load 
measurements collected from customer meters connected to a 
set of feeders. Then, we have synthetized and simulated a 
network with a specific topology with the aim of evaluating 
the precision of the solutions obtained in terms of how exactly 
the pre-established network mapping becomes identified.  

We have simulated a distribution network by assigning a 
set of actual meters to different artificial feeders or distribution 
lines in a pseudo random way. We have done this twice, 
generating two networks, one of small size with 3 lines, 14 
meters (customers) and 6 hourly time measurements and a 
larger one, with 10 lines, 1578 meters (customers) and 215 
hourly measurements. In the larger case, we have previously 
preproccessed the data set and  cleared customers with zero or 
quasi-zero consumption, resulting in a reduction of the 
number of meters to 1351. Thus, we consider 10 power lines 
and 215consecutive time measurements, or points in time, 
forming 1351 time series of hourly frequency. 

The statistical manipulation of the data has been carried 
out using the open source R statistical software, see [21]. 

B. Mathematical formulation 

The mathematical modeling of the feeder identification 
problem requires the following sets, parameters and variables.  

Let T = {1,…,|T|} be the set of time measurements;                
I = {1,…,|I|} the set of indices for customers or meters; and,    
J ={1,…, |J|}, the set of indices for feeders or distribution lines 
to which the meters are connected. Let 𝑥𝑖𝑗  be the binary 

variable that shows if customer i is connected to line j. 

𝑥𝑖𝑗 = {
1  if customer 𝑖 is conected to feeder or line 𝑗
0 otherwise

 

where 𝑖 ∈ 𝐼and 𝑗 ∈ 𝐽. Let 𝑒𝑗𝑡 be the continuous variable that 

represents the errors or noise present in line j at time t. It is 
well known that in the distribution of power, part of it may be 
lost.  𝑒𝑗𝑡   arises due both to electricity losses and to certain 

unmetered loads on feeders such as street or traffic lights. 

On the other hand, new technologies and renewable 
energies make possible the existence of consumers who, at 
any given time, can contribute with energy to the system. 
Therefore, we consider that the 𝑒𝑗𝑡   variable can be either 

positive or negative. 

Let 𝑐𝑖𝑡  denote the load (in KWH) of meter i at time t. 
Similarly, let  𝑇𝑗𝑡    denote the total measurement (possibly 

erroneous) of line j at time t. 

The objective of this distribution line mapping is to obtain, 
using the optimization model below, the binary variable (𝑥𝑖𝑗) 
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that assigns each customer to one of the distribution lines or 
feeders. Two types of constraints define the distribution 
network: 

No consumer duplications: Each consumer is connected to 
a single line, so it must satisfy: 

∑ 𝑥𝑖𝑗𝑗∈𝐽 = 1   ∀𝑖 ∈ 𝐼                     (1) 

Principle of conservation of electric power: It implies that 
the power supplied on each line should be approximately 
equal to the energy consumed by all customers connected to 
that line. Then, the following relationship must be satisfied: 

∑ 𝑐𝑖𝑡 ∙ 𝑥𝑖𝑗𝑖∈𝐼 + 𝑒𝑗𝑡 = 𝑇𝑗𝑡       ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽      (2) 

Here, 𝑒𝑗𝑡  compensates for the difference between the sum 

of the customer meter measurements and the measurement at 
the line they are connected to, which arise due to the errors 
defined above. This kind of constraints are usually known as 
a knapsack constraint. 

Then, we can model the feeder identification problem as a 
mixed 0-1 optimization problem of minimizing the norm 𝑙1 of 
the errors in the noisy case, or minimizing a given constant 
(i.e., without objective function) in the noiseless case, where 
the set of constraints are those given by (1) and (2). Thus, 
depending on whether or not we consider the errors (𝑒𝑗𝑡), we 

define two variants of the model: the noisy and the noiseless 
model. 

The noiseless problem 

In this case, the variable 𝑒𝑗𝑡  is zero and the proposed 

model is: 

min ∑ ∑ 𝑥𝑖𝑗𝑗 ∈𝐽𝑖 ∈𝐼 = min 𝐴

∑ 𝑥𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼

∑ 𝑐𝑖𝑡 ∙ 𝑥𝑖𝑗𝑖 ∈𝐼 = 𝑇𝑗𝑡    ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇

                     (3) 

𝑥𝑖𝑗 ∈ {0,1}     ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 

Notice how in the objective function of (3) the sum in I 
and in J returns a constant, A.  

The (noisy) problem with energy losses or inputs 

In this case, the variable 𝑒𝑗𝑡 denotes the energy that can be 

lost or contributed to the line. This model is given by:  

min 𝐴 + ∑ ∑ |𝑒𝑗𝑡|𝑗∈𝐽𝑡∈𝑇

∑ 𝑥𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼

∑ 𝑐𝑖𝑡 ∙ 𝑥𝑖𝑗 + 𝑒𝑗𝑡𝑖 ∈𝐼 = 𝑇𝑗𝑡    ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇

                (4A) 

𝑥𝑖𝑗 ∈ {0,1}     ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽

𝑒𝑗𝑡 ≥ 0      ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽
 

Model (4A) is not a linear model as its objective function 
is not linear. However, we can easily make it linear by 
duplicating the 𝑒𝑗𝑡 variables using their positive and negative 

parts. That is, defining one variable for losses and another for 
inputs. In this way the variables 𝑒𝑗𝑡

+ and 𝑒𝑗𝑡
−, which are both 

positive, are defined as: 

 

𝑒𝑗𝑡
+ = {

𝑒𝑗𝑡  if it is positive

0 otherwise
𝑒𝑗𝑡

− = {
−𝑒𝑗𝑡  if it is negative

0 otherwise
 

 

Thus we build the equivalent model:  

min 𝐴 + ∑ ∑ (𝑒𝑗𝑡
+ + 𝑒𝑗𝑡

−)𝑗∈𝐽𝑡∈𝑇

∑ 𝑥𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼

∑ 𝑐𝑖𝑡 ∙ 𝑥𝑖𝑗 + (𝑒𝑗𝑡
+ − 𝑒𝑗𝑡

−)𝑖 ∈𝐼 = 𝑇𝑗𝑡    ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇

         (4B) 

𝑥𝑖𝑗 ∈ {0,1}     ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽

𝑒𝑗𝑡
+, 𝑒𝑗𝑡

− ≥ 0      ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽
 

Both models, (3) and (4B), are mixed 0-1linear programs 
(in the first case with a zero objective function) and a system 
of constrained linear equations. Theoretically, they can have 
multiple solutions, especially when the number of constraints 
(i.e., measurements) is low (less than the number of variables). 
Although we could use any optimization solver to obtain the 
solution to these 0-1 problems, integer programs are NP-hard 
and therefore some instances may require a computation time 
that grows exponentially. 

Indeed, this is what happens in the large case study, with 
10 feeders, 1351 meters, and 215 hourly measurements. 

Then, although the proposed models require a binary value 
for the assignment variables, in the next section we will see 
how the dimensions of these models, in practice with up to 
thousands of customers per feeder and perhaps thousands of 
feeders in the distribution network, make their resolution 
impossible at reasonable time. In this case, the linear 
relaxation can be used to retrieve the integer solution to the 
models (3) or (4B), given a sufficient number of constraints 
(i.e., time measurements). 

In that sense in [15] and [16] it is proved that the 
probability that a linear relaxation system of an integer one of 
the form given in (3) returns a unique integer solution, 
increases and approaches to 1 when the relationship between 
the number of constraints (measurements, m = |T|) and the 
number of variables (customers, n = |I|), or m/n ratio, is 
greater than a given threshold.  

With the idea of building an iterative process to find the 
entire solution through linear relaxation, it is remarkable that 
the set of constraints (1) is unique to the problem and does not 
introduce any additional information over the time horizon. 

However, the set of constraints (2) allows for adding 
information to the problem iteratively. Even so, it is 
noteworthy that at each time point, we add as many constraints 
as power lines are considered in the problem, with a 
peculiarity: they all share the left hand side but a different right 
hand side, one per each feeder and time measurement. 

In order to reinforce the contribution of each set of 
constraints of type (2) to the convergence of the problem, we 
propose the identification of a new set of valid inequalities 
(cuts). These, although redundant in the integer case, provide 
explicit relationships among variables that reinforce the 
feasible region of the linear relaxation without eliminating 
integer solutions. 

It is known in the literature, see [4], [6] and [7], that such 
cuts help the convergence to the integer solution. A simple 
analysis shows that cuts of the form: 𝑥𝑖𝑗 = 0 can be identified 

from each constraint (2), whenever there are values of i such 
that  𝑐𝑖𝑡 > 𝑇𝑗𝑡 − 𝑒𝑗𝑡 . 
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Moreover, a procedure for identifying other type of cuts 
that are implied by single 0-1 knapsack constraints (2) as 
given in [14] can be used. 

The induced inequalities (covers) are satisfied by any 0-1 
feasible solution to constraint (2), but are typically violated by 
fractional solutions. They can be written as 

∑ 𝑥𝑖𝑗𝑖∈𝐶 ≤ 𝑘𝐶 , where 1 ≤ 𝑘𝐶 ≤ |𝐶| − 1       (5) 

This constraint is implied by constraint (2) provided that 

 ∑ 𝒄𝒊𝒕𝒊∈𝑪 > 𝑻𝒋𝒕 − 𝒆𝒋𝒕  . The set C is called a minimal cover 

implied by (2) if ∑ 𝒄𝒊𝒕𝒊∈𝑪−{𝒍} ≤ 𝑻𝒋𝒕 − 𝒆𝒋𝒕 , ∀𝒍 ∈ 𝑪. 

The inequality ∑ 𝑥𝑖𝑗𝑖∈𝐶 ≤ |𝐶| − 1,  is a facet defining 

inequality for the convex hull of the 0-1 points satisfying (2) 
if and only if C is minimal. 

One of the difficulties that occur in the implementation of 
this procedure of cut identification and addition is that the 
right-hand-side value of each constraint (2), 𝑇𝑗𝑡 − 𝑒𝑗𝑡 , is not 

known in advance. The gap 𝑒𝑗𝑡 , is the error variable which is 

known only after solving the corresponding linear model 
including that measurement constraint. Then, at each iteration 
of the procedure, and after adding a new set of measurement 
constraints, we must obtain the solution (error variables) in 
order to identify new cuts.  Then, these new cuts are 
considered and can be used in an automatic reformulation to 
further tighten the linear relaxation. 

In this way we are able to reduce the linear feasible region, 
without leaving out any integer feasible solution as shown in 
Figure 1: 

 

 

Fig. 1. Introduction of cuts 

In Figure 1, the area in green delimitated by the black lines 
defines the linear feasible region. Therefore, the yellow points 
would be the integer feasible solutions, and the red points the 
linear optimal. Introducing the two straight flaming lines 
(cuts) reduces the feasible region for the linear model without 
eliminating integer solutions. 

The following section summarizes the results obtained 
with these procedures by using a case study. 

 

III. CASE STUDY 

As mentioned above, in order to evaluate the efficiency of 
the identification procedure, we have simulated a distribution 
network assigning the available meters to a set of fictitious 
feeders. Moreover, the total consumptions of the feeders, 𝑇𝑗𝑡 , 

have been created for the noiseless and noisy variants of the 
problem. 

As shown in [16], customer smart meter measurements 
exhibit time (over time) and spatial (between consumers) 
correlations. These correlations between customer load 
measurements tend to hinder the recovery of customer-to-line 
connectivity. When correlations are higher, a higher number 
of time measurements are needed to infer the line mapping 
accurately. 

In the sample available, the time measurements to 
customer ratio (m/n) is small. In particular, the quotient is 
215/1351 = 0.1591 < 0.5. In this situation, as indicated in [16], 
the probability of recovering the true network structure is very 
low, and the number of measurements are clearly insufficient 
to obtain an acceptable solution. 

Based on these findings, we propose a procedure that helps 
to improve the probability of recovering the customer-to 
feeder mapping accurately with few time measurements. 

The identification procedure proposed as solution is based 
on the linear relaxations of the mixed 0-1 models (3) and (4B), 
generating an iterative procedure in which at each iteration a 
set of constraints per unit of time is added to the model, saving 
the corresponding obtained solution. Thus, at each iteration 
the model increases the number of constraints, and does it up 
to a total number of constraints which in the last iteration is at 
most equal to the number of time measurements available. 
This iterative procedure doues not only add the knapsack 
constraint but also the cuts linked to it, that are identified by 
using the error terms obtained previously.  

Moreover, analyzing these solutions, it is observed that 
there are variables that either take the value 1, or take 
repeatedly values near 1. In this case, setting the value of these 
variables to 1, (𝑥𝑖𝑗= 1), causes the identification of customer 

(meter) i in line j (that is, it is connected to line j). At the end 
of this iterative procedure, there may be variables fixed to 1 
(that is, meters identified in lines) and unfixed variables that 
tell us that nothing can be concluded about their identification. 
Furthermore, each of these identifications may or may not be 
correct. 

A. Small case study 

Using the source data provided, a small case study is 
presented with 3 feeders, 14 meters and 6 hourly measurement 
constraints. The dimensions of the model (4B) would be the 
following: 

• 42 𝑥𝑖𝑗  (identifying) variables 

• 18 𝑒𝑗𝑡 (error) variables 

• 14 type(1) constraints 

• 18 type (2) constraints 
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Based on the values of 𝑐𝑖𝑡, we simulate new values for the 
parameters 𝑇𝑗𝑡 in order to model several situations in the 

electricity network. In these estimations, errors of 5 levels of 
magnitude are considered: no errors (noiseless case), and 
errors about 0.75%, 1.5%, 2.25% and 3% of the total line 
consumption respectively. As in this small case study there are  
only 6 time measurement constraints, the right hand side 𝑇𝑗𝑡  

used for the cuts identification is this without considering 
noise. 

The headings of Table 1 are interpreted as follows: #ite 
denotes the number of iterations needed to achieve the best 
result; %correct(#) denotes the percentage of correct 
identifications, with the number of correctly identified 
customers in brackets; equivalently, %incorrect(#)  denote the 
same for incorrect identifications; and #cuts denote the 
number of cuts used.  

TABLE 1: SMALL CASE  

Case #ite %correct(#) %incorrect(#) #cuts 

noiseless 
4 100(14) 0(0) 0 

4 100(14) 0(0) 195 

noisy 

0.75% 
6 85.7(12) 14.3(2) 0 

6 85.7(12) 14.3(2) 247 

1.5% 
6 85.7(12) 14.3(2) 0 

6 85.7(12) 14.3(2) 247 

2.25% 
6 71.4(10) 28.6(4) 0 

6   78.6(11)     14.3(2) 247 

3% 
6   85.7(12) 14.3(2) 0 

6 85.7(12) 14.3(2) 247 

 

The results shown in Table 1 summarize the 
appropriateness of the behavior of the proposed procedure. By 
introducing cuts and refining the iterative process, it is 
possible to rescue the exact solution in the noiseless case only 
in 4 iterations.  In the noisy cases, between the 71% and the 
85% of the feeders are identified. In this case, a better result 
with cuts, can be observed just in one of the cases, with more 
correct (and less incorrect) identifications. 

B. Large case study 

As stated in [16], the convergence of the iterative 
procedure is related to correlations (or, equivalently, sparsity) 
between the dataset variables, but above all it is necessary that 
the m/n = |T|/|I| ratio reaches a certain threshold. In the largest 
case considered in this work with 10 feeders, 1351 meters and 
215 hourly measurements, this ratio is 0.1591 which does not 
bode well. 

In view of the robustness provided by the model cuts in the 
small case under study, we proceed to introduce a similar 
scheme in the large case. For this purpose, we have previously 
calculated the number of cuts induced by a single 
measurement constraint. In this case, a  total of 253,571 cuts 
and more than 120 million of non-zero elements are generated 
per each knapsack constraint. This would imply, adding more 
than 108 million constraints and more than 50 billion non-null 
elements per iteration. 

 The introduction of cuts is a tool that brings great benefits; 
even though a too large number of cuts is not suitable. 
Therefore, we are currently experimenting with a strategy to 
determine the number of cuts (a moderate number of stronger 
cuts) and the appropiate  iterations where they should be  
added, in order to increase the efficiency of the identification 
procedure. 

In any case, we can verify the results obtained in [16] 
regarding the m/n ratio with the iterative process proposed in 
this work. For this purpose, we have constructed several 
samples leaving the number of measurements fixed and using 
a systematic sampling to select a smaller number of meters. In 
order to determine 𝑇𝑗𝑡 , the part of the simulated network 

corresponding to the selected counters has been recovered. 

Noiseless Case 

In this case, we have drawn 36 samples. In each dataset, 
customers are randomly assigned to different feeders in order 
to generate feeder measurements. Specifically, we have 
generated first a set of 12 samples named type I, consisting of 
900 customers (m/n = 0.2389); then, a second set of 12 type II 
samples made up of 1000 customers (m/n = 0.215); and 
finally, a third set of 12 type III samples consisting of 1100 
customers (m/n = 0.195). 

Table 2 shows the results of the proposed algorithm (PA) 
(right column) compared to those obtained in a simple 
iterative process (SI) (left column) of adding new 
measurement constraints for each type of sample. 

TABLE 2: LARGE CASE  

Sample 

Proportion of correct identifications 

Type I 

(m/n=0,2389) 

Type II 

(m/n=0,215) 

Type III 

(m/n=0,195) 

SI PA SI PA SI PA 

1 

2 

3 
4 

5 
6 

7 

8 
9 

10 

11 
12 

1 

1 

1 
1 

1 
1 

1 

1 
1 

1 

1 
1 

1 

1 

1 
1 

1 
1 

1 

1 
1 

1 

1 
1 

0.11 

0.831 

0.748 
0.832 

0.333 
0.794 

0.725 

0.833 
0.783 

0.103 

0.04 
0.759 

1 
1 

1 

1 
1 

1 

1 
1 

1 

1 
1 

1 

0.565 

0.539 

0.492 
0.596 

0.559 
0.529 

0.5 

0.615 
0.559 

0.549 

0.574 
0.542 

0.691 

0.725 

0.675 
0.830 

0.793 
0.750 

0.656 

0.749 
0.718 

0.703 

0.785 
0.710 

 

It is easy to notice that these results greatly improve those 
provided by Mangasarian et al. in [16]. 

Noisy Case 

From the source data and using the simulated values of 𝑇𝑗𝑡 , 

we conduct again a systematic sampling, and select 60 
samples. In each dataset, customers are randomly assigned to 
different lines in order to generate a reference case. 
Specifically, there are five sets of 12 samples each. In order to 
choose these sets,we have considered different combinations 
of the number of meters at each set (n) and the relationship 
between this number and the number of hourly measurements 
used (m/n). 
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Fig. 2. Correct and incorrect identifications (%) 

Figure 2 shows these average percentages of correct and 

incorrect identifications (with their corresponding 99% 

confidence intervals, represented by dashed lines). Thus, 

after running the analysis on 60% of the samples, when the 

ratio m/n varies between 1.08 and 2.15, the probability of 

recovering the true solution is between 60% and 80%. At the 

same time, the probability of obtaining an incorrect solution 

is practically nil.  

IV.CONCLUSIONS AND FUTURE WORK 

In this paper, and based on the mathematical formulation 

of the feeder mapping problem in distribution networks as an 

optimization model, we have developed an iterative 

procedure in which how and when we should include the cuts 

in an optimal way is still under experimentation. Even so, the 

computational experience carried out on a real data set, 

provide results that support the efficiency of the proposed 

scheme. Further computational work with the algorithm in its 

latest version is yet necessary. In addition, in order to support 

the results, its behavior should be tested with new real data 

collections, including the case of missing measurements or 

partial incorporation of known information, in order to 

further explore the performance of the proposed procedure. 
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