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Abstract
The number of components in concrete has increased in recent decades - 

especially in formulations with a reduced carbon footprint. Through the type of 
binder, supplementary cementitious materials, activators, concrete admixtures, 
recycled aggregates, etc., attempts are made not only to improve the material 
properties but also to reduce the ecological and economic impact of concrete as 
the most widely used material of humankind. Cementitious materials are na-
noscale materials. This is accompanied by a more inconsistent composition of raw 
materials, which makes an experimental tuning of formulations more and more 
necessary. However, the increased complexity in composition presents a challenge 
in finding the ideal formulation through trial and error. Inverse design (ID) tech-
niques offer a solution to this challenge by allowing for a comprehensive search 
of the entire design space to create new and improved concrete formulations. In 
this publication, we introduce the concept of ID and demonstrate how our open-
source app “SLAMD” provides all necessary steps of the workflow to adapt it in 
the laboratory, lowering the application barriers. The intelligent screening process, 
guided by a predictive model, leads to a more efficient and effective data-driven 
material design process resulting in reduced carbon footprint and improved ma-
terial quality while considering socio-economic factors in the materials design.

Keywords
Sustainable concrete, Machine learning optimization, Inverse design tech-

niques, Scientific software, Data-driven material design

Introduction
Concrete is the most prevalent construction material with an estimated glob-

al production of around 30 billion tons annually. However, its production sig-
nificantly impacts the environment due to the high carbon footprint associated 
with cement manufacturing. To address this issue, there has been a recent push to 
develop sustainable alternatives to traditional concrete through the incorporation 
of various admixtures, recycled materials, and other additives. 

However, the increasing number of constituents in concrete formulations and 
the inconsistent quality of raw materials present challenges in the development of 
optimal concrete formulations. The empirical materials development process for 
concrete is further complicated by the vast number of potential material configu-
rations, making the identification of ideal formulations a daunting task. 

This paper introduces SLAMD [1], a bespoke software that leverages ID 
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research area, with increasing computational power allowing 
for the prediction of material properties for previously un-
tested compositions [6]. Artificial Neural Networks, Support 
Vector Machines, decision trees, and evolutionary algorithms, 
have been successfully applied to predict concrete properties 
[7]. However, conventional ML techniques typically require 
large amounts of data for training, which can be costly and 
time-consuming to collect. 

To overcome this limitation, Sequential Learning (SL) 
and the closely related Bayesian Experimental Design have 
been proposed as an iterative and adaptive algorithm in oth-
er materials science domains, for example, as discussed in the 
works of Reyes and Powell [8] and Lookman et al. [9]. SL 
was used to accelerate materials discovery, with up to 20 times 
faster speedup compared to random acquisition methods, for 
example as demonstrated by Rohr et al.  [10]. Further, op-
timization of composition and processing for materials with 
desirable characteristics was studied using SL. It was found to 
be three times more efficient at finding optimal solutions com-
pared to random guessing on average across multiple domains, 
as demonstrated by Ling et al. [11].

Previous work on building materials

In the context of building materials, SL has been used 
to optimize alkali-activated binders and found to be highly 
effective [2]. Völker et al. searched for binder formulations with 
good compressive strength. It has been shown to require up to 
60 times less data and process more than three times as many 
features as conventional ML methods, indicating superior 
performance under real world complexity. Moreover, integrating 
known material parameters as a knowledge-based loss term has 
been proposed by Von Rueden et al. [12] to guide the search 
for materials with environmentally friendly properties. In a 
second case study Völker et al. [3] showed, that the inclusion 
of a-priori information in the optimization can enhance the 
performance of SL algorithms. The authors argue that a-priori 
knowledge is often available at lower cost than laboratory data. 
They provide evidence that eco-friendly optimization in terms 
of a reduced CO2 footprint does not necessarily come at the 
expense of poorer mechanical properties. 

To conclude, the potential of data-driven material design 
with SL has been demonstrated across various materials sci-
ence domains, with promising applications in building mate-
rials to optimize composition and processing. As SL can be 
utilized with few training data and low application thresholds, 
which are already commonly available in research laboratories, 
this technology can offer a valuable solution to accelerate the 
development of environmentally friendly building materials. 

Despite the benefits of SL, there is still a lack of aware-
ness and expertise in integrating it into domain-specific tasks 
to make informed design decisions and keep track of com-
plex data. To address this, the following chapters will provide 
an overview of how SL can be utilized in an ID workflow 
to develop sustainable materials in a data-driven fashion. The 
SLAMD app, which incorporates a digital laboratory and AI 
optimization capabilities, will also be introduced as a tool to 
facilitate the implementation of this approach in the design of 
building materials.

techniques. ID is a computational method that determines 
optimal material compositions to achieve specific properties. 
This data-driven approach mitigates the risk of overlooking 
relevant designs and enhances the likelihood of discovering 
the ideal materials for a given scenario. It explores the entire 
material space to uncover novel concrete formulations that 
surpass empirically known ones. Despite its demonstrated 
potential in expediting the design of cementitious materials 
in our previous work [2-4] and its suggested use in design-
ing ultra-high performance concrete mixes [5], its practical 
application has been hindered by the profound understand-
ing of mathematics, programming, and material chemistry it 
necessitates. SLAMD aims to bridge this gap by providing 
user-friendly graphical interfaces, making the ID process ac-
cessible to laboratory personnel, even those lacking extensive 
computational expertise. By transforming existing knowledge 
of material properties and compositions, SLAMD enables us-
ers to intuitively discover new concrete formulations. Further-
more, SLAMD integrates metrics such as carbon footprint 
and cost-effectiveness into the material design process, offer-
ing a more comprehensive approach to concrete formulation 
design. This makes it particularly useful in areas where rapid 
progress is crucial, such as the market adaptation of multicom-
ponent formulas for construction materials.

This paper does not aim to benchmark ID as a methodol-
ogy, but rather to introduce SLAMD as an innovative tool that 
brings the ID approach within the grasp of the wider building 
chemistry community. It elucidates the design concepts be-
hind the software and provides a walkthrough of its workflow, 
aiming to empower professionals in the field to harness this 
potent tool in their work.

A data-driven approach can significantly impact the con-
crete industry by streamlining the material development pro-
cess. This allows for more flexible resource utilization and the 
development of new markets for sustainable materials, includ-
ing locally available or waste-derived ones. Diverse resource 
streams can broaden the supplier base and alleviate the pricing 
pressure created by reliance on a limited number of suppliers. 
Moreover, it becomes feasible to develop new concrete formu-
lations that are not dependent on any specific raw material, 
facilitating supplier switching with minimal disruptions. This 
could ultimately lead to a relaxation of the supply chains and 
a reduction in price pressure, benefiting both manufacturers 
and consumers.

Additionally, this approach can help mitigate the environ-
mental impact of the concrete industry by reducing the need 
for transportation and logistics of raw materials from distant 
locations, thereby minimizing the environmental footprint 
and enhancing sustainability. Stakeholders such as architects, 
engineers, and contractors can also benefit from the ability to 
tailor concrete compositions to specific project requirements, 
improving the performance of the final product and reducing 
the environmental impact.

Literature Review
The integration of machine learning (ML) techniques and 

evolutionary approaches in material design has been a growing 
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figure 1, similar materials are located close to each other in this 
high-dimensional space. The color coding is used to represent 
the relative performance of the materials, with pink represent-
ing high performance and turquoise representing lower per-
formance. This structured representation plays a central role in 
explicit exploration and discovery in ID and distinguishes it 
from traditional, forward design approaches. The right panel 
of figure 1 shows how the adaptive sampling of the ID ap-
proach optimizes this exploration process.

Distinct from traditional forward design, ID employs an 
adaptive, iterative process. While forward design aims to col-
lect representative samples to establish comprehensive knowl-
edge for ideal formulation, it can falter with complex com-
positions, potentially missing crucial samples within a limited 
laboratory budget (either through fine but local sampling as 
in figure 1a or coarse but global sampling as in figure 1b). ID, 
on the other hand, focuses on the “right” data, utilizing each 
iteration to optimize the selection of subsequent experiments 
within the DS. This approach reduces experimental volume 
and enhances the discovery of optimal formulations.

The ID workflow, detailed in figure 2, begins by first de-
fining a comprehensive DS that includes all possible mate-
rial recipes. Variables such as cement admixtures, aggregates, 
powder blends, and additives create each recipe. Further re-
finement integrates each formulation’s composition and pro-
cessing information into the DS, enabling a ML model to in-
terpolate effectively between similar mixtures.

The second phase of the ID workflow incorporates ML 

The ID Method
Within the realm of material design, two primary strat-

egies are generally employed: traditional forward design and 
ID [13]. The forward design approach relies on both empirical 
studies and theoretical understanding to ascertain properties 
from the material’s structure and composition. Its application 
to cementitious materials usually follows a prescription-based 
process, focusing on a specific formulation without broad con-
siderations for other parameters, such as environmental im-
pact or cost.

ID, however, takes an opposite trajectory. It begins by out-
lining desired properties and subsequently identifies the most 
suitable formulation to realize these properties. This strategy 
harnesses computational models and predictive algorithms, 
enabling the simultaneous evaluation of countless possible 
formulations. ID is especially significant in the realm of sus-
tainable materials development due to its wide-ranging appli-
cability and optimization potential [14].

Central to ID is the utility function. This mathematical 
construct helps streamline the material selection process by 
evaluating numerous factors concurrently. It examines each 
formulation’s predicted properties, associated uncertainties, 
and additional information such as cost and availability, ulti-
mately assigning each material a comprehensive utility ‘score’.

Take, for instance, the forward design of a concrete mix. 
Traditional parameters – such as the water-to-cement ratio 
and the powder content – are adjusted until the mix achieves 
the desired workability and strength. While effective in these 
respects, this approach may not adequately account for other 
critical aspects, including cost and durability [14].

When dealing with more complex scenarios – for in-
stance, choosing from a wide range of supplementary mate-
rials for a specific formulation – the forward design becomes 
less effective. Here, the utility function of ID provides an 
invaluable tool, offering an optimal balance between various 
considerations such as cost-efficiency, workability, durability, 
and strength.

The utility function quantifies each formulation’s overall 
performance considering these criteria, enabling a more objec-
tive comparison. The formulation yielding the highest utility 
score is then selected for further investigation. In this man-
ner, the utility function facilitates a systematic evaluation of 
numerous material formulations, ensuring the selection of the 
most suitable composition in light of the given criteria.

For a more comprehensive understanding, the works of 
Völker et al., 2021 and 2023 provide in-depth insights [2, 4].

The workings of ID take place in a specific space known 
as design space (DS). Although the concept of the DS may be 
foreign to construction chemists, it proves to be highly use-
ful for formalizing the full range of possibilities in the design 
process. The DS, a high-dimensional vector space, represents 
each material formulation by its parameters or properties. 
Essentially, the DS encapsulates each material formulation 
and represents it based on its composition and processing pa-
rameters. As seen in the two-dimensional representation in  

Figure 1: Figure 1: Illustration of the high-dimensional design space in 
a two-dimensional projection. The formulations are shown as dots, with 
similar compositions closely spaced. The color coding represents the 
underlying material performance, with pink representing high performance 
and turquoise representing low performance. From left to right, the figure 
shows the results of optimization (a) with local grid sampling, (b) global 
grid sampling, and (c) adaptive sampling using the inverse design approach.

Figure 2: Inverse design workflow. 
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models, specifically non-parametric types such as Gauss-
ian process regression (GPR) or Random Forest regression 
(RFR). These models can be trained even with a small set of 
initial laboratory validations (even fewer than ten). While the 
predictions of material properties within the DS may lack ac-
curacy at this stage, the models are invaluable for identifying 
regions of interest. The utility function comes into play here, 
spotlighting the most promising formulations (so far) by con-
sidering not only the predicted performance but also model 
prediction uncertainties and factors like environmental foot-
print, resource efficiency, and cost.

Previous work provides clear guidance for the design pro-
cess and has shown that the volume of training data required 
for data-driven design may be far less than often suggested 
[4]. The primary focus should be on establishing an effective 
ID framework that maximizes knowledge gain, rather than 
developing highly accurate models. 

Interestingly, ID leverages model uncertainties or entropy 
in material designs which makes it possible to deliberately dis-
cover novel, and non-oblivious materials, striking an optimal 
balance between material properties and cost. Once validated, 
the top-performing formulations are added to the training 
dataset to update the predictive model in the third step. This 
iterative process—spanning the DS, training the ML model, 
and updating it—continues until the desired performance cri-
teria are achieved.

The ID approach offers several key advantages over tradi-
tional methods. It combines the low cost and quasi-unlimited 
experimentation capabilities of computational methods with 
the empirical certainty of experimental methods, all while 
significantly reducing the number of expensive experiments. 
Additionally, the integration of cost and environmental factors 
into decision making has the potential to revolutionize the 
material discovery and optimization process by enabling the 
identification of innovative materials with superior properties 
and lower environmental impact that may not have been de-
tected using more conventional approaches. 

Introducing SLAMD
SLAMD is a software research tool that combines a 

Digital Lab and AI optimization to enable the discovery of 
new concrete recipes (see figure 3). The Digital Lab provides 
a framework for describing resources and processes and 
their socio-economic impacts and automates the creation of 
complex concrete recipes with detailed material knowledge. 
The AI optimization component integrates data from the 
Digital Lab and applies it to new concrete formulations. 

The app is based on a 3-layer architecture using Python 
(Flask) on the backend. The backend utilizes libraries such as 
Pandas, Scikit Learn, and Lolo Machine Learning to provide 
data analysis and machine learning functionalities. To protect 
user privacy, all data is stored in a server-sided sessions and is 
not accessible to other users. The frontend of the software is 
built with Vanilla JavaScript and Bootstrap, providing a us-
er-friendly interface. SLAMD can be deployed locally as a 
python application or as a web application, making it acces-

sible on any device, suitable for both personal and teaching 
or lab use. To install the app locally, the source code must be 
downloaded and executed via the python command line. This 
process is simple and can be done even by inexperienced users 
as it only requires entering a few commands in the python 
console. For installation details, a readme file is included in the 
application source code repository.

Workflow

The design of concrete recipes follows a hierarchical 
structure, starting with the cement content/supplementary 
cementitious material content and water-to-cement (W/C) 
-ratio and followed by the admixture content (superplasticizer, 
plasticizer, retarders, etc.) and aggregate content. Changes 
made at the top level (cement content, W/C-ratio) will 
affect the bottom levels (admixtures content and aggregate 
content). This hierarchical structure can make manual design 
challenging at scale, but SLAMD resolves this through 
an effective workflow that minimizes the need for manual 
intervention. The workflow consists of four successive steps: 
Base, Blend, Formulations, and AI-optimization each of 
which is described in detail below.

Base: creating base materials and processes

The first step in the Digital Lab workflow is the creation 
of base materials and processes. There are six different types: 
Powder, Liquid, Aggregates, Admixture, Process, and Custom. 
Each of these options has distinct properties and is treated 
differently in the formulation creation process. The “Custom” 
type allows for the specification of a new material type with 
no predefined properties outside of cost, relying instead 
on custom properties to carry information. Figure A1a in 
the appendix shows the user interface with the input fields 
for powders, including cost, composition, and additional 
properties. These can be extended by freely adding custom 
properties. All base materials and processes are structured in a 
table and can be edited at any point (see figure A1b).  

Figure 3: SLAMD landing page with navigation bar (top) and overview 
over modules below.
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Blend: creating blended materials

The next step is to create blended materials by selecting at 
least two base materials of the same type. Blended materials are 
mixtures of base materials, and their properties are a weighted 
average of the properties of the constituent base materials, 
except for “Delivery time,” which is defined as the maximum of 
the base materials’ delivery times. In other words, the blending 
function allows the user to easily augment costs and properties 
at the individual precursor level with the properties of many 
blended mixtures at once (e.g., activators, liquids, or powder 
blends). The composition of the blended materials is specified 
by the ratios of the starting materials. Multiple blends can be 
created at once using the “Increment” input. 

Formulations: creating a concrete and binder search space

The “Formulations” step in SLAMD allows for the 
conversion of resources into concrete and binder formulations, 
creating a comprehensive DS for AI optimization. A 
formulation consists of selected materials and processes and 
must contain a powder, a liquid, and an aggregate for concrete 
formulations, and just a powder and a liquid for binder 
formulations. Additional materials and processes can be added 
freely. The assembly of these constituents is visually detailed 
in figure A2a in the appendix. The total weight of the mix of 
materials in the formulation needs to be specified. For example, 
2400 kg could be used to lay out formulations for roughly one 
cubic meter of concrete. Weights and W/C (determining the 
ratio of liquid-to-powder) can be specified using the input 

fields (compare figure A2b). They fulfil the constraint given by 
the total weight specified for the mixture. To simplify usability, 
this is enforced by appropriate autocompletion functions. The 
liquid-to-powder ratio is used to specify liquids. All newly 
generated material configurations can be edited to manually 
tune the formulations if needed.

AI optimization for materials discovery

The “Materials Discovery” component in SLAMD allows 
the user to configure the inverse design process by selecting 
a previously created DS or uploading a custom .csv. The user 

can delete, select, add target information, or download the DS 
from the user interface. Figure A3 in the appendix illustrates 
this process through the top panel, which displays the search 
space list with its various options. The “delete” option (red 
bin button) simply removes the DS from SLAMD. If a DS 
is selected via the blue selection button, the DS is picked to 

Figure A1: Base materials dashboard: (a) interface to create new materials 
and (b) table with created base materials..

Figure A2: Concrete formulation dashboard with (a) selection of 
constituents and processes and (b) interface for weight fraction 
specification. 
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configure the ID problem. The “add target” option (bulls-eye 
button) opens a window where new columns can be added 
and gaps in the current data can be filled, making it easy to 
enrich the existing DS with new information from the lab. 
This process takes the user to a dedicated form for managing 
targets. Figure A4 in the appendix illustrates the user interface 
where new targets can be added, and existing ones can be 
enriched. The changes can then be saved using the fourth 
action button: “download”.

Next, the user selects relevant features of the mixtures, 
such as chemical composition, manufacturing process, micro-
structure, and other key material characteristics, to define the 
materials input data. These inputs help define the search space 
for the machine learning algorithms to find new materials. A 
carefully chosen set of features ensures that the optimization 
focuses on the most critical aspects of the material, producing 
meaningful results (compare figure A3, center).

Finally, the design goals are configured, a process that is 
illustrated in the lowest panel of figure A3 in the appendix 
and is explained in more detail in the following. The estimated 
utility function, a mathematical representation of the trade-off 
between different target properties, is the key component. The 
utility function aggregates the estimated material performance 
into a single scalar value for each material formulation, allow-

ing the vast material DS to be explored and the best solution 
found based on the design requirements. The target properties 
can be optimized to maximize (e.g., strength and workabil-
ity) or minimize (e.g., CO2-footprint and costs) the utility 
function, depending on the design goals. The user can adjust 
the target weights to prioritize certain properties over others, 
resulting in different optimal trade-off solutions that balance 
conflicting objectives. Additionally, the relevance boundary 
can be set by specifying a threshold for each target property, 
such as a strength threshold beyond which improvement does 
not contribute to the material’s utility.

SLAMD offers two prediction models, including GPR 
[15] and a RFR [16]. Furthermore, an option exists to add 
a Principal Component Analysis based dimensional reduc-
tion as a preprocessing for high-dimensional materials data. 
These are commonly used models implemented according to 
our findings in Völker et al. 2023 [4] and are selectable based 
on the specific characteristics of the data and the objectives of 
the prediction task. While GPR is suitable for smaller datasets 
and provides probabilistic predictions, RFR tends to perform 
better with larger datasets and can handle more complex in-
teractions between variables. Although the choice of the pre-
diction model can be an expert-level decision, our software 
provides default settings optimized for typical concrete for-
mulation optimization tasks.

The utility for each material in the search space is calcu-
lated based on the specified targets and the curiosity value. 
A higher curiosity value prioritizes predictions with greater 
uncertainty, while a negative curiosity value favors predictions 
with low uncertainty. As described in section 3, higher un-
certainties can prioritize materials with the potential for high 
information gain, while lower or negative uncertainties can 
prioritize more reliable predictions.

After the ID is configured and the prediction is made, a 
table lists the formulations sorted by utility and predicts tar-
get properties. The user can easily select the candidate ma-
terial with the highest utility score by choosing the highest 
table entry for validation in the laboratory. Interactive plots 
further assist in the selection process. The predictions are vi-
sually differentiated via color coding based on the estimated 
utility. An exemplar of this is figure 4. It presents a scatter plot 
illustrating an ID prediction from the SLAMD exploration 
module for a formulation required to exhibit a 28-day com-
pressive strength greater than 30 MPa while maintaining a 
minimum CO2 footprint. In this illustrated design scenario, 
the emphasis is on achieving a formulation with a compres-
sive strength surpassing 30 MPa at the 28-day mark. While 
many formulations meet the strength criteria, the estimated 
utility also factors in the CO2 footprint. This leads to higher 
utilities for materials with lower CO2 footprints. In a classical 
forward design, factoring in such information can be chal-
lenging. However, in ID, where a comprehensive DS contains 
all relevant variants of the materials, it can be easily derived, 
making it available for informed decision making. This makes 
sustainable design decisions much simpler while maintaining 
high materials performance.

Figure A3: Dashboard for selecting search space and design targets; 
top: search space list with options (delete, select, add target, download 
as *.csv-file); center: three fields allow the user to select Materials Data, 
Target properties for AI prediction, and a-priori information such as CO2 
footprint.; bottom: further options for the specification of the target. 

Figure A4: View for adding new and enriching existing targets. For each 
new target and/or any chosen target to be edited, a dedicated editable 
column is created. Here the user can specify experimental results from 
the laboratory. 
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The t-SNE visualization is designed to increase the infor-
mation gain of the DS. It is a mathematically derived repre-
sentation of the materials input data, where similar materials 
are shown close together. The distinct clusters in the t-SNE 
visualization provide an overview of the material variants in 
the DS, making it easier to select a diverse set of materials for 
robust and informative model development. The color-coded 
utility helps identify the most promising candidates within 
each cluster. In figure A5, a t-SNE plot of a DS that contains 
six distinct clusters is shown, each referring to a material and 
processing type. Although only a few materials have labels 
(marked as black crosses), it is clear that the materials on the 
left offer little utility, helping scientists to focus on the more 
relevant formulations in the center and right. 

Conclusion
The quest for sustainable building materials is a pressing 

challenge, and data-driven approaches offer a promising solu-
tion. However, these approaches can be difficult for laboratory 
personnel to implement and execute. SLAMD solves this is-

sue by providing a user-friendly software solution for design-
ing sustainable concrete recipes and materials. This innovative 
approach combines the power of ID with the precision of ma-
chine learning to identify materials with superior properties 
and reduced environmental impact. 

SLAMD streamlines the design process and provides a 
comprehensive framework for creating complex materials, 
defining goals, and finding optimal material formulations 
through its interactive user interface. The effectiveness of this 
approach has been demonstrated in numerous case studies 
across various material domains, including building materials. 
By reducing the number of necessary experiments, SLAMD 
enables the discovery of non-obvious solutions and ultimately 
reduces the cost and environmental impact of materials devel-
opment.

As technology continues to evolve, we anticipate that da-
ta-driven design tools such as SLAMD will become increas-
ingly prevalent in the coming years. However, the successful 
implementation of these tools will require collaboration be-
tween researchers, engineers, and software developers to inte-
grate them into existing laboratory workflows and effectively 
disseminate knowledge. If done effectively, the implementa-
tion of novel laboratory workflows can lead to a paradigm shift 
in materials design, revolutionizing the capabilities of labora-
tory personnel.

To fully embrace the opportunities of data-driven tools 
such as SLAMD in materials development, a change in mind-
set and working practices is required. This includes a shift to-
ward a more holistic view on building materials, but also, in 
very practical terms, the establishment of new workflows and 
systems, such as electronic laboratory notebooks and databas-
es, that facilitate the capture, storage, and sharing of data in a 
standardized and accessible format. This will enable the effec-
tiveness of data-driven techniques such as inverse design to be 
increased across a wide range of materials and use cases.

Open science and data and software sharing is a key factor 
in the successful adoption of data-driven approaches. Sharing 
data and results can help build a more comprehensive under-
standing of materials and their properties, leading to better 
decision making and more efficient use of resources. This can 
also help increase transparency and accountability in the ma-
terials development process and lead to more sustainable out-
comes.

The open-source nature of SLAMD also promotes collab-
oration and progress within the science and engineering com-
munity, contributing to improved safety and sustainability in 
the construction industry. The benefits of this technology are 
far-reaching, positively impacting architects, engineers, and 
suppliers alike.

In the context of sustainable concrete development, the 
use of data-driven techniques can already help minimize the 
environmental impact of the concrete industry by reducing 
the need for transportation and logistics of raw materials and 
enabling the development of new concrete formulations that 
are not dependent on specific raw materials. This can allow 
switching between suppliers with minimal disruption and ul-

Figure 4: Predicted results in an inverse design for a required 28-day 
compressive strength of over 30 MPa and a minimum CO2 footprint 
shown in the SLAMD discovery module as a scatter plot. 

Figure A5: t-SNE visualization of the search space in SLAMDs discovery 
module with untested materials as clusters which are colored according to 
their utility and tested formulations as crosses. 
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timately lead to a loosening of supply chains and a reduction 
in pricing pressure, which can benefit both producers and con-
sumers.

In summary, the integration of data-driven techniques 
and the transition to open science and data sharing are critical 
to the development of sustainable concrete and other materi-
als. By streamlining the design process and reducing the need 
for experimental validation, data-driven approaches can lead 
to more efficient and effective materials development that pos-
itively impacts the environment, industry, and society.
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