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Abstract—This research paper introduces a novel integrated 
circuit (IC) designed for bioreactor applications catering to 
multichannel electrochemical sensing. The proposed IC comprises 
2x potentiometric, 2x potentiostat, 2x ISFET channels and 1x 
temperature channel. The potentiostat channel utilizes a current 
conveyor-based architecture with a programmable mirroring 
ratio, enabling an extensive measurement range of 114 dB. The 
potentiometric channel incorporates a customized electrostatic 
discharge (ESD) protection circuit to achieve ultra-low input 
leakage in the picoampere range, while the ISFET channel 
employs a constant-voltage, constant-current topology for 
accurate pH measurement. Combined with the die temperature 
sensor, this IC is well-suited for monitoring bioreactions in real-
time. Additionally, all channels can be time-multiplexed to a 
reconfigurable analog backend, facilitating the conversion of input 
signals into digital codes. The prototype of the IC is fabricated 
using 0.18 µm standard CMOS technology, and each channel is 
experimentally characterized. The interface IC demonstrates a 
peak power consumption of 22µW. 
 

Index Terms— Potentiostat, potentiometry, ISFET, current 
conveyor, dynamic range (DR), low leakage, ESD protection, pH 
measurement, electrochemical, bioreactor, low-power. 
 

I. INTRODUCTION 

IOREACTORS have become integral in various aspects of 
our daily lives, serving as systems or devices that create 

and maintain biologically active environments [1]. Their 
applications span across many industries, such as food, 
pharmaceuticals, and research activities (Fig.1). For instance, 
for the production of beer, yogurt, and cheese in the brewery 
and dairy industry, yeast and lactic acid bacteria (LAC) are 
responsible for the fermentation process, wherein essential 
bio/chemical reactions take place within the bioreactor. 
Monitoring these reactions in real-time with precise 
measurements of key chemical parameters like temperature, 
dissolved oxygen (DO), pH, and glucose level is critical for 
these enzyme/bacteria-related reactions. To achieve this, an 
electrochemical sensor interface is formed by integrating 
sensors/electrodes/transducers and a readout integrated circuit 
(IC) [2].  

 Among the various sensing mechanisms, potentiometry and 
amperometry play significant roles. A redox reaction involves 
oxidation and reduction at the working electrode (WE) and 
reference electrode (RE), respectively [2][3]. This results in a 
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potential difference proportional to the concentration of the 
analyte between the two electrodes, known as potentiometric 
measurement. Moreover, amperometry can measure the redox 
current. To avoid unwanted IR drop over the RE electrode, the 
reaction current can be provided via a chemically inert counter 
electrode (CE). This results in a well-known 3-terminal 
electrochemical cell which requires a potentiostat circuit for 
proper voltage biasing and current sensing current. The 
Faradaic currents are then generated by electron exchange 
during the redox reaction [5][6]. pH measurement can be 
achieved using an ion-selective field-effect transistor (ISFET), 
where the pH value alters the ISFET threshold voltage [7][8], 
subsequently affecting the gate-source voltage. These chemical 
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Fig. 2 (a) Big tank bioreactor for industrial use. (b) Small bioreactor
vessel/tube for vaccine, pharmaceutical development, and other research 
purpose. 
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parameters can be converted into voltage or current signals and 
digitally read out using an interface IC, enabling precise control 
over reactions, improved productivity, and avoidance of 
undesired byproducts. 

The size of bioreactors ranges from large tanks used in 
manufacturing and industrial applications to smaller vessels or 
tubes (Fig. 2) utilized for research purposes like vaccine 
development or medical testing [9][10]. In conventional setups, 
electrochemical sensing modules are typically placed on the 
surface of the tank, where each sensing channel can be an 
individual meter or machine due to the ample surface area 
available. These channels can be powered by the mains power 
source through cables. However, when it comes to bioreactors 
in the form of vessels and tubes, replicating the same approach 
becomes challenging due to limited form factor constraints. 
Another significant concern is the rapid degradation of 
sensors/electrodes commonly observed in electrochemical 
applications [11], necessitating frequent replacement or 
calibration, which is not user-friendly. Recent advancements in 
integrated circuit technology provide an opportunity to address 
these issues more effectively. To overcome the aforementioned 
challenges, our objective is to develop a compact, low-power 
interface IC with multimodal electrochemical sensing 
capabilities, including potentiometric, potentiostat, ISFET, and 
temperature channels (Fig. 3). Along with a separate power 
module and wireless communication block, this IC can be 
integrated seamlessly with disposable sensors. Consequently, 
all monitoring tasks can be easily accomplished by simply 
introducing the system into the solution, suiting small 
bioreactor vessel requirements. This paper focuses solely on the 
sensor interface IC, which finds frequent usage in cutting-edge 
bioreactor sensing applications [12][13]. However, challenges 
still persist for each individual sensing channel. 

Amperometry is a standard method to measure redox 
reactions [2][14]. Therefore, it is crucial to incorporate 
bidirectional current measurement capability, as oxidation and 
reduction reactions typically exhibit opposite current directions 
[15]. As mentioned before, a typical electrochemical cell has a 
working electrode (WE) where the reaction takes place, a 
reference electrode (RE), and a counter electrode (CE) 

electrode. The potentiostat circuit has to provide a well-defined 
voltage difference between RE and WE to maintain the desired 
reaction while simultaneously measuring the reaction current. 
Typically, no current should flow into the RE electrode. Instead, 
a CE completes the circuit and provides the current flowing out 
of the WE. [16]. The voltage biasing and expected redox current 
depend greatly on the specific redox reaction one wants to 
monitor. Hence the potentiostat circuit must support a wide 
measurement range, capable of accommodating currents 
ranging from picoamperes to microamperes [17]-[19]. 
Secondly, potentiometric measurements are employed to 
determine the concentration of a solute in a solution. It involves 
measuring the potential between the RE and the ion-selective 
electrode (ISE) or working electrode [20][21]. Since solute 
concentrations can be extremely low and potentiometric 
measurements are typically valid in electrochemical 
equilibrium only, the interface IC must exhibit a very high input 
impedance (>GΩ) to accurately capture the potential and avoid 
stray current flow which would perturb equilibrium. In pH 
monitoring, a CMOS passivation layer is sensitive to hydrogen 
ions or other target ions if a selective membrane is deposited. 
Consequently, the overdrive voltage of the ISFET changes 
accordingly (Fig. 3) [22]. However, it should be noted that 
within the liquid gate, trapped charges can lead to undesired DC 
shifts. Therefore, the readout circuit requires a large input 
compliance range and programmability in terms of current and 
voltage biasing [23]. 

We propose a multimodal electrochemical sensing integrated 
circuit (IC) that addresses the requirements of a compact form 
factor and low power consumption. The prototype of this IC is 
implemented using standard 0.18 μm CMOS technology. It 
incorporates two potentiometric channels, two potentiostat 
channels, two ISFET channels, and a temperature channel, 
enabling comprehensive sensing capabilities for bioreactor 
applications. The potentiostat channel employs a 
programmable current conveyor architecture, facilitating 
bidirectional current measurement with an exceptional range of 
114 dB. To achieve high-performance potentiometric 
measurements, the potentiometric channel incorporates a 
custom electrostatic discharge (ESD) protection circuit that 
ensures an input impedance greater than 350 GΩ and a leakage 
current of less than 2.5 pA. The ISFET channel, coupled with 
the readout circuitry, delivers a wide programmable biasing 
range, ensuring excellent linearity and signal-to-noise ratio 
(SNR). To seamlessly integrate the frontend channels, a time-
multiplexing switch matrix, and efficient analog backend are 
designed, resulting in a low power consumption of < 22 µW. 

This paper is an extended version of [24], and the rest of the 
paper is organized as follows. Section Ⅱ describes the system 
architecture and the operating principles of the interface IC. 
Section Ⅲ shows the detailed circuit implementation of each 
channel. Section Ⅳ describes the electrical and in-vitro 
measurement results, while section V draws the conclusion. 
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Fig. 3 The vision of the proposed electrochemical interface IC in bioreactor
monitoring tasks and the potential measurement modalities.  
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II. THE PROPOSED ARCHITECTURE 

The system architecture of the interface IC is described in 
this section, including the block diagrams. Moreover, details 
about the reconfigurable analog backend are introduced. 

A. Motivation and system architecture  

Previous works on electrochemical sensing ICs have 
primarily focused on single-modality sensing approaches, such 
as using a single potentiostat channel for glucose monitoring 
[25][26] or ISFET channels for pH sensing and imaging 
[27][28]. However, the bioreactor environment is often more 
complex, requiring the measurement of parameters like 
dissolved oxygen (DO), concentration, and temperature, which 
are crucial for enzymes and other reactions. To address this 
need, a multifunctional chip with different channels is 
proposed. Existing electrochemical chips cannot measure as 
many modalities in a sufficiently power-efficient manner 
[29][31]. A simplified system diagram is presented in Fig. 4, 
where all readout channels are implemented on the same IC, 
and the analog input signals are converted to digital codes by 
an ADC. Digital control, register, and clock management unit 
(CMU) are included. The IC communicates with the 
microcontroller through an SPI module. 

The detailed block diagram is shown in Fig. 5. Two 

potentiostat channels are implemented, each equipped with an 
on-chip buffer to provide a voltage bias to the WE. The voltage 
applied to the WE can be digitally controlled using a DAC with 
a full voltage range spanning from the ground to the supply 
voltage. The RE voltage is regulated to the reference voltage 
(set to mid-supply) using a buffer and a negative feedback loop. 
The bidirectional current from the CE is sensed with a current 
conveyer completing the potentiostat circuit which is further 
explained in section III. A (see also Fig. 7). Two potentiometric 
channels are implemented, where the RE can be biased using a 
buffer that can be adjusted as needed. The voltage difference 
between WE and RE is sensed through two pseudo-differential 
buffers. To minimize input bias current, ESD compensation is 
applied. Moreover, two ISFET channels are implemented using 
the constant-current, constant-voltage architecture. The bias 
current and drain-source voltages of the ISFET are 
programmable. A die temperature sensor is employed to 
monitor the temperature in real-time (-40°C to 70°C, equivalent 
measured readout noise < 0.05°C) with a conventional bipolar 
implementation [30]. All channels are time-multiplexed to a 
switch matrix. The analog backend is responsible for filtering, 
amplification, and A-to-D conversion. The digital control 
includes setting registers, clock control, digital filters, and a 
communication module. This architecture is suitable for 
multimodal electrochemical monitoring, especially for 
bioreactor applications, as described in the previous chapter. 

B. Reconfigurable analog backend 

The analog front end of the interface IC performs the 
conversion of all electrochemical signals into either current or 
voltage signals prior to the channel multiplexer. However, to 
accommodate the different signal amplitudes and bandwidths, 
the analog backend requires optimization in terms of 
amplification and filtering before transmitting the signals to the 
ADC. A reconfigurable and fully differential analog backend is 
designed to integrate with all the channels. 

In the potentiostat channel, the output signal is in the form of 
a current due to the use of a current conveyor. The trans-
impedance amplifier (TIA) mode is employed to amplify this 
current signal. The trans-impedance gain is determined by the 
feedback resistor (Rf), which can be programmed and set within 
a range of 4 MΩ to 40MΩ (Fig. 6 (a)). Rf is in parallel with Cf, 
which sets the low-pass corner for the TIA, serving as an anti-
aliasing filter (AAF) and eliminating out-of-band noise prior to 
the A-D conversion. Similarly, for voltage output signals, the 
analog backend is reconfigured to operate in the programmable 
gain amplifier (PGA) mode (Fig. 6 (b)). The feedback resistor 
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Fig. 5 (a) The detailed circuitry blocks of electrochemical interface IC. 
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Fig. 4 The simplified system diagram. 
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Fig. 6 The reconfigurable analog backend: (a) TIA mode for current readout; 
(b) PGA mode for voltage readout.  
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Rf  and (R1 +R2) set the voltage gain. R1, together with C1 set the 
low-pass corner to behave like AAF. The value of R1 is 5 MΩ 
and C1 is programmable up to 4 pF. This reconfigurable analog 
backend is shared among all channels, enabling the conversion 
of analog signals into digital codes while conserving power and 
chip area. The ADC is also shared between all channels. It is a 
SAR-based ADC running 32 kS/s with 12 bits resolution. 

 

III. CIRCUIT IMPLEMENTATION 

This section provides a detailed description of each channel's 
implementation and circuit blocks, including the potentiostat 
channel current conveyor, potentiometric channel ESD 
compensation circuit, and ISFET channel circuit. The 
motivations and design considerations behind each circuit block 
are also elucidated. 

A. The potentiostat and current conveyor 

Fig. 7 (a) shows a typical electrochemical measurement by a 
potentiostat. The two amplifiers will maintain a voltage 
difference between the RE and WE (equal to VWE-VREF). A 
(chemically inert) CE electrode is used to provide the reaction 
current since no current should flow in the RE. A TIA will 
generate an output voltage proportional to the redox current Iion, 
Rf is the feedback resistor: 
 

𝑉௨௧ ൌ 𝐼𝑅 ሺ1ሻ 
 

However, this configuration introduces an extra pole and 
decreases the stability of the potentiostat due to the unknown 
parasitic capacitance between the WE and the electrochemical 
cell [3][26]. One conventional solution is to short the WE to 
ground (or the supply) and measure the current flowing through 
the WE (Fig. 7 (b)). However, this approach usually only allows 
sensing of the ion current in one direction (sink when WE is 
grounded, source when it is connected to supply), which is not 
ideal [16][17]. Instead, the proposed method uses the WE solely 
for voltage biasing, while the reaction current is sensed in the 
CE. Since no current should flow into the RE, the reaction 
current flows from CE to WE and can hence be measured in 
either electrode. Since the CE is connected to a low-impedance 
node (the output of a buffer), stability issues are mitigated. By 
biasing the RE at mid-supply and allowing the WE voltage to 
have a rail-to-rail swing, the proposed topology supports 
bidirectional redox current (Fig. 7 (c)). This current is then 
mirrored into a current conveyor (CC).  

The circuit implementation of the current conveyor is 
presented in Fig. 8. In order to sense bidirectional current, the 
current conveyor must be capable of sourcing and sinking full-
range current with a low input impedance. Thus, CE is 
connected to the source of M1 and M2. To regulate the RE 
voltage, RE and CE are connected in a negative feedback 
scheme. The output of amplifier A1 is connected to two level 
shifters to ensure that both M1 and M2 are active. Depending on 

the direction of the current, either a PMOS or NMOS current 
mirror is enabled to copy the current to the output branch. 
Different from other conventional CC architectures [32][33], 
this circuit ensures constant drain-source voltages of the 
mirroring transistors to improve current mirroring accuracy and 
to avoid the channel modulation effect. Regulating circuits, 
consisting of transistors M3 and M4, are built to fix the drain 
voltage of M5 and M6 to VPcas and VNcas, respectively. These 
regulating circuits also help reduce the noise of M3 and M4. A 
source degeneration circuit is used to further minimize the 
mirroring transistors' noise and improve the current mirror's 
linearity. To expand the measurement range of the potentiostat, 
the input branch can be programmed with a 50:1 ratio with 
respect to the output branch, supporting a total input current 
range of ±200 nA to ±10 µA. Additionally, a single-to-
differential topology is employed to integrate with the analog 
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Fig. 7 (a) Conventional potentiostat topology. (b) Conventional potentiostat
with RE shorted to ground or supply. (c) Proposed current conveyor based
potentiostat. 
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Fig. 8 Schematic of the bidirectional current conveyor with programmable
gain and fully differential output. 
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backend in a fully differential trans-impedance amplifier (TIA) 
mode. However, it should be noted that the single-to-
differential architecture may not improve the signal-to-noise 
ratio (SNR) as it introduces more noise contributors and may 
introduce even-order harmonics during mirroring. 

B. The potentiometric channel and custom ESD 

Maintaining a low leakage current at the potentiometric 
interface is crucial for preserving chemical equilibrium. ESD 
can introduce significant leakage, reaching nA or even µA 
levels, particularly at elevated temperatures common in 
bioreactor applications. Conventional ESD compensation 
methods, as shown in Fig. 9 (a), utilize diodes pdio1 and pdio2 in 
a reverse-biased configuration with identical sizes and using a 
regulation loop to equalize the biasing voltages. Thus, the 
leakage currents through these diodes cancel each other out. A 
similar principle can be applied to pdio3 and ndio1 to further 
nullify leakage currents. However, the introduction of pdio2 
comes with an additional parasitic diode from Nwell to Psub 
which might exhibit leakage (Fig. 9 (a)), potentially degrading 
the performance of the interface IC in applications demanding 
ultra-low leakage [34]. Hence, we implement a custom ESD 
protection with improved leakage compensation (Fig. 9 (c)). 
The input (IN) is ESD protected with anti-parallel diodes pdio1,2 

to an intermediate net (nESD) which itself is protected with 
standard ESD protection [35]. pdio3,4 are replicas of pdio1,2 and, 
thanks to amplifier A2, are similarly biased, hence exhibiting 
the same leakage current. The feedback loop of A2 will ensure 
that the voltage Vx = Vin. Since no current can flow from the 
negative terminal of A2, A2 will find a voltage Vcomp such that 
all the leakage current will be provided by the amplifier. Since 
this bias condition is copied to the actual input, it follows that 
Iin should be 0. In reality, the input impedance will be limited 

only by mismatch and finite open-loop gain of A2. The same 
technique is applied to the potentiostat channels. 

Besides using a custom ESD protection circuit, the input pair 
of the main amplifier Amain applies a thick-oxide transistor, 
further decreasing the leakage current. A pseudo-differential 
topology is used to buffer both voltages from the WE and RE, 
where both buffers are supplied by a 3.6 V voltage generated 
by an on-chip charge pump (Fig. 10 (a)). This configuration 
enables the potentiometric channel to have higher voltage 
headroom while maintaining high linearity. 

C. ISFET channel 

 The ISFET and its readout circuit form the ISFET channel, 
which is used to measure the solution's pH. Fig. 10 (b) shows 
the circuit implementation of the ISFET channel. An on-chip 
buffer is utilized to bias the liquid gate at a desired voltage. The 
pH value, which corresponds to the concentration of hydrogen 
ions, can influence the threshold voltage of the ISFET. Thus, 
the pH values can be determined by measuring the gate-source 

voltage of the ISFET. The constant-voltage, constant-current 
topology is used [37], where the drain voltage is a level-shifted 
copy of the source voltage, provided by flowing a current 
through a programmable resistor. The drain-source current is 
set by two current sources/sinks, where the ISFET is now 
working in a common drain configuration. The source voltage 
is buffered to the output. The drain-source current of the ISFET 
can be adjustable and ranges from 10 nA to 100 uA. The drain-
source voltage biasing can also be programmed from 25 mV to 
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Fig. 11 (a) Die micrograph of the 3.2×3.2mm2 chip fabricated in TSMC
0.18μm with visible flip-chip bumping pads. (b) Power breakdown of all
channels, peak power is founded when ISFET channel enabled. 

 

Fig. 13 A measurement demonstrates the effectiveness of the custom ESD
protection input leakage compensation. We measured 5 samples across the
whole input voltage range. The leakage remains below 2.5pA and is limited
by parasitics in our measurement setup. 
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Fig. 12 (a) Potentiostat output spectrum with 176nA, 2Hz sine current input.
(b) Potentiostat SNR vs. Iin with 4 input range settings and maximum
measurement range. (c) Potentiometric channel output spectrum with 1.4 Vpp,
4 Hz sinewave voltage input.  
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600 mV. This design approach enables compliance with a 
multitude of potential ISFET sensors. 

IV. MEASUREMENT RESULTS 

This electrochemical interface IC has been implemented and 
fabricated in a standard TSMC 0.18 µm CMOS technology. 
Fig. 11 (a) shows the micrograph of the prototype, occupying a 
total area of 10.24 mm2. The majority of the chip area is 
dedicated to analog blocks, with all digital control functions, 
such as low-level timing, clocking, and digital filters, 
occupying a minor part of the area. The communication 
protocol between the chip and PC follows the standard SPI 
interface. The readout IC operates from a supply voltage of 1.8 
V, and the power consumption breakdown for each channel is 
presented in Fig. 11 (b). The ASIC can be operated in a time-
multiplexed manner. Most channels consume <15µW, while 
the ISFET channel consumes 22µW. Since electrochemical 
measurement typically only need to happen sporadically, the 
ASIC offer a low standby power of around 0.7µW. The on- and 
off-times in fig. 11b are merely indicative. In any real scenario, 
they should match the expected settling time of the sensor. The 
bumping pads on the IC offer the potential for 3D packaging or 
chiplet integration, providing flexibility in packaging. 

For electrical performance characterization we used standard 
equivalent RC impedance models for electrochemical cells to 
account for electrode-loading where appropriate. For the 
potentiostat channel, a voltage sine-wave signal from the signal 
generator was connected to the CE through resistors ranging 
from 4 MOhm to 80 kOhm, resulting in an input current ranging 
from ±200 nA to ±10 µA. Fig. 12 (a) shows the recorded output 
spectrum for a 176 nA, 2 Hz input sinewave current. The ADC 
is running at 32 kHz, and the digital data output is decimated 
with a factor of 1024. Therefore, the final output data rate is 32 
S/s. As can be seen from the spectrum, an SNR of 76.4 dB and 
SNDR of 68.2 dB are obtained, equivalent to an ENOB of 11 
bits. The main nonideality is distortion, as the spectrum only 
shows a THD (Total Harmonic Distortion) of 68.9 dB. It 
confirms the dominant contributors to distortion are the even-
order harmonics introduced by the single-to-differential 
topology. Additionally, since the data rate of this design is 32 
Sps, it has the potential to down-convert mains interference (50 
Hz) to the baseband frequency. We could also calculate the total 
integrated noise from those spectra, which is around 14pArms.  

Using the same setup, we measured the SN(D)R for various 
input amplitudes (see Fig. 12(b)). The chip supports 4 different 
gain settings to cover a wide dynamic range. In the highest gain 
setting, the input-referred noise is around 14pArms, and the 
maximum input signal is ±200nA, which can be increased with 
different gain settings all the way up to ±10µA spanning a 
114dB dynamic range. 

To assess the performance of the potentiometric channel, a 
1.4 Vpp, 4 Hz sinewave voltage was applied and measured (Fig. 
12(c)). The results reveal an SNR of 77.2 dB and an SNDR of 
74.2 dB for the potentiometric channel. These values indicate 
that both noise and distortion play equally significant roles in 
the nonidealities of the channel. The presence of mains 
interference and flicker noise is noticeable but does not degrade 
SN(D)R significantly. 

Besides the noise performance, the characterization of the 
custom ESD block's input leakage current and the 
potentiometric channel's input impedance holds significant 
importance. To evaluate these parameters, the potentiometric 
channel was activated, and its input was connected to a source 
meter (Keysight B2962A). The input voltage was swept from 
the ground to the supply voltage while measuring the input 
current (Fig. 13). The measured input leakage of the 
potentiometric channel over the entire 1.8V input range remains 
below 2.5pA (limited by parasitics in the measurement setup). 
This corresponds to an equivalent input resistance (ΔV/ΔI) of 
over 350 GΩ. In total, five chips have been measured to confirm 
the robustness of the custom ESD circuit. 

The electrochemical interface IC is also validated in an in-
vitro environment, mimicking real bioreactor measurements. 
The main PCB contains the electrochemical sensor interface IC 
and a microcontroller to stream the data to a PC. Various sensor 
PCBs can be plugged into the main PCB. One example of such 
a sensor PCB with our electrochemical reference electrode, 
oxidation-reduction potential (ORP) electrode, DO electrode, 
and commercial ISFET/glucose devices is also shown. We 
chose an off-chip ISFET instead of an on-chip one because it 

RE
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DO

ISFET
(commercial)

µC ASIC
Globtop

C
on

n
e

ct
o

r

DO 
Sensor

Glucose
(commercial)

ORP 
Electrode

MAIN BOARD

SENSOR BOARD

Fig. 14 Initial proof-of-concept board for bioreactor monitoring and the related
sensors including DO sensor, commercial ISFET, commercial glucose sensor
and ORP electrode.  

(b)

(a)

(c)  

Fig. 15 (a) ISFET channel pH measurement with a commercial ISFET in
buffer solutions & pH measurement variance (inset). (b) Dissolved Oxygen
two-point measurement vs. commercial setup (bottom-left) with PSTAT
channel. (c) Glucose measurement with commercial sensor using PSTAT
channel vs. commercial readout (bottom-right). DO/glucose measurement are
averaged 1-second-long/30-second-long recording sampled at 32 Sps ( In total
960 samples). 
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has high sensitivity [36]. In our proof-of-concept, only the 
sensor board is waterproofed by simply covering all the 
exposed connections with epoxy. Fig. 14 provides a detailed 
close-up view of some of the sensors employed for the 
validation of the interface IC. 

The ISFET channel is first validated by pH measurement. 
The ISFET is dipped into three buffer solutions with different 
pH values (pH 4, 7, and 10). The RE voltage is fixed to 1.6 V, 
and Fig. 15 (a) shows the source voltage of the ISFET, 
confirming the 52 mV/pH sensitivity as expected for this ISFET 
device. It also achieves an R2 of 0.99999. Multiple 
measurements have been done to measure the noise of the 
ISFET channel. The inset figure shows the standard deviation 
of the individual recordings. The input-referred ISFET channel 
plus sensor noise is 0.006 pHrms. 

Then, the potentiostat channel is validated by DO and 
glucose measurements. Fig. 15 (b) also shows an amperometric 
recording of a Pt microelectrode, functionalized for DO 
measurement. A beaker of water is first pumped by nitrogen to 
drive out all the DO, which is then measured at 0.11ppm by a 
commercial DO meter (CH instruments potentiostat). Another 
sample beaker of water is at room temperature, and the 
measured DO is 7.61 ppm. These samples were then measured 
using the interface IC. Each data point shown in Fig. 15 (b) was 
obtained by measuring at 32Sps during a 1s period and 
calculating the average. Fig. 15 (c) shows the results of a simple 
glucose titration experiment using a commercial off-the-shelf-
glucose sensor. For this experiment, we measured each 
concentration value for 30s (again sampled at 32Sps) after 

allowing the mixture to settle and calculated the average value 
obtained. We repeated the protocol with Autolab, which yielded 
very similar results. For completeness, the standard deviation 
of these glucose measurements was around 2nArms, which is 
completely dominated by the sensor/environmental noise. 
 In the experimental setup depicted in Fig. 16(a), one of the 
sensor boards was mounted on the main board and immersed in 
a test solution to perform an ORP measurement with the 
potentiometric channel. Five ORP measurements were recorded 

TABLE I PERFORMANCE COMPARISON 

 This work 
[38] 

ISSCC'22 
[39] 

ISSCC’20 
[40] 

ISSCC’19 
[41] 

CICC’18 
[31] 

AD5940 
[42] 

ISSCC'21 

Applications Bioreactor Bio-Sensing Drugs DNA Alcohol Chemical Wound 

Technology 0.18 μm 0.18 μm 65 nm 0.25 μm 65 nm -- 0.18 μm 

VDD 1.8 V 1.8-2.2 V -- 5 V 0.9 V 2.8-3.6 V 1.2 V 

 Area 10.24 mm2 23.31 mm2 0.385 mm2 63 mm2 1.275 mm2 15.12 mm2 d 8 mm2 

Total Power 22 μW (peak) 58 mWa 220 μWb 250 μW 0.97 μW  4.55 mWe 49 μW 

TEMP Yes No No No No Yes Yes 

Potentiometric Yes No No No No Yes No 

Max. Leakage 2.5 pA -- -- -- -- 20 pA -- 

Input Range 1.8 V -- -- -- -- 1.82 V -- 

Noise 72.3 μVrms -- -- -- -- 24 μVrms
f -- 

Bandwidth 16 Hz -- -- -- -- 450 Hz -- 

ISFET  Yes No No No Yes No No 

Noise 6 mpHrms -- -- -- 6.6 mpHrms* -- -- 

pH Range 4-10  -- -- -- 6.8-7.4  -- -- 

Potentiostat Yes Yes Yes Yesc Yes Yes Yes 

 Noise 14 pArms 39 fArms 15.2 pArms 0.28 pArms 1.24 nArms -- 2 pArms 

Bandwidth  16 Hz -- 5 Hz 20 Hz -- -- 1-1000 Hz 

Max. Input ±10 μA 300 pA ±0.8 μA ±12.5 nA 80 nA ±750 μAg ±6.14 μA 

Max. Range 114 dB 78 dB 100 dB 93 dB 30.2 dB -- 129.7 dB 

 
a Including pixel power & circuit  b 5.25 mW before duty-cycling  c External Potentiostat   d Wafer Level Chip Scale Package  e Analog peripheral in idle 
mode and ADC    f ADC noise only for PGA gain of 1 and 900Hz update rate   g Low-power mode  *Calculated from the graphs 
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(b)

Fig. 16 (a) ORP measurement with the potentiometric channel. (b) Dynamic 
DO measurement with potentiostat channel. 
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with two different ASICs, and the results (without sensor 
calibration) were compared to a commercial Jenco 
potentiometer. To evaluate the potentiostat's performance in a 
dynamic environment, another experiment was conducted 
using DO electrodes, as shown in Fig. 16(b). The sensor board 
with the electrodes was immersed in a water solution. Initially, 
pure nitrogen was bubbled into the solution for an hour, 
effectively removing all dissolved oxygen. This process is 
clearly observed in the recorded curve, where the current 
experiences a significant drop, approaching 0. Subsequently, 
oxygen was bubbled through the solution, leading to rapid 
dissolution and generating a prompt recovery response. 

 Table I provides a comprehensive summary of the 
performance characteristics of the proposed interface IC, 
accompanied by a comparison to recently published 
electrochemical interface ICs. The chip achieves a maximum 
measurement range of 114 dB with a potentiostat channel, a 
<2.5 pA leakage, and>350 GΩ impedance with a 
potentiometric channel. The ISFET channel has five digits R2 
and 6 mpHrms noise. Meanwhile, a low peak power 
consumption of 22 μW is reported. 

V. CONCLUSION 

This paper presents a low µW range electrochemical interface 
IC for bioreactor applications. The proposed readout 
architecture achieves a high current measurement range in the 
potentiostat channel, low leakage, and high input impedance in 
the potentiometric channel. The ISFET channel achieves low 
noise and high linearity. This chip is capable of comprehensive 
bio/chemical tasks, and measures die temperature while only 
consuming 22 µW peak power. The IC has been validated with 
in-vitro DO, glucose, pH, and ORP measurements and 
compared to reference systems, showing high accuracy and 
robustness. These results highlight the potential of this interface 
IC to enable the development of compact, power-efficient, and 
high-performance monitoring systems for both industrial 
bioreactors and research-based miniature bioreactors. 
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