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Abstract

Improper sorting of construction and demolition waste (CDW) leads to significant environmen-

tal and economic implications, including inefficient resource use and missed recycling opportuni-

ties. To address this, we developed a machine-learning-assisted procedure for recognizing CDW

fragments using an RGB camera. Our approach uniquely leverages selected feature extraction,

enhancing classification speed and accuracy. We employed three classifiers: convolutional neural

network (CNN), gradient boosting (GB) decision trees, and multi-layer perception (MLP). No-

tably, our method’s extraction of selected features for GB and MLP outperformed the traditional

CNN in terms of speed and accuracy, especially for challenging samples with similar textures.

Specifically, while convolution resulted in an overall accuracy of 85.9%, our innovative feature

extraction approach yielded accuracies up to 92.3%. This study’s findings have significant impli-

cations for the future of CDW management, offering a pathway for efficient and accurate waste

sorting, fostering sustainable resource use, and reducing the environmental impact of CDW dis-

posal. Supplementary materials, including datasets, codes, and models, are provided, promoting

transparency and reproducibility.
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Abbreviations

CDW Construction and demolition waste

AAC Autoclaved aerated concrete

GB Gradient boosting

MLP Multi-layer perception

CNN Convolutional neural network

SVM Support vector machine

1. Introduction

The construction industry has a significant socio-economic role as it generates around 25% of

the global GDP and employs 7% of the population (Norouzi et al., 2021). In the EU, 18 mil. people

were employed in the construction sector in 2020 (Benachio et al., 2020). However, the sector is

responsible for the enormous consumption of raw materials and large production of waste. Glob-

ally, it is estimated that the construction industry consumes over 30–40% of all natural resources

extracted (Darko et al., 2020; Purchase et al., 2021), generates around 25–40% of the total solid

waste (Nasir et al., 2017), and emits up to 25% of anthropogenic CO2 (Mahpour, 2018). In 2020,

the production of construction and demolition waste (CDW) in the EU was estimated to be around

747.3 mil. tons, which amounts to approximately 1685 kg per capita1.

In order to pursue sustainable development, it is imperative to manage waste in a prudent

and cost-effective manner and adopt the principles of circular economy (Joensuu et al., 2020;

Oluleye et al., 2022). Following this direction, the European Parliament and the Commission

issued Directive No 98/2008 which required the EU member states to increase the overall recycling

of waste to at least 70% by weight from 2020. Even though the rate of CDW recycling in the EU

is almost constant, at about 90% on average2, the lion’s share is downcycled. At the global scale,

rapidly developing countries, such as China with 2 bn tons/year, are even bigger CDW producers

1https://ec.europa.eu/eurostat/databrowser/view/env_wasgen/default/bar
2https://ec.europa.eu/eurostat/databrowser/view/cei_wm040/default/table
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than all the EU states combined (Zheng et al., 2017).

The most commonly recycled CDW materials, besides soils, are concrete and ceramics, mostly

used for embankments, backfills, fillings, or beddings under foundation slabs or pavings. Less

frequently, the recycled fragments are used as aggregates in the production of new concrete mixes

or the finest fractions as micro-fillers (Hlůžek et al., 2020; Prošek et al., 2020; Valentin et al., 2021;

Nežerka et al., 2023). The major limiting factor in the crushed CDW valorization in applications

such as concrete manufacturing is improper sorting (Hoong et al., 2020). Su (2020) carried out a

multi-agent evolutionary game study and concluded that research into CDW classification holds

the greatest potential to promote CDW recycling and reuse. Davis et al. (2021) pointed out that

the automatic classification of CDW materials would significantly reduce the costs associated with

sorting.

At the pre-sorting stage, methods exploiting gravitational, magnetic, inertial, electrostatic, or

buoyancy forces are very efficient in separating specific types of materials from a heterogeneous

CDW mix (Gundupalli et al., 2017; Vincent et al., 2022). Leveraging big data in CDW management

offers promising advancements. Yuan et al. (2021) utilized a dataset of 4.27 million truckloads of

construction waste to estimate waste composition based on bulk density. Such techniques can

significantly refine sorting processes and promote sustainable resource utilization.

Despite recent progress in advanced methods based on research into the development of various

sensors (image, spectroscopic, spectral, UV sensitive, etc.) (Gundupalli et al., 2017; Lu and Chen,

2022), sorting of the remaining fragments is at the industrial scale most commonly accomplished

manually and cannot be done properly due to their similarity. Therefore, it is desirable to replace

manual sorting with robotic vision-based technologies such as RGB cameras, hyperspectral imag-

ing, or X-ray sensors assisted with machine learning. This approach has been first employed for

the purpose of municipal waste separation (Özkan et al., 2015; Wang et al., 2019b; Liang and Gu,

2021; Lu and Chen, 2022) and the extensive development led to the sorting accuracy exceeding

90% (Yang et al., 2021).

The robotic vision-based technology has also started to find its way into the CDW sorting (Wang

et al., 2019a, 2020). However, automatic CDW recognition encountered its limitations in terms of
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accuracy and boundary identification. The latter issue was addressed by Dong et al. (2022), who

proposed a boundary-aware model with the ability to distinguish and segment individual mate-

rials within structural debris. Convolutional Neural Networks (CNNs) are specialized for image

recognition, leveraging their ability to identify hierarchical patterns in visual data. Their design

enables them to dissect images into components, enhancing classification accuracy, especially in

intricate tasks like CDW sorting. For instance, Xiao et al. (2020) utilized CNNs to effectively

classify different CDW materials, underscoring the potential of this approach in the domain. They

classified different CDW materials (wood, brick, rubber, rock, concrete) with an accuracy exceed-

ing 80%. Ku et al. (2020) built a robotic line that automatically recognized and classified the

basic materials within CDW using hyperspectral and 3D cameras with an accuracy of about 90%.

Machine-learning classification was also employed by Lin et al. (2022), who recognized visually

different CDW fragments and achieved an accuracy ranging between 75 and 80%. The closest to

our goal is the study by Hoong et al. (2020), who employed neural networks for the classification

of recycled aggregates. They constructed a library of 36,000 images of individual aggregate grains

and their model achieved accuracies of up to 97%.

While previous studies have employed CNN-based models for CDW classification, our re-

search distinguishes itself in two primary ways. Firstly, we focus on the efficient extraction of

features describing the textures captured using ordinary RGB cameras, a method not extensively

explored in prior work. Secondly, we provide a comprehensive comparison between CNN and

other machine-learning models, specifically gradient boosting (GB) and multi-layer perception

(MLP), showcasing the efficacy of feature extraction in enhancing both speed and accuracy. This

paper presents a unique approach to CDW fragment recognition, emphasizing the power of feature

extraction. We provide extensive datasets, computer codes, and pre-trained models, ensuring our

methodology is transparent, reproducible, and can be built upon by other researchers or industry

stakeholders.

2. Methodology

The capabilities and limitations of the selected feature extraction methods and machine-learning

models are demonstrated on four types of CDW fragments. These were chosen because they are
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the most common fragments found in mixed debris from demolition sites in the Czech Republic:

light-colored aerated autoclaved concrete (AAC), asphalt conglomerates, ceramics (roof tiles and

bricks), and concrete. These materials not only represent a significant portion of the total waste

but also pose a challenge in terms of their similarity, making their accurate classification crucial

for efficient recycling and waste management.

2.1. Collection of datasets

The 1920×1280 px images of ∼30–250mm fragments were taken from a distance of about

70 cm using a handheld digital single-lens reflex camera (Canon EOS 70D with a Canon zoom

lens EF-S 17-85 IS USM) in a CDW collection and sorting yard near Kladno, Czech Republic

(Figure 1). The images were captured in a shade to minimize variations in illumination and to

ensure consistent image quality. Importantly, the CDW fragments were used in their natural state

from the yard, without any presorting or cleaning, reflecting the real-world conditions of such

waste. In a potential industrial deployment, techniques like air-flow cleaning could be introduced

on conveyor belts to minimize dirt and dust, enhancing the image clarity. The fragments were

placed on the ground while taking the images, or directly on the CDW piles.

Unlike clean structural elements, whose classification has been tackled in other studies (Zhu

and Brilakis, 2010; Son et al., 2012; Dimitrov and Golparvar-Fard, 2014; Han and Golparvar-

Fard, 2015; Braun and Borrmann, 2019; Mahami et al., 2020), recognition of CDW fragments

is a more challenging task as their surface can be contaminated with dust and residues of other

materials. Randomly selected samples of CDW fragments are presented in Figure 2, showing

similar textures, especially in the case of AAC and concrete. The complete image datasets used

for training of machine-learning classifiers and validation are open and provided as supplementary

material (Nežerka et al., 2023).

The acquired image datasets were manually split to individual material classes. The annotated

images within each class were divided into training and testing sets in a 4:1 ratio. Since the

shape of fragments cannot be the key for classification and the classifiers were trained to recognize

the CDW textures, 200×200 px regions (image subsets) were manually extracted for training and

testing of the selected classifiers (Figure 3). The summary of these training/testing data is provided
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Figure 1: The site for collecting images, a CDW collection and sorting yard near Kladno, Czech Republic.
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Figure 2: Examples of image datasets for the examined CDW materials.
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in Table 1.

AAC Asphalt

Ceramics Concrete

5 cm 5 cm

5 cm5 cm

200 px

20
0
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Figure 3: Manual extraction of 200×200 px regions (image subsets) used for training and testing of selected classifiers.

2.2. Extraction of features

Images represent a high-dimensional input space with D = N×N×C features, where N×N

is the image subset size (px) and C is the number of color channels (equal to 3). Such large

inputs can be tackled using CNNs, yet reducing the input space by extracting informative numeric

features that describe the CDW texture (Figure 4) allows to use simple and efficient classification
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Table 1: Summary of extracted 200×200 px image subsets used for testing and training of selected classifiers.

Material (class) Number of training images Number of testing images

AAC 939 235

Asphalt 902 226

Ceramics 620 155

Concrete 825 206

algorithms. In this study, we scrutinize the gradient boosting (GB) and multi-layer perception

(MLP) models for such a classification based on extracted features.

The following metrics are proposed to describe the color and texture of CDW fragments, re-

ducing the input space to D = 4: (i) mean intensity, (ii) mean intensity of a selected color channel,

(iii) Shannon entropy, and (iv) mean intensity gradient. To calculate these quantities, local coordi-

nates (i, j) are introduced for image subsets (Figure 5). The 3-dimensional matrix of intensities for

individual color channels, I(C, i, j), was reduced to a single-channel matrix I(1, i, j) ≡ Igray(i, j),

representing a gray-scale image, as

Igray(i, j) = 0.299 Ired(i, j) + 0.587 Igreen(i, j) + 0.114 Iblue(i, j), (1)

where Ired(i, j), Igreen(i, j), and Iblue(i, j) represent the matrices of intensities for the red, green,

and blue channel, respectively. The weights for individual channels follow luma encoding that

reflects different human vision sensitivity to particular colors.

2.2.1. Mean intensity

Mean intensity, Igray, is strongly influenced by the illumination of a captured scene and cannot

be considered a reliable feature if constant illumination is not ensured for all (training, testing,

and classified) images. Since this proof-of-the-concept study is intended as a cookbook for CDW

fragments recognition on conveyor belts in an indoor environment, Igray can be considered as one

of the relevant features for classification and is calculated as

Igray =
N∑
i=1

N∑
j=1

Igray(i, j)

N2
. (2)
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Figure 4: Visualization of the image subset characteristics for individual materials (classes) as pairwise scatter plots;

marginal distributions of each feature for each class are plotted on the diagonal.
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Figure 5: Local coordinates (i, j) for a subset of pixels (right) arbitrarily located within an image of a CDW fragment

(left).

2.2.2. Mean intensity of red color

The color distribution is one of the key features and many machine-learning models for material

recognition were based purely on color-based classification (Son et al., 2012). It was found during

a preliminary analysis that for CDW materials, it is sufficient to focus on the predominance of

a specific color. Given the orange/reddish color of ceramic fragments, the mean intensity of the

red channel, Ired, relative to the mean intensity (brightness) was selected as the most appropriate

color-related label and its value was calculated as

Ired =
N∑
i=1

N∑
j=1

Ired(i, j)

N2

1

Igray
. (3)

2.3. Shannon’s entropy

Many distinct CDW materials have similar colors and color-based labeling may fail (Dimitrov

and Golparvar-Fard, 2014; Bosché et al., 2015; Nežerka and Trejbal, 2019). To evaluate the ran-

domness of a texture pattern as an additional feature, Shannon’s entropy appears to be the most

easy-to-calculate measure (Wu et al., 2013; Antoš et al., 2017; de Sousa Filho et al., 2022). It was

first proposed by Claude Shannon in 1948 to evaluate the average level of uncertainty in a signal

10



as (Shannon, 1948; Wu et al., 2011)

H = −
255∑

Igray=0

P (Igray) log2P (Igray), (4)

where P (Igray) ∈ [0, 255] (8-bit images) is the frequency of gray pixels’ intensity. High values of

H indicate higher uncertainty (randomness) of the signal (image).

2.3.1. Mean intensity gradient

Mean intensity gradient (∇I) was proposed by Pan et al. (2010) as an indicator of stochastic

pattern quality in regard to digital image correlation measurements. It evaluates the frequency

and intensity of irregularities within an image. Such a measure is directly related to the texture

roughness, being another crucial feature used for material classification (Yuan et al., 2020). In this

study, the mean intensity gradient was calculated as

∇I =
N∑
i=1

N∑
j=1

|∇Igray(i, j)|
1

N2
, (5)

where |∇Igray(i, j)| =
√
Ii(i, j)2 + Ij(i, j)2 is the modulus of local intensity gradient and Ii and

Ij are the i-directional and j-directional derivatives of Igray(i, j) at each pixel location (i, j). The

differentiation was accomplished using a Sobel operator with a 3×3 kernel (Nixon and Aguado,

2020).

2.4. Classifiers

The machine-learning models used for classification are only briefly introduced in the follow-

ing sections, along with a presentation of input parameters for each model. Detailed descriptions

and analyses of the models are beyond the scope of this paper. The curious reader is referred to

comprehensive books on machine learning such as ones by Géron (2022) and Murphy (2022).

The choice of classifiers in this study was driven by the aim to span a spectrum of algorithmic

complexity and to capture the strengths of different types of models. Specifically:

1. GB is renowned for its efficiency in classification tasks. It excels in handling structured data

and can seamlessly navigate the non-linear relationships between features, making it a robust

choice for our dataset (Zhou, 2021).
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2. MLP, as a basic form of artificial neural networks (ANNs), bridges the gap between tradi-

tional machine learning and deep learning techniques (Ho et al., 2023). Its inclusion allowed

us to gauge the efficiency of a simpler neural network architecture in the context of CDW

recognition.

3. CNN was incorporated as a benchmark due to its inherent layered analysis capabilities. By

automatically extracting features, CNNs detect edges and intricate patterns. Its performance

provides insights into how deep learning techniques interpret the visual features in the CDW

fragments.

The performance of individual classifiers was tested on a custom-built desktop computer equipped

with an Intel 4 core i3-8350K CPU, 16 GB RAM, 250 GB SSD hard drive, Windows 10 operating

system, and Python 3.10.9. The Python codes and pre-trained models are provided along with this

paper (Zbı́ral and Nežerka, 2023).

2.4.1. Gradient boosting

GB is a machine learning algorithm that typically uses decision trees (Salzberg, 1994) as its

base models (Friedman, 2001). The decision tree is a flowchart-like tree structure where each

internal node tests an attribute, and the connected branches represent an outcome of the test. Ana-

logically to leaves, the terminal nodes hold class labels (Friedman, 2002).

At each iteration, GB trains a weak decision tree model on the residual errors between the

true and predicted labels of the previous iteration. The final prediction is made by adding up the

predictions of all the decision trees, where the contribution of each tree depends on its weight,

determined by the improvement in the loss function after adding the tree to the ensemble. The loss

function is minimized using gradient descent. The algorithm usually outperforms random forest

classifiers in terms of speed and accuracy of the predictions (Hastie et al., 2008; Piryonesi and

El-Diraby, 2021).

The GB classifier used in this study was implemented in the Scikit-Learn v.1.1.3 Python pack-

age. Standardization of features was performed using the preprocessing.StandardScaler class.

Cross-validation was accomplished using the model selection.StratifiedShuffleSplit class that pro-

vides randomly selected indices to split datasets into test/train data and preserves the percent-

12



age of samples for each class. The input parameters for the ensemble.GradientBoostingClassifier

model class were defined as summarized in Table 2. The optimum parameters were selected

based on the prediction accuracy and speed. The optimization was done using the Scikit-learn’s

model selection.GridSearchCV class that provides an exhaustive search over specified values of

model parameters (learning rate ∈ [0.2, 0.8], maximum depth ∈ [3, 5], and a number of estima-

tors ∈ [100, 200]). Other input parameters were kept in their default settings.

Table 2: Summary of input parameters for the GB classifier implemented in Scikit-Learn v.1.1.3 (ensem-

ble.GradientBoostingClassifier model class).

Input parameter Keyword argument Value Note

Random state random state 0 Fixing the random state ensures deterministic be-

havior during fitting

Learning rate learning rate 0.4 Learning rate shrinks the contribution of each tree

Maximum depth max depth 4 Maximum depth of individual regression estima-

tors, limiting the number of nodes in decision trees

Number of estimators n estimators 125 Number of boosting stages to perform

2.4.2. Multi-layer perception

MLP is a type of artificial neural network that consists of an input layer, a specified number of

hidden layers, and an output layer (Rumelhart et al., 1986; Hinton et al., 2006). The input layer

represents the features of the input data, while the output layer represents the predicted probability

for all classes. The hidden layers are used to learn the non-linear transformations of the input

features that lead to the final prediction. In our implementation, the MLP model consists of a

single hidden layer; this hidden layer consists of neurons, where each neuron applies a weighted

sum of the input features and a bias term, followed by an activation function, such as sigmoid or

hyperbolic tangent (tanh). The weights and biases are learned through backpropagation, where

the gradients of the loss function are computed to update the weights and biases using gradient

descent.

Also, the MLP classifier was implemented in the Scikit-Learn v.1.1.3 Python package. The

training procedure was similar to that of the GB model: the standardization of features was
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performed using the preprocessing.StandardScaler class and model selection.StratifiedShuffleSplit

class was used for cross-validation. The input parameters for the neural network.MLPClassifier

model class were defined as summarized in Table 3. The search for optimum parameters was

also accomplished using the Scikit-learn’s model selection.GridSearchCV class, searching over

specified values of model parameters (learning rate ∈ {adaptive, constant ∈ [0.005, 0.015, 0.05]},

solver ∈ {stochastic gradient descent, stochastic gradient-based optimizer (adam) (Kingma and

Ba, 2015)}, activation ∈ {rectified linear unit function (ReLU), hyperbolic tan function (tanh)},

and a hidden layer size ∈ [5, 100]). Other input parameters were kept in their default settings.

Table 3: Summary of input parameters for the MLP classifier implemented in Scikit-Learn v.1.1.3 (neu-

ral network.MLPClassifier model class).

Input parameter Keyword argument Value Note

Random state random state 0 Fixing the random state ensures determin-

istic behavior during fitting

Learning rate learning rate init 0.015 Controls the step-size in updating neuron

weights

Maximum number of iterations max iter 800 Number of epochs (how many times each

data point is used)

Learning rate schedule learning rate ’constant’ Selected constant learning rate

Solver solver ’adam’ Weight optimization using the Adam algo-

rithm (Kingma and Ba, 2015)

Neuron activation function activation ’tanh’ Activation function for the hidden layer

Hidden layer size hidden layer sizes (20, ) Single hidden layer with 20 neurons

2.4.3. Convolutional neural network

CNN is a type of artificial neural network that is designed for the analysis of data with a

grid-like topology (e.g., images) (Zhou et al., 2012; LeCun et al., 2015; Krizhevsky et al., 2017).

It consists of several layers, including convolutional layers, pooling layers, and fully connected

layers. The convolutional layer applies a convolution operation to the input image, where the

convolution kernel slides over the image and computes the dot product between the kernel and the

local patch of the image to extract features. The convolutional layer is followed by an activation
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function that applies non-linear transformations to the output of the convolution. The pooling

layer reduces the spatial dimensions of the output of the convolutional layer by applying a pooling

operation, such as max pooling, that takes the maximum value of a local patch. The fully connected

layer combines the features learned by the convolutional and pooling layers and makes the final

prediction. The weights and biases of the convolutional and the fully connected layers are adjusted

during the network training through backpropagation, exploiting the gradient descent algorithm.

Unlike GB and MLP classifiers, CNN takes the whole image as input. Since the model in

our study was trained on 200×200 px 3-channel (RGB) images, images for classification having a

different size were rescaled to 200×200 px using an interpolation function. The CNN classifier was

implemented in the Tensorflow Keras v.2.10.0 Python package, provided by the models.Sequential

class.

Different architectures of CNNs with various number of filters for the convolutional layers

have been tested. The selected model includes three convolutional layers, each followed by a max

pooling layer, a flatten layer, and two dense layers. The first and third convolutional layers have

32 3×3 filters, a stride of 1, and a ReLU activation function. The second convolutional layer has

64 3×3 filters and the same activation function. The max pooling layers downsample the feature

maps by a factor of two to make the model more efficient. The flatten layer converts the 2D feature

maps into a 1D vector. The two dense layers consist of 256 units with a ReLU activation function,

followed by an output layer with four neurons corresponding to the individual CDW classes.

The selected model architecture is described in detail in Table 4. During the training process,

the model achieved 100% accuracy on the training data (αtrain) after 30 epochs, but the maxi-

mum accuracy on the testing data (αtest = 80%) was reached after 11 epochs, suggesting potential

overfitting (Figure 6). The model trained after 11 epochs was adopted for the future CDW classi-

fication.

2.4.4. Model Evaluation Metrics

To evaluate the performance of our multi-class classification models, we primarily utilize ac-

curacy and the weighted F-score.

Let P true
c be the number of true positives for class c, N true

c the true negatives, P false
c the false
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Table 4: Architecture of the CNN models; the individual layers were implemented in the Tensorflow Keras v.2.10.0

Python package, the layers class.

Layer Keras class Purpose

Convolutional layer (32 filters, size 3×3) Conv2D(32, (3, 3), 1, activation=’relu’,

input shape=(200, 200, 3))

Extract features from the input

images

Maximum pooling layer (2×2 pool) MaxPooling2D() Downsample the feature maps

from the previous layer

Convolutional layer (64 filters, size 3×3) Conv2D(64, (3, 3), 1, activation=’relu’) Extract features from the previ-

ous layer

Maximum pooling layer (2×2 pool) MaxPooling2D() Downsample the feature maps

from the previous layer

Convolutional layer (32 filters, size 3×3) Conv2D(32, (3, 3), 1, activation=’relu’) Extract features from the previ-

ous layer

Flattening layer Flatten() Flattens the 2D feature map into

a 1D array

Fully connected layer (256 neurons) Dense(256, activation=’relu’) Take the flattened vector from

the previous layer as input

Output layer (4 neurons) Dense(4) Values of individual neurons

represent probabilities that the

input belongs to each of the pos-

sible classes
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positives, and N false
c the false negatives. Accuracy, denoted by α, measures the proportion of all

correct predictions across all four classes:

α =

∑4
c=1 P

true
c +N true

c∑4
c=1 P

true
c +N true

c + P false
c +N false

c

. (6)

The precision Pc and recall Rc for each class are respectively defined as:

Pc =
P true
c

P true
c + P false

c

and Rc =
P true
c

P true
c +N false

c

(7)

The F-score for class c, denoted as Fc, offers a balance between Pc and Rc. It is described as

the harmonic mean of Pc and Rc:

Fc =
2PcRc

Pc +Rc

(8)

For our multi-class problem, the weighted F-score, Fweighted, is calculated by averaging the

F-score of each class, weighted by the proportion of samples from that class:

Fweighted =
4∑

c=1

wcFc (9)

where wc denotes the weight (proportion of samples) for the cth class.

We employ both α and Fweighted in this study to evaluate the performance of our classifiers,

providing a comprehensive view of their efficacy, especially in light of the minor class imbalance

present in our dataset.
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3. Results and discussion

The performance of individual classifiers is represented through confusion matrices (Figure 7),

alongside the results of “manual” classification. This manual classification was accomplished

using an online survey3 by five experts on building materials from the Faculty of Civil Engineering,

Czech Technical University in Prague.

While accuracy provides a general measure of correctness, the weighted F-score offers a more

balanced measure between precision (how many selected items are relevant) and recall (how many

relevant items are selected). For instance, GB and MLP classifiers achieved an accuracy of 82.5%

with F-scores of 82.4%, indicating a harmonious balance between precision and recall. The CNN

classifier achieved an accuracy of 82.1% and an F-score of 82.3%, further demonstrating the

model’s consistent performance. In comparison, human experts achieved an accuracy of 87.2%

and an F-score of 87.5%, outperforming the machine classifiers slightly.

Both machine-learning classifiers and human experts had difficulties distinguishing between

image samples of AAC, asphalt, and concrete. This demonstrates the inherent difficulty in differ-

entiating these materials visually, particularly when they share similar characteristics like a grayish

color and texture. In contrast, ceramics (bricks, roof tiles, etc.) were recognized with an impres-

sive accuracy of over 96% by both groups. A potential enhancement to the classification process

could be the integration of a basic weight measurement device. Given the significant differences

in density between the grayish materials, weight can be a distinguishing factor. Moreover, if a

dual-camera setup were employed, the segmentation technique would permit volume estimation

from visual data, further refining the differentiation process.

Despite the commendable performance of human experts, there are inherent limitations to re-

lying on manual sorting. Prolonged concentration can lead to lapses in attention, impacting the

consistency of the sorting process (Firestone, 2020). Furthermore, machine classifiers, especially

when deployed on standard office computers, can process samples at a rate that outpaces human

capability by orders of magnitude.

3https://rm.fsv.cvut.cz/cdw/
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In recent literature, Davis et al. (2021) reported accuracy levels between 80% and 97% for the

CNN-based classification of general waste. Their categories included paper, glass, plastic, metal,

cardboard, and non-recyclables. Although their work achieved an accuracy of up to 95.7% for

CDW, it’s crucial to note that the objects they classified had more distinct shapes than the CDW

fragments. Xiao et al. (2019) reported a perfect accuracy of 100% in their classification of CDW on

a conveyor belt. They employed a high-cost near-infrared hyperspectral camera and a dataset with

distinct categories like foam, plastic, brick, concrete, and wood. Introducing more challenging

materials such as asphalt conglomerates or AAC, often found in CDW, could potentially reduce

this high accuracy even with advanced hardware.

A study on the performance of the individual classifiers in terms of speed and accuracy is

presented as a function of subset size in Figure 8. As larger subsets contained more information,

the accuracy of models increased. This phenomenon was most significant in the case of CNN, for

which the image subsets had to be rescaled to 200×200 px to have the same size as images used for

training. Similar findings were reported by Dimitrov and Golparvar-Fard (2014), who developed a

system for vision-based material recognition and monitoring of construction progress, employing

the support vector machine (SVM) classifier (Cortes and Vapnik, 1995).

In our study, the GB and MLP models that utilized feature extraction, exhibited similar speed

and accuracy, both superior to CNN, especially for small subsets. Unlike CNN, both models ap-

proached their maximum accuracies at approximately 150×150 px subset size. The classification

speed of GB and MLP classifiers, including feature extraction, was about 15× higher compared to

CNN.

The practical demonstration of the image subset classification is provided in Figure 9. Here,

the randomly selected CDW fragments from the testing dataset were localized using the Rembg4

Python package based on the U2-Net deep neural network (Qin et al., 2020). An auxiliary script

was designed to extract image subsets from the unmasked regions. The accuracy of the CNN

classifier was compromised by the small size (135×135 px) subsets placed over the region of

interest; however, even despite this shortcoming, even the CNN classified the fragments correctly

4https://github.com/danielgatis/rembg
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1Figure 7: Confusion matrices for different classifiers and comparison of their performance with manual classification

done by five experts on building materials from the FCE CTU in Prague.
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Figure 8: Speed (left) and accuracy (right) reached by individual classifiers on the validation (testing) datasets for

different sizes of image subsets that were extracted by cropping the redundant portion of the images.
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with high confidence. Nearly 100% confidence was reached by the GB and MLP classifiers.

This demonstration shows that the accuracy reached for individual subsets is improved by plac-

ing a higher number of these over the samples. The accuracy was tested on a comprehensive dataset

containing 2664 images of CDW framents (Nežerka et al., 2023); the summary of reached accura-

cies for individual classifiers is provided in Table 5. Classification of several samples per a CDW

fragment led to overall accuracy ranging between 85.9% (CNN) and 92.3% (GB), reaching the

accuracy reported by other authors dealing with the classification of clean building materials. In a

study by Mahami et al. (2020), the authors managed to classify eleven construction materials using

CNN (VGG16 network (Simonyan and Zisserman, 2014)) and reached up to 97.35% accuracy, yet,

their dataset did not contain contaminated materials having similar textures, such as fragments of

AAC and concrete in our study.

Table 5: Accuracy of different classifiers when recognizing whole CDW fragments by classifying several (>4)

200×200 image subsets with a 70 px overlap (Figure 10).

Classifier
AAC Asphalt Ceramics Concrete Complete dataset

(582 images) (741 images) (572 images) (769 images) (2664 images)

GB 86.9% 93.9% 99.1% 89.7% 92.3%

MLP 89.4% 93.8% 98.4% 85.2% 91.3%

CNN 56.7% 97.2% 99.0% 87.5% 85.9%

Our models, especially the Gradient Boosting and Multi-Layer Perceptron classifiers, demon-

strated competitive performance when compared to previous studies, as summarized in Table 6.

Notably, while our dataset size was comprehensive, the nature of our CDW images, which included

contaminated materials with similar textures, made the classification task more challenging.

It should be noted that all the images for both training and testing datasets were taken using

the same camera and similar conditions, which can compromise the robustness of the classification

models. The goal of this proof-of-the-concept study is to demonstrate the capabilities of the pro-

posed low-cost lightweight procedures that could be implemented in CDW sorting and recycling

plants for CDW recognition on conveyor belts. For particular industrial applications, new site-

specific training datasets should be acquired, optimally involving auxiliary data (weight, acoustic

emissions, etc.) from other sensors. Fusion of RGB cameras with different sensors could signif-
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Figure 9: Localization of whole CDW fragments and their classification based on texture recognition using different

classifiers; the size of image subsets 135×135 px.
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Figure 10: A typical misclassification of AAC fragments by CNN during a comprehensive validation of the classifica-

tion algorithms; size of image subsets 200×200 px with a 70 px overlap.

Table 6: Comparison of the current study with previous significant works focused on machine-learning-based recog-

nition of construction materials in terms of model performance, data type, and dataset size.

Reference Model Accuracy Dataset type and size Dataset size

This study (GB) GB 92.3% CDW images 2664

This study (MLP) MLP 91.3% CDW images 2664

This study (CNN) CNN 85.9% CDW images 2664

Davis et al. (2021) CNN 80-97% Images of conatiners with

bulk CDW

2283

Xiao et al. (2019) CNN 100% Hyperspectral images of

very diverse materials

250

Dimitrov and Golparvar-Fard (2014) SVM Up to 97.1% Point cloud patches (im-

ages of construction sur-

faces)

3740

Mahami et al. (2020) CNN (VGG16) 97.35% Images of clean very di-

verse materials

1231

Yuan et al. (2021) BD-P model 90.2% Bulk density (truck loads) 4.27 mil.

Hoong et al. (2020) CNN (Custom

ResNet34)

97% Images of recycled aggre-

gates

36000

Lin et al. (2022) CNN (CVGGNet-

16)

76.6% Images of diverse clean

bulk materials

2836 (bofore aug-

mentation)
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icantly increase the accuracy, especially in the case of lightweight AAC which is often confused

with fragments of concrete that also have a fine texture and grayish color.

3.1. Application procedure

Our developed machine-learning-assisted method for CDW fragment recognition is designed

for easy integration into existing CDW sorting systems. Here, we outline the potential application

procedure:

1. Image Acquisition: Using high-resolution cameras, images of CDW fragments on conveyor

belts or sorting platforms are captured. Ideally, this would be integrated into a continuous

flow system where CDW moves along a conveyor.

2. Preprocessing: The captured images undergo preprocessing, which may include cleaning

using air-flow or other mechanisms to enhance clarity, and then they are fed into the model.

3. Density Estimation: For individual fragments on the conveyor belt, a weight measurement

system can be integrated to estimate the density of each fragment. This can assist in further

refining the classification, especially for fragments with similar appearances but different

densities (e.g., AAC and concrete).

4. Classification: The preprocessed images are classified in real-time using a trained model.

The model identifies the type of CDW fragment and can potentially direct its sorting into

appropriate bins or sections.

5. Post-processing: Based on classifications, automated mechanisms or manual laborers can

be directed to ensure correct sorting or further refinement.

6. Feedback Loop: The system can be designed to continuously learn from any misclassifica-

tions through a feedback mechanism, enhancing accuracy over time.

This proposed application procedure is modular and can be customized based on the specific

requirements of the CDW sorting facility, available resources, and desired accuracy levels.

4. Conclusion

Proper sorting of construction and demolition waste (CDW) fragments is essential for its further

valorization. In this study, we demonstrated the potential of machine-learning models for the
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recognition and classification of CDW fragments using computer vision-based algorithms. The

approach was tested on four types of CDW material fragments commonly found in mixed debris

from demolition sites: aerated autoclaved concrete (AAC), asphalt conglomerates, ceramics (roof

tiles and bricks), and concrete fragments. For that purpose, we examined three machine-learning

classification models, gradient boosting (GB), multi-layer perception (MLP), and convolutional

neural network (CNN).

In contrast to CNN, having the 200×200×3 px RGB images as its input, GB and MLP were

trained on classifying the CDW texture based on four extracted features: (i) mean intensity, (ii) mean

intensity of the red color channel, (iii) Shannon entropy, and (iv) mean intensity gradient, reducing

the input space from D = 120, 000 to D = 4. In the case of CNN, the feature extraction was ac-

complished using convolutional layers. The GB and MLP classifiers outperformed CNN not only

in terms of speed (for a single image subset ∼300 s−1 vs. ∼20 s−1), but also accuracy, especially

when classifying images of sizes below 200×200 px, on which the models were trained.

Despite the high similarity of the recognized textures and contamination of the CDW frag-

ments with dust, the examined classifiers exhibited accuracy over 82.1% for 200×200 px image

subsets, slightly below the average accuracy reached by experts on building materials (87.2%).

The accuracy reached up to 92.3% (GB) when classifying the whole fragments by placing several

subsets over the samples. The lowest overall accuracy was reached when using CNN because the

model often misclassified AAC for concrete. All the models were most accurate when classifying

fragments of ceramics (98.4–99.1%) because of their distinct reddish color.

However, this study comes with certain limitations. All images, both for training and testing

datasets, were acquired under similar conditions using the same camera, which might affect the

robustness of the classifiers in more varied settings. Moreover, while the study showcases the

capabilities of low-cost procedures for CDW recognition, it underscores the need for acquiring

new site-specific training datasets for specific industrial applications; optimally on a conveyor belt.

The integration of additional sensors or data sources could further enhance accuracy and reliability.

The links to image datasets, computer codes, and pre-trained models used in this study are

open and are provided as supplementary material. We believe that the findings can promote the
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developments in robotics-assisted sorting of CDW fragments, enabling its efficient use in the pro-

duction of new materials and products and reduction of the environmental burden associated with

CDW disposal.
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