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Abstract: 

Population growth and climate change together pose a serious threat to the availability, 
accessibility, and security of food in emerging nations. The result of past overexploitation 

of natural resources is the climate as it is today. Even the agricultural sector contributed to 

it by transforming the naturally diverse nature into a cultivated, uniform area. Through a 
disciplined review of the literature, an effort is made to understand the concept and to 

pinpoint the linked ideas. The global temperature raised and there was less fresh water 

available as a result of increased greenhouse gas emissions. Agricultural practices that 

emit carbon dioxide, methane, and nitrous oxides into the atmosphere include burning litter, 
anaerobic decomposition of organic matter, rice grown in flooding areas, etc. The effect is 

typically lessened by conservation agriculture, intercropping system, cover crop, crop 

rotation, effective cropping systems, good crop residue management, and increased nutrient 
usage efficiency. Precision farming, the use of slow release fertilisers, effective water 

management in rice fields, the use of dung and energy crops, requirement for specific 

agroforestry and grazing management practices, and the replacement of fossil fuels with 
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crop residues all significantly reduce greenhouse gas emissions. Biochar, a product of the 
pyrolysis of plant and animal biomass, increases soil fertility, lowers pollution, and 

promotes agricultural residue recycling in addition to sequestering carbon. Henceforth, for 

India’s agricultural production systems to be viable into the future there is a need to reduce 

the in-field greenhouse gases emissions through climate smart agriculture practices. 

Keywords:  

Carbon sequestration, Climate change, Climate smart agriculture practices, Conservation 

agriculture, Greenhouse gas emission. 

12.1 Introduction:  

Global climate change is accelerating. As a result, catastrophic weather occurrences like 
droughts, floods, heat waves and others are becoming more frequent. The primary 

contributor to these occurrences is the growing temperature of Earth's atmosphere, which is 

brought on by rising emissions of climate-relevant greenhouse gases (GHGs), which trap 

heat in the atmosphere. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are 
three major GHGs (Figure 12.1). These GHGs are the most potent gases which trap the 

outgoing long wave solar radiations and are the most probable reason for the global climate 

change. The major sources of these most dreadful greenhouse gases as given in Table 1 

indicated the potential for their reduction.  

Table 12.1: Major sources of greenhouse gases and their global warming potential 

Gases Global 

warming 

potential for a 

100-year time 

horizon 

Natural causes Anthropogenic sources 

Carbon 

Dioxide 

(CO2) 

1 Oceanic-atmosphere 

exchange, animal 

respiration, soil 

microbial respiration, 

plants, and volcanic 
eruptions. 

Combustion of fossil fuels (coal, natural 

gas, and oil), deforestation, and the 

cultivation of land, agricultural and animal 

leftovers. 

Methane 

(CH4) 

21 Wetlands, termite 

activity, and the ocean 

landfills, paddy fields, enteric emission 

from ruminants, and the production and 

use of fossil fuels, and methanogenic 

archaea by anaerobic mineralization. 

Nitrous 
oxide (N2O) 

310 Oceans and soils under 
natural vegetation 

Intensification in agriculture, increased use 
of synthetic fertilizers, inefficient use of 

irrigation water, the deposit of animal 

wastes (urine and dung) from grazing 

animals, ineffective application of animal 

manures and techniques increasing soil 

organic N mineralization. 
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Figure 12.1: Contribution of different Sectors in Greenhouse Gases Emission 

Agriculture contributes significantly to greenhouse gas emissions that drive climate change 

and is a direct victim of it. According to [1], 37.6% of the world's land area is covered by 

agricultural lands, and this sector is a substantial source of GHG emissions.  

CO2, CH4, and N2O are the main trace gas types that contribute most to the global warming 
impact. Agricultural soil management (such as tillage), the use of synthetic and organic 

fertilizers, dairy management, the burning of fossil fuels for agricultural operations, and 

crop residues burning are all factors that contribute to agricultural GHG emissions (Figure 

12.2). According to [2], agriculture may be the source of 52% and 84%, respectively, of the 
world's anthropogenic CH4 and N2O emissions. Certainly, advanced approaches are needed 

to minimize agricultural emissions of CH4 and N2O since they have substantially larger 

global warming potentials than CO2 based on per unit mass and a 100-year time frame.  

 

Figure 12.2: Representation of direct and indirect GHG emissions from crop 

production 

31%

27%

18%

24%

Industry

Agriculture & allied sectors

power & heat

Others



Agriculture Practices to Reduce In-Field Greenhouse Gas Emissions 

169 

 

Human settlement in previously uninhabited areas results in the conversion of natural 
ecological systems to agricultural production, which results in the loss of 20–40% of the 

soil organic carbon (SOC) after cultivation, with the majority of that loss happening during 

the first couple of years [3]. This conversion also increases levels of GHG emissions. 
According to a recent estimate, since agriculture began roughly 12,000 years ago, 133 

billion tonnes of SOC, or about 8% of the total worldwide SOC stock, have been lost from 

the top two meters of soil, with the rate of loss sharply increased since the beginning of the 
industrial era [4]. According to the study, farmland suffered a bigger overall proportion of 

SOC loss than grazing land, despite grazing on more than twice as much land overall. This 

suggests that while agriculture has a better ability to boost SOC gain, grazing land has a 

greater capacity to increase SOC storage overall. 

Since the soil and vegetation retain approximately three times the amount of organic carbon 
of the atmosphere [5], slight variations in the organic carbon stock in the soil and vegetation 

may have a significant impact on the global carbon dioxide concentration. As a result, 

significant attempts must be created to improve SOC storage in terrestrial environments and 
to decrease GHG emissions from these systems. In managed systems, management practices 

including not burning agricultural waste after harvest and using compost, charcoal, and 

animal dung to improve organic C input to the soil can boost SOC storage. 

The fact that agriculture is a major source of GHGs and much of the carbon in the soil gets 

lost through cultivation. But the agricultural sector offers a significant opportunity to reduce 

anthropogenic sources of greenhouse gas emissions and boost soil carbon storage.  

If permanent vegetation can be sustained, soil carbon storage could rise, benefiting from the 

C cycle becoming more closed in the system and the soil being able to capture more carbon. 

For instance, agricultural management practices can be enhanced in order to reduce 
disturbance to the soil by reducing the frequency and extent of cultivation as a way to 

minimize soil C loss and to increase soil C storage.  

By strategically applying fertilizers, one can increase fertilizer nitrogen use efficiency 

(NUE) and decrease nitrogen loss, including gaseous and leached forms of nitrogen loss [6]. 

Additionally, management actions can be implemented to reduce the burning of agricultural 
biomass. Climate-smart agriculture (CSA) management practices, which include the 

strategic use of synthetic and organic fertilizers, conservation tillage, use of cover crops, 

and the addition of lime, biochar, and nitrification inhibitors to agricultural fields, can help 

to reduce GHG emissions from agriculture [7].  

According to the [8], CSA is defined as a systematic approach for designing agricultural 

policies that can provide sustainable food security. Based on this concept, a variety of 

agricultural techniques can be created to aid in enhancing both environmental and food 

security at the same time in relation to global change. Since soil can act as a sink or source 
of CO2 and influence climate change if we can strengthen the carbon sink and remove more 

CO2 from the atmosphere by implementing CSA, we will be in an advantageous position in 

not only battling the adverse impacts of climate change but also reducing emission of 
greenhouse gases emission and enhancing soil quality and health, which includes nutrient 

and water retention, and increasing agricultural productivity [9]. 
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12.2 Agriculture Practices to Reduce In-field Green House Gas Emissions: 

There are various areas in agriculture which contribute differently to the GHG emissions 

(Figure 12.3.). Thus, it is very important to prioritize those areas for reduction of GHG 

emissions.  

 

Figure 12.3: Contribution of different agriculture sectors to greenhouse gas emissions 

Agriculture has the ability to reduce GHG emissions at a low cost by changing agricultural 

methods and management techniques. Different agriculture practices focuses on enhanced 
risk management, improving information flows, and encouraging local institutions to 

increase the community's adaptive capacity to climate change [10]. The following are some 

agricultural practices that help to reduce in-field greenhouse gas emissions: 

12.2.1 Adoption of Conservation Tillage Practices: 

Contrarily, conservation tillage (CT) systems focus on retaining and managing crop residue 
while minimizing disturbance to the soil by limiting any field preparation operations to a 

shallow depth and preventing soil inversion [11]. They include non-inversion tillage, eco-

tillage, minimal tillage, mulch tillage, reduced tillage, zone tillage, or no-tillage. A 

minimum of 30% of the earlier crop residues should still be visible on the soil surface, 

according to CT [12].  

Adopting CT can increase soil organic matter (SOM), lower CO2 emissions, and improve 

SOC sequestration, especially when combined with agricultural residue retention. When 

compared to conventional ploughing, conservation tillage has been proven to produce more 
soil that is present in macro-aggregates and more carbon that is connected with micro-

aggregates [13]. Increased biological activity in such soils is the source of the increased 

aggregate strength under CT management [14], and residues that leave on the soil surface 
provide additional protection, slowing down the degradation of the top soil particles [15]. 
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Compared to normal tillage, no-tillage greatly lowered the release of methane from fields 
of rice. By increasing soil bulk density and inhibiting the breakdown of organic matter, no-

tillage reduces the volume percentage of big pores and methane emissions. Conservation 

tillage has a higher near-surface soil C content than conventional tillage because it keeps 
more plant remains on the soil surface, especially in cool, humid climates [16]. In 

comparison with residues that are thoroughly mixed into the soil through standard tillage 

practices, the degradation of plant residues may occur more slowly under these 
circumstances due to the reduced soil-residue contact. Conservation agriculture has the 

ability to increase the use efficiency of resources that are renewable, including water, air, 

fossil fuels, and soil through the adoption of resource-conserving technologies like zero or 

minimum tillage with direct planting, permanent or semi-permanent residue cover, and 
rotations of crops. By maintaining the base of available resources and reducing GHG 

emissions, the technologies can enhance the sustainability of agriculture. By carbon 

accumulation inside the small macro aggregates and micro aggregates at the 5–15 cm depth, 

tillage intensity and frequency were reduced, increasing soil carbon [17]. 

12.2.2 Agronomic Practices: 

Intercropping, as a traditional multi-cropping system, has been well proven to improve crop 

production and fertilizer use efficiency by utilizing niche crop and seasonal differentiation, 

as well as advantageous relationships between species when handled properly [18]. 
Intercropping thus becomes critical for achieving the dual goals of boosting crop yields and 

lowering GHG emissions [19]. Many researches have shown that a cereal-legume system 

reduces soil CO2 and N2O emissions when compared with monoculture [20]. Soil 
physicochemical properties and microbial community diversity are changed with increased 

crop diversification, resulting in changes in soil N2O emissions [21]. Intercropping regimens 

that use various legume species and cultivars might also cause differences in N2O emissions 

[22]. In contrast to typical monocropping, maize farming, nitrogen fixation of legume crops 
and nitrogen transport between maize and legume crops greatly altered the nitrogen cycle 

in intercropping systems. Maize-peanut intercropping was observed to reduce soil N2O 

emissions by 13% when compared to maize monoculture [23]. This could be linked to 

increased nitrogen utilization efficiency in cereal-legume intercropping. 

Cover crops are a common agronomic strategy that can reduce nutrient losses, such as soil 

inorganic N, and improve carbon dioxide (CO2) sequestration. Legumes, grasses, mustards, 

or mixer of those species can be cultivated as cover crops to increase soil quality, reduce 

harmful soil erosion, increase soil structure and fertility, control pests, and reduce the loss 
of nutrients from the root zone [24]. In comparison to winter fallows, a combination of 

cereal rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) drilled into crop stubble 

every year increased soil organic carbon, nutrient retention, and water aggregate stability, 
according to research by [25]. By absorbing nitrogen and storing it in their biomass, a 

number of cover crop species have been demonstrated to reduce soil N-NO3 levels [26].  

This reduces the amount of nitrogen that can enter rivers or be released to the atmosphere 

via gaseous pathways. Because the reduction in soil water would not favour circumstances 

of denitrification via which N2O might be formed, cover crops can also reduce N2O 
production by absorbing soil moisture in their living plant tissue [27]. Following cover crop 

suppression, the mineralization or immobilization of the residue N would be made possible 
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by the breakdown of cover crop residues in the presence of oxygen. Use of crop rotation is 
another mitigating strategy discovered to lower N2O emissions. A corn-soybean rotation 

lowered N2O emissions by 35% compared to continuous corn, and it also increased yield 

by 20% [28]. 

The key to lowering the system's total footprint is to grow crops with minimal production 
input requirements and those that produce a lot of straw and roots for the soil to absorb 

carbon. According to [29], switching from the conventional double-rice system of 

cultivation to a more diversified structure that included upland crops lowered irrigation 

water consumption in the dry season by about 70% and lowered CH4 emissions by 97% 
without having adverse economic impact. System carbon footprints can be decreased by up 

to 250% in more intensive systems with less frequent summer-fallow in the rotation. When 

summer-fallow is replaced with fodder or grain legume as opposed to an approach with a 

high frequency of summer-fallow, farming income can more than quadruple [30].  

In the summer fallow-cereal cropping system, where substantial increases in inputs of 

carbon were accomplished using currently available legume species, green manuring played 

a significant role in increasing soil carbon levels [31].  

Increasing cropping frequency in order to minimize bare fallow was also found to improve 

soil carbon sequestration [32], including perennial forages like lucerne (Medicago sativa 
L.). Due to larger belowground biomass carbon input and ongoing root growth compared to 

annual cropping systems [33], increased dryland soil carbon sequestration and biological 

soil quality were achieved by increasing microbial biomass and activity [34]. 

Additionally, building agroforestry systems, or the production of crops, livestock, and tree 
biomass on the same plot of land, can successfully boost SOC sequestration [35]. This is 

done by planting trees with high roots-to-aboveground biomass ratios and trees that fix 

nitrogen. It consists of woody species-filled riparian zones and buffer strips as well as 

shelter belts. Planting trees may also boost soil carbon sequestration. The standing stock of 
carbon above ground is typically greater than the equivalent land use without plants. To 

increase carbon sequestration rates and the mechanisms causing SOC to stabilize in soil 

profiles, detailed agroforestry management techniques are required. 

12.2.3 Reduce Enteric Fermentation Through New Technologies: 

Approximately one-third of all anthropogenic CH4 emissions worldwide are produced by 
livestock, primarily ruminants like cattle and sheep [36]. Eructation is used to expel the 

methane, which is predominantly produced by enteric fermentation. Because N is excreted 

in urine and faeces, all cattle produce N2O emissions from manure. In order to lessen these 

CH4 and N2O emissions, try the following: 

• Improved feeding practices- Feeding more concentrates which often replace forages 
can lower methane emissions. [37] recommend improving pasture quality by including 

specific oils or oilseeds in the diet to increase animal productivity and decrease the 

amount of energy lost as CH4 as well as optimising protein intake to lower nitrogen 
excretion and N2O emissions [38]. 
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• Specific agents and dietary additives- Antibiotics called ionophores contribute to 

reducing methane emissions. Halogenated substances suppress methanogenic bacteria, 
although they can also have adverse effects like lower intake and their effects are 

frequently transient. Probiotics, like yeast culture, have only had minor, negligible 

impacts, but choosing strains particularly for their capacity to reduce methane could 
lead to better outcomes [39]. Fumarate and malate, two precursors of propionate, serve 

as substitute hydrogen acceptors to lessen methane synthesis [40]. Propionate 

precursors are pricey nevertheless because the response is only evoked at large doses 
[41]. Bovine somatotropin (bST) and hormonal growth implants can lower emissions 

per kilogram of the animal product even if they do not explicitly suppress the creation 

of CH4. 

• Longer-term management changes and animal breeding- Methane production per 

unit of animal product is frequently decreased by improving productivity through 
breeding and better management techniques, such as a decrease in the total number of 

replacement heifers [42]. Meat-producing animals become slaughter weight earlier and 

have lower lifetime emissions thanks to increased efficiency. 

12.2.4 Soil Amendments for Reducing GHG Emissions: 

Mulches- Mulch will alter the amount of carbon (C) and other minerals that are available 
to microbial communities, which will have an impact on soil GHG emissions. In addition 

to controlling the temperature of the soil systems, mulches preserve soil moisture [43]. 

However, too much straw applied to the soil's surface can hinder seed germination, 
necessitating the administration of additional fertilizer to make up for any N that may 

become immobilized during the crucial early period of growth [44]. When it comes to CO2 

emissions, mulching typically causes an increase because labile C is added to the mulch, 
and the rate of CO2 emissions rises as the rate of mulch addition increases. In comparison 

to adding no mulch, adding mulch can immobilise mineral N in the soil, lower the 

availability of NH4 for nitrification and NO3 for denitrification, and therefore minimise N2O 

emissions. 

Biochar- The cycling of C and N is one of soil properties that can be altered by adding 
biochar. According to numerous reports, applying biochar can lower N2O emissions [45]. 

By aiding the final stage of denitrification and increasing the production of N2 rather than 

N2O, biochar lowers N2O emissions [46]. A significant amount of crop residues are 
produced in farming operations, and the return of crop residues in the raw state vs after the 

crop residue has been transformed to biochar can have a significant impact on the emissions 

of all three trace gases. 

12.2.5 Improved Manure Management: 

Livestock urine and manure are substantial producers of methane and nitrous oxide when 
decomposed under anaerobic conditions. When the nitrogen in animal manure is nitrified 

and then denitrified, nitrous oxide is created [47]. When manure is kept in big heaps or 

settlement ponds to handle the waste from numerous animals kept in a small space (such as 

dairy farms, cattle feedlots, pigteries, and poultry farms), anaerobic conditions sometimes 
develop [48]. Aeration and composting of manure stockpiles lower methane emissions. 

Nitrous oxide emissions can be decreased by adding urease inhibitors to manure heaps. 



Climate Smart Agriculture: Principles and Practices 

174 

 

Urease inhibitors are chemical additives that slow down or prevent the conversion of urea 

found in animal urine and manure to nitrous oxide [49]. 

12.2.6 Fertilizer Management: 

Agricultural management practices, such as nitrogen in splits and the use of controlled-

release fertilizers have greatly influenced the crop production and nitrogen use efficiency 

by balancing the nitrogen demand of crops and the nitrogen availability of soils [50]. The 
effects of these practices on greenhouse gases emissions, particularly in systems of 

intercropping have not yet been thoroughly assessed. The largest contributor of GHG 

emissions was discovered to be fertilization with irrigation. Therefore, applying nitrogen in 
three splits and using a slow-release fertilizer may be an easy and efficient way to increase 

grain output while lowering GHG emissions [51]. 

12.2.7 Rice Management and Varieties: 

Climate change is a crucial environmental problem for the twenty-first century since it 

might have a large impact on rice productivity and speed up the paddy ecosystem's 
greenhouse gas emissions, both of which are extremely concerning for the environment. 

Due to rice fields' advantageous production, consumption, and transportation systems, CH4 

and N2O gases are released concurrently into the environment. Because of the enormous 

pressure that the intensive rice farming system places on rice fields to grow more rice in 

order to feed the growing global population [52].  

Soil fertility is declining, and the ecological balance of the rice paddy is being disrupted by 

increased CO2, CH4, and N2O fluxes into the atmosphere. Extreme weather conditions like 

high temperatures, high water vapour or relative humidity, and drought stress may severely 
stifle beneficial microbial activity, soil nutrients, and water availability to rice plants; as a 

result, rice yield may decline noticeably while greenhouse gas emissions may rise 

noticeably [53]. In this situation, field-level farmers should be taught about conservation 
tillage, water-saving irrigation techniques like alternate wetting and drying, soil 

amendments with biochar, vermicompost, azolla-cyanobacterial mixture, recommended 

silicate slag, and phospho-gypsum with minimum NPKSZn fertiliser (IPNS), and more. 

Another crucial step in lowering methane production is the removal of rice straw from the 
field before re-flooding [54]. Straw can also be used to grow mushrooms or produce 

bioenergy, among other useful uses.  

Reduce duration of flooding to reduce growth of methane-producing bacteria. In the middle 

of the growing season, farmers can temporarily lower water levels or sow rice on land that 
is initially dry rather than flooded [55]. Direct seeded rice is also recommended instead of 

transplanted rice to reduce the methane emission from the field [56]. The DSR and SRI 

crops do not require continuous soil submergence, and therefore reduce or totally eliminate 

methane emission when rice is grown as an aerobic crop. The DSR and SRI have potential 
to reduce the GWP by about 35-75% compared to the conventional puddled transplanted 

rice [57]. Grow rice with less methane as well. However, these characteristics have not been 

developed into the majority of commercial cultivars. A few extant types leak less methane 

than others, and researchers have demonstrated great experimental promise. 
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12.2.8 Increase Agricultural Energy Efficiency and Shift to Non-Fossil Energy 

Sources: 

By 2050, agricultural emissions from the usage of fossil fuels will still be at 1.6 Gt 

CO2e/year. The methods for mitigating energy emissions are similar to those used to lower 
them in other industries; they rely on improving efficiency and transitioning to renewable 

energy sources. On-farm energy use will account for 65 percent of anticipated agricultural 

energy emissions in 2050. Solar and wind energy may frequently be used to generate 
electricity and heat, though it will take creative, small-scale solar heating systems to replace 

on-farm coal. It will be more challenging to reduce the use of diesel fuel by tractors and 

other large machinery, and it might be necessary to switch to fuel cells that use hydrogen 
energy produced by solar or wind energy. Alternative technologies could include battery-

powered devices and artificial carbon-based fuels produced from renewable electricity. 

Additionally, since the synthesis of nitrogen fertilizer currently requires a lot of energy, 

renewable sources of hydrogen might eliminate 85% of the emissions that result from this 
process. Fortunately, extensive research is being done on the manufacture of hydrogen using 

electricity from solar energy, and the price of solar electricity has been falling quickly due 

to the needs of other sectors. Even with efficiency benefits incorporated into our baseline, 

significant work is still necessary [58]. 

12.1.9 Focus on Realistic Options to Sequester Carbon in Soils: 

Due to the difficulty of reducing agricultural production emissions, significant research and 

policy emphasis has been focused on techniques to trap carbon in agricultural soils to 

balance such emissions. There are just two options for increasing soil carbon: add more or 
lose less. However, new research and experience show that soil carbon sequestration is more 

difficult to perform than originally anticipated [59]. Ploughing practices that originally 

appeared to avoid soil carbon losses, such as no-till, now appear to give relatively minor or 

no carbon benefits when assessed at greater soil depths than earlier reported. No-till tactics 
must also struggle with negative effects on yields in particular areas, as well as the reality 

that numerous no-till farmers still plough up soils every few years, releasing much of the 

carbon gain [60]. Adding mulch or manure to soils are proposed carbon-addition solutions, 
however, they effectively double-count the carbon that would have influenced carbon 

storage elsewhere. Allowing crop wastes that would otherwise be used for animal feed to 

become soil carbon necessitates that the animals' feed comes from other sources, which has 

a carbon cost because growing that feed often necessitates more agricultural land [61, 62]. 

12.3 Conclusion: 

Good agriculture practices, with an emphasis on climate change adaptation and mitigation, 

can take many different forms. The climate smart agriculture practices have many roles to 

play in agricultural sustainability and in reducing in-field GHG emissions, as well as in 
increasing soil carbon sequestration. Practices such as the use of conservation tillage, crop 

rotations, application of biochar to the soil, use of soil amendments, nitrification and urease 

inhibitors, mulching, fertilization management and use of intercropping are all options 

available to landowners to effectively adapt to and mitigate regional to global climate 
change. Thus, we have to improve the existing ways to mitigate greenhouse gases through 

better land based agricultural practices without compromising the food production.  
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