XPP model

This model was converted from XPP ode format to SBML using sbmlutils-0.1.5a6.

# modified Steve Prescott, Aug 29, 2011
# For Coggan et al. (Explaining pathological changes in axonal excitability through dynamical analysis of conductance-based models. J Neural Eng 2011; 8: 065002)
# Incorporates Na influx and simple decay. No pumps yet implemented in this code.
# Nai dynamically varies and is used to update Ena based on Nernst equation.

# DIFFERENTIAL EQUATIONS

dv/dt = (I1(t)+I2(t)+Idc-gna*minf(V)*(V-Vna)-gk*w*(V-VK)-gl*(V-Vl)-gnap*z*(V-Vna))/cap

dw/dt = phi*(winf(V)-w)/tauw(V)

dz/dt = phi_z*(zinf(V)-z)/tauz(V)

dnai/dt = (-SAvol*(gna*minf(v)*(V-Vna)+gnap*z*(V-Vna)))/F-(nai-17.5)/tau_na
# if you don't want Nai to vary, comment out above line and define Nai as a fixed parameter,
# Either that, or just define Vna as a parameter rather than using the Nernst equation to calculate it (see ### below)

param tau_na=100


# PARAMETERS AND FUNCTIONS

minf(v)=.5*(1+tanh((v-v1)/v2))
winf(v)=.5*(1+tanh((v-v3)/v4))
zinf(v)=.5*(1+tanh((v-v5)/v6))
tauw(v)=1/cosh((v-v3)/(2*v4))
tauz(v)=1/cosh((v-v5)/(2*v6))

# v5 and v6 correspond to beta_z and gamma_z - checked, these parameters match PNAS paper

Vna=25*ln(nao/nai)
### see note above.

# param Vna=50
param vk=-100,vl=-70
param gk=20,gl=2,gna=30
param v1=-1.2,v2=18,v3=-10,v4=10
param gnap=0.8
param v5=-45,v6=10
param F=96485
param phi=.15,phi_z=0.05,cap=2
param nao=138

#nao and nai(0) adjusted to set Vna(0)=50mV, differences from 150 & 15 (resp) divided between them

param r=.005
# param h=.01

# !vol=(4/3)*pi*(r^3)
# !SA=4*pi*(r^2)
!SAvol=2/r
# SA:vol ratio for cylinder without ends
# note because of units, set r to 0.005 to get radius of 0.5 microns. The decimal place is not wrong.

# spherical soma r=7.5 um, cylindrical node r=.5 um, h=1 um
# for a cylinder: vol=pi*h*(r^2), SA=2*pi*r*(r+h), SA/vol=(2/r)+(2/h) 

aux vna_=vna
aux vk_=vk
aux gna_=gna*minf(V)

# INITIAL CONDITIONS
z(0)=0
nai(0)=18.67
V(0)=0
w(0)=0.000025

#STIMULUS PARAMETERS

# stimulus, set I_stims to 0 if you want to use noisy stim, slope to control ramp
param idc=0
I1(t)=heav(t>=t_start)*I_stim1
# Control stimulus offset or two-stage step, slope to control ramp
I2(t)=heav(t>(t_start+t_run))*I_stim1*(-1)
param I_stim1=50,t_start=300,t_run=0

# ALWAYS USE EULER when using noise, but no noise processes are implemented here
@ total=150,dt=.05,xlo=-100,xhi=60,ylo=-.125,yhi=.6,xp=v,yp=w
@ meth=euler
@ MAXSTOR=1000000,bounds=10000

done
This file has been produced by sbmlutils.

Terms of use

Copyright © 2017 Matthias Koenig

Redistribution and use of any part of this model, with or without modification, are permitted provided that the following conditions are met:

  1. Redistributions of this SBML file must retain the above copyright notice, this list of conditions and the following disclaimer.
  2. Redistributions in a different form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
This model is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.


Model :

id
name
time
substance
extent
volume
area
length
Access SBML model  L3V1

FunctionDefinitions [11] name math sbo cvterm
max minimum x y x x y y
min maximum x y x x y y
heav heavyside x 0 x 0 0.5 x 0 1 x 0 0
mod modulo x y x y x y x 0 y 0 x y x y
minf v v1 v2 0.5 1 v v1 v2
winf v v3 v4 0.5 1 v v3 v4
zinf v v5 v6 0.5 1 v v5 v6
tauw v v3 v4 1 v v3 2 v4
tauz v v5 v6 1 v v5 2 v6
i1 t i_stim1 t_start heav t t_start i_stim1
i2 t i_stim1 t_run t_start heav t t_start t_run i_stim1 1

Parameters [33] name constant value unit derived unit sbo cvterm
tau_na tau_na = 100 100.0 None
vk vk = -100 -100.0 None
vl vl = -70 -70.0 None
gk gk = 20 20.0 None
gl gl = 2 2.0 None
gna gna = 30 30.0 None
v1 v1 = -1.2 -1.2 None
v2 v2 = 18 18.0 None
v3 v3 = -10 -10.0 None
v4 v4 = 10 10.0 None
gnap gnap = 0.8 0.8 None
v5 v5 = -45 -45.0 None
v6 v6 = 10 10.0 None
f f = 96485 96485.0 None
phi phi = .15 0.15 None
phi_z phi_z = 0.05 0.05 None
cap cap = 2 2.0 None
nao nao = 138 138.0 None
r r = .005 0.005 None
z z = 0 0.0 None
nai nai = 18.67 18.67 None
v v = 0 0.0 None
w w = 0.000025 2.5e-05 None
idc idc = 0 0.0 None
i_stim1 i_stim1 = 50 50.0 None
t_start t_start = 300 300.0 None
t_run t_run = 0 0.0 None
vna 0.0 dimensionless None
0.0 dimensionless None
vna_ 0.0 dimensionless None
vk_ 0.0 dimensionless None
gna_ 0.0 dimensionless None
t model time 0.0 dimensionless None

Rules [10]   assignment name derived units sbo cvterm
d v/dt = i1 t i_stim1 t_start i2 t i_stim1 t_run t_start idc gna minf v v1 v2 v vna gk w v vk gl v vl gnap z v vna cap None
d w/dt = phi winf v v3 v4 w tauw v v3 v4 None
d z/dt = phi_z zinf v v5 v6 z tauz v v5 v6 None
d nai/dt = savol gna minf v v1 v2 v vna gnap z v vna f nai 17.5 tau_na None
vna = 25 nao nai None
= 2 r None
vna_ = vna None
vk_ = vk None
gna_ = gna minf v v1 v2 None
t = time None