XPP model
This model was converted from XPP ode format to SBML using sbmlutils-0.1.5a6
.
# Rate-based model of coupled neuron populations to
# perform discrimination using integral feedback control.
# Discrete attractor version, so r2 is determined by
# the sum of 20 units, r2a to r2t.
par w1_2=0.065 w2_1=-0.7 tau=0.005 di=0.001 i2l=0
par tstim=1 t1=4.0 t2=10.0 tauapp=0.005 dtapp=0.001
par rsp=20 tauNMDA=0.03
par f1=20 f2=24
init r1=0.0 r2=0.0
init r2a=0.0 r2b=0.0 r2c=0.0 r2d=0.0 r2e=0.0
init r2f=0.0 r2g=0.0 r2h=0.0 r2i=0.0 r2j=0.0
init r2k=0.0 r2l=0.0 r2m=0.0 r2n=0.0 r2o=0.0
init r2p=0.0 r2q=0.0 r2r=0.0 r2s=0.0 r2t=0.0
# init sapp1=0.0 sapp2=0.0
init s1=0.0 s2=0.0
sapp1=f1/((1+exp(-2*(t-t1)/dtapp))*(1+exp(-2*(t1+tstim-t)/dtapp)))
sapp2=f2/((1+exp(-2*(t-t2)/dtapp))*(1+exp(-2*(t2+tstim-t)/dtapp)))
ds1/dt=(sapp1-s1)/tauapp
ds2/dt=(sapp2-s2)/tauapp
i2=w1_2*r1*heav(r1)+r2a+r2b+r2c+r2d+r2e+r2f+r2g+r2h+r2i+r2j+r2k+r2l+r2m+r2n+r2o+r2p+r2q+r2r+r2s+r2t-i2l
dr2/dt=(-r2+i2*heav(i2))/tauNMDA
i1=rsp+w2_1*r2+s1+s2
dr1/dt=(-r1+i1)/tau
dr2a/dt=(-r2a+2*heav(r2-1))/tau
dr2b/dt=(-r2b+3*heav(r2-4))/tau
dr2c/dt=(-r2c+3*heav(r2-7))/tau
dr2d/dt=(-r2d+3*heav(r2-10))/tau
dr2e/dt=(-r2e+3*heav(r2-13))/tau
dr2f/dt=(-r2f+3*heav(r2-16))/tau
dr2g/dt=(-r2g+3*heav(r2-19))/tau
dr2h/dt=(-r2h+3*heav(r2-22))/tau
dr2i/dt=(-r2i+3*heav(r2-25))/tau
dr2j/dt=(-r2j+3*heav(r2-28))/tau
dr2k/dt=(-r2k+3*heav(r2-31))/tau
dr2l/dt=(-r2l+3*heav(r2-34))/tau
dr2m/dt=(-r2m+3*heav(r2-37))/tau
dr2n/dt=(-r2n+3*heav(r2-40))/tau
dr2o/dt=(-r2o+3*heav(r2-43))/tau
dr2p/dt=(-r2p+3*heav(r2-46))/tau
dr2q/dt=(-r2q+3*heav(r2-49))/tau
dr2r/dt=(-r2r+3*heav(r2-52))/tau
dr2s/dt=(-r2s+3*heav(r2-55))/tau
dr2t/dt=(-r2t+3*heav(r2-58))/tau
# dsapp1/dt=(s1-sapp1)/tauapp
# dsapp2/dt=(s2-sapp2)/tauapp
# ds1/dt=0.0
# ds2/dt=0.0
aux i2out=i2
aux di2=-r2+i2
# global 1 {t-t1} {s1=f1}
# global 2 {t-t1-tstim} {s1=0.0}
# global 3 {t-t2} {s2=f2}
# global 4 {t-t2-tstim} {s2=0}
@total=12,bound=100,dt=.001,dtmin=1e-5,dtmax=10,atoler=1e-4
@toler=1e-5,xhi=12,yhi=50,ylo=0 njmp=50,bell=0
@bell=off,nout=50
done
Terms of use
Copyright © 2017 Matthias Koenig
Redistribution and use of any part of this model, with or without modification, are permitted provided that
the following conditions are met:
Redistributions of this SBML file must retain the above copyright notice, this list of conditions
and the following disclaimer.
Redistributions in a different form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
This model is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Model :
id
name
time
substance
extent
volume
area
length
L3V1
type
FunctionDefinitions [4]
name
math
sbo
cvterm
FunctionDefinition
max
minimum
x
y
x
x
y
y
FunctionDefinition
min
maximum
x
y
x
x
y
y
FunctionDefinition
heav
heavyside
x
0
x
0
0.5
x
0
1
x
0
0
FunctionDefinition
mod
modulo
x
y
x
y
x
y
x
0
y
0
x
y
x
y
type
Parameters [45]
name
constant
value
unit
derived unit
sbo
cvterm
Parameter
w1_2
w1_2 = 0.065
F
0.065
None
Parameter
w2_1
w2_1 = -0.7
F
-0.7
None
Parameter
tau
tau = 0.005
F
0.005
None
Parameter
di
di = 0.001
F
0.001
None
Parameter
i2l
i2l = 0
F
0.0
None
Parameter
tstim
tstim = 1
F
1.0
None
Parameter
t1
t1 = 4.0
F
4.0
None
Parameter
t2
t2 = 10.0
F
10.0
None
Parameter
tauapp
tauapp = 0.005
F
0.005
None
Parameter
dtapp
dtapp = 0.001
F
0.001
None
Parameter
rsp
rsp = 20
F
20.0
None
Parameter
taunmda
taunmda = 0.03
F
0.03
None
Parameter
f1
f1 = 20
F
20.0
None
Parameter
f2
f2 = 24
F
24.0
None
Parameter
r1
r1 = 0.0
F
0.0
None
Parameter
r2
r2 = 0.0
F
0.0
None
Parameter
r2a
r2a = 0.0
F
0.0
None
Parameter
r2b
r2b = 0.0
F
0.0
None
Parameter
r2c
r2c = 0.0
F
0.0
None
Parameter
r2d
r2d = 0.0
F
0.0
None
Parameter
r2e
r2e = 0.0
F
0.0
None
Parameter
r2f
r2f = 0.0
F
0.0
None
Parameter
r2g
r2g = 0.0
F
0.0
None
Parameter
r2h
r2h = 0.0
F
0.0
None
Parameter
r2i
r2i = 0.0
F
0.0
None
Parameter
r2j
r2j = 0.0
F
0.0
None
Parameter
r2k
r2k = 0.0
F
0.0
None
Parameter
r2l
r2l = 0.0
F
0.0
None
Parameter
r2m
r2m = 0.0
F
0.0
None
Parameter
r2n
r2n = 0.0
F
0.0
None
Parameter
r2o
r2o = 0.0
F
0.0
None
Parameter
r2p
r2p = 0.0
F
0.0
None
Parameter
r2q
r2q = 0.0
F
0.0
None
Parameter
r2r
r2r = 0.0
F
0.0
None
Parameter
r2s
r2s = 0.0
F
0.0
None
Parameter
r2t
r2t = 0.0
F
0.0
None
Parameter
s1
s1 = 0.0
F
0.0
None
Parameter
s2
s2 = 0.0
F
0.0
None
Parameter
sapp1
F
0.0
dimensionless
None
Parameter
sapp2
F
0.0
dimensionless
None
Parameter
i2
F
0.0
dimensionless
None
Parameter
i1
F
0.0
dimensionless
None
Parameter
i2out
F
0.0
dimensionless
None
Parameter
di2
F
0.0
dimensionless
None
Parameter
t
model time
F
0.0
dimensionless
None
type
Rules [31]
assignment
name
derived units
sbo
cvterm
Rule
d s1/dt
=
sapp1
s1
tauapp
None
Rule
d s2/dt
=
sapp2
s2
tauapp
None
Rule
d r2/dt
=
r2
i2
heav
i2
taunmda
None
Rule
d r1/dt
=
r1
i1
tau
None
Rule
d r2a/dt
=
r2a
2
heav
r2
1
tau
None
Rule
d r2b/dt
=
r2b
3
heav
r2
4
tau
None
Rule
d r2c/dt
=
r2c
3
heav
r2
7
tau
None
Rule
d r2d/dt
=
r2d
3
heav
r2
10
tau
None
Rule
d r2e/dt
=
r2e
3
heav
r2
13
tau
None
Rule
d r2f/dt
=
r2f
3
heav
r2
16
tau
None
Rule
d r2g/dt
=
r2g
3
heav
r2
19
tau
None
Rule
d r2h/dt
=
r2h
3
heav
r2
22
tau
None
Rule
d r2i/dt
=
r2i
3
heav
r2
25
tau
None
Rule
d r2j/dt
=
r2j
3
heav
r2
28
tau
None
Rule
d r2k/dt
=
r2k
3
heav
r2
31
tau
None
Rule
d r2l/dt
=
r2l
3
heav
r2
34
tau
None
Rule
d r2m/dt
=
r2m
3
heav
r2
37
tau
None
Rule
d r2n/dt
=
r2n
3
heav
r2
40
tau
None
Rule
d r2o/dt
=
r2o
3
heav
r2
43
tau
None
Rule
d r2p/dt
=
r2p
3
heav
r2
46
tau
None
Rule
d r2q/dt
=
r2q
3
heav
r2
49
tau
None
Rule
d r2r/dt
=
r2r
3
heav
r2
52
tau
None
Rule
d r2s/dt
=
r2s
3
heav
r2
55
tau
None
Rule
d r2t/dt
=
r2t
3
heav
r2
58
tau
None
Rule
sapp1
=
f1
1
2
t
t1
dtapp
1
2
t1
tstim
t
dtapp
None
Rule
sapp2
=
f2
1
2
t
t2
dtapp
1
2
t2
tstim
t
dtapp
None
Rule
i2
=
w1_2
r1
heav
r1
r2a
r2b
r2c
r2d
r2e
r2f
r2g
r2h
r2i
r2j
r2k
r2l
r2m
r2n
r2o
r2p
r2q
r2r
r2s
r2t
i2l
None
Rule
i1
=
rsp
w2_1
r2
s1
s2
None
Rule
i2out
=
i2
None
Rule
di2
=
r2
i2
None
Rule
t
=
time
None