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Abstract

We consider the problem of Bayesian predictive inference for binary response with co-
variates and survey weights. Our method makes use of the combination of probability
survey samples that have been enhanced by auxiliary data. The incorporation of survey
weights into a logistic regression model, which creates a thorough and logical analyt-
ical paradigm, is at the core of our methodology. Our investigation covers six differ-
ent models that were carefully created to include both normalized and unnormalized
weighted likelihoods. Three iterations of adjusted survey weights—original, trimmed,
and calibrated—are taken into account within this spectrum. The Metropolis-Hastings
sampler is the implementation algorithm for our analysis. Building on this foundation,
we use the stratification and surrogate sampling technique to expand our inferences to
finite population parameters. We conduct a thorough evaluation that includes a sim-
ulation study and a real-world dataset focused on body mass index (BMI) in order to
assess the performance and efficacy of our models. Our findings show how powerful
models with normalized density functions and adjusted trimmed weights are. These
models exhibit a unique capability for higher estimation accuracy while maintaining
fidelity to the fundamental principles of Bayesian inference. The results of our study
have broad implications for the field of research as a whole, highlighting the signif-
icance of the framework we proposed and the exceptional value of trimmed weights
that have been adjusted for the purpose of driving effective predictive inference in
survey-oriented research studies.
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1 Introduction

Survey sampling is a fundamental statistical methodology employed to collect reliable
and representative data from a subset of a larger population. It serves as a means to reduce
costs and capture essential information about key variables of interest. By strategically se-
lecting a representative sample, researchers can make informed predictions and inferences
based on the gathered data. This method is crucial for accurate estimation and forecasting at
the population level. Survey weights play a pivotal role in the domain of survey sampling,
addressing potential biases present within the sample data. Their purpose is to rectify any
discrepancies between the sample and the target population, ensuring that inferences and es-
timates derived from the sample data are both precise and unbiased (Lohr, 2021). However,
improper utilization of survey weights can lead to skewed estimates and misguided infer-
ences. This has been acknowledged in previous research, where complexities in employing
survey weights were highlighted (Gelman, 2007). Nevertheless, Lohr (2007) countered that
while there are limitations to the utility of survey weights, diligent efforts should be made
to maximize their potential.

Generating survey weights involves assigning weights to each unit within the sample,
often through the inverse of the probability of selection. This correction compensates for
potential bias introduced by the sampling design. For instance, groups with lower probabili-
ties of selection receive higher weights to ensure the sample reflects the broader population.
In survey datasets, weights can also encompass adjustments for non-response and post-
stratification to align auxiliary variable distributions with known population distributions
(Chen et al., 2017). Notably, survey weights can even be generated from a single nonprob-
ability sample, as demonstrated by Elliott and Valliant (2017) and Chen et al. (2020). Rob-
bins et al. (2021) concentrated on design-based methods such as calibration and propensity
score weighting (without parametric models). Nandram and Rao (2021), Nandram et al.
(2021) showed a full Bayesian approach to incorporate a nonprobability sample and a prob-
ability sample. Yang et al. (2023) concluded the performance of nine methods but they
did not take auxiliary information into consideration. Despite this, our focus remains on
evaluating the performance of various adjusted weights within a parametric model context,
rather than on the estimation of survey weights themselves.

When dealing with binary study variables, Bayesian logistic regression emerges as a
prominent probabilistic model. This framework elucidates the relationship between covari-
ates and the binary response variable through Bayesian inference, offering posterior distri-
butions of model parameters based on the observed data. Unlike traditional logistic regres-
sion, Bayesian logistic regression incorporates parameter uncertainty, yielding distributions
over possible parameter values. This enables probabilistic predictions and quantification of
prediction uncertainty. While weighting units can mitigate the impact of unequal inclusion
in the sample, the estimates often remain inefficient. Covariates serve not only as auxil-
iary information but also as crucial components for modeling, specifically in regression and
the corresponding coefficient estimation. Numerous studies such as Roberts et al. (1987),
Archer and Lemeshow (2006), Rader et al. (2017), and Chen and Nandram (2023) have
explored different aspects of incorporating survey designs into logistic regression analysis.
The same idea is shown in the work of Barasa and Muchwanju (2015), but they only an-
alyzed the regression coefficients, rather than making predictions and inferences about a
finite population quantity.

This paper builds upon and refines the findings presented in Yang and Nandram (2023),
providing an updated and enhanced analysis of the simulation study and the numerical ex-



ample. In this study, we aim to evaluate the effectiveness of six distinct models for Bayesian
predictive inference on finite population parameters. Section 2 delves into the nuances of
adjusted survey weights, encompassing adjusted original, adjusted trimmed, and adjusted
calibrated survey weights. These weights are then integrated into both unnormalized and
normalized models to facilitate Bayesian predictive inference. Section 3 offers insight from
a simulation study, leveraging metrics such as absolute relative bias (ARB), posterior stan-
dard deviation (PSD), posterior root mean squared error (PRMSE), coverage probability
(CP), and width of highest posterior density interval (Wid) to evaluate the six models. In
Section 4, we apply the models to real-world data on body mass index (BMI) from the
Third National Health and Nutrition Examination Survey (NHANES III), investigating pos-
terior means and posterior standard deviations. Lastly, Section 5 provides recommendations
for further research while assessing the study’s strengths and limitations comprehensively.
Technical methods are presented in the appendix.

2 Bayesian Predictive Inference

2.1 Data Source and Objectives

In this section, we describe the objectives of our study and introduce the body mass
index (BMI) dataset that serves as the focal point of our analysis. Our study revolves
around the comprehensive Bayesian predictive inference framework for binary responses.
To achieve this, we utilize probability survey samples that are enriched with auxiliary data.
Our primary objective is to develop and evaluate a set of models for conducting Bayesian
predictive inference on finite population parameters, taking into account the complexities
introduced by survey weights and covariates.

To illustrate the efficacy of the proposed framework, we employ the Third National
Health and Nutrition Examination Survey (NHANES III) dataset. NHANES III is a nation-
ally representative survey conducted by the National Center for Health Statistics (NCHS)
to assess the health and nutritional status of the U.S. population. This dataset is particularly
suitable for our study due to its extensive collection of demographic, health, and lifestyle
information. The NHANES III dataset contains measurements of various health-related
variables, including binary responses, covariates, and survey weights. Of particular interest
to our study is the body mass index (BMI) data, which serves as a binary response variable
indicating the presence or absence of being obese. The dataset also includes covariates that
provide valuable auxiliary information for our modeling, enabling us to account for poten-
tial confounding factors. By utilizing the NHANES III dataset and focusing on BMI as the
binary response variable, we aim to showcase the practical applicability and effectiveness
of our proposed framework in addressing real-world survey-based studies involving binary
responses, survey weights, and covariates. In the subsequent sections of this paper, we
delve into the details of how the Bayesian predictive inference framework is applied to the
BMI dataset, the model comparisons, and the implications of our findings.

2.2 Adjusted Survey Weights

In this section, we establish a comprehensive framework for incorporating survey weights
into the statistical inference of binary variables from probability survey samples, all while
harnessing the power of pertinent auxiliary data. Our approach encompasses three varia-
tions of adjusted survey weights: adjusted original weights, adjusted trimmed weights, and



adjusted calibrated weights. We begin by outlining the foundational concepts and method-
ologies underlying each variation. We initiate our exploration by considering the fundamen-
tal concept of adjusted original weights. Within this paradigm, we focus on the scenario
where the selection probability exclusively depends on the observed covariates (i.e., ignor-
able selection). Imagine drawing a sample of size n from a finite population with size N .
For each unit i, let yi represent the response, xi

˜
symbolize the vector of observed covariates,

and Wi denote the corresponding (original) survey weight. To estimate the unknown finite
population size (N ) along with the population total (T ), the classical Horvitz-Thompson
estimators are defined as T̂ =

∑n
i=1Wiyi, N̂ =

∑n
i=1Wi.

To further enhance the robustness of our methodology, we delve into the concept of
trimmed weights. Inspired by the Winsorization technique, which mitigates the impact
of outliers, we seek to alleviate the influence of extreme values in our survey weights.
By rescaling the weights and adopting a threshold approach, we curtail the undue impact
of outliers, leading to more resilient and reliable predictive inferences; see Rao (1966)
and Basu (1971). In the context of our work, we opt for a threshold defined as W0 =
Q3 + 1.5(Q3 −Q1), where Q1 signifies the first quartile and Q3 signifies the third quartile
of the data distribution. This calibrated threshold ensures that we encapsulate the essence
of the data’s dispersion while judiciously mitigating the undue influence of extreme values.
With this threshold in place, we proceed to transform our original survey weights into their
trimmed counterparts, denoted as W

˜
∗. This transformation follows a distinct prescription,

as detailed by the following formulation:

W ∗
i =

{
W0, Wi ≥ W0

aWi, Wi < W0
, (1)

where a represents a carefully chosen rescaling parameter, imbued with the purpose of
preserving the total weights in the adjusted scheme (

∑n
i=1W

∗
i =

∑n
i=1Wi = N̂ ). This ju-

dicious rescaling ensures that the recalibrated weights seamlessly integrate into the broader
statistical framework, poised to furnish predictive inferences fortified against the perturbing
effects of extreme values.

In contrast, the calibrated weights are fashioned through a more intricate optimiza-
tion process. The process strives to achieve harmony between the aggregate totals and the
weighted sum of auxiliary variables. The use of a distance function G(u) and the concept
of Lagrange multipliers guides this optimization. The calibrated weights, ultimately deter-
mined by the Lagrange multipliers and the distance function, reflect a balanced relationship
between auxiliary variables and aggregate totals. Incorporating calibrated survey weights
serves as a potent strategy to rectify the under-representation of specific population seg-
ments within the sample (Haziza and Beaumont, 2017). This approach proves indispensable
when striving to enhance the precision and credibility of prevalence estimates for obesity
within the finite population. The calibrated survey weights stand as a hallmark technique
within survey research, adeptly addressing the challenges posed by non-representative sam-
ples or the under-representation of distinct subgroups.

To embark on this calibration journey, we commence by assuming the availability of ag-
gregate totals, denoted as t

˜
. These totals might emanate from sources such as censuses, gov-

ernmental documents, or meticulously curated online data. The calibration process hinges
on the notion of calibrating the survey weights, denoted as W̃

˜
, to align them with the ag-

gregate totals. This alignment is guided by a distance function G(u), wielded to minimize
the divergence between the calibrated and original weights. The function G(u) adheres to



essential properties: it is non-negative (G(u) ≥ 0), vanishes at unity (G(1) = 0), is dif-
ferentiable (G(u) has a derivative, denoted as g(u)), and is strictly convex. The calibration
leverages the relative importance of each unit, as encapsulated by the factor qj .

To realize this calibration process, we venture into the realm of optimization. Our
objective is to minimize a functional form involving both the weighted distance function
and a constraint imposed by the calibration equations. The Lagrangian multiplier method
emerges as a versatile tool for handling such optimization tasks, with the Lagrange multi-
pliers λ

˜
= (λ1, . . . , λp)

′ playing a pivotal role. The formulation takes shape as follows:

argmin
W̃ j

n∑
j=1

W̃j

qj
G

(
W̃ j

Wj

)
s.t.

n∑
j=1

W̃jxj = t
˜
. (2)

Upon successfully obtaining the Lagrange multipliers λ̂
˜
, the calibrated weights readily

unfold through the relationship:

W̃j = Wjg
−1
(
qj λ̂

˜
′x
˜
j

)
, j = 1, . . . , n (3)

The calibration process embraces a specific choice of the distance function—specifically,
the simple Euclidean distance represented by G(u) = 1

2(u − 1)2. This choice ushers in
closed-form solutions, facilitating the practical implementation of the procedure. The cali-
bration process entails pivotal algebraic steps, culminating in the calibration weights:

W̃j = Wj

(
1 + qj λ̂

˜
′x
˜
j

)
, j = 1, . . . , n. (4)

It is noteworthy that under specific conditions (λ̂
˜
= 0

˜
), calibrated weights coincide

with original survey weights. The intricacies of the calibration process can, however, yield
negative calibrated weights, particularly when the sample fails to accurately represent the
population, owing to non-response bias, sampling error, or inappropriate weighting adjust-
ments. To navigate this challenge, we adopt a practical approach of rescaling negative
weights to be positive. Specifically, weights less than 1 are set to 1 to uphold a representa-
tive minimum size. This rescaling is followed by normalization to preserve the integrity of
the sample size. By this means, we ensure that the calibrated weights are primed to fulfill
their role as stalwart pillars of accurate predictive inferences.

The effective sample size serves as a pivotal metric, quantifying the degree of indepen-
dent information within a dataset. In the realm of statistics, it acts as a corrective measure,
addressing the potential discrepancies between observed sample size and the actual inde-
pendence within the data. This adjustment accounts for various complexities, including
interdependence between observations, clustering effects, and non-random sampling tech-
niques (Potthoff et al., 1992). A larger effective sample size signifies a wealth of indepen-
dent information, leading to more precise estimations and narrower confidence intervals.
Conversely, a smaller effective sample size implies a dearth of independent information,
potentially resulting in less precise estimates and wider confidence intervals. Denoted by
ne, the effective sample size anchors our adjustment process. We embark on constructing
three types of adjusted weights for each unit, indexed by i = 1, . . . , n:

ne =

(∑n
j=1Wj

)2∑n
j=1W

2
j

, wi =
neWi∑n
j=1Wj

, (5)



n∗
e =

(∑n
j=1W

∗
j

)2∑n
j=1W

∗2
j

, w∗
i =

n∗
eW

∗
i∑n

j=1W
∗
j

, (6)

ñe =

(∑n
j=1 W̃j

)2
∑n

j=1 W̃
2
j

, w̃i =
ñeW̃i∑n
j=1 W̃j

. (7)

By introducing these adjustments, we elevate the accuracy and reliability of our method-
ology. The refined weights - adjusted original weights w

˜
, adjusted trimmed weights w

˜
∗, and

adjusted calibrated weights w̃
˜

- surpass their unadjusted counterparts in terms of precision.
Notably, the use of adjusted trimmed weights is instrumental in curbing the undue influ-
ence of outlier observations, rendering the methodology more robust against data that may
deviate from conventional assumptions. These assumptions include the normality of the
data distribution or the homogeneity of variance. On the other hand, calibrated weights
are designed to rectify discrepancies in variables of interest, such as age, gender, or educa-
tion level, thereby enhancing the representativeness of the survey data. This dual approach
of trimmed and calibrated weights forms a cohesive strategy that fortifies the validity and
trustworthiness of our predictive inferences.

2.3 Weighted Density

In this study, we focus on the binary response, and the logistic regression model with p
covariates is used to model the binary response. To be more specific, the following logistic
regression model for the population is considered,

yi | β
˜

ind∼ Bernoulli

{
ex˜

′
iβ
˜

1 + ex˜
′
iβ
˜

}
, i = 1, . . . , N, (8)

where N , the population size, and the nonsampled x
˜
i may be unknown, and these can come

from an external source or a calibrated bootstrap of the sampled covariates. Note that there
are no survey weights in the population model. Suppose that a probability sample of size n
is taken from a finite population. With given survey weights of each unit in the sample, W

˜
,

the Horvitz-Thompson estimator of the loglikelihood for the entire population, L(θ
˜
), is

L̂(θ
˜
) =

n∑
i=1

Wi log
{
f(yi|θ

˜
)
}
,

where we use Wi to illustrate our models but replace the weights with adjusted survey
weights wi in the application. This is also called pseudo-likelihood function, which means
g(yi|θ) ∝ f(yi | θ

˜
)Wi , i = 1, . . . , n, where g(yi | θ

˜
) is the density function of yi. Note that

f(yi | θ
˜
)Wi is an unnormalized ‘density’ function. To obtain the normalized one, we need

to insert the normalization constant,
∫
f(yi | θ

˜
)Widyi, such that g(yi | θ

˜
) integrates to 1.

Therefore, we have,

g(yi|θ
˜
) =

(f(yi|θ
˜
))Wi∫

(f(yi|θ
˜
))Widyi

.

For the sample, we have (Wi, x
˜
i, yi), i = 1, . . . , n. Without the normalization,



f1 (yi | β
˜
) =

(
ex˜

′
iβ
˜

1 + ex˜
′
iβ
˜

)Wiyi (
1

1 + ex˜
′
iβ
˜

)Wi(1−yi)

, i = 1, . . . , n, (9)

independently, but note that this is not a probability mass function in yi, even though it is
typically employed in model-based analysis of data derived from survey sampling. With
normalization,

f2(yi|θ
˜
) =

(f1 (yi|θ
˜
))Wi

f1 (yi = 0|θ
˜
))Wi + f1 (yi = 1|θ

˜
))Wi

(10)

=

(
ex˜

′
iβ
˜

1+ex˜
′
i
β
˜

)yiWi
(

1

1+ex˜
′
i
β
˜

)(1−yi)Wi

(
ex˜

′
i
β
˜

1+ex˜
′
i
β
˜

)Wi

+

(
1

1+ex˜
′
i
β
˜

)Wi
(11)

=

(
eWix

˜
′
iβ
˜

1 + eWix
˜
′
iβ
˜

)yi (
1

1 + eWix
˜
′
iβ
˜

)(1−yi)

. (12)

Therefore,

yi | β
˜

ind∼ Bernoulli

{
eWix

˜
′
iβ
˜

1 + eWix
˜
′
iβ
˜

}
, i = 1, . . . , n. (13)

Once more, the Bayesian paradigm favors the normalized form.
Then, using a flat prior on β

˜
, π(β

˜
) = 1, the joint pseudo-posterior density and the joint

posterior density are,

π1(β
˜
| y

˜
) ∝

{
e
∑n

i=1 yiWix
˜
′
iβ
˜∏n

i=1(1 + ex˜
′
iβ
˜ )

Wi

}
, β

˜
∈ Rp, (14)

π2(β
˜
| y

˜
) ∝

{
e
∑n

i=1 yiWix
˜
′
iβ
˜∏n

i=1(1 + eWix
˜
′
iβ
˜ )

}
, β

˜
∈ Rp. (15)

For both posterior distributions, the prior is assumed to be a uniform distribution on β
˜
;

see Chen et al. (2008) for more details about Jeffreys’ prior.
In this case, we can use the Metropolis-Hastings sampler (or the Gibbs sampler) to

obtain samples of β
˜
; see Appendix A for more details. For both posteriors, large values of

Wi will give unacceptably small variance, so it is necessary to replace the original weights
with adjusted weights. After we replace the original survey weights with three adjusted
weights in these two posteriors, we have six models, and they are illustrated in the following
flowchart,

2.4 Bayesian Predictive Inference for Logistic Regression

In the realm of Bayesian predictive inference, our initial step involves the specification
of a prior distribution for the model parameters β1, β2, . . . , βp−1. This prior can be in-
formed by our pre-existing beliefs or domain knowledge concerning the interplay between
the predictor variables and the outcome. Subsequently, we employ Bayes’ theorem to refine



Figure 1: A flowchart of the six models

this prior, yielding the posterior distribution of the parameters in light of the observed data:

π(β
˜
|y, x

˜
) ∝ π(y|x

˜
, β

˜
)π(β

˜
),

where, π(y|x
˜
, β

˜
) represents the likelihood function, delineating the likelihood of the ob-

served data (y) given both the predictor variables (x
˜
) and the model parameters (β

˜
). Simul-

taneously, π(β
˜
) embodies the prior distribution encompassing the parameters.

To model the binary response, we consider using a logistic regression model. Bayesian
predictive inference in logistic regression is a powerful technique for estimating the proba-
bility of a binary outcome, such as success or failure, based on a set of predictor variables.
This method begins by establishing a prior distribution over the model parameters, which
encapsulates our initial beliefs or knowledge about the relationship between the predictors
and the outcome. Subsequently, this prior is updated using Bayes’ theorem in light of the
observed data. The resulting posterior distribution over the parameters provides a refined
estimate. In our logistic regression model, we express the log odds of the binary outcome
in terms of the predictor variables:

log
p(y = 1|x

˜
)

1− p(y = 1|x
˜
)
= β0 + β1x1 + β2x2 + ...+ βp−1xp−1,

where p(y = 1|x
˜
) represents the probability of the binary outcome equals 1 (y = 1) given

the predictor variables x
˜
, β0 is the intercept, β1, β2, . . . , βp−1 are the coefficients for the pre-

dictor variables x1, x2, . . . , xp−1. The logistic function ensures that the output lies within
the range of 0 to 1. Following the derivation of the posterior distribution, it becomes possi-
ble to predict the probability of the binary outcome for new observations, thereby enabling
insightful inferences.

In this investigation, a central hurdle lies in estimating unobserved variables. These
play a crucial role in predicting the proportion of the finite population, yet they are typi-
cally beyond our knowledge. To tackle this, we employ a stratification method that enables



predictive inferences about the population’s interests. In this approach, the population is
partitioned into k distinct strata or cells. Assuming that the sample covariates adequately
represent the population, especially with a large sample size, unobserved variables can be
logically excluded. This is because the sampled covariates are likely to encompass a broad
range of population characteristics. Within the k-th stratum, the corresponding variables
x
˜
k are well-known, and every unit shares the same set of covariates. By successfully strat-

ifying the population, the need to estimate non-sampled variables—typically a challenging
and resource-intensive endeavor—is efficiently obviated. Consequently, we can employ the
Horvitz-Thompson estimator for each stratum, aggregating the original survey weights of
each unit in the stratum. This is represented by N̂k =

∑
i∈κWi, where κ denotes the set of

indices in stratum k.
According to the population distribution (equation 8), we can express the total count,

tk, for the k-th stratum as follows:

tk | β
˜

ind∼ Binomial

{
N̂k,

ex˜
′
kβ

˜
1 + ex˜

′
kβ

˜

}
, k = 1, . . . ,K, (16)

where, tk represents the total count of the binary outcome (y = 1) in the k-th stratum. The
estimate of the finite population proportion is then given by:

T̂ =

∑K
k=1 tk∑K
k=1 N̂k

.

Additionally, this method, a form of stratified analysis, is particularly effective when all
covariates are discrete with only a few levels. It also works well when a specific continuous
variable can be discretized into a small number of levels. The discretization of continuous
variables simplifies their handling, allowing us to apply methods designed for discrete data.
This approach not only reduces complexity but also lessens the computational load of the
methods. Moreover, in cases where auxiliary information is accessible in the form of known
marginal counts, the raking approach provides an alternative and more robust procedure
within strata. However, it is important to note that such auxiliary information is often not
readily available in most scenarios. As a result, we commonly resort to employing survey
weights, as we have done here. This makes prediction using the already fitted logistic
regression the preferred method. To illustrate, consider a single stratum with s successes
and f failures, a sample size of n = s + f , and a stratum size of N . Raking allocates N
units proportionally to obtain (s/n)N and (f/n)N . It is crucial to acknowledge that this
proportionality assumption may not always hold; for a comprehensive treatment of general
multiway tables using iterative proportional fitting (IPF), refer to Deville et al. (1993).

In summary, by segmenting sampled variables into distinct strata, we can efficiently
make predictive inferences for finite populations. This is accomplished by leveraging the
covariates and cumulative weights of each stratum. Such a stratification strategy empowers
us to effectively utilize sampled variables for estimation, eliminating the need to estimate
non-sampled variables. This streamlines the process and reinforces the reliability of our
findings.



3 Simulation

In this section, we employ a design-based approach to generate both the finite popula-
tion and the sample, as outlined in Nandram and Rao (2021) and Chen et al. (2020). We
only need to generate the population and the probability sample. We also vary the strength
of the association between the response and covariates. Age, race, and sex, which are the
three covariates, determine the structure of the simulation data as expressed below:

zi = 24.2449 + 0.0559x1i + 1.2656x2i + 1.2525x3i + ϵi,

yi =

{
1, if zi ≥ 30,

0, if zi < 30,
for i = 1, . . . , N,

where,

x1i
ind∼ Discrete Uniform(20, 90), x3i

ind∼ Bernoulli(0.5),

x2i |x1i, x3i
ind∼ Bernoulli

(
eai

1 + eai

)
, ϵi

iid∼ Normal(0, σ2),

with ai = [24.2449 + 0.0559x1i + 1.2525x3i]
1
10 . For the simulation studies, we adjust the

values of σ by trial and error to control the correlation coefficient ρ between zi and the
linear predictor x

˜
′
iβ
˜

at 0.2, 0.3, 0.5, and 0.8.
We then proceeded to create a probability-based sample with a target size of n =

200 using the randomized systematic probability-proportional-to-size (PPS) sampling tech-
nique. This involved calculating selection probabilities (πi) according to the formula:

πi =
nibi∑N
i=1 bi

, i = 1 . . . N,

where bi = θ + 0.2x1i + 5x2i + 5x3i. The value of θ was determined through iter-
ative testing to ensure that the variation in survey weights met our specified criteria of
max{bi}/min{bi} ≈ 50. Following the application of the PPS sampling method with π

˜to select our samples, we assigned survey weights (Wi = 1/πi) to each unit in the sample
(i = 1, . . . , n). Additionally, we deliberately identified 5 samples with a response variable
of 0 and increased their corresponding weights by a factor of 3, categorizing these five units
as outliers. Subsequently, we computed these three adjusted weights based on W

˜
. In the

case of adjusted calibrated weights, it was assumed that the overall population totals were
accessible.

In this simulation, our parameter of interest is the finite population proportion. To
evaluate the performance of a given estimator, we employ several metrics:

1. Absolute Relative Bias (ARB):

ARB =
1

H

H∑
h=1

∣∣∣∣∣PM (h) − T

T

∣∣∣∣∣ .



2. Posterior Standard Deviation (PSD):

PSD =
1

H

H∑
h=1

PSD(h).

3. Posterior Root Mean Squared Error (PRMSE):

PRMSE =
1

H

H∑
h=1

√(
PM (h) − T

)2
+ (PSD(h))2.

4. Coverage Probability (CP):

CP =
1

H

H∑
h=1

I
(
C

(h)
025 ≤ T ≤ C

(h)
975

)
.

5. Width of the Highest Posterior Density Interval (Wid):

Wid = C
(h)
975 − C

(h)
025.

Here, T represents the true finite population proportion, PM (h) is the posterior mean,
PSD(h) is the posterior standard deviation, I(·) is the indicator function, and C

(h)
025 and

C
(h)
975 denote endpoints (not necessarily percentiles). These metrics are computed from the

hth simulated sample, with H = 100 representing the total number of simulation runs.

1

2

3

Adj−original weights Adj−trimmed weights Adj−calibrated weights
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v
a
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e

Figure 2: Comparison boxplots with jittered points of three different weights using one
simulation dataset with n = 200.

Figure 2 displays the boxplot from a single simulation iteration. It illustrates that the
adjusted calibrated weights exhibit median, quartiles, and range values that closely align
with those of the adjusted original weights. This suggests that the calibration process did



not introduce significant bias into the dataset. By trimming some weight outliers and re-
distributing weights to ensure

∑n
i=1W

∗
i =

∑n
i=1Wi = N̂ , the boxplot of the adjusted

trimmed weights appears slightly higher and more consistent compared to the others, with-
out any outliers. The corresponding effective sample sizes for this run are ne = 162,
n∗
e = 184, and ñe = 147.

Table 1: Comparison of six models using simulation data with ρ = 0.2, 0.3, 0.5, 0.8

ρ A B C D E F

ARB 0.2 0.106 0.118 0.075 0.069 0.104 0.116
0.3 0.093 0.109 0.076 0.077 0.093 0.105
0.5 0.105 0.130 0.084 0.090 0.105 0.128
0.8 0.108 0.117 0.098 0.101 0.109 0.122

PSD 0.2 0.029 0.033 0.025 0.026 0.028 0.033
0.3 0.028 0.033 0.025 0.026 0.028 0.033
0.5 0.026 0.031 0.022 0.024 0.026 0.031
0.8 0.020 0.019 0.017 0.018 0.020 0.019

PRMSE 0.2 0.004 0.006 0.002 0.002 0.004 0.005
0.3 0.003 0.004 0.002 0.002 0.003 0.004
0.5 0.003 0.004 0.002 0.002 0.003 0.004
0.8 0.002 0.002 0.001 0.002 0.002 0.002

CP 0.2 0.69 0.71 0.76 0.80 0.68 0.69
0.3 0.68 0.77 0.80 0.84 0.68 0.79
0.5 0.72 0.74 0.77 0.79 0.67 0.72
0.8 0.71 0.61 0.65 0.68 0.70 0.61

Wid 0.2 0.112 0.131 0.099 0.102 0.110 0.128
0.3 0.110 0.130 0.097 0.100 0.108 0.128
0.5 0.103 0.121 0.088 0.096 0.102 0.120
0.8 0.080 0.075 0.068 0.070 0.078 0.075

In Table 1, we provide a comprehensive comparison of the simulation results. It is ev-
ident that model D consistently outperforms models A, B, C, E, and F in terms of lower
bias, enhanced precision, and overall superior performance in estimating the parameter of
interest. Models A and E, which utilize unnormalized densities with adjusted original and
calibrated weights respectively, exhibit similar results across all ρ levels. This suggests that
the difference between adjusted original weights w

˜
and adjusted calibrated weights w̃

˜
is

negligible. The same observation holds for models B and F, which utilize normalized den-
sities. However, models C and D, which employ adjusted trimmed weights, demonstrate
more substantial variations in these metrics, particularly at lower ρ levels (0.2 and 0.3).
They display lower Absolute Relative Bias (ARB) and Posterior Root Mean Squared Error
(PRMSE), and higher Coverage Probability (CP). This indicates an advantage of using ad-
justed trimmed weights in this simulation, especially in scenarios involving weight outliers.
It is worth noting that at lower ρ levels (0.2 and 0.3), the normalized model with adjusted
trimmed weights (model D) outperforms the unnormalized model with adjusted trimmed
weights (model C). Model D tends to exhibit relatively lower or similar ARB values, along
with higher CP values. Weight outliers in survey data occur when certain survey units are



assigned disproportionately large or small weights compared to others. In binary samples,
these outlier weights can significantly impact the predictive inference of the population.
The subsequent simulation involves generating synthetic data with varying levels of outlier
weights (by manipulating the fraction of outliers from 0 to 0.5) and assessing the perfor-
mance of the six models in terms of ARB. Specifically, we randomly select some units in
the sample based on the outlier fraction and multiply their original weights by five. We then
proceed to compute the posterior means of all six models and plot their respective ARBs.

Model
A

B

C

D

E

F

0.0

0.1

0.2

0.3

0.0 0.1 0.2 0.3 0.4 0.5

Outlier fraction

A
R

B

rho=0.2

0.0

0.1

0.2

0.0 0.1 0.2 0.3 0.4 0.5

Outlier fraction

A
R

B

rho=0.3

0.0

0.1

0.2

0.3

0.0 0.1 0.2 0.3 0.4 0.5

Outlier fraction

A
R

B

rho=0.5

0.00

0.05

0.10

0.15

0.20

0.0 0.1 0.2 0.3 0.4 0.5

Outlier fraction

A
R

B

rho=0.8

Figure 3: ARB Comparison of six models using simulation data with ρ = 0.2, 0.3, 0.5, 0.8
and different outlier fractions.

The performance of the six models at varying levels of outlier fractions is depicted
in Figure 3. When the outlier fraction is set to 0, the results indicate negligible differ-
ences among the six models. As the outlier fraction increases, models employing adjusted
trimmed weights (models C and D) consistently outperform the others. This outcome
aligns with expectations, as weight trimming or Winsorization is effective in mitigating
the impact of outlier weights. It is noteworthy that at lower outlier fractions (0.1, 0.2, and
0.3), the model employing normalized density (model D) exhibits lower Absolute Relative



Bias (ARB) values compared to the model with unnormalized density (model C). However,
across all outlier fractions, the normalized density models (models B and F) display higher
ARB values compared to the unnormalized density models (models A and E). Similarly,
there is little distinction between the unnormalized models using adjusted original weights
(model A) and adjusted calibrated weights (model E), and the same applies to the normal-
ized models (models B and F).

4 Application on Body Mass Index

Examining the proportion of the population classified as obese is a crucial aspect of
assessing the health of a finite population. In this section, we employ our six models using
a sample dataset of Body Mass Index (BMI) measurements from individuals across eight
counties in California, sourced from the Third National Health and Nutrition Examination
Survey (NHANES III). This dataset comprises 1,867 observations, providing a robust basis
for constructing a contingency table to represent the finite population covariates. Among
the covariates commonly associated with BMI data, age, race, and sex are discrete. Age,
spanning from 20 to 89, encompasses approximately 70 levels, while race and sex each
possess two levels. Consequently, there are 280 unique covariate vectors x

˜
.

For this example concerning eight counties in California, we utilized web scraping
along with the 1990 census report of California to obtain the following totals: popula-
tion size N = 4, 035, 862, age = 36.7 ×N , race = .719 ×N , and sex = .497 ×N . This
provides a basis for making meaningful comparisons between the outcomes of the various
models.
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Figure 4: Comparison boxplot with jittered points of three different weights using BMI data

It is important to note that the inclusion of jittered points in the boxplot might visually
suggest that some data points fall below the zero line. However, it should be emphasized
that all points are positive. In Figure 4, we observe that the boxplots of adjusted original
weights and adjusted calibrated weights exhibit a heavy tail. This indicates the presence of



some outliers with weights surpassing the maximum boundary, which can have a significant
impact on the estimates. The corresponding effective sample sizes are ne = 498, n∗

e =
1301, ñe = 498, compared to the actual sample size n = 1, 867.

As is well-known, outliers can exert a substantial influence on the effective sample size.
Consider a dataset with an abundance of outliers used to estimate the mean of a population.
These outliers can tug the mean away from its true value, leading to a larger variance and
subsequently a diminished effective sample size. In such a scenario, the effective sample
size would be lower than the actual sample size, signifying that there is less reliable in-
formation in the data for making inferences about the population. In the case of the BMI
dataset, the substantial presence of outliers leads to a reduction in the two effective sample
sizes computed using adjusted original weights and adjusted calibrated weights.

Figure 5: Comparison of densities of posterior means (PM) using BMI data

The distributions of posterior means (PMs) depicted in Figure 5 indicate that these nor-
malized models with adjusted original weights (model B) and adjusted calibrated weights
(model F) tend to skew towards higher values compared to other models. This raises poten-
tial concerns regarding the accuracy of their estimates. A more comprehensive examination
of the results can be found in the accompanying Appendix A, which includes convergence
tests.

Table 2: Comparison of six models using BMI data

Model PM PSD PCV 95% CI

A 0.196 0.017 0.089 (0.160, 0.232)
B 0.095 0.016 0.172 (0.065, 0.127)
C 0.226 0.012 0.055 (0.202, 0.251)
D 0.198 0.012 0.059 (0.175, 0.222)
E 0.195 0.018 0.092 (0.162, 0.233)
F 0.094 0.017 0.178 (0.063, 0.128)

In Table 2, we provide posterior summaries of the six models for estimating the fi-



nite population proportion of obesity. These models are evaluated using four key metrics:
posterior mean (PM), posterior standard deviation (PSD), posterior coefficient of variation
(PCV), and the 95% credible interval. From the table, models A, C, D, and E may be rea-
sonable but others are unreasonable. It is evident that for adjusted original weights and
adjusted calibrated weights, models employing unnormalized densities (Models A and E)
demonstrate greater resilience against weights with outliers, yielding more stable estimates
of the population proportion in the presence of extreme weights compared to models em-
ploying normalized densities (Models B and F). Upon closer inspection, it is notable that
responses associated with extreme weights predominantly result in 0 values. Consequently,
this drives the PMs of Models B and F towards 0. In contrast, when weight trimming is im-
plemented as a strategy to mitigate the influence of these outlier weights, Models C and D
exhibit higher PMs. Furthermore, Models C and D boast the smallest PSD values (0.012),
indicating the least amount of uncertainty in their estimates. This is a crucial characteristic
in statistical analysis, as reduced uncertainty typically leads to more reliable results. The
low PCVs for Models C and D (0.055 and 0.059, respectively) further substantiate their
robustness, suggesting the lowest relative variability in their estimates. Conversely, when
utilizing adjusted original weights and adjusted calibrated weights (as in Models A, B, E,
and F), the resulting interval is wider compared to Models C and D. This broadened interval
could potentially introduce a higher degree of uncertainty into the analysis.

Figure 6 provides an overview of the posterior distributions of β
˜

in the context of BMI
data. It is evident that in cases with small sample sizes, the posterior densities of β

˜
exhibit a

considerable variance. However, when employing the normalized model in scenarios with
small sample sizes, the distributions tend to contract slightly. Conversely, for cases with a
large effective sample size and models utilizing adjusted trimmed survey weights, there is
no significant discrepancy between the unnormalized and normalized models.

5 Conclusion

By integrating pertinent auxiliary data, our study provides a comprehensive framework
for conducting Bayesian predictive inference on binary responses utilizing probability sur-
vey samples. We introduce three distinct sets of adjusted survey weights: the adjusted
original survey weights, the adjusted trimmed survey weights, and the adjusted calibrated
survey weights. These weights are incorporated into both unnormalized and normalized
densities within the Bayesian framework. Subsequently, we implement the logistic regres-
sion model using the Metropolis-Hastings sampler, enabling predictive inference on finite
population interests through surrogate sampling and the stratification approach.

The simulations and analysis of the BMI dataset highlight the advantages of models
incorporating adjusted trimmed weights in conjunction with normalized density functions,
especially in scenarios with small correlation coefficients. These models not only excel in
estimation accuracy but also align with the fundamental tenets of the Bayesian paradigm,
ensuring the validity of posterior distributions. In situations involving exceedingly large
population sizes, the normalized posterior employing adjusted trimmed weights demon-
strates enhanced resilience against outliers in weights, ultimately leading to more precise
estimations of the parameters of interest. Consequently, such models merit careful con-
sideration for their potential advantages when addressing scenarios with small correlation
coefficients and large population sizes.

Future research on Bayesian predictive inference, incorporating covariates and survey



Figure 6: Comparison of posterior densities of β
˜

using BMI data



weights, is anticipated to be extensive. The proposed framework lends itself to further
extension and application in scenarios involving different types of response variables, such
as categorical or continuous responses. Moreover, it can be adapted to accommodate more
intricate survey data, including issues related to nonresponse and nonprobability sampling.

Appendix
A. Metropolis-Hastings Algorithm for β

˜The Metropolis-Hastings algorithm is a Markov chain Monte Carlo (MCMC) technique
utilized for generating samples from a target probability distribution that is challenging to
sample from directly. Widely applied in Bayesian statistics and other contexts where sam-
pling from a complex distribution is essential, this algorithm is invaluable. Its fundamental
concept is to simulate a Markov chain whose stationary distribution corresponds to the
target distribution of interest. The algorithm progresses through a sequence of iterations.
At each iteration, a candidate state is proposed, and acceptance or rejection is determined
based on an acceptance probability. This probability is designed to ensure that the chain
converges to the target distribution, even if the initial distribution is distant from it.

In our study, we employ the Metropolis-Hastings algorithm to generate a sample of β
˜
,

using π(β
˜
| y

˜
) from (14) as the target density. To do this, we must specify a candidate

generating (proposal) density, denoted as q(β
˜
). The choice of this proposal distribution

significantly impacts the algorithm’s performance. Ideally, the proposal distribution should
exhibit high probability density in regions where the target distribution has a high proba-
bility density, thereby minimizing the number of rejected proposals. Additionally, it should
possess some probability density in regions where the target distribution has low probability
density, allowing the chain to explore the entire space.

For unimodal target densities, it is reasonable to consider a normal approximation distri-
bution. Specifically, by using the mode of our target density as the mean, denoted as β̂

˜
, and

the negative of the inverse-Hessian matrix at the mode as the covariance matrix, denoted as
Σ̂, we obtain a normal distribution. This leads to:

β
˜
| y

˜

app∼ Normal
{
β̂
˜
, σ2Σ̂

}
,

γ

σ2
∼ χ2

γ ,

where γ represents the degrees of freedom of the chi-squared distribution. The degrees
of freedom are also adjusted to ensure the jumping rate falls within the range of 25%−75%.

The algorithm works as follows,

1. Start with an initial value, β
˜
0.

2. At each iteration t:

(a) Generate a new state, β
˜
t, from q(β

˜
).

(b) Calculate the acceptance probability, α(β
˜
t, β

˜
t−1) = min{1, π(β˜

t−1)q(β
˜
t)

π(β
˜
t)q(β

˜
t−1)

}, where
β
˜
t−1 is the current state.

(c) Generate a uniform random variable u from [0,1].



(d) If u ≤ α(β
˜
t, β

˜
t−1), accept the proposed state and set β

˜
t+1 = β

˜
t. Otherwise,

reject the proposed state and set β
˜
t+1 = β

˜
t−1.

3. Repeat step 2 until convergence.

For both the simulation and BMI example, we set the degrees of freedom equal to 8,
resulting in jumping rates of (0.468, 0.460, 0.461, 0.462, 0.469, 0.468) for all models in
BMI. Additionally, we configure the iteration count to 15,000, perform a burn-in of 5,000,
and retain every tenth value to obtain the posterior samples of parameters. Subsequently,
we utilize trace plots and auto-correlations, conduct the Geweke test for stationarity, and
calculate the effective sample sizes to verify their convergence.

Table 3: P-values and Effective Sample Size for Models A-F in BMI

Model A Model B

P-value ESS P-value ESS

Beta 1 0.623 1000 0.620 1000
Beta 2 0.383 1000 0.492 1000
Beta 3 0.435 1000 0.908 1000
Beta 4 0.592 1000 0.926 1000

Model C Model D

P-value ESS P-value ESS

Beta 1 0.296 1079 0.124 1000
Beta 2 0.078 902 0.421 1164
Beta 3 0.543 762 0.662 1000
Beta 4 0.302 1099 0.606 1000

Model E Model F

P-value ESS P-value ESS

Beta 1 0.454 1096 0.447 1000
Beta 2 0.706 1000 0.537 1000
Beta 3 0.848 1000 0.069 1000
Beta 4 0.028 1000 0.907 1000

Table 3 presents the results of a Geweke test and the Effective Sample Size (ESS) for
different parameters (β

˜
) under six different models in the BMI application. In the Geweke

test, a higher p-value suggests that the chain has converged well. In our table, all p-values
are greater than 0.05, apart from β4 of Model E (unnormalized density with adjusted cali-
brated weights). Effective Sample Size (ESS) is another diagnostic measure used in MCMC
analysis. In our case, the ESS for all parameters of each model is very close to or exceeds
1000 (the length of βi, i = 1, . . . , 4), except β3 of Model C (unnormalized density with
adjusted trimmed weights). According to all these measurements, we can conclude that all
models across all parameters have good convergence of the MCMC chains and the results
obtained from these models can be considered reliable.

B. Tuning Parameter in Normalized Cases



In a sense, the following likelihood represents the “correct” likelihood of the population:

L̂(θ
˜
) =

n∑
i=1

Wi log
{
f(yi|θ

˜
)
}
. (B.1)

However, as mentioned before, it is desirable to conduct everything within the Bayesian
paradigm. After incorporating weights into the likelihood function, if we normalize the
pseudo-likelihood function to be a proper density such that g(yi | θ

˜
) integrates to 1, we

have:

g(yi|θ
˜
) =

(f(yi|θ
˜
))Wi∫

(f(yi|θ
˜
))Widyi

. (B.2)

However, in the binary case, after introducing the normalization constant
∫
f(yi |

θ
˜
)Widyi, the likelihood function is no longer the likelihood function for the population

because the normalization constant depends on the parameter θ. Thus, there is a trade-off
between likelihood and proper density.

One idea is to introduce a tuning parameter γ to control this trade-off. With the tuning
parameter γ, the likelihood function and density become:

L̂(θ
˜
) =

n∑
i=1

γWi log
{
f(yi|θ

˜
)
}
, (B.3)

and

g(yi|θ
˜
) =

(f(yi|θ
˜
))γWi∫

(f(yi|θ
˜
))γWidyi

. (B.4)

It is important to note that the solutions of equations (B.1) and (B.4) are the same when
the denominator is a function of θ

˜
, so (B.4) is unbiased in that case. Then, we can assume

a prior distribution for γ or perform cross-validation based on the conditional predictive
ordinate (CPO) or classification accuracy to select the appropriate tuning parameter.

C. Illustration of impact of normalization constant
Consider the following models for y:

f(y | θ) = θe−θy, θ, y > 0.

Let W > 0 be a fixed real number. Then,

(f(y | θ))W = θW e−θWy, y > 0,

which is not a density function of y. In this way, the density function of y becomes:

(f(y | θ))W∫
(f(y | θ))Wdy

=
θW e−θWy∫
θW e−θWydy

, y > 0.

Assuming the prior of θ, π(θ) = 1, θ > 0, we have two forms of the posterior distribution
of θ:

π(θ | y) ∝ θW e−θWy, i.e. θ | y ∼ Gamma(W + 1,Wy),



and
π(θ | y) ∝ θWe−θWy, i.e. θ | y ∼ Gamma(2,Wy).

Obviously,

E1(θ | y) = W + 1

Wy
= (W + 1)a, E2(θ | y) = 2

Wy
= 2a,

V ar1(θ | y) = W + 1

(Wy)2
= (W + 1)a2, V ar2(θ | y) = 2

(Wy)2
= 2a2,

where a = 1/(W + 1) is an irrelevant value. If W = 1, there is no difference between
the posterior distribution of unnormalized and normalized density. If W < 1, E1(θ|y) <
E2(θ|y) and V ar1(θ|y) < V ar2(θ|y). If W > 1, the opposite situation holds. It is clear
that when the normalization constant is related to the parameter, it will affect our estimation.
However, if f(y | θ) is normal, there will be no difference between unnormalization and
normalization, and there will be no benefit in normalization.
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