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Annotation. In this work is shown that the “finite density” solution of the
nonlinear Schrodinger equation with self-consistent source, can be found by the
inverse scattering problem for the Dirac’s type operator.
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Introduction. The nonlinear Schrédinger equation (NSE)
i, —Zz\u\2u+uxx =0, y=const

with various boundary conditions models a wide class of nonlinear phenomena in
physics. In the work [1], V. Zakharov and A. Shabat showed that NLS equation can
be applied in the study of optical self-focusing and splitting of optical beams. This
equation belongs to the class of equations that can be solvable using the inverse
scattering method for a Dirac-type operator. This was shown in the works of V.E.
Zakharov and A.B. Shabat [1], L.A. Takhtadjan and L.D. Fadeev [2], M. Ablowitz,
D. Kaup, A. Newell and H. Segur [3].

In [4], V.K. Melnikov obtained evolutions of scattering data with respect to t
for a self-adjoint Dirac operator with a potential that is an NSE solution with a self-

consistent source of integral type. However, we note that in the above works NSE
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was considered in the class of "rapidly decreasing” functions, i.e. conditions that
vanish in a certain way as the coordinate tends to infinity.

In connection with the application to specific physical problems, it became
necessary to consider NLS not only in the class of rapidly decreasing functions, but
also in classes of functions of a special form. First, in the work of V.E.Zakharov and
A.B. Shabat [5], NSE was integrated in the class of “finite density” functions, i.e.,

ia+2it

functions for which u(x,t) —» ™", u, (x,t) > 0 as x —oo. The n-soliton solution

of the NSE in the case of a finite density was found in [6].
Formulation of the problem. We consider the integration of the following

system of equations

N
- 2 - * *
U, — 2U|U| +U, = _ZIZ(¢1,n'//2,n + ¢2,nl//1,n) ) (1)
n=1
oP,, . 0P, . .
8; —U'g,, +i o, 8>2<’ —ug,, —i&p,, =0, n=12,..,N, (2)
al/l n H al/l n * H
8)? Uy, —i&wy, = 6‘)? ~Uy,, +i&w,, =0, n=12..,N, (3)
with initial value
u(x,0) =u,(x), (4)

where the bar means complex conjugationand &;, j=1,2,...,N are the eigenvalues

and function u,(x) satisfy the following properties:

1. } 1- x)\u(x,t) — pe™|dx + T(1+ x)\u(x,t) —peiﬁ\dx <o,

2. The equation
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a —U, (x)
LO)y=i| ¥ Od (yljzg{ylj,XGR

uo (X) dX y2 y2

can have N number of eigenvalues. Here, the function T, (x) is a complex
conjugation of u,(x).
We also assume that the eigenfunctions @ = (¢, ,,¢,,)" (¥, =W, Vs.)")
corresponding to & (t) this eigenvalues satisfy the following normalizing conditions
det{'¥; (s,t), @, (s,)}=a (1), k =12,...,N, (5)
Here o (t), j=1,2,...,N are given and the continuous functions of t.

The main goal of this work is to study the integration of the nonlinear

Schrodinger equation via inverse scattering problem in the class of u(x,t) function,

which is sufficiently smooth and tends to its limits rapidly enough when x — oo

and satisfies the condition

[a- x)‘u(x,t) — pelatiot

dx+ [ L+ x)‘u(x,t) e 2y
0

© 2

+ >

—ook=1

ofu(x,t)

ade<®0, ,0>O (6)

Let the function u(x,t) be a solution of equation (1), from the class of
functions (5). Consider an operator with a potential u(x,t) that is a solution to the

problem under consideration and find the evolution from t the scattering data.
Necessary information from scattering theory. Consider the system of

linear equations on the real line R

(L-S1)f =0, (7)
where f = f(x,&) is vector-column function and
287
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L)=i| t>0.
5
u(x,t) —-——
OX

There we present some necessary facts for our further exposition from the
theory of the direct and inverse scattering problem for the system of equations (7).
We define the Jost solutions of the system (7) with the following asymptotic

values
1
¢~ i(&=p) pla-2ipt e ™, as Xx— —x,
\” ®)
_iE-p) p-ia+2ipht |
O~ P e™, as X — —oo,
1
N |(§ A p) e—iﬁ+2ip2t _
W~ Yo, e™, as x— —om,
1
1
Y= i(c—p) aif-2ip™ g™, as x>,
Yo,
where

p(&) =& -p", ©)

here and below we will use the standard Pauli matrices

e R

For real & (&7 > p?), path of square root is fixed by the condition

signp(&) =signé. The Riemann surface I' of a function p(&) consists of two
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instances I', and I"_ a complex plane C with cuts along the real axis from —co to
— p and from p to oo with properly identified cut edges (see [5]). The function
p(&) isintroduced on I' the formula (8), where + Im p >0 on the sheets I, . In what
follows, for convenience, we will often omit the dependence of the function p(&)
on ¢&. Thus, in formulas where and is involved, it is always assumed that p(¢&) is a

function of &.

It can be shown that
d - d 4
—det(p,p) =0 and —det(y,7)=0. (10)
dx dx

From (8) and (10) it follows that

det(p,p) = 22 | ety i7) = 2= P 11)

For real p and ¢ pairs of vector functions {¢,#} and {y,w} form a fundamental

system of solutions to (7), so, there is a functions a(t,&), b(t,&) that for solutions
{p.¢} and {y.v}

p(xt,&) =alt, Oy (xt,E) +bt, Hw(xt,8), as & ms R*\[-p,p].  (12)

The coefficients a(&,t) and b(&,t) are called transition coefficients. From

relations (10) and (11) we obtain

a0 - b b =1, (13)

where the functions a(&) and b(&) are independent of x and
,tzp—zdt EDw (X E), 14
a(s,t) 2006 1) et(p(x,&,1),w(x,& 1)) (14)

b(&,t P et E (X, E,1).

(1) 20— D) et(p(x,&,1),w(x,&,1))
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The function a(&,t) admit an analytic continuation in & into the plane T',. The

function a(&,t) has the asymptotics

a(g,t)=1+ O(é} as Imé>0 (15)
and
a(&,t)=e'“? 4 O(é} ,as Imé&<0. (16)

Besides, in the plane I', the function a(&,t) has a finite number of zeros at the points
& (k=12,..., N), and these points are the eigenvalues of the operator L.

It follows from representation (14) that if a(&,,t)=0, then the columns
o(x,&,1) and w(x,&,t) are linearly dependentat £ =¢ , i.e.,

(X, t)=c w(x,&,t), n=12,..,N. (17)
Note that the vector-functions

d
—(@-cy)
d¢ £
h,(x,t) = _ — . n=12,..,N.
a(s,.t)
The following integral representations hold for the Jost solutions
_i(€-p) eis2istt | _i(¢-p) p-if2ipt
y(&D= P e+ [Kx Y p dy, (18)
1 - 1
where
K+(x,y,t)=(K1+1(X’y’t) Kf“y’t))
Ku (G y:t) Ky (X y,t)
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In representation (18) the kernel K(x,y,t) does not dependent on & and the related

to the potential u(x,t) as the following:
2K, (X, X,t) = pe” 27 _u(x. 1), (19)
It is well known that the components of the kernel K™ (x, y,t) for y > x are solutions

of the system of Gelfand-Levitan-Marchenko integral equations:
K* (X, y)+ F(x+y)+ [K*(x,s)F(s+y)ds=0, y > (20)

where
(RO =z
F(X)_(FZ(X) Fl(x)J’ e(x,z)=e
i8-2ip%

F.(x) 1 I L 18 ¢ (b) pe—i/?+2ip2t
(Fz(x)] = Eir(z,t)e(x, z) i z —Egm. iz e(x,2.).

n

Definition. The set of the quantities {a(&,t), b(¢,t),& (t),c,(t),n=12,...,N}

Is called the scattering data for equation (7).

Evolution of scattering data. If the potential u(x,t) in the system of
equations (7) depends on t, then its solution f must also depend on t. Let this time

dependence have the form

% f = AGGLE) T, 1)

where

Ao —2i§2+i|u|2 2ué +iu,
2u'E+iu] 2 —ifuf )

The compatibility condition for linear systems (7) and (21) is
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aat—L+[L,A]=G, (22)

where G:(O gj.
g O

Let o(x,&,t) be a Jost solution of the equation L(t)e = £ . By differentiating

this relation with respect to t, we obtain the equation
L + La—(p = %9 :

23
o’ o (23)
By substituting gt—l‘ (22) into (23), we obtain the equation
0 .
(L&) = Ap) =—iGp. (24)
whose solution we seek in the form
0
— Ao =a(xy + B(x.Dp. (25)
For the functions «(x,t) and B(x,t), we obtain the equation
oo op
—w+o,—p=-Gp. 26
Gy ¥ + 05 p==be (26)
By multiplying Eq. (26) by o,¢ and o, , we obtain
Oa ___ip° owGe 0f_  ip° owGy 27)

ox 2p(E-p) a | ox 2pE-p) a
Relation (8) implies that %0— Ap — (2iEp +ip?)p as x ——oo therefore, from (21)
we have a(x,t) =0, S(x,t) > 2iEp+ip® as x ——o0. By solving (27), we obtain
1 ¢ 1t ) .,
a(x,t)=g I o,0pGeds, ﬂ(x,t)=—g j owGyds—-2iEp—ip”.

Therefore, relation (13) can be represented in the form
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1% 17 o
—Ap = 3 I 09Geds -y —[g I oy Gyds +2i5p + 'PZJ X% (28)

By using (25) and by passing to the limit as x — oo in (28), we obtain

= — Goed
: 2p(§— )I‘W ves

b=—(2iEp +ip® )b+—2 En )aj o,pGpds —Zp@

As in the continuous spectrum, one can show that

I o Geds.

' 2

¢ =—(4i& p. +2ip°)c, - o,h.Rp.ds,
2p, (5 )I :

I01¢G¢dx
deZ“=*°°OO ,n=123,...,N.

dt
2 I ¢n1¢n2dx

Theorem 1. If the function u(x,t) is a solution of the equation (1) in the class
of functions (3), then the scattering data of the system (7) with the function u(x,t)

depend on t as follows:

a=-— m I O'1¢G¢ds
=(2igp+ip*)b+ m J o¢pGeds mj oy Gyds,
¢y ==(4i&,p, +2ip°)c, - T (;f : o) Cflh Ro,ds ,
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[ 0:0.Gp,x
N — = ) n=1,2,3,...,N.

2 T ¢n1¢n2dx

ds
dt

The obtained relations determine completely the evolution of the scattering
data for the system (7), which allow as to find the solution of the problem (1)-(3) by
using the inverse scattering problem method.

N
Corollary. If we get g(x,t) ==2i Y (¢ s, + &.¥1,) then

n=1

T 0,9Gedx =0, T owGedx =0,

[ ohGodx=ifo,). [ owpGodx=a,).

In this case

% =0 ’ én — _(4i§npn + 21p2 - lﬂn (a)n (t) + a)r:(t))cn '

Example. Let

U —\/Ee*”t e " +ie
0_ ]

—X X

Where p,a, 3, p, and c are positive numbers. In this case, the scattering data system

of equations (7) with potential u, has

i(1+i)e—4it F=lp=i

_g=p-1-i MAY
a(t,f)—§+p_1+i,b(tf)—oicﬁ 2

Using results theorem 1, we can find

% =0, ¢(t) =" -exp Iiﬂn (0,(7) ~ @, (r))dz .
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Solving the inverse problem we get

_ - t
i € e

u(x,t) =2e o
v, =a, (— i(f/_zi) et e‘xiex j— e‘xiex (=2x+a.(e™ —ie™) +i)- 2i§1w—li) :
v, =a, e‘xiex _ \/520)1 gt E > (i —2x+a,(ie™ —ezx)),

where g(t) = ijﬂn (@,(2) - o, (2))d7, B, = 2@,

References

1. 3axapoB B. E., [llabatr A. b. Tounasi Teopusi AByMEpPHOI caMO(POKYCHPOBKHU H
OJTHOMEPHOW aBTOMOYJISIIAN BOJH M HeNTMHEHHOU cpene. // KOTD, 1971, T61,
Nel, c. 118-134.

2. Taxrtamxsn JI.LA., @agnees JI.J. [[aMuIbTOHOB MOAX01 B TEOPUH COJTUTOHOB. //
M.Hayka. 1986 1.

3. Ablowitz M., Kaup D.. Newell A., Segur H. The Inverse Scattering Transform-
Fourier Analysis for Nonlinear Problems // Stud. Appl. Math. - USA, 1974. -
LII, Ne. - pp.249- 315.

4. Melnikov V.K. Integration of the nonlinear Schrodinger equation with a source.
I Inverse Problem, 1992, V.8, pp. 133-147.

5. 3axapos B.E., [Tlabat A.B. O B3anMoeiiCTBUN COTUTOHOB B YCTOMYNBOU CpeIe.
/] KOTD, 1973, T.64, N5, ctp. 1627-1639

6. Yan-Chow Ma. The perturbed plane-wave solutions of the Cubic Schrodinger
Equation. // Studies in Applied Mathematics, 1979, Ne60, pp.43-58.

295

4
o
N
=_
2
/
> |
-
P



. Ypazooer I'.Y., MamenoB K.A. O momudunupoBanHom ypaBHeHmn Kad c

CaMOCOTJIaCOBAHHBIM HCTOYHUKOM B Cly4yae MABWKYIIMXCS COOCTBEHHBIX
sHaueHui. // Bectauk EI'Y M. . A . bynuna, Bemmyck 8, 2005, ctp.84-94, cepus
"Marematuka. KomnbrorepHas matematuka', Nel

. Kaprmman B.U., Macnos E.M. // XKOT®. 1977. T.73. Beim.2(8). C.537-559.

. PomanoBa H.H., N-comuroHHOE penieHue Ha nbenecraie”
MoauduiupoBanHoro ypaBuenuss Kopresera-ne ®@puza // TM®. Tom 39. Ne2,

mait 1979, ctp. 205-220.

10. Reyimberganov A., Rakhimov |., The Soliton Solutions for the Nonlinear

Schrodinger Equation with Self-consistent Source // UsBectusi MpkyTtckoro

rocyaapcTBeHHOro yausepcureta. Cepusi: Maremaruka 36, 2021, 84-94.

11. Urazboev G., Reyimberganov A., Babadjanova A., Integration of the Matrix

Nonlinear Schrodinger Equation with a Source // U3Bectust Mpkyrckoro

rocymapcTBeHHoro yuusepcurera. Cepusi: Maremarunka, 37, 2021, 63-76.

ULER R RN

.. . SAAY
i unu'...'nuu



