
Anomaly Detection Through Container Testing:
A Survey of Company Practices

Salla Timonen[0009−0000−4839−1686], Maha Sroor[0000−0001−6998−7358], Rahul
Mohanani[0000−0001−7018−8836], and Tommi Mikkonen[0000−0002−8540−9918]

University of Jyväskylä, Mattilanniemi 2, Jyväskylä, Finland
{salla.k.timonen,maha.m.sroor,rahul.p.mohanani,tommi.j.mikkonen}@jyu.fi

Abstract. Background: Containers are a commonly used solution for
deploying software applications. Therefore, container functionality and
security is a concern of practitioners and researchers. Testing is essential
to ensure the quality of the container environment component and the
software product and plays a crucial role in using containers.
Objective: In light of the increasing role of software containers and the
lack of research on testing them, we study container testing practices. In
this paper, we investigate the current approaches for testing containers.
Moreover, we aim to identify areas for improvement and emphasize the
importance of testing in securing the container environment and the final
software product.
Method: We conducted a survey to collect primary data from compa-
nies implementing container testing practices and the commonly used
tools in container testing. There were 14 respondents from a total of 10
different companies with experience using containers and varying work
responsibilities.
Findings: The survey findings illustrate the significance of testing, the
growing interest in and utilization of containers, and the emerging secu-
rity and vulnerability concerns. The research reveals variations in testing
approaches between companies and the lack of consensus on how testing
should be carried out, with advancements primarily driven by industry
practices rather than academic research.
Conclusion: In this study, we show the importance of testing software
containers. It lays out the current testing approaches, challenges, and
the need for standardized container testing practices. We also provide
recommendations on how to develop these practices further.

Keywords: Software containers · Testing · Survey

1 Introduction

Containers have become an integral part of modern software engineering (SE)
processes, offering numerous benefits such as increased portability, scalability,
and flexibility. Like any emerging new technology, containers potentially intro-
duce new risks and vulnerabilities in the development process. With this in



2 S. Timonen et al.

mind, testing is fundamental to finding bugs that could impede the progress of
containerized software development [1,2].

Containers built using pre-existing images and components can inherit vul-
nerabilities from dependencies, making testing vital to identify and mitigate
risks. The dynamic nature of containers adds complexity, requiring testing to
ensure security. Additionally, testing container interactions in distributed sys-
tems and their impact on overall security is crucial to prevent breaches [3].
Testing plays a vital role in creating functional and secure software containers.

With the increasing popularity of containers, there is a growing need to
address the risks and vulnerabilities associated with their use [4,5]. By addressing
these issues, organizations can safeguard sensitive data, prevent unauthorized
access, and maintain the integrity of their software environment. However, there
is no scientific, empirical consensus on the best practices for testing containers,
as advancements in this area are predominantly driven by industry practices
rather than academic research [6].

In this paper, we investigate the current status of company practices and
tools for detecting anomalies through software container testing. The research
focuses on two main aspects – (i) the current approaches employed by compa-
nies for testing software containers and (ii) how these approaches can be further
developed. As an instrument to study the topic, a survey was conducted, with
participation from relevant information technology companies. Hence, the results
provide insights into current company practices and identify areas for further
research, addressing the gap in the existing literature on testing software con-
tainers. Moreover, the results contribute to developing more effective and secure
containers by exploring current practices and seeking ways to enhance them.

The structure of the paper is as follows. Section 2 provides some background
information regarding what research is currently available on the topic of con-
tainers and their testing. Section 3 outlines how the survey was designed and
conducted in addition to the tools we used for the analysis. Section 4 presents
the results. Section 5 follows with further discussion. Finally, Section 6 draws
some final conclusions.

2 Background

2.1 Software Containers

Software containers are a critical ingredient in the modern software development
context. They enable rapid software updates in cloud context and practices such
as DevOps by allowing the packaging of applications and all their necessary de-
pendencies, such as software, configurations, libraries, frameworks, and binaries
[7]. Containers isolate and virtualize the operating system, giving each container-
ized application a separate area of execution within the operating system. This
enables multiple applications to run on a single operating system instance, re-
sulting in more lightweight and manageable setups compared to running multiple
operating system instances [1,2].



Anomaly Detection Through Container Testing 3

Containers have emerged as a solution to the challenges developers face when
migrating applications between different environments, such as from develop-
ment to testing and production. These migrations often encounter issues due
to differences in both hardware and software configurations. To overcome these
obstacles and improve flexibility, containers are a commonly used solution [1].

Containers are also widely used to support microservices [8]. Container man-
agement systems like Docker and orchestration systems like Kubernetes provide
control of applications and provision resources, leading to the development of
scalable, reliable, and reactive systems [2].

When using containers, the infrastructure typically consists of a repository
for building container images and an image registry for deployment. The con-
tainer setup can potentially lead to various security breaches, including data
theft, denial of service attacks, and unauthorized access. Research has identified
threats to containers such as spoofing, tampering, information disclosure, denial
of service, and elevation of privilege [5].

Docker Hub, one of the most popular Docker image repositories, distributes
official and community images. Security vulnerabilities in these images have been
studied, driven by high-profile attacks reported through distribution channels.
One study [3], introduces a Docker image vulnerability analysis framework called
DIVA for analyzing vulnerabilities in Docker images. Furthermore, [9] identifies
three major sources of security risks – sensitive parameters in run commands,
malicious Docker images, and unpatched vulnerabilities in contained software.

In an early study in 2015, Docker image security was studied by inspecting
images from Docker Hub using an open-source tool, “Banyan” Collector [10]. A
more recent article from 2020 highlights that Docker does not offer assurances
for recognized security vulnerabilities within container images [11].

2.2 Container Testing Approaches

To address the above concerns, four generalized use cases at the host-container
level were proposed to identify threats and provide potential solutions [4]. These
use cases include protecting a container from its internal applications, inter-
container protection, host protection from containers, and container protection
from the host.

Existing mitigation strategies and their limitations are discussed in [5]. Iden-
tified strategies included multi-factor authentication systems, implementing net-
work controls, and security patching, but the need for a reliable and fast patching
framework is emphasized as a research gap. Proper isolation is also discussed in
the paper. On the other hand, another study suggests that kernel security mech-
anisms play a more critical role than container isolation methods in preventing
privilege escalation attacks [12]. A sandbox mining and enforcing approach was
proposed in a study [13] where a mined sandbox confines and restricts a con-
tainer’s access to system calls.

Minimizing administrative privileges is another approach to enhancing con-
tainer security, with methods like anomaly detection systems [14,15]. Another
article from 2021 [16] investigates the accuracy of container scanning tools and



4 S. Timonen et al.

highlights the vulnerability of the container’s operating system. Additional mit-
igation strategies involve implementing strong access controls and ensuring con-
tainers remain lightweight [17].

While the mentioned mitigation strategies are valuable for enhancing con-
tainer security, apart from scanning and monitoring, they focus on preventive
measures. Furthermore, if implemented incorrectly, they can create a false sense
of security. In addition to these mitigation strategies, there are container security
frameworks and testing approaches. One example of anomaly-based detection in
containers is from a 2020 article on the implementation of Classical Distributed
Learning to detect security attacks in containerized applications [14].

A different approach was outlined in another 2020 article proposing the
Docker Image Vulnerability Diagnostics System [11]. It was designed to diagnose
Docker images during upload or download, addressing the lack of vulnerability
diagnostics in current Docker image distribution. In 2022, the SEAF framework
[18] was proposed for scalable, efficient, and application-independent container
security detection. Inspecting various security defects and evaluating their im-
pact, it found more than 35 000 security defects from popular repositories.

Other frameworks include the Secure Container Manager Pattern [19] and
the Framework to Secure Docker Containers [20], focusing on container manage-
ment and container security, respectively. CONSERVE is another framework for
selecting container monitoring techniques in different application domains [21].

An article dated 2021 [6] highlights the absence of global standards for testing
the non-functional part of applications. The authors subsequently developed
the Non-Functional Testing Framework for Container-Based Applications [22],
emphasizing the crucial role of testing results in determining an application’s
success. They continue to state that the evolution of containers has been mainly
driven by industry adaptation than academic research, particularly in the realm
of testing frameworks for container-based applications.

To address the challenges of the unknowns, Siddiqui et al. [22] define four non-
functional attributes for container applications, characterizing the surrounding
environment and its behaviour: capacity, scalability, stability, and high avail-
ability. Although a review of testing approaches was conducted, it focused on
cloud-based applications [23].

3 Research Methodology

In this work, we aim to encapsulate current company practices and tools for
detecting anomalies in container testing by answering the following research
questions:

RQ1: What are the current approaches employed by companies for testing soft-
ware containers?
RQ2: How can the approaches for testing software containers be improved?

We used an online questionnaire survey instrument to answer the research
questions. We followed the standard guidelines for planning and conducting sur-
vey studies in SE [24], and empirical standards for SE research [25]. A survey



Anomaly Detection Through Container Testing 5

was chosen as the most suitable study method for this research, enabling conve-
nient online distribution and data collection from respondents. Also, it supported
collecting valuable insight from participating companies, allowing respondents
ample time to review and contemplate the questions without time constraints.
You can access the survey questionnaire used to collect data for our research
here: https://zenodo.org/record/8378974.

The survey includes a total of 23 questions. The contact form is the only
mandatory question. The questions comprised both—multiple-choice questions
and open-ended questions. Out of the total, 16 open-ended questions allowed
respondents to provide detailed and in-depth responses without being restricted
by predefined options. The survey was created with Webropol 3.01—a survey
and reporting tool that simplifies creating and distributing online surveys. It
also ensures the secure collection, processing, storage, and archiving/destruction
of survey data. Moreover, it enables monitoring survey engagement, including
the number of opened links, started responses, and completed surveys.

The survey consisted of five sections designed to collect comprehensive infor-
mation related to the research objectives, as follows:

– Demographics: gather data on respondents’ roles and experiences.
– Tools used in the company : gather data on container-related tools.
– Testing software containers: gather data on processes, practices, and future

plans for anomaly detection through container testing.
– Results of testing : gather data on outcomes, challenges, and assess container-

ization’s influence on testing.
– Anomaly examples: gather data on challenges and future implementation

plans.

Overall, the survey encompassed a comprehensive examination of respon-
dents’ roles, tooling landscape, container testing processes, testing outcomes,
and anomaly examples, thereby enabling a thorough exploration of container-
ization practices and their impact on testing.

The survey gathered a total of fourteen responses from individuals affiliated
with ten distinct companies. The work was carried out in industry-academia col-
laboration, with seven companies contacted directly via email in order to solicit
respondents. In addition, other organizations were targeted through a LinkedIn
post, seeking respondents interested in the topic of research. The target sam-
ple was expected to possess satisfactory knowledge regarding containers and a
minimum of one year of experience. Throughout the data collection period, a
total of 137 individuals opened the survey (referred to as the “Total”). Out of
these participants, 32 initiated the response process (referred to as the “Net Par-
ticipation”), representing 23.36% of the Total. Of the “net participation” group,
14 individuals successfully completed the survey, accounting for 43.75% of the
net participation. The data was collected between January 11th, 2023, and June
13th, 2023.

1 https://webropol.com/



6 S. Timonen et al.

4 Results

4.1 Demographics

The survey involved a sample of 14 respondents, referred to as P1 through P14.
The responses provided insights into a wide array of projects undertaken by
these companies, including research and development (R&D), cloud software
development, machine learning applications, value stream metrics, web applica-
tion development, testing activities, back-end services, and development envi-
ronments. Collectively, the responses reflected the broad spectrum of industries
and domains in which containerization practices were implemented.

Fig. 1. Respondents’ experience with containers

Figure 1 visually presents an overview of the respondents’ experience lev-
els. Among the total respondents, seven individuals (50% of the total) reported
having 6–10 years of experience with containers. Additionally, four respondents
indicated having 3–5 years of experience, while three reported having 0–2 years
of experience with containers.

4.2 Tools Used in Companies

Table 1 provides a comprehensive overview of the container platforms the re-
spondents utilize, highlighting the prominent role of various cloud-based plat-
forms. Among the mentioned platforms, Docker emerged as the most widely
adopted, with all respondents except one reporting its usage. Kubernetes fol-
lowed closely with 11 users, while both Azure and Amazon Elastic Container
Service (ECS) were utilized by eight respondents each. Another popular plat-
form, AWS Fargate, had a user count of six. Additionally, respondents mentioned
other container platforms such as LXC, Nomad, Podman, OCI, Rancher (RKE),
OpenShift, and k3s.

The survey respondents mentioned a variety of tools utilized for testing
container-based applications. These tools included JUnit, TestContainers (Java),
Docker Desktop, Minikube, Robot framework, Spira, Sonarqube, Trivy, Sele-
nium, Protractor, and Jest. Additionally, specific test frameworks like Pact.io



Anomaly Detection Through Container Testing 7

Table 1. Container platforms used by respondents.

Container platform P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Total
Docker x x x x x x x x x x x x x 13
Kubernetes x x x x x x x x x x x 11
Azure x x x x x x x x 8
Amazon ECS x x x x x x x x 8
AWS Fargate x x x x x x 6
LXC x x x 3
Other(s) x x x 3

and Cucumber were also mentioned. Regarding security and vulnerability test-
ing, respondents identified tools such as Black Duck, AWS Security Hub, Qualys,
and Defensics.

The selection of these tools was influenced by factors such as the program-
ming language, the technology stack employed, and the different teams involved
within the respondents’ respective companies.

4.3 Testing Software Containers

The processes that were used to test containers varied a lot between companies
and respondents’ roles. However, some common testing practices and tools were
mentioned, listed below:

1. Using Github test cases, test containers, continuous integration and contin-
uous deployment (CI/CD) tools, and Robot framework.

2. Conducting tests in a replicated container environment, starting with robot
tests on code changes and progressing to deployment in development, stag-
ing, and production environments.

3. Performing local testing during development and automated testing in the
company’s CI/CD platform.

4. Implementing various release trains and CI/CD pipelines, including unit
tests, API tests, integration tests, and static code analysis.

5. Incorporating automatic vulnerability scans using tools like Harbor and
Trivy in the CI/CD pipeline.

6. Using containers to run full development environments and perform integra-
tion tests.

7. Conducting unit tests, functional tests, reliability tests, and security and
open-source license scans.

8. Emphasizing integration testing before containerization and occasionally us-
ing end-to-end (E2E) tests in cloud-based containerized environments.

In addition to the above, Docker unit tests, container structure tests, and
manual functional testing for software within the container were also mentioned
by some respondents.

Thirteen respondents mentioned conducting testing before and after con-
tainerization, while one respondent was uncertain. Among them, seven stated



8 S. Timonen et al.

that testing was specified for the containerized content, five mentioned testing
for both the container and the content, and one respondent was unsure.

The answers revealed different approaches to enhancing testability of con-
tainerized software. These included running containers in a local development
environment, employing loose coupling and abstraction, performing unit test-
ing, using Docker exec commands for output examination, enabling test versions
of dependencies, ensuring clear network interfaces between containers, imple-
menting container hardening, focusing on log design, and employing automated
pipelines.

Our findings also highlight a wide range of testing methodologies applied to
containers and containerized software. These included user interface and user
experience tests, database tests, logic tests, security tests, penetration tests,
checks for misconfigured containers, manual functional testing, unit tests, func-
tional testing, exploratory testing, test automation, scalability and high avail-
ability testing, deployment testing, container structure tests, integration tests,
E2E testing, reliability testing, performance testing, and legal testing.

Regarding future testing strategies, emphasis was placed on the automation
of various test types, such as unit testing, security testing, integration tests, and
quality assurance (QA) steps, including static code analysis and vulnerability
scans. Suggestions were made to utilize more tools in vulnerability testing and
testing supply chain attacks, incorporate additional scanning tools to enforce
best practices, and execute tests within a container as part of the CI/CD pipeline.

Furthermore, the utilization of CI/CD pipelines for managing code changes
and the adoption of the MS Azure infrastructure for staging and deployment
purposes were also mentioned by some respondents.

4.4 Results of Testing

When asked about the differences observed in testing software before and af-
ter containerization, some respondents highlighted positive aspects while others
raised concerns about negative aspects. Positive aspects mentioned by respon-
dents included easier automation, consistent software layers, improved execution
of full system and E2E tests, more repeatable environments, increased likelihood
of production-like environments on development machines, and targeted change
testing with isolated environments for each branch.

On the negative side, it was noted that if system logging was not properly
implemented before testing, the analysis of error situations required additional
effort. Additionally, two respondents mentioned that they either did not observe
significant differences or were unaware of any differences in cases where the soft-
ware had been containerized from the beginning. This suggests that the benefits
or challenges associated with containerization may vary depending on the spe-
cific context and the extent to which containerization has been integrated into
the software development and testing processes.

The responses regarding how the act of containerization affects test results
exhibited variability, even among respondents from the same company. While
opinions varied, a range of perspectives were expressed.



Anomaly Detection Through Container Testing 9

Four respondents indicated that they did not observe any significant impact
of containerization on test results and suggested that containerization did not
noticeably alter the outcomes of their testing efforts. On the other hand, two
respondents highlighted the positive effects of containerized testing. They em-
phasized that containerization led to more consistent and faster test results,
along with easier maintenance of the testing environment. These individuals
found that containerization provided benefits such as improved consistency in
test outcomes and enhanced efficiency in maintaining the test infrastructure.
Furthermore, multiple respondents emphasized automation capabilities enabled
by containers. These varied responses demonstrate that the impact of container-
ization on test results can differ based on the specific context, company, and
individual perspectives.

Another aspect brought up was the need for different configurations in test-
ing, considering that the software environment may impact its behaviour. If
tested before containerization, the execution environment may differ from that
within a container.

A question about challenges faced when testing containers received numerous
answers. The challenges mentioned include the need to have the test environ-
ment within the container, longer compilation times, network connectivity issues
due to misconfigured containers, difficulties in creating testable environments,
complexities in setting up infrastructure for containerized tests, dependencies on
additional services for integration or E2E tests (particularly in a microservices
architecture), dynamic visualization of results in multi-container environments,
synchronization between containers, slow system ramp-up for testing, testers
facing challenges in contributing due to managing their settings, difficulty in
understanding testing from a container perspective, complexities in debugging
tests within complex containerized environments, and more.

4.5 Anomaly Examples

Specific anomalies mentioned to be tested for include regression issues, perfor-
mance downgrades, load-related anomalies such as session replication issues and
bottlenecks, memory leaks, vulnerabilities identified through static code analysis,
long-term stable execution on different hardware, smooth dynamic scalability,
broken APIs between dependencies, logic issues related to reconnecting and dis-
connecting, software crashes or hangs, and impacts on functionality, reliability,
performance, and supportability.

Regarding what sort of anomalies have been detected through testing, sev-
eral respondents mentioned that they had not encountered many specific anoma-
lies. However, the anomalies mentioned included errors, regression issues, perfor-
mance downgrades, session replication issues, critical vulnerabilities such as the
log4j bug in 2021 (which was caught through automatic vulnerability scans),
challenges with low-level drivers, broken APIs between dependencies, recon-
nect/disconnect logic issues, failed crash/hang detection, and misconfigurations
related to interface definitions and security hardening in containers.



10 S. Timonen et al.

While two respondents mentioned that they had no plans to improve anomaly
detection and accuracy, others provided various strategies and approaches:

1. Utilizing static code analysis.
2. Conducting vulnerability scanning.
3. Incorporating the test framework within a container during testing.
4. Developing enhanced testing components that gather more data and can be

reused.
5. Increasing knowledge about containerized testing and automation.
6. Implementing daily scans of containers against vulnerability databases.
7. Conducting more testing in development and staging environments.
8. Enhancing health check logic.
9. Isolating changes to identify the specific time when issues occurred.

The question on anomalies that are not yet being tested for but are hoped to
implement in the future was answered by only 7 respondents (50%). Although
fewer respondents provided answers, several aspects were mentioned:

1. Emphasizing integration testing of the entire architecture in the actual run-
time environment rather than focusing solely on individual containers.

2. Automating testing for high-load scenarios.
3. Enhancing the ability to compare resource requirements and performance by

analyzing metrics between different releases in CI/CD execution.
4. Increasing the frequency of static scans for container definitions.
5. Addressing the dynamic behaviour of containers in terms of scalability.
6. Conducting stress testing to evaluate system performance under extreme

conditions.

5 Discussion

The previous literature has presented approaches to anomaly detection through
container testing [6,18,22]. This paper, however, investigates real-world anomaly
detection practices in companies and offers improvement approaches. Moreover,
it narrows the knowledge gap between industry and academia on container
anomaly detection. The survey results comprehensively analyze container test-
ing processes and challenges by leveraging insights from individuals with diverse
experiences and roles within our sample. The sample encompasses participants
with junior expertise, less than two years of container experience, and those with
senior experience, 3 to 10 years of container-related experience. We also ensured
variability in the roles and responsibilities of the respondents, incorporating indi-
viduals from technical positions such as developers, software architects, testers,
and security analysts, as well as managerial positions like heads of R&D, devel-
opment managers, and team leaders. The diverse composition ensures that our
findings encompass technical and managerial perspectives on container testing.

Our findings revealed that Docker and Kubernetes are the most prevalent
container platforms. Docker emerged as the leading choice, which corroborates



Anomaly Detection Through Container Testing 11

the findings reported in the literature [1]. While Docker and Kubernetes domi-
nated the landscape, we also observed other popular tools, such as Azure, Ama-
zon ECS, and AWS Fargate.

Our survey also uncovered several tools with relatively lower adoption rates.
By discerning the prevalence of these diverse software tools, our research con-
tributes valuable insights into the prevailing trends in the domain of container
technology. The prominence of Docker and Kubernetes underscores their pivotal
roles in shaping contemporary containerization practices.

The survey results further highlight that the selection of container tools
is contingent upon several factors, including the software language, technology
stack, and the team’s preferences within the organization. This finding under-
scores the importance of tailoring tool choices to align with specific project
requirements and team dynamics, reflecting a pragmatic approach to container-
ization. Participants reported employing multiple testing tools to cater to their
respective testing needs. Alongside commercial testing tools, respondents incor-
porated in-house test platforms, automated CI/CD pipeline tests, and container
checker tools into their testing processes. This amalgamation of testing tools
underlines the flexibility and adaptability of testing strategies to suit various
use cases and testing objectives. By incorporating this comprehensive range of
container-related testing tools, our research illuminates the dynamic nature of
container testing practices in contemporary software development. This diversity
of tooling options underscores the significance of a nuanced and context-aware
approach when selecting the most appropriate testing tools.

In the “testing containers” section of the survey, there was a consensus among
respondents, indicating that most companies conduct testing both before and
after containerization, with a focus on testing the containerized content. The
responses also emphasized that current testing techniques are insufficient, and
companies are endeavoring to develop procedures to enhance container testabil-
ity tailored to their specific needs.

The survey results reveal that companies are actively strategizing to en-
hance their testing solutions, emphasizing automated testing. While the major-
ity of participating companies already utilize automated testing, they view its
expansion as a critical defensive measure to augment testing outcomes. Notably,
companies exhibited diverse perspectives when asked about their strategies for
expanding automated testing. Some companies directed their efforts towards au-
tomating testing for pipelines, aiming to streamline the testing process within
their CI/CD pipelines. Others concentrated on automating code testing, seek-
ing to automate code functionality and integrity verification. Additionally, some
companies expressed their desire for a comprehensive, fully automated testing
package, suggesting an overarching approach to automation covering various
testing aspects.

These findings indicate the industry’s growing inclination towards automa-
tion to achieve more efficient, reliable, and comprehensive testing practices. The
diversity in companies’ approaches highlights the nuanced nature of devising tai-



12 S. Timonen et al.

lored automated testing strategies to address their specific testing requirements
and objectives.

The survey addressed the main challenges facing container testing. These
challenges include longer compilation times, networking and configuration is-
sues, test environment setup and management difficulties, dependency integra-
tion in microservices architecture, visualization and result reporting challenges,
and debugging complexities.

The survey results extend the knowledge from industry to literature, adding
details about the testing methods used. Moreover, the survey results confirm
the common use of tools, diverse needs and corresponding methods and tools
[1,7,16], concerns about security and vulnerabilities [4,5,3,17], the importance
of automation and CI/CD implementations and dynamic program analysis [16],
and the need for further knowledge and research [6].

5.1 Revisiting Research Questions

RQ1: What are the current approaches employed by companies for
testing software containers? Currently, companies heavily rely on the tools
employed to test containers. Docker stands out as the most utilized container
platform, with a mention of 12 different container platforms in total. The tools for
testing container-based applications exhibit even greater diversity, often being
technology-stack dependent, with 18 tools and test frameworks mentioned and
the possibility of many more.

Despite discrepancies in testing approaches, companies share a consensus on
multi-phase testing processes. Commonalities among the companies’ processes
include manual tests, CI/CD pipelines with integrated tests and scans, monitor-
ing, and reporting. Significant differences surface in container testing processes,
particularly in two aspects. First is the testing environment, where variations
arise depending on whether the test is conducted locally, in a replicated envi-
ronment, or through other configurations. Second is the extent of testing, rang-
ing from manual functional testing to the more comprehensive multi-container
end-to-end setup. The latter involves replicating the production environment,
simulation of the staging environment for deployment, verification testing, and,
ultimately, production release. One respondent also stated the use of contain-
ers was for running development environments allowing the running of complete
environments for integration tests.

Our findings also highlight disparities in companies’ perspectives regarding
conventional testing approaches. Numerous respondents outlined their typical
testing approach, encompassing test cases, containers, CI/CD, and automated
code change checks. Interestingly, two distinct groups emerged from the re-
sponses. The first group focused solely on testing the content within containers.
Conversely, the second group stressed the necessity of incorporating additional
container-specific testing measures. These measures encompassed container re-
liability, security assessments, enhanced monitoring capabilities, open-source li-
cense scans, input-output comparison validation, and functionality testing in a
multi-container setup.



Anomaly Detection Through Container Testing 13

The contrasting viewpoints elucidate the diverse strategies adopted by com-
panies when testing containerized applications. This underscores the significance
of tailoring testing practices to suit individual needs and organizational con-
texts, leading to more robust and comprehensive testing outcomes. While there
is shared recognition among companies about the implications of vulnerability
testing and its ability to detect misconfiguration issues, not all companies priori-
tize it. Surprisingly, some companies did not mention vulnerability testing when
asked about the types of testing performed.

In summary, the survey results revealed a lack of consensus among companies
regarding container testing approaches, the essential phases to be incorporated
into the testing process, understanding typical testing practices, and recognizing
the significance of security and vulnerability testing. Furthermore, the findings
demonstrate the diverse approaches adopted by companies, as discussed in [22].

RQ2: How can the approaches for testing software containers be im-
proved? Although the results addressed various practices to enhance the testa-
bility of containers, companies do not agree on “best practices” for testing con-
tainers. Therefore, we collected general recommendations from the survey results
to improve testing practices. The provided recommendations are from a man-
agerial perspective to improve the culture around container testing and from a
technical perspective to improve the testing practices.

The recommendations for managerial positions include prioritizing learning
and staying updated on container testing practices, conducting thorough re-
search to understand the benefits and challenges, reviewing existing testing pro-
cesses in use to identify areas for improvement, and critically evaluating the
suitability of testing tools based on specific project requirements. Managers also
recommended fostering a culture of continuous learning and improvement, pro-
moting collaboration, and allocating resources for training and skill development
in container testing. Additionally, actively engaging with industry experts and
seeking insights from current research and other organizations can provide valu-
able insights for optimizing container testing strategies.

Our recommendations for technical positions in approaching container testing
from a technical standpoint include:

1. Establishing standardized testing processes: establishing standardized test-
ing processes tailored to their specific needs and project requirements can
help ensure consistency and efficiency in testing practices.

2. Enhancing tool selection and compatibility: companies should carefully eval-
uate and select tools that align with their technology stack and testing re-
quirements achieving compatibility, suitability of, and effectiveness of con-
tainer testing.

3. Incorporating additional types of testing: companies emphasized the impor-
tance of incorporating automated tests, integration tests, security testing,
and vulnerability scans to enhance the comprehensiveness and accuracy of
container testing.



14 S. Timonen et al.

4. Paying attention to misconfiguration issues and anomaly detection: compa-
nies recommended focusing on misconfiguration issues and anomaly detec-
tion as an essential part of container testing to mitigate potential threats.

5. Combining testing techniques: companies suggested combining testing tech-
niques like running containers in a local development environment, ensuring
loose coupling, utilizing abstraction, implementing unit testing, and estab-
lishing clear network interfaces could improve the testing results.

6. Integrating testing within CI/CD pipelines: companies emphasised that us-
ing CI/CD pipelines for integrated tests and scans can streamline the testing
process. Moreover, it ensures continuous monitoring and reporting, which
improves the whole container environment’s efficiency, reliability, and con-
sistency.

7. Developing the knowledge of challenges and complexities: companies men-
tion that developing the knowledge of container challenges and complexities
among practitioners would keep them aware of the possible system vulnera-
bilities. Also, it would help them choose suitable testing techniques.

5.2 Limitations and Threats to Validity

The research has several limitations that should be considered. First, the sur-
vey relied on a relatively small sample size of 14 respondents from 10 different
companies, which may limit the generalizability of the findings. Additionally, the
data collected in the survey relies on self-reported responses from the respon-
dents, introducing the possibility of response bias. Furthermore, we acknowledge
that the lack of existing academic research on container testing practices may
restrict the depth of analysis and comparison with prior studies. Obviously, these
limitations should be considered when interpreting the results and considering
the broader applicability of the findings.

6 Conclusion

This paper studies the current testing practices in the context of the growing
interest in software containers and the lack of comprehensive knowledge of test-
ing approaches. It aims to identify the challenges faced in container testing and
potential areas for improvement by collecting information from companies that
are actively engaged in container testing. The collected data centred on criti-
cal areas such as the tools utilized to support containers, prevailing approaches
in container testing, challenges encountered during the testing process, and the
role of anomaly and vulnerability detection in supporting container testing for
improved system security. The findings derived from this research are of utmost
significance for companies and practitioners involved in testing software contain-
ers. They reveal a lack of consensus on the best practices of container testing,
shedding light on the current challenges faced and presenting proposed solutions
to elevate testing practices. Moreover, this research offers valuable recommen-
dations based on both technical and managerial experiences, providing valuable
insights for improving container testing processes.



Anomaly Detection Through Container Testing 15

In summary, this research contributes with the following major findings:

1. It reveals real-world practices for implementing anomaly detection.
2. It offers actionable guidance to practitioners for implementing anomaly de-

tection in software containers.

To conclude, this work contributes to understanding container testing prac-
tices and establishes a solid foundation for future research endeavors and in-
dustry advancements in this domain. Despite the limitations of the work, by
addressing the complexities and evolving requirements of container testing, this
research aims to propel the field forward, bolstering the overall security and
reliability of containerized software applications.

Acknowledgements The research was conducted as part of the Containers
as the Quantum Leap in Software Development (QLeap) project, involving the
University of Jyväskylä and various industry partners.

References

1. Siddiqui, T., Siddiqui, S., Khan, N.: Comprehensive Analysis of Container Technol-
ogy. 4th International Conference on Information Systems and Computer Networks
(ISCON), 218–223 (2019). https://doi.org/10.1109/ISCON47742.2019.9036238

2. Douglis, F., Nieh, J.: Microservices and Containers. IEEE Internet Computing 23
(6): 5–6 (2019). https://doi.org/10.1109/MIC.2019.2955784

3. Shu, R., Gu, X., Enck, W.: A Study of Security Vulnerabilities on Docker Hub. In
Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy, 269–280 (2017). https://doi.org/10.1145/3029806.3029832

4. Sultan, S., Ahmad, I., Dimitriou, T.: Container Security: Issues, Challenges, and
the Road Ahead. IEEE Access 7:52976–52996 (2019). https://doi.org/10.1109/
ACCESS.2019.2911732

5. Wong, A., Chekole, E., Ochoa, M., Zhou, J.: Threat Modeling and Security Analysis
of Containers: A Survey. ArXiv (2021). https://doi.org/10.48550/arXiv.2111.11475

6. Siddiqui, S., Siddiqui, T.: Quantitative Data Analysis of NonFunctional Testing in
Container Applications. In 2021 9th International Conference on Reliability, Infocom
Technologies and Optimization (ICRITO), 1–6 (2021). https://doi.org//10.1109/
ICRITO51393.2021.9596457

7. Chen, C., Hung, M., Lai, K., Lin, Y.: Docker and Kubernetes. In Industry 4.1:
Intelligent Manufacturing with Zero Defects, 169–213 (2022). https://doi.org/10.
1002/9781119739920.ch5

8. Jamshidi, P., Pahl, C., Mendonça, N., Lewis, J., Tilkov, S. Microservices: The
Journey So Far and Challenges Ahead. IEEE Software 35 (3): 24–35 (2018).
https://doi.org/10.1109/MS.2018.2141039

9. Liu, P., Ji, S., Fu, L., Lu, K., Zhang, X., Lee, W., Lu, T., Chen, W., Beyah, R.: Un-
derstanding the Security Risks of Docker Hub. In European Symposium on Research
in Computer Security (2020). https://doi.org/10.1007/978-3-030-58951-6_13

10. Gummaraju, J., Desikan, T., Turner, Y.: Over 30 percent
of Official Images in Docker Hub Contain High Priority Se-
curity Vulnerabilities. (2015) https://www.banyansecurity.io/blog/
over-30-of-official-images-in-docker-hub-contain-high-priority-security-vulnerabilities/
Last Accessed 20 Jun 2023.

https://doi.org/10.1109/ISCON47742.2019.9036238
https://doi.org/10.1109/ISCON47742.2019.9036238
https://doi.org/10.1109/MIC.2019.2955784
https://doi.org/10.1109/MIC.2019.2955784
https://doi.org/10.1145/3029806.3029832
https://doi.org/10.1145/3029806.3029832
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.48550/arXiv.2111.11475
https://doi.org/10.48550/arXiv.2111.11475
https://doi.org//10.1109/ICRITO51393.2021.9596457
https://doi.org//10.1109/ICRITO51393.2021.9596457
https://doi.org//10.1109/ICRITO51393.2021.9596457
https://doi.org//10.1109/ICRITO51393.2021.9596457
https://doi.org/10.1002/9781119739920.ch5
https://doi.org/10.1002/9781119739920.ch5
https://doi.org/10.1002/9781119739920.ch5
https://doi.org/10.1002/9781119739920.ch5
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1007/978-3-030-58951-6_13
https://doi.org/10.1007/978-3-030-58951-6_13
https://www.banyansecurity.io/blog/over-30-of-official-images-in-docker-hub-contain-high-priority-security-vulnerabilities/
https://www.banyansecurity.io/blog/over-30-of-official-images-in-docker-hub-contain-high-priority-security-vulnerabilities/


16 S. Timonen et al.

11. Kwon, S., Lee, J.: DIVDS: Docker Image Vulnerability Diagnostic System. IEEE
Access 8:42666–42673 (2020). https://doi.org/10.1109/ACCESS.2020.2976874

12. Lin, X., Lei, L., Wang, Y., Jing, J., Sun, K., Zhou, Q.: A Measurement Study
on Linux Container Security: Attacks and Countermeasures. In Proceedings of the
34th Annual Computer Security Applications Conference, 418–429 (2018). https:
//doi.org//10.1145/3274694.3274720

13. Wan, Z., Lo, D., Xia, X., Cai, L.: Practical and effective sandboxing for Linux
containers. Empirical Software Engineering 24 (6): 4034–4070 (2019). https://doi.
org//10.1007/s10664-019-09737-2

14. Lin, Y., Tunde-Onadele, O., Gu, X.: CDL: Classified Distributed Learning for
Detecting Security Attacks in Containerized Applications. In Annual Computer Se-
curity Applications Conference, 179–188 (2020). https://doi.org/10.1145/3427228.
3427236

15. Kang, D., Fuller, D., Honavar, V.: Learning classifiers for misuse and anomaly
detection using a bag of system calls representation. In Proceedings from the Sixth
Annual IEEE SMC Information Assurance Workshop, 118–125 (2005). https://doi.
org/10.1109/IAW.2005.1495942

16. Javed, O., Toor, S.: Understanding the Quality of Container Security Vulnerability
Detection Tools. (2021). https://doi.org/10.48550/arXiv.2101.03844

17. Efe, A., Aslan, U., Kara, A.: Securing Vulnerabilities in Docker Images. In-
ternational Journal of Innovative Engineering Applications 4 (1): 31–39 (2020).
https://doi.org//10.46460/ijiea.617181

18. Chen, L., Xia, Y., Ma, Z., Zhao, R., Wang, Y., Liu, Y., Sun, W., Xue, Z.: SEAF: A
Scalable, Efficient, and Application-independent Framework for container security
detection. Journal of Information Security and Applications 71 (2021). https://doi.
org//10.1016/j.jisa.2022.103351

19. Syed, M., Fernandez, E.: The Secure Container Manager Pattern. PLoP ’18 (2020).
Portland, Oregon: The Hillside Group. https://dl.acm.org/doi/10.5555/3373669.
3373676

20. Abhishek, M., Rajeswara Rao, D.: Framework to Secure Docker Containers. In 2021
Fifth World Conference on Smart Trends in Systems Security and Sustainability,
152–156 (2021). https://doi.org//10.1109/WorldS451998.2021.9514041

21. Jolak, R., Rosenstatter, T., Mohamad, M., Strandberg, K., Sangchoolie, B.,
Nowdehi, N., Scandariato, R.: CONSERVE: A framework for the selection of
techniques for monitoring containers security. Journal of Systems and Software
186:111158 (2021). https://doi.org//10.1016/j.jss.2021.111158

22. Siddiqui, S., Siddiqui, T.: Non-Functional Testing Framework for Container-Based
Applications. Indian Journal of Science and Technology 14 (47): 343-344 (2021).
https://doi.org//10.17485/IJST/v14i47.1909

23. Siddiqui, T., Ahmad, R.: A review on software testing approaches for cloud applica-
tions. Recent Trends in Engineering and Material Sciences, Perspectives in Science
8:689–691 (2016). https://doi.org//10.1016/j.pisc.2016.06.060

24. Molléri, J., Petersen, K., Mendes, E.: Survey Guidelines in Software Engineer-
ing: An Annotated Review. Proceedings of the 10th ACM/IEEE ESEM, Article 58
(2016). https://doi.org//10.1145/2961111.2962619

25. Ralph, P., Baltes, S., Bianculi, D., Dittrich, Y., Felderer, M., Feldt, R., Fil-
ieri, A., Furia, C., Graziotin, D., He, P., Hoda, R., Juristo, N., Kitchenham, B.,
Robbes, R., Méndez, D., Molléri, J., Spinnelis, D., Staron, M., Stol, K., Tam-
burri, D., Torchiano, M., Treude, C., Turkhan, B., Vegas, S.: Empirical Standards
for Software Engineering Research. ACM SIGSOFT Empirical Standards (2020).
https://doi.org//10.48550/arXiv.2010.03525

https://doi.org/10.1109/ACCESS.2020.2976874
https://doi.org/10.1109/ACCESS.2020.2976874
https://doi.org//10.1145/3274694.3274720
https://doi.org//10.1145/3274694.3274720
https://doi.org//10.1145/3274694.3274720
https://doi.org//10.1145/3274694.3274720
https://doi.org//10.1007/s10664-019-09737-2
https://doi.org//10.1007/s10664-019-09737-2
https://doi.org//10.1007/s10664-019-09737-2
https://doi.org//10.1007/s10664-019-09737-2
https://doi.org/10.1145/3427228.3427236
https://doi.org/10.1145/3427228.3427236
https://doi.org/10.1145/3427228.3427236
https://doi.org/10.1145/3427228.3427236
https://doi.org/10.1109/IAW.2005.1495942
https://doi.org/10.1109/IAW.2005.1495942
https://doi.org/10.1109/IAW.2005.1495942
https://doi.org/10.1109/IAW.2005.1495942
https://doi.org/10.48550/arXiv.2101.03844
https://doi.org/10.48550/arXiv.2101.03844
https://doi.org//10.46460/ijiea.617181
https://doi.org//10.46460/ijiea.617181
https://doi.org//10.1016/j.jisa.2022.103351
https://doi.org//10.1016/j.jisa.2022.103351
https://doi.org//10.1016/j.jisa.2022.103351
https://doi.org//10.1016/j.jisa.2022.103351
https://dl.acm.org/doi/10.5555/3373669.3373676
https://dl.acm.org/doi/10.5555/3373669.3373676
https://doi.org//10.1109/WorldS451998.2021.9514041
https://doi.org//10.1109/WorldS451998.2021.9514041
https://doi.org//10.1016/j.jss.2021.111158
https://doi.org//10.1016/j.jss.2021.111158
https://doi.org//10.17485/IJST/v14i47.1909
https://doi.org//10.17485/IJST/v14i47.1909
https://doi.org//10.1016/j.pisc.2016.06.060
https://doi.org//10.1016/j.pisc.2016.06.060
https://doi.org//10.1145/2961111.2962619
https://doi.org//10.1145/2961111.2962619
https://doi.org//10.48550/arXiv.2010.03525
https://doi.org//10.48550/arXiv.2010.03525

	Anomaly Detection Through Container Testing: A Survey of Company Practices

