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Abstract

We consider the analytic continuation of Riemann’s Zeta Function derived from Dirichlet Eta
Function 7(s) which is evaluated at s = % + 0 + 1w, where o,w are real and compute inverse Fourier
transform of I'(5)n(s) and derive a related function E,(t). We study the properties of E,(t) and a
promising new method is presented which could be used to show that the Fourier Transform of E,(t)
given by E,,(w) does not have zeros for finite and real w when 0 < |o| < %, corresponding to the

2
critical strip excluding the critical line.
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1. Introduction

It is well known that Riemann’s Zeta function given by ((s) = >_
m=1

where the real part of s is greater than 1. Riemann proved that {(s) has an analytic continuation to
the whole s-plane apart from a simple pole at s = 1 and that ((s) satisfies a symmetric functional
equation given by £(s) = £(1—s) = 1s(s—1)m 2[(£)((s) where I'(s) = [~ e “u*~'du is the Gamma
function. [4] [5] We can see that if Riemann’s Xi function has a zero in the critical strip, then Rie-
mann’s Zeta function also has a zero at the same location. Riemann made his conjecture in his 1859
paper, that all of the non-trivial zeros of ((s) lie on the critical line with real part of s = %, which is

called the Riemann Hypothesis.[I]

1

ms

converges in the half-plane

Hardy and Littlewood later proved that infinitely many of the zeros of ((s) are on the critical line
with real part of s = .[2] It is well known that ((s) does not have non-trivial zeros when real part
of s =1+ 04w, given by £ + 0 > 1and § + 0 < 0. In this paper, critical strip 0 < Re[s] < 1
corresponds to 0 < |o| < %

In this paper, a new method is discussed and a specific solution is presented to prove Riemann’s
Hypothesis. If the specific solution presented in this paper is incorrect, it is hoped that the new
method discussed in this paper will lead to a correct solution by other researchers.

In Section [2] to Section [dl we prove Riemann’s hypothesis by taking the analytic continuation of
Riemann’s Zeta Function derived from Dirichlet Eta function 7(s) and compute inverse Fourier trans-
form of T'(£)n(s) and show that T'(£)n(s) does not have zeros for finite and real w when 0 < |o| < 3,
corresponding to the critical strip excluding the critical line.
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In Section [7] it is shown that the new method is not applicable to Hurwitz zeta function and
related functions and does not contradict the existence of their non-trivial zeros away from the

critical line with real part of s = %

We present an outline of the new method below.

1.1. Step 1: Dirichlet Eta function

n(s)

1—21-s

1 1
((s) = Z — diverges for Re[s] < 1 and n(s) = Z(—l)"‘lﬁ is Dirichlet Eta function which con-

We use the analytic continuation of Riemann’s zeta function given by ((s) = where

n=1 n=1

verges for Re[s] > 0. (link and Titchmarsh pp16-17)

We see that if 7(s) has a zero in the critical strip, then ((s) also has a zero at the same location.
We evaluate A(s) = F(%) (s) at s = 2 4+ 0 +iw in Eq. . 10/ for 0 < 0 < 1 and compute its inverse
Fourier Transform a(t) in Eq. .

In Section [1.6/and Section |1.7] it is shown that, if 7]( +o+ zw) has a zero at w = wp in the critical

strip, then the Fourler transform of the function E,(t) = Ey(t)e " given by E,,(w) also has a zero
> n2 —2t —2t

at w = wy, where Ey(t) = Z(—l)”’l(e’”Te * 7™ )73 derived using a(t).
n=1

Statement 1: We assume that the analytic continuation of Riemann’s zeta function derived
from Dirichlet Eta function given by E,,(w) has a zero at w = wy and then prove that this leads to
a contradiction for 0 < o] < 3.

1.2. Step 2: On the zeros of a related function G(w,ty, 1))

Let us consider 0 < o < 1 at first. Let us consider a new function g(¢, ts, to) = f(¢, t2, to)e " 'u(—t)+
f(t,ta, to)e u(t), where f(t,ta,to) = €721 fi(t,t2,t0) + €270 fo(t, ta, to) and fi(t,ta,t0) = "™ E,(t +
to, t2) and fo(t, ta, tg) = e TE (t — to,t2) and E,(t,t2) = e “2E,(t — t5) — e”2E,(t + t3) and to, t
are real and g(t, ta, to) is a real function of variable ¢ and u(t) is Heaviside unit step function. We can
see that g(t,ta, to)h(t) = f(t,t2,to) where h(t) = [e7'u(—t) + e " u(t)] .

In Section , we will show that the Fourier transform of the even function ge,e,(t,t2,t)) =
slg(t, ta, to) + g(—t, t2, )] given by Gg(w, t2, o) must have at least one zero at w = w.(ts,to) # 0,
for every value of t,, for each nonzero value of ¢y, where Gg(w,ts,%) crosses the zero line to the
opposite sign, to satisfy Statement 1, where w, (5, o) is real and finite.

1.3. Step 3: On the zeros of the function Gr(w,ts,to)

In Section we compute the Fourier transform of the function g(¢,ts,%y) and compute its real
part given by Gr(w,ts,t) and we can write as follows.
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0
Grlw, ty, tg) = e 27" / [Eo(T + to, t2)e™ 2T + Ey (T — to, t2)] cos (wr)dr

—0o0

0
+e20to / [E(/)(T — to, t2)€_2UT + E(l)n(T + to, to)] cos (wT)dr

(1)
We require Gg(w, ta,ty) = 0 for w = w,(ts,ty) for every value of ¢y, for each non-zero value

of ty, to satisfy Statement 1. In general w,(ts,tg) # wo. Hence we can see that P(ty,ty) =
Gr(w:(t2, ), t2, to) = 0.

1.4. Step 4: Zero Crossing function w,(ts, 1)) is an even function of variable i

In Section 2.4 we show the result in Eq. 2 and that w,(ts,t9) = ws(t2, —t9). It is shown that
P(tg,to) = GR(WZ(tQ,tO)’tQ,tO) = odd(tQ;tO) + Podd(tg,—t0> = 0 and that Podd(tg,to) is an odd
function of ¢y, for each non-zero value of £, as follows.

to
P,aa(te, tg) = [cos (wz(tg,to)to)/ E(l)(T, t2)6_2” cos (w, (te, to)T)dT
o
+ sin (wz(t% to)to) / EO(T, tg)e_z‘” sin (wz (tz, to)T)dT]
to , - to ,
+e2oto [cos (w,(tz2, to)to) / E,, (T, t2) cos (w.(te, to)T)dT + sin (w,(te, to)to) / E,, (T, t2) sin (w,(ta, to)7)dT]

(2)

1.5. Step 5: Final Step

In Section @, it is shown that w,(ts,%y) is a continuous function of variable ¢, and t, for all
0 <tp < oo and 0 <ty < oo. In Section [} it is shown that Ey(t) is strictly decreasing for ¢ > 0.

In Section |3 we set ty = to. and ty = ty. = 2to., such that w,(toc, to.)to. = 5 and substitute
in the equation for P,y4(ts, o) in Eq. 2 and show that this leads to the result in Eq. 3. We use
E(,)(t, tg) = Eo(t — tg) — Eo(t -+ tg) and E[/)n(t,tg) = Eé(—t,tg)

/0 OC(EO(T — tae) — Eo(T + tae))(cosh (20tg.) — cosh (207)) sin (w, (tac, toe)7)dT = 0

(3)
We show that each of the terms in the integrand in Eq. 3 are greater than zero, in the interval
0 < 7 < to. and the integrand is zero at 7 = 0 and 7 = ty., where ty. > 0.



Hence the result in Eq. 3 leads to a contradiction for 0 < ¢ < %

We show this result for 0 < o < % and then use the property f(% +o0+iw) = &(L — o0 —iw) to show

2
the result for —% < 0 < 0. Hence we produce a contradiction of Statement 1 that the Fourier

Transform of the function E,(t) = Ey(t)e " has a zero at w = wy for 0 < |o| < 3.

1.6. Analytic continuation of Riemann Zeta function derived from Dirichlet Eta func-
tion

We consider Riemann’s Xi function £(s), where s = % + 0 +iw. Using the functional equation
of Riemann’s zeta function given by ((s) = (1 — s)['(1 — s)sin ()r~12%, we get £(s) = £(1 — s).

Titchmarsh ppl6-17) Using ((s) = ljéf),s, we write as follows.

§(s) = (NG ™ == = (1 =)
5( ) _ - 2(;3_8 (2)77_79 3(82— 1)

(4)
We define a related analytic continuation E(s) as follows. Given £(s) = &(1 — s), we see that
E(s) = E(1 — s) is analytic in the region 0 < Re[s] < 1 and has simple poles at s = 0 and s = 1.

E()(1— 22— 1)
s(s—1)

L E1-90-2)@ ) e -na-2)

Bl=s) =59 D Es)

E(s) =

(5)

T](S>_S in Eq. 5 and cancel the common terms s(s—1)

We substitute £(s) from Eq. 4 and {(s) = T

and (1 — 2'7%) as follows.

n(s) 8y zsls =1 (1=-2179(2° — 1)

E(s) = 1_ ol (5)7T 2 9 s(s—1)
B = 28 r e b -2 )

We evaluate E(s) at s = 1 + 0 + iw and use K = e™1°8(5) a5 follows.

1 1 Lt o+iw 77(%2”)
9 s —iw .
E(§ +o0+iw) = Ep(w) = 77(5 + 0 +iw)[(2 5 ) 5 ¢’ log(m) (9z+o giwlos(2) _ 1)
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1 .
We define A, (w) = (5 + 0 + iw)I( §+Z+2w), and we can rearrange the terms as follows.

—(L+0)

T 22 e 2 log(“)(2%+geiw el — 1)

Epo(w) = Ay(w)

(8)
We define a(t) as the Inverse Fourier Transform of A,(w). We compute the Inverse Fourier
Transform of E,,(w) given by E, () as follows, using time shifting property.

= log() log(r)
T 2 1, 0 og(m
By(t) = =5 —[28""a(t - =57 + log(2)) — a(t — =5)]
(9)
1.7. Dertvation of a(t) and E,(t)
We start with the gamma function I'(5) = fo y:levdy. We evaluate A(s) = T'(2 ) (s) at

= 1 4 5 4 iw below. We substltute y = mn? z and dy = mn?dx in Eq. [10] and get yz~'dy =
(7m2)§’13:2 Lrn?de = n2n®(an?) a2 tanlde = ninfz2 " ldr.

= 1 [> . s~ o
A(s) :F(g)n(s) :Z(—n"l%/o yr e Vdy = az i /O 23 e ™ g (10)
n=1 n=1

For Re[s] > 0, the gamma function is analytic in the complex plane (link) and 7(s) converges and
hence |A(s)| = |I'(5)n(s)| converges.

We can interchange the order of integration and summation in Eq. using Fubini’s theorem
given that the integrands in Eq. before the interchange and the integrands in Eq. after the
interchange are absolutely integrable with exponential asymptotic fall-off rate (|[Appendix A.8) and
hence the integral in Eq.|13|converges and equal the corresponding expressions in Eq.[10]and we write
as follows. (link)

;/ n 1 77TTL2:E 771d.§l] (11)

Now we substitute z = e~ and dz = —26’2tdt = —2xdt and write Eq. [11] as follows.

% / 16—7rn2e*2t€—stdt (12)

We substitute s = % + 0 +iw in Eq. [12| as follows.

1 4o iw oo 2 _ .
A(§+a+zw) :Aw(w) :27_(_22 621og7r/ Z(_ n 1 —7rn2@ 2t€_%6—o't zwtdt (13)
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The integrand in Eq. [13|is absolutely integrable given asymptotic exponential fall-off rate. (
pendix A.8)) We see that the inverse Fourier transform of A, (w) is given by a(t) as follows, using the
time shifting property.

log
2

w\q

a(t) (t+ ) % Z TL 1 —7’l’n2e*2t6_%€—0't (14)

We know that I'(3) does not have zeros for any value of s (link) and the gamma function is
analytic in the complex plane for Re[s] > 0 (link). If n(s) has a zero at w = wy in the critical strip,
then A(: + o +iw) in Eq. [10| has a zero at w = wy and the Fourier transform of a(t) given by A, (w)

in Eq. 13 . has a zero at w = wy (Result E.0)

Now we substitute a(t) in Eq. [14/in Eq. 9 copied below and cancel the common terms log(” and
2mitE as follows. We use 22772-(279) — 1 in the first term in E,(t) below.
5 log () log(r)
T2 og(m og(m
Ey(t) = 5 —[25*a(t - =5 +log(2) — alt — =5 )]
~G+s) 1 1 1 1
B, (1) = T by — DBy 80 ooy g (¢ — 18T LB
2 2 2 2 2
,(l o L (o] >
E,(t) = u ; 227940 (t 4 1og(2)) — ao(t)], ao(t +log(2)) =2 %2~ GHIgats y “(—1)ntemre Femze0t
n=1
Ep(t) _ Z( 1)n71€f7rn7e 2’56 50t Z( 1)n 1, —mn2e~2 50t
n=1 n=1
Ey(t) = Bo(t)e ™, Bolt) = 3 (~1) ! (™50 ™ — mmie )
n=1
(15)

We see that Fy(t) is the inverse Fourier transform of E(5 + iw) (set o = 0 in Eq. 7 and Eq. 9)

and it obeys Ey(t) = Eo(—t) given that E(s) = E(1 — s) using Eq. 5(We use the result in
A.7). (Result E.1)

Using Eq. 8, we have derived the analytic continuation of Riemann’s zeta function derived from
Dirichlet Eta function given by Ep,(w) = n(3 + ¢ + iw) B(w) where

,(lJr[,)

B(CJ) — I‘( 2+‘72+W)7rT e 2“ log(w)(2%+aeiwlog(2) _ 1)

We see that, if (2 + o + iw) has a zero at w = wy in the critical strip, then the Fourier transform
of the function E,(t ) = Ey(t)e 7" given by E,,(w) also has a zero at w = wy, where Ey(t) =

Z(_l)n71<677r2—26_2t _ emeQe_Qt)ef% )

n=1
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2. An Approach towards Riemann’s Hypothesis

Theorem 1: The analytic continuation of Riemann’s zeta function derived from Dirichlet Eta
function given by Ep,(w) = (3 + 0 + iw)B(w) does not have zeros for any real value of —oco <

w < oo, for 0 < |o| < %, corresponding to the critical strip excluding the critical line, where
~(3+0)

B(w) = I’(ﬁJ“;Hw)’r J e los(m (231 ¢iwloa(?) 1) given that Ey(t) = Ey(—t) is an even function of
. s n2 —2t
variable t, where E,(t) = 5= [* Ep(w)e™'dw, E,(t) = Ey(t)e " and Ey(t) = Z(—l)”’l(e’”Te o
n=1

_2,-2t _t
e m™m~e )e 2'

Proof: We assume that Riemann Hypothesis is false and prove its truth using proof by contra-
diction.

Statement 1: Let us assume that the analytic continuation of Riemann’s zeta function derived
from Dirichlet Eta function given by E,,(w) has a zero at w = wy where wy is real and finite and
0<|o| < %, corresponding to the critical strip excluding the critical line. We will prove that this
assumption leads to a contradiction.

We will prove it for 0 < o < % first and then use the property £(5 + 0 + iw) = (-0 —iw) to

2
show the result for —3 < ¢ < 0 and hence show the result for 0 < |o| < 3.

We know that wy # 0, because ((s) has no zeros on the real axis between 0 and 1, when s =
s+ o0 +iwisreal, w=0and 0 < |o| < 3. [3] (Titchmarsh pp30-31). This is shown in detail in first
two paragraphs in [Appendix A.l|

2.1. New function g(t,1s,10)

Let us consider the function E,(t, 1) = e "2 E,(t — to) — e E,(t + 1) = (Eo(t — t2) — Eo(t +
ty))e~ " = Ey(t,ty)e 7!, where ty is non-zero and real, and Ey(t,ty) = Ey(t — to) — Eo(t + t2)
(Definition 1). Its Fourier transform is given by E (w,t2) = Ep,(w)(e”72e~%* — ¢7'2¢™2) which
has a zero at the same w = wy, using Statement 1 and linearity and time shift properties of the
Fourier transform ( link). (Result 2.1.1).

Let us consider the function f(t,ty,tg) = €270 fi (¢, tg, to) + €27%0 fo(t, ta, tg) where fi(t,ta,t9) =
e"tOE;(t + to, t2) and fo(t,ta,to) = f1(t,ta, —tg) = e“’tOEI/D(t — tg,t2) where ty is real and we can see
that the Fourier Transform of this function F(w, ta,to) = E, (w, t2) (e~ 270 et 4 e20t0g=tog—iwto) —

E,,(w,ts)(e"0e™t 4 ¢7l0e=l0) also has a zero at the same w = wy, using Result 2.1.1.
(Result 2.1.2)

Let us consider a new function g(t,te,tg) = g_(t, tao, to)u(—1t) + g4 (t, to, to)u(t) where g(t,ts,1g) is
a real function of variable ¢ and wu(t) is Heaviside unit step function and g_(t,ts,tg) = f(t,t2,t0)e 7"


https://www.ocf.berkeley.edu/~araman/files/math_z/Titchmarsh_pp30_31.pdf
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and g4 (t,t2,t0) = f(t,t2,t0)e” . We can see that g(t,te, to)h(t) = f(t,t2,to) where h(t) = [e”'u(—t)+
e tu(t)].
We can write the above equations as follows.

E,(t,ts) = e " E,(t —t2) — " Ey(t +ta) = (Bo(t — ta) — Eo(t + t2))e " = Ey(t, t2)e"
fit ta, tg) = e E (T +to, t2)

falt, ta,to) = fi(t, ta, —to) = e " E,(t — to, t2)

F(tta,to) = €721 fi(t, o, to) + €270 fo(t, o, to) = e OE (t + to, o) + " E, (t — to, t2)
gt t2, to) = [f(t,ta,to)e™ " Ju(—t) + [f(t, ta, to)e” Ju(t)

g(t,ta, to)h(t) = f(t,ta, o), h(t) = [eu(—t) + e " u(t)]

(16)

We can show that Ep(t),EI/)(t, ts),h(t) are absolutely integrable functions and go to zero as
t — +oo. Hence their respective Fourier transforms given by E,,(w), E,,(w,t2), H(w) are finite
for real w and go to zero as |w| — oo, as per Riemann Lebesgue Lemma (link). We can show that
FEo(t) and Ey(t)e~27" are absolutely integrable functions. These results are shown in [Appendix A.1}

In Section [2.3 and Section [2.4] it is shown that g(¢,t2, ) is a Fourier transformable function and
its Fourier transform given by G(w, ta,ty) = € 270G (w, ta, ty) + €27 Gy (w, ta, —ty) converges. (Eq. 24
and Eq. 27)

If we take the Fourier transform of the equation g(t, ta, to)h(t) = f(t, t2,to) where h(t) = [e7 u(—t)+
e~'u(t)], using Result 2.1.2, we get 3=[G(w,t2,t0) * H(w)] = F(w,tz,t0) = B, (w,tz)(e 70k +
e7hem W) = Fp(w,ta, to) + iFr(w, ta,ty) as per convolution theorem (link), where # denotes con-
volution operation given by F(w,ts,t0) = 5= [*.. G(w', 2, t0) H(w — w')dw’. (Result 2.1.a)

We sce that H(w) = Hp(w) = [—=— + - jw] = (022&2) is real and is the Fourier transform of

the function A(t) (link). G(w,ta,t9) = Gr(w,ts,to) + iG(w,ts, o) is the Fourier transform of the
function g(t,te,ty). We can write g(t, ta2,t0) = Geven(t, t2, to) + Goaa(t, t2,to) Where geyen(t,ta,to) is an
even function and geqq(t, t2, to) is an odd function of variable t.

If Statement 1 is true, then we require the Fourier transform of the function f(t,ts,t) given
by F(w,ts,ty) to have a zero at w = wy for every value of t,, for each non-zero value of ¢y, us-
ing Result 2.1.2. This implies that the real part of the Fourier transform of the even function
Geven(t, ta,t0) = 3[g(t, ta,t0) + g(—t,t2,t0)] given by Gg(w,ts,to)(Details in [Appendix B.2) must
have at least one zero at w = w,(t2, %) # 0 where w,(t2,ty) is real, where Gr(w, ta, 1) crosses the
zero line to the opposite sign, explained below. We note that w,(ts,ty) can be different from wy in
general.

Because H(w) = (022+—Uw2) is real and does not have zeros for any finite value of w, if Gg(w, t2, ()
does not have at least one zero for some w = w,(tq,ty) # 0, where Gg(w, ts, o) crosses the zero line to
the opposite sign, then the real part of F(w,ts,ty) given by Fr(w,ts,t) = %[GR(w, to, to) * H(w)],
obtained by the convolution of H(w) and Gr(w, ts,ty), cannot possibly have zeros for any non-zero fi-

nite value of w, which contradicts Result 2.1.2 and Statement 1. This is shown in detail in Lemma 1.


https://en.wikipedia.org/wiki/Riemann-Lebesgue_lemma
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The proof for Lemma 1 below is shown for a fixed value of ¢, = to; and ty = t5¢, in the interval
[to] < oo and 0 < |t < oo (Interval A), where Gr(w,ts,1p) is a function of w only. The proof
continues to hold for our choice of each and every combination of fixed values of ¢; and ¢; in
interval A, where Gg(w, t2, o) is a function of w only.

Lemma 1: Let to,t2 € R be fixed values and ¢, # 0 and E,,(w) has a zero at w = wy using
Statement 1. Then the Fourier transform of the even function gee,(t, t2, %) given by Ggr(w, ta, o)
must have at least one zero at w = w,(t2,ty) # 0, where Gr(w, t2,to) crosses the zero line to the
opposite sign and w,(ts, 1) is real.

Proof: If E,,(w) has a zero at w = wy to satisfy Statement 1, then F(w,ts,to) has a zero at
w = wp, using Result 2.1.2 and its real part given by Fgr(w,ts,%y) has a zero at w = wy, where
wo # O(Result 2.1.3).

We do not have a closed form solution for Gg(w, t2,ty) and do not know the exact location of its
zeros at w = w,(ts, o). For a specific choice of ty, ty, only one of the 2 cases is possible:
Case A: Gg(w,ta,1p) does not have a zero crossing for any choice of w # 0 or
Case B: Gg(w,ts,ty) has at least one zero crossing for a specific w # 0.
If Statement 1 is true, then Case B is the only possibility and Case A is ruled out, as shown below.

We want to show the Result 2.1.5 that Gr(w, t2,ty) must have at least one zero crossing at
some value of w = w,(t2, ) # 0 (Case B), to satisfy Statement 1, for this choice of fixed ¢, to.

To show Result 2.1.5, we assume the opposite Case A, that Gg(w,ts,ty) does not have at
least one zero for any value of w # 0, where Gg(w, t2,ty) crosses the zero line to the opposite sign
(zero crossing) and will show that Fr(w,ts,t) does not have at least one zero at finite w # 0 for this
case, which contradicts Result 2.1.3 and Statement 1 and hence we rule out Case A and arrive at
Case B (Case B is the same as Result 2.1.5).

This does not mean that, proof of Lemma 1 will work only if Gr(w,ts,1y) does not have a zero
crossing for any value of w # 0, for any choice of t5,%y. The device Proof by Contradiction is used
here to rule out Case A and arrive at Case B. (Details of other cases in Section [2.1.1])

It is noted that, for Case B, we do not use Eq. [17]to Eq. 20 and related arguments, because
Case B is the desired Result 2.1.5. (Note 1)

The arguments above and following proof continue to hold for our choice of each and every
combination of fixed values of ¢ty and ¢, in interval A, where Gr(w, t2,to) is a function of w only.

Given that H(w) is real, using Result 2.1.a, we write the convolution theorem only for the real
parts as follows.

1 oo
FR(wv lo, to) = % / GR(W/, lo, tO)H(w - w/)dw/ (17)

We can show that the above integral converges for real w, given that the integrand is absolutely
integrable because G(w, t2,t) and H(w) have fall-off rate of ﬁ as |w| — oo because the first deriva-

tives of g(t,t2,to) and h(t) are discontinuous at t = 0.(Details in [Appendix A.2land |[Appendix A.5))




We substitute H(w) = % in Eq. (17 and we get

g - / 1 /
FR(w,t27t0) = %/ GR((,U ,tg, to) (0_2 T (w — w/)Q)dw (18)

We can split the integral in Eq. |18 using ffooo = ff)oo + fooo, as follows.

1
(02 4+ (w—w)?)

0 )
Fr(w,ta,to) = %[/ Gr(W', t2, 1o) 2>dw' +/ Gr(W', ta,t0) du']
oo 0

(02 + (w—w)
(19)

We see that Gr(—w,ta,t9) = Gr(w,ta,ty) because g(t,ta,to) is a real function of variable t.
(Details in [Appendix B.1)) We can substitute w’ = —w” in the first integral in Eq. 19 and substituting
w” = W' in the result, we can write as follows.

1 L 1
(02 + (w—w)?) (0?24 (w+w)?)

o

Frw, ta,tg) = ;/ Gr(W', t2, o)
0

|do’

(20)

We note that ¢y and ty are fixed in Eq. 20 and Gg(w,ts,1) is a function of w only and the
integrand in Eq. 20 is integrated over the variable w only.

In |[Appendix A.2] it is shown that G(w’, ta, 1) is finite for real w’ and goes to zero as |w'| — oco.
We can see that for w’ — oo, the integrand in Eq. 20 goes to zero. For finite w > 0, and 0 < W’ < oo,
we can see that the term (JQHD}_W,)Q) + (02+(w1+w,)2) >0, for0<o< % We see that Gr(w, ta,1g) is
not an all zero function of variable w’ (Details in Section 2.2). (Result 2.1.4)

e Case 1: Gg(w',ta,t9) > 0 for all finite w’ >0

We see that Fr(w,ts,t9) > 0 for all finite w > 0, using Result 2.1.4. We see that Fr(—w,ts,ty) =
Fr(w,ta,ty) because f(t,tq,t0) is a real function ( [Appendix B.1|) and link ). Hence Fg(w,ts,t) > 0
for all finite w < 0.

This contradicts Statement 1 and Result 2.1.3 which requires Fr(w,ts,%) to have at least one
zero at finite w # 0. Therefore Gg(w', ta,ty) must have at least one zero at W' = w,(ts,tg) > 0
where it crosses the zero line and becomes negative, where w, (9, %) is finite.

e Case 2: Gg(w',ta,t9) <0 for all finite w’ >0
We see that Fr(w,ts,t9) < 0 for all finite w > 0, using Result 2.1.4. We see that Fr(—w,ts,ty) =

Fr(w,ty,tg) because f(t,tq,t0) is a real function ( [Appendix B.1|) and link ). Hence Fr(w,ts,t9) <0
for all finite w < 0.

This contradicts Statement 1 and Result 2.1.3 which requires Fr(w,ts,t) to have at least one
zero at finite w # 0. Therefore Gr(W', ta,ty) must have at least one zero at w' = w,(t2,t9) > 0,
where it crosses the zero line and becomes positive, where w, (¢, to) is finite.
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We have shown that, Gg(w, t2, to) must have at least one zero at finite w = w,(t2, ) # 0 where

it crosses the zero line to the opposite sign, to satisfy Statement 1, for specific choices of fixed tg, t5.
We call this Result 2.1.5.

The arguments above and the proof continue to hold for our choice of each and every combi-
nation of fixed values of ¢y and ¢, in interval A, where Gg(w, to, ) is a function of w only.

In the rest of the sections, we consider only the first zero crossing to the right of origin, where
Gr(w, ta, ty) crosses the zero line to the opposite sign. Hence 0 < w,(t2,%y) < oo, for all |ty| < oo, for
each non-zero value of t5, to satisfy Statement 1.

2.1.1. Discussion of Lemma 1

Result 2.1.5: Gg(w,ts,ty) must have at least one zero at finite w = w,(ts,%y) # 0 where it
crosses the zero line to the opposite sign, to satisfy Statement 1.

For each fixed value of g, t5, only 2 cases are possible for Gg(w, t2,ty). Case A: Gg(w, ts,ty) does
not have a zero crossing for any choice of w # 0. Case B: Gg(w, t2, ) has at least one zero crossing
for a specific w # 0. Proof of Lemma 1 assumes Case A and uses Proof by Contradiction to rule
out Case A and arrive at Case B, for each choice of fixed tg,t5. This does not mean that Proof of
Lemma 1 does not work for Case B. For Case B, we do not use Proof of Lemma 1 and jump to the
end of the proof because we already have the desired Result 2.1.5 which is the same as Case B.

The logic used is this proof is as follows: If Statement 1 is true(RH is false), then Result 2.1.5 is
true (Case B), for each and every combination of fixed values of ¢y, 5 in interval A (|¢y] < oo and
0 < |ta] < o0 )and hence Case A is ruled out and only Case B is possible for Gg(w, t2, tg). Then we

proceed with Result 2.1.5 to Section 2.3, 2.4 and Section 3, to produce a contradiction of Statement
1 in Eq. [5I] and thus prove the truth of RH.

Alternate Method: We present an alternate method of analyzing all possible cases of Gg(w, t2, to)
below. We can arrive at Result 2.1.5, for each and every combination of fixed values of ¢y, in
interval A, using Proof of Lemma 1 for Case C and Case D or using Case E, as explained below.

It is noted that Fr(w,ts,to) and Ggr(w, ta, tp) may have more zeros than F'(w, ts, ty) and G(w, ta, to)
respectively. That does not affect the proof of Lemma 1, as explained below.

We do not have a closed form solution for Gg(w,t2,ty) and do not know the exact location of its
zeros at w = w,(ta, to), for each fixed choice of 5, tg. We consider 3 possible cases of Gr(w, ta, ty) below.

e Case C: We consider the case that Gr(w,ts,t9) does not have a zero crossing, for any value
of w # 0, for each and every choice of t5,%; in Interval A and we use Proof of Lemma 1 for each
and every choice of s, g, to show that it leads to a contradiction of Statement 1, and hence prove
Result 2.1.5, for each and every choice of t9, tg.

Hence Case C is ruled out, if Statement 1 is true. (Result 2.1.1.c)

e Case D: We consider the case Gg(w,ts,ty) has a zero crossing at w = w,(ts,ty), for specific
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choices of ty = t,, g = t,.(Not for all possible choices of ¢, )

For Case D, this means that Gr(w,ts,%) has at least one zero crossing at w = w,(ts, ),
for specific choices of t5 = tIQ, tg = tz), which is the desired Result 2.1.5 and hence we do not go
through the arguments in this proof and we can jump to end of Proof of Lemma 1 (using Note 1).
In this case, we have not assumed Statement 1 and yet arrived at Result 2.1.5, for specific choices
of ty = ty, tg = tg.

For Case D, there is at least one choice of ty = tor,ty = tos for which Gr(w,ts,ty) does not
have a zero crossing, for any value of w # 0. For this choice of t3 = ta7,ty = tos, we use Proof of
Lemma 1 to show that it leads to a contradiction of Statement 1, and hence prove Result 2.1.5.

Hence Case D is ruled out, if Statement 1 is true. (Result 2.1.1.d)

e Case E: We consider the case Gg(w, ta,%y) has at least one zero crossing at w = w, (s, to), for
each and every choices of t,, ¢y in Interval A. We call this Statement 3.

For Case E, this means that Gg(w, ts,ty) has at least one zero crossing at w = w,(ts, o), for
each and every choices of o, t; which is the desired Result 2.1.5 and hence we do not go through
the arguments in this proof and we can jump to end of Proof of Lemma 1 (using Note 1). In this
case, we have not assumed Statement 1 and yet arrived at Result 2.1.5, for each and every choices
of tg, to.-

For Case E, we see that we arrive at Result 2.1.5 by assuming Statement 3 only. Then we proceed
with Result 2.1.5 to Section 2.3, 2.4 and Section 3, to produce a contradiction of Statement 3 in
Eq. 51} Hence Statement 3 is false and Case E is ruled out.

There are only 3 possible cases for Gr(w,ts,y) given by Case C,D and E. We have ruled out
Case E in above para. If Statement 1 is true, Case C and Case D have been ruled out using Result
2.1.1.d and Result 2.1.1.e. Given that Case C,D and E are the only 3 possible cases for Gg(w, t2, %),
this means Statement 1 is false.

Thus we have produced a contradiction of Statement 1 that the Fourier Transform of the
function E,(t) = Ey(t)e " has a zero at w = wy for 0 < |o| < I and hence prove the truth of

2
Riemann’s Hypothesis.

2.2. Ggr(w,ts,ty) is not an all zero function of variable W'

If Gr(w',ts,ty) is an all zero function of variable w’, for each given value of ¢yt € R and
to # 0 (Statement 2), then Fgr(w,ts,t) in Eq. is an all zero function of w, for real w. Hence
2 feven(t, to, to) = f(t, ta, o)+ f(—t,ta,10) is an all-zero function of ¢, given that the Fourier transform

of feven(t,ta, ) is given by Fgr(w, ta, 1), using symmetry properties of Fourier transform( |[Appendix
B.2) and link ). Hence f(t,t,t0) is an odd function of variable ¢t.(Result 2.2).

From Eq. 16 we see that E(t,ty) = e 72 E,(t — to) — e E,(t + t2) = [Eo(t — t2) — Eo(t +t2)]e ",
Hence fi(t,ta,tg) = " E,(t + to,t2) = e”[Eo(t + to — t2) — Eo(t + to + t2)]e "'e™"" and we use
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e“e~7% = 1 and hence fi(t,t2,t0) = [Eo(t + to — t2) — Eo(t + to + t2)]e " and
fa(t, ta, to) = f1(t,ta, —to) = [Eo(t — to — t2) — Eo(t — to + t2)]e™7" . Hence we can write
[t ta,to) = €270 f1(t, Ly, to) + €27 fo(t, ta, to) in Eq. 16, as follows.

f(t o, tg) = e 270 Ey(t+tg—to) — Eo(t +to+ts)]e 7 4+ e [Ey(t —tg—to) — Eo(t —to+12)]e™7" (21)

Case 1: For tg # 0 and t5 # 0, it is shown that Result 2.2 is false. We will compute f(t,t5,%0) in
Eq. 21} at ¢ = 0 and show that it does not equal zero.

We see that f(O, tg, to) = €_ZUtO [Eo(t() — t2) - E(](t() + tg)] + 620t0 [E()(—to - tQ) — Eo(—to + tg)]
= —2sinh (20tg)[Eo(to — t2) — Eo(to + t2)]. We use the fact that Ey(ty) = Eo(—to) (Details in
' and hence Eo(t() - tg) = Eo(—to + tg) and E[)(t() + tg) = Eo(—t() — tg)

If Result 2.2 is true, then we require f(0,ts,t)) = —2sinh (20ty)[Eo(to — t2) — Eo(to + t2)] = 0.
For our choice of 0 < 0 < % and ty # 0, this implies that Eq(tg — ta) = Eo(to + t2). Given that tg # 0
and ty # 0, we set to = Kty for real K # 0 and we get Eo((1 — K)ty) = Eo((1 + K)ty). This is
not possible for ty # 0 because Ey(ty) is strictly decreasing for ¢, > 0 (Details in Section [5)) and
1-K#1+Korl—K#—(1+K) for K # 0. Hence Result 2.2 is false and Statement 2 is false
and Gr(w', s, 1) is not an all zero function of variable w’.

Case 2: For tg = 0 and ¢y # 0, we have f(t,ta,t0) = 2[Eo(t — t2) — Eo(t + t2)]e” 7" = 2D(t)e "
in Eq. where D(t) = Ey(t — ta) — Eo(t + t2). We see that D(t) + D(—t) = Eo(t — t2) —
Eo(t + to) + Eo(—t — ta) — Eg(—t + t2). Given that Ey(t) = Eo(—t), we have D(t) + D(—t) =
Eo(t — t2) — Eo(t + t2) + Eo(t -+ tg) — Eo(t — ng) = 0 and hence D(t) = Eo(t — tQ) — Eo(t -+ tg) is an
odd function of variable ¢t (Result 2.2.1).

If Result 2.2 is true, then we require f(t,t2,t9) = 2D(t)e” " to be an odd function of variable
t. Using Result 2.2.1, we require D(t) to be an odd function of variable ¢. This is possible only for
o = 0. This is not possible for our choice of 0 < 0 < % Hence Result 2.2 is false and Statement 2 is
false and Gr(w’, ta, 1) is not an all zero function of variable w’.

Case 3: For t, = 0 and [to| < oo, we have E,(t,ts) = e 72E,(t — t5) — e E,(t + t3) = 0 and
f(t ta, to) = g(t,ta,tg) = 0 for all ¢t in Eq. 16 and Lemma 1 is not applicable for this case.

2.3.  On the zeros of a related function G(w,ts,t)

In this section, we compute the Fourier transform of the function geyen (£, to,t0) = %[g(t, to, to) +
g(—t,ta,t0)] given by Gr(w,ts,to)(using |[Appendix B.2). We require Gg(w,ts,tg) = 0 for w =
w,(ta, to) for every value of ty, for each non-zero value of t, to satisfy Statement 1, using Lemma
1 in Section 211

We define g (t,ta,t0) = f1(t,ta, to)e” " u(—t) + fi(t, t2, to)e” u(t) = e"tOEz;(t + to, t2)e "tu(—t) +
e"tOE;(t + to, t2)e” u(t), using Eq. 16 (Definition 3). First we compute the Fourier transform of the
function g (¢, ta,t9) given by Gy (w,ts,tg) = Gig(w,ta, to) + 1G1r(w, ta, to) as follows.
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00 0

G1 (W, tg, to) = / g1 (t, tg, to)eiiwtdt = /

—00 —00

0
G1<W, t27 tO) - /

—0o0

91 <t’ t27 to)efi‘“tdt + / g1 (ta t27 t())eii(m&dt
0
€gtOEI/,<t + to, tQ)e—ote—iwtdt + /0 eato E;;(t + t()a t2)€0t€—iwtdt

(22)

We use E,(t,t) = Ey(t,tz)e " from Eq. 16, where Ey(t,t;) = Eo(t — ta) — Eo(t + t2), using
Definition 1 in Section and we get E(t + to,ta) = Eg(t + to, t2)e 7'e 7" and write Eq. 22 as
follows. Then we substitute t = —t in the second integral in first line of Eq. 23.

0 (o]
Gi(w,ta, to) = / Ey(t + to, to)e 2 e tdt + / E)(t + to, ta)e “idt
- ;
0 ! y 0 ! .
Gh(w, 2, tg) = / Ey(t + to, ta)e e ™ dt + / Ey(—t + to, to)e™tdt

(23)

We define E), (t,t5) = FEy(—t,t;) (Definition 2) and get Ey(—t+to,t2) = Ey,(t —to,t2) and write
Eq. 23 as follows. The integral in Eq. 24 converges, given that Ey(t)e 27! is an absolutely integrable
function and its to, £, shifted versions are absolutely integrable, using Ej(t,ty) = Eo(t—ts) — Eo(t+ts)
in Definition 1 in Section and Definition 2. (Details in |[Appendix A.1))

0 0

G1 (LL), tQ, tO) = / E(l)(t -+ to, t2)€72ateiiw’fdt —+ / Eé)n(t — to, tz)ethdt = GlR(w, tg, to) -+ iGH(w, tQ, to)

(24)

The above equations can be expanded as follows using the identity ™! = cos(wt) + isin(wt).
Comparing the real parts of G;(w, to, ), we have

0 0

Gir(w, te, tg) = / Ey(t + to, ta)e™27 cos (wt)dt + / By, (t — to, ) cos (wt)dt

—00 —00

(25)

2.4. Zero crossing function w,(ts,ty) is an even function of variable t,, for a given t,

Now we consider Eq. 16 and the function f(t,ty,tg) = e 270 f1(t,to, tg) + €270 fo(t, ta, tg) =
e~ E (t+to, ta)+e70E (t—to, t2) where fi(t, ta, t) = €7 E! (410, t2) and fo(t, ta, to) = fi(t, 12, —tg) =
e T (t—to, t2) and g(t, Lo, to)h(t) = f(t, 12, o) Where g(t, ta,t0) = f(t,ta, to)e™ " u(—t)+f (L, ta, to)e  u(t)
and h(t) = [e”u(—t) + e “"u(t)]. We can write the above equations and ¢ (¢, ta, t) from Definition 3
in Section , as follows. We define gy(t, to,to) below and write g(t,t2, 1) as follows.
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(1),  gi(t, ta, to)h
(t)v 92<t7 t27 tO)h’
e~ 270 g (t, g, to) + €270 gy (t, tg, to)

g1 (t, tg, to) = f1 (t, t2’ to)e*”tu(—t) + f1 (t, tQ, to)e t) = f1 (t, t2, to)
(

ot
u
ga(t ta, to) = falt ta, to)e™ " u(—t) + fo(t, ta, to)e u
g(t,ta,t0) =

(26)

We use the fact that, for ¢ < 0, e72%%g, (¢, ty,t0) + €270 gy(t, ta, tg) = €270 f1 (¢, ta,t9)e 7" +
€270 fo(t, tg, to)e 7" = e 270 EN (t + to, ta)e 7 + €270 NEN (t — to, ty)e™ = [eTTNE (t + to, t2) +
T (t — to, t2)]e” " = f(t,ta,t0)e™"" = g(t, 2, o) using Eq. 26 and the paragraph before Eq. 26.

For ¢ = 07U(t) = U(—t) = % and hence g1(07t27t0) = fl(oat27t0)7 g?(t7t27t0) = f2(07t27t0)
and hence €727 g, (0, t, tg) + €7 go(0, t2, t9) = €727 f1(0,ta,t9) + €*7 f5(0, 12, o) = f(0,t2,t9) and
9(0,22,t0) = % = f(0,ts,t9) and hence g(t,t2,tg) = € 270 gy(t, 1o, o) + €70 ga(t, t2, ty) at t = 0.

Similarly, for ¢t > 0, €727 g, (¢, to, to) + €270 gy(t, ta, tg) = €720 f1 (L, Lo, to) e + 200 fo(t, 1o, tg) e =
e 20T B (T + to, ta)e 4 €270 E] (t — to, t)e”" = [e7 B (t 4 to, ta) + OB (t — to,t2)]e”" =
[t ta, t0)e” = g(t,ta,ty). Hence g(t,ta, to) = e 270 gy (¢, ta,ty) + €270 go(t, t2, 1) for all t in Eq. 26 .

We compute the Fourier transform of the function g¢(t,t2,%9) in Eq. 26 and compute its real
part Gg(w, ta, o) using the procedure in Section [2.3] similar to Eq. 25 and we can write as follows in
Eq 27. We use GQR(CO, ta, to) = GlR(w, ta, —to) given that fQ(t, ta, to) = fl(t7 o, —to) and gg(t, to, to) =
g1(t, ta, —to) and Gao(w, te,tg) = Gi(w,ta, —tg). We substitute t = 7 in the equation for Gyg(w, ta, o)
below, copied from Eq. 25.

GR(UJ, t27 Z50) - eizo’tOGlR(wa t?a tO) + e2atOG2R(w7 t27 tO) = 672Ut0G1R(w7 t27 tO) + BQUtOGlR(wa t2> _tO)
0

G, tasto) = / B (7 + to, ta)e ™2™ + Ey (7 — to, ta)] cos (wr)dr

—00

0
Grlw, ty, tg) = e 2% / [Ey(T + to, 12)e™ 2T 4 Ey,, (T — to, t5)] cos (wr)dr

—00

0
+e?7to / [Ey(T — to, t2)e 2T + Ey, (T + to, ty)] cos (wr)dr

(27)

We require Gr(w, ta,ty) = 0 for w = w,(t2, o) for every value of ¢y, for each non-zero value of t,,
to satisfy Statement 1, using Lemma 1 in Section . In general w,(t2, %)) # wo. Hence we can see
that P(te,tg) = Gr(w.(t2,to),t2,tp) = 0 and we can rearrange the terms in Eq. 27 as follows. We
take the first and fourth terms in Gg(w,t2, ) in Eq. 27 and include them in the first line in Eq. 28.
We take the second and third terms in Eq. 27 and include them in the second line in Eq. 28.

0
P(tg, to) = GR(wZ(tQ, to), tQ, to) = / [672Gt0E{)(T + t(), t2)€7207 -+ QQUtOE(l)n(T + t(), tg)] COS ((A)Z(tg, to)T)dT
0
+/ [e2gt0 E(/] (’T — to, t2>€_2m— + G_QUtOE(I)n(T - t(), tg)] COS (wz (tQ, to)T)dT =0

—0o0
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(28)

We use the fact that f(¢,¢s,t0) = e“’tOE;,(t + to, t2) + e"tOE;D(t — to,ta) = f(t,t2, —to) in Eq. 16,
is unchanged by the substitution tg = —to. If f(¢,tq,t0) = f(t,t2, —to) is unchanged by the substi-
tution tg = —to, then g(¢,ts,t0) = g(t,t2, —to) is unchanged by the substitution tq = —t, using the
fact that g(t,ta, to)h(t) = f(t,t2,t0) and h(t) = [ u(—t) + e 7 u(t)].

Hence the Fourier transform of g(t,ts,%9) given by G(w,ta,ty) = G(w,ta, —tp) and its real part
given by Gg(w,ta,t9) = Gr(w,ts, —tg) is unchanged by the substitution ty = —t; and the zero
crossing in Gr(w, ta, —to) given by w,(t2, —to) is the same as the zero crossing in Gr(w, ta, %) given
by w,(t2,t9) and we get w,(ta,ty) = w.(t2, —ty) and hence w, (¢, ty) is an even function of variable ¢,
for each non-zero value of 5.

We can write Eq. 28 as follows, where P,g(t2,%p) is an odd function of variable ¢y, for each
non-zero value of t5. We use w,(ta,to) = w,(t2, —to).

P(ty,t0) = Poaa(t2, to) + Poaa(ta, —to) =0
0
Podd(tQ, to) = / [672at0E{; (’7' + t(), t2)€7207 + €2UtOE(lm(T + to, tg)] COS ((A)Z (tQ, to)T)dT

— 00

(29)

3. Final Step

We expand P,gq4(ts, to) in Eq. 29 as follows, using the substitution 7+ ty = 7. We get 7 = 7/ — ¢
and dr = d7’ and substitute back 7/ = 7 in the second line below. We use e 27%¢29% = 1 and use
the identity cos (w,(t2,t0)(T — to)) = cos (w,(ts, to)to) cos (w,(te, to)T)+sin (w,(te, to)to) sin (w,(ta, to)T)
below.

tO / ! / 1
P,aq(ta, to) = / [e 270 Ey (1, ty)e ™27 2700 4 270 E (7', t5)] cos (ws (ta, to) (T — to)dr
o .
P,aa(te, tg) = [cos (wz(tg,to)to)/ Eqy(T, t2)6_2” cos (w, (te, to)T)dT
o
+ sin (wz(tg, to)to) / EO(T, tg)e_z‘” sin (wz (tz, to)T)dT]
to , - to ,
+e20to [cos (w,(tz2, to)to) / E,, (T, t2) cos (w.(te, to)T)dT + sin (w,(te, to)to) / E,, (T, t2) sin (w, (ta, to)7)dT]

(30)

In Section it is shown that 0 < w,(t2,t9) < oo, for all |ty| < oo, for each non-zero value of t,.
In this section, we consider ¢y > 0 and ¢, > 0 only.

In Section |§|, it is shown that w,(t2,%9) is a continuous function of variable ¢y, and 5, for all
0<tyg<ooand 0 <ty < o00.

16



In Section [5] it is shown that Eq(¢) is strictly decreasing for ¢ > 0.

Given that w,(t2,19) is a continuous function of both ¢y and ¢, we can find a suitable value of
to = toc and ty = ty. = 2t such that w, (tac, to.)to. = 5. Given that w.(t2,1o) is a continuous function
of ty and t5 and given that ¢y is a continuous function, we see that the product of two continuous
functions w, (s, t9)to is a continuous function and is positive for tq > 0 because 0 < w,(t2, ) < o0.

We see that w,(t2,t9)to is a continuous function of variable ¢, and ¢, and that w.(ts, o)ty = §
can be reached for specific values of ¢y and to = 2t¢, as finite ¢y increases without bounds.(Details in
Section . As ty, ty increase from zero to a larger and larger finite value without bounds, the contin-
uous function w; (ts, to)to starts from zero and will pass through 7, for specific values of ¢y and t, = 2t,.

We set g = to. > 0 and ty = ty. = 2to. such that w,(ta, toc)toe = 5 in Eq. 30 as follows. We use
the fact that cos (w,(t2c, toc)toe) = 0, sin (w,(t2e, toc)toe) = 1 and w, (tae, —toe) = ws(tae, to.) shown in
Section [2.4]

toc

Podd(tZCy toc) = / Eé(’i', tQC)€72UT sin (wz (tgc, tOC)T)dT + GZUtOC / Eén<7_7 t?c) sin (CLJZ (tgc, tOC)T)dT

—00 —00

toc

(31)
We compute P,qq(ta, —tg) in Eq. 30 as follows. We use w,(ts, —tg) = w,(t2,tp) (Details in Sec-

tion .

Praa(ta, —to) = [c08 (w1, to)to) / (7, 12)e=27 cos (wa (ta, to)7)dr
__O:O |
— sin (w, (t2, to)to) / Eqy(T, t2)€_20T sin (w, (tg, to)T)dT]
—to ’ N —to ’
e 20t [cos (w,(ta, to)to) / E,,, (7, t3) cos (w,(ta, to)T)dT — sin (w,(ta, to)to) / Eq, (7, t2) sin (w, (t2, to)T)dT]

(32)

We set tg = to. > 0 and ty = ty. = 2to. such that w,(ta., toc)toc = 5 in Eq. 32 as follows. We use
oS (W, (tae, toc)toe) = 0, sin (w, (tae, toc)toc) = 1.

—toc

E(l)(T, tgc)e’z” sin (w, (tae, toe)T)dT — g~ 20toc / E(;n(T, toc) sin (w, (tac, toe)T)dT

(e 9]

—toc

Podd(t207 _tOC) = _/

(33)

We compute Pogq(tse,to) + Poga(ta, —to) = 0 in Eq. 29, at ty = to. and ty = t9. using Eq. 31 and
Eq. 33.

toc toc
/ E(l) (T, tgc)e_2‘” sin (w, (tae, toe)T)dT + g2otoc / E(Im (7, tae) sin (w, (tae, toe)T)dT
_tOC , - _tOc 7/00
— / Ey(T, tQC)€_2UT sin (w, (tac, toe)T)dT — ¢~ 20toc / Eq, (T, tae) sin (w, (tac, toe)T)dT = 0
— 00 — 00
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(34)
We split the first two integrals in the left hand side of Eq. 34 using fff; = f:otgc + [ e as follows.

—toc

toc

_t()c
[/ Eé(T, tgc)e_2‘” sin (w, (tae, toe)T)dT + / E(l)(T, tgc)e_Q‘” sin (w, (t2e, toe)7)dT]
—00 _tOC

tOc

—toc
+€20't0c [/ E(/)n(T, tQC) sin (WZ (tzc, toc)T)dT + / E(l]n (T, tgc) sin (wz (tgc, tOC)T>dT]

oo —toc

—toc —toc
— / Ey (T, tae) e 2T sin (w, (tae, to.)T)dr — e~20t0¢ / Ey, (T, tae) sin (ws (tae, toe)7)dT = 0

(35)
We cancel the common integral [~'° Ej(7, ta.)e 27 sin (w; (tac, toc)7)dr in Eq. 35 and rearrange

the terms as follows, using 2sinh (20tg.) = e?7%0c — ¢=27t0c,

tOc tOc
/ E(l) (T, tgc)e’Q‘” sin (w, (tae, toe)T)dT + g2atoc / E(l)n(T, toe) sin (w, (tac, toe)T)dT

—toc —toc
—toc

— _94inh (201p,) / B, (7, tae) sin (w. (fae, oo 7)dr

(36)
We can combine the integrals in the left hand side of Eq. 36 as follows.

tOc
/ [E(/)(T, tgc)6_2‘” + E(l)n(’]', tQC)BQUtOC] sin (w, (tae, toe)T)dT

—toc
—toc

— _9sinh (201p,) / Bl (7, t2e) sin (. (fae, toe) ) dr

(37)
We denote the right hand side of Eq. 37 as RHS. We can split the integral in the left hand side

of Eq. 37 using fiﬂOC = fEtOC + JOC as follows.

0
/ [E(I)(T, tQC)e_2UT + E(l)n (T, tgc)e%toc] sin (w, (tae, toe)T)dT

—toc

toc
" / [E(,) (T, tQC)e_%T + E(,)n(7-7 tzc)e%toc] sin (w;(fac, toe)7)dT = RHS
0

(38)

We substitute 7 = —7 in the first integral in Eq. 38 as follows. We use Ey(—7,to.) = Ep, (7, tac)
and Ey, (—7,t5.) = Fy(T, ta.) using Definition 2 in Section .

0
/ [E(l)n(T, tzc)e%T + E(l)(T, tQC)ez"toc] sin (w, (tae, toe)T)dT

toc

toc
4 [Ty ta)e 7 4 Bl (i) sin (st to) ) = RHS
0
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Given that j;?)c = — goc, we can simplify Eq. 39 as follows.

tOc
/ [E(/)(T, tgc)(e_QW — 62“06) + E(/]n<7', tgc)(—eQW + GQUtOC)] sin (w, (tae, toe)7)dT = RHS
0
(40)

We substitute 7 = —7 in the right hand side of Eq. 37 as follows. We use Ey,, (=7, t2.) = Ey(T, ta)
using Definition 2 in Section [2.3]

RHS = 2sinh (20, / E(r, tae) sin (w- (fae, toe) 7)dr

toc
(41)
We split the integral on the right hand side in Eq. 41 using J;Zj =[5 - JOC, as follows.
[e.e] , toc ,
RHS = 2sinh (QUtOC)[/ Eq (T, tae) sin (w, (toe, toe)T)dT — / Eo(T, tae) sin (w, (tae, toe)T)dT
0 0
(42)

We consolidate the integrals of the form fotoc By (7, tae) sin (w; (tae, to.)7)dT in Eq. 40 and Eq. 42 as
follows. We use 2sinh (20tg.) = 27t — ¢=27%0c,

tOc
/ [E(/](T, tgc)(e_QUT — 2toc 4 p20toc _ e_%toc) + E(/]n<7', tgc)(—ez‘” + GQUtOC)] sin (w, (tae, toe)T)dT
0

_ 2sinh (20t5.) / (7, t22) sin (. (fae, too) ) dr
0

(43)
We cancel the common term e2°%¢ in the first integral in Eq. 43 as follows.
tOC ! /
/ [Ey (7, toe) (67277 — e727%¢) 1 B (7, tae)(—€*7T + €270°)] sin (w, (tae, toe)T)dT
0
— 2sinh (20t,.) / B} (7. tae) sin (s (fae, foo) )
0

(44)

We substitute Fy(7,to.) = Eo(T — tae) — Eo(T + ta) (using Definition 1 in Section ) and
B, (T,te) = Ey(—T,ta.) = Eo(—T — ty) — Eo(—T + t2.) (using Definition 2 in Section [2.3). We see
that Eo(—7 — ta.) = Eo(T + ta) and Eo(—7 + t2.) = Eo(T — ta.) given that Ey(7) = Eo(—7)(Details
in [Appendix A.7). Hence we see that E, (7, ts) = Fo(T + tac) — Eo(T — tae) = —Ey(T, tac)

(Result 3.1) and write Eq. 44 as follows.
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tOc
/ (Eo(T — toe) — Eo(T + tgc))(e_z‘” — g7 20tc 4 20T _ GQUtOC) sin (w, (tae, toe)T)dT
0
— 2sinh (2010,) / (Fo(7 — toe) — Bo(r + tae)) sin (ws (fae, too)7)dr
0

(45)

We substitute 2cosh (207) = €27 + €277 and 2cosh (20t.) = e*" 4 ¢727%: and cancel the
common factor of 2 in Eq. 45 as follows.

/0 OC(EO(T — to.) — Eo(T + ta.))(cosh (207) — cosh (20tq.)) sin (w, (L, to.)T)dT
= sinh (20to,) /OOO(EO(T — tae) — Eo(T + tae)) sin (w, (tae, toe)T)dT

(46)
Next Step:

We denote the right hand side of Eq. 46 as RHS'. We substitute 7 — to. = 7 and 7 +
ts. = 7" in the right hand side of Eq. 46 and then substitute 7/ = 7 and 77 = 7 in the sec-
ond line below. We use the identity sin (w,(tac, toc) (T + tac)) = sin (w, (t2e, toe)T) cos (W (tac, toc)tac) +
cos (w, (tae, toe)T) sin (w, (tae, toc)ta:) below.

[e.9]

RHS' = sinh (20to.)] / Eo(7') sin (w, (tae, toe) (7 + tae))d7’ — / Eo(7") sin (W (tae, toe) (7" = tac) )d7"]

—toc toc
RHS' = sinh (20t0c)[cos (w. (tae, toce) )t2e) / Eo(7) sin (w, (tae, toe)T)dT
_tQC
+ sin (wz (tgc, toc>t26) / Eo(T) COS (wz (tgc, toc>7')d7'
—t2c
— 08 (@ (oo, foo) ) ae) / Eo(7) $in (@ (fae, toe)7)dT + sin (s (f2e, foc)tae) / Eo(7) 08 (. (fae, too)7)d7]
toc tac
(47)
In Eq. 47, given that w.(fa., toc)toc = 5 and ty, = 2to. and hence w,(tac, toc)loe = 25 = m and
sin (w, (tae, toe)tae) = 0 and cos (w,(ta, toc)t2c) = —1. Hence we cancel common terms and write
Eq. 47 and Eq. 46 as follows.
tOc
/ (Eo(T — tae) — Eo(T + tac))(cosh (207) — cosh (20ty.)) sin (w, (tac, toe)T)dT
0
= —sinh (QJtOC)[/ Eo(7) sin (w, (tae, toe)T)dT — / Eo(7) sin (w, (tac, toe)T)dT]
—tac toc
(48)
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We use ff;c Eo(7) sin (w, (tae, toe)T)dT = E;C Eo(7) sin (w, (tae, toe)T d7'+j; Eo(7) sin (w, (tac, toe)T)dT
and cancel the common term ftzo Eo(7) sin (w,(tae, toe)7)dT in the right hand 81de RHS" of Eq. 48 as
follows.

tac
RHS" = —sinh (QO'tOC)/ Eo(7) sin (w,(tac, toc)T)dT (49)
—t2c
Given that Fy(7) is an even function of variable 7 (Details in [Appendix A.7)) and Ey(7) sin (w, (tac, toe)T)
is an odd function of variable 7, we get ffiz Eo(7) sin (w, (tae, toe)7)dT = 0 explained below.

\t7Ve see that [ = ffgc Eo(7) sin (w, (tae, toe)T f _Eo(7) sin (W (tac, toe) 7)dT
+ fOQC Eo( )sin (ws(tae, toe)T)dT. We subst1tute 7 = —7 in the first integral and get
I= ftz Eo(7) sin (w; (tac, toe)T)dT + [, 2¢ Bo (1) sin (ws (tae, toe)7)dT

= t2° Eo(7) sin (w, (tae, toe)T)dT + fozc EO (7) sin (w,(tae, toe)7)dT = 0. Hence RHS" = 0 in Eq. _
We erte Eq. 48 as follows.

/0 OC(EO(T — t9e) — Eo(T + tac))(cosh (207) — cosh (20ty.)) sin (w, (tae, toc)T)dT =0 (50)

We can multiply Eq. b0| by a factor of —1 as follows.

/0 : [Eo(T — tae) — Eo(T + tac)](cosh (20tg.) — cosh (207)) sin (w, (tae, toe)7)dT = 0 (51)

T

In Eq. , given that w;(tac, toc)to. = 5, as 7 varies over the interval (0,to.), w.(t2c, toe)T = T

varies from (0, g) and the sinusoidal function is > 0, in the interval 0 < 7 < tq.., for to. > 0.

In Eq. BI] we see that the integral on the left hand side is > 0 for #,. > 0, because each of the
terms in the integrand are > 0, in the interval 0 < 7 < t;. as follows. Given that Ey(¢) is a strictly
decreasing function for ¢ > 0(Details in Section [3]), we see that Eo(T — ta.) — Eo(T + ta.) is > 0
(Details in Section in the interval 0 < 7 < tg.. The term (cosh (20t(.) — cosh (207)) is > 0 in the
interval 0 < 7 < ty..

The integrand is zero at 7 = 0 due to the term sin (w, (2., toc)7) and the integrand is zero at 7 = ..
due to the term cosh (20t.) — cosh (207) and hence the integral cannot equal zero, as required by
the right hand side of Eq. . Hence this leads to a contradiction, for 0 < o < %

For o0 = 0, both sides of Eq. |51]is zero, given the term (cosh (20t,.) — cosh (207)) = 0 and does
not lead to a contradiction.

We have shown this result for 0 < o < 3. Given that E,(t) = Ey(t)e " is real, its Fourier
transform E,,(w) = Eppre(w) + 1By, (w) has symmetry properties and hence Epp,(—w) = E,p,(w)
and E,r,(—w) = —E,,(w) (Symmetry property of Fourier Transform)) also have a zero at w = wy

and hence E,,(—w) = Eypw(w) — 1E,1,(w) also has a zero at w = wy to satisfy Statement A.

If E,.(w) and n(3 + o + iw) has a zero at w = wy to satisfy Statement 1, then E,,(—w) and
n( + o —iw) also has a zero at w = wp(using last paragraph) and 7(3 — o + iw) also has a zero
at w = wy using the functional equation for Dirichlet Eta function derived in [Appendix A.9| which
relates 7)(s) and n(1—s). Hence the results in above sections hold for —3 < o < 0 and for 0 < |o| < 1.
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Hence we have produced a contradiction of Statement 1 that the Fourier Transform of the
function E,(t) = Eo(t)e " has a zero at w = wy for 0 < |o| < 3.

Hence the assumption in Statement 1 that the analytic continuation of Riemann’s zeta function
derived from Dirichlet eta function given by E,,(w) has a zero at w = wp, where wy is real and finite,
leads to a contradiction for the region 0 < |o| < % which corresponds to the critical strip excluding
the critical line. Hence ((s) does not have non-trivial zeros in the critical strip excluding the critical
line and we have proved Riemann’s Hypothesis.

3.1. Result Eo(t — tgc) — Eo(t -+ tgc) >0

It is shown in Section |5 that Ey(t) is strictly decreasing for ¢ > 0. In this section, it is shown
that E()(t — tgc) - Eg(t + tgc) > 0, for0<t< tOc and t2c = 2t00 in Eq .

Given that Fy(t) is a strictly decreasing function for ¢ > 0 and Ey(t) is an even function of
variable ¢ (Details in [Appendix A.7)), and ts. = 2ty., we see that, in the interval 0 < ¢t < t,
Eo(t + tae) = Eo(t + 2tp.) ranges from Fy(3to.) < Eo(t + ta.) < Eo(2to.)(Result 3.1.1) and
Eo(t — ta.) = Eo(t — 2to.) which ranges from Eo(—2to.) < Eo(t — ta.) < Eo(—to.) respectively.
Given that Ey(t) = Eo(—t), we see that Ey(2tg.) < Eo(t — ta.) < Ey(toc) in the interval 0 < t < to.
(Result 3.1.2).

Using Result 3.1.1 and Result 3.1.2, we see that Ey(t—ta.) > Eo(t+ta), in the interval 0 < t < t.

Hence Fy(t — ta.) — Eo(t +ta.) > 0 for 0 < t < to, in Eq. [p1], for to. > 0 and to. = 2t,.

4.  w;(t2,to)to = 5 can be reached for specific 2o, t,

It is noted that we do not use lim;,_,~, in this section. Instead we consider real ¢, > 0 which
increases to a larger and larger finite value without bounds. We use 0 < 0 < % below.

We copy P,uq(ta,to) from the first line in Eq. 30 using 7/ = 7 and copy the first line in Eq 29
derived assuming Statement 1, concisely as follows.

to to

Paa(te, tg) = / Ey(7,t3)e % cos (ws (ta, to) (T — to))dr + %% / By, (7, t2) cos (ws (ta, to) (T — to))dr

—00 —00

Poaa(ta, to) + Poaa(tz, —to) =0

(52)

We note that Ej(7,t2) = Eo(T — ta) — Eo(T + to) and Ey,(7,t2) = Ey(—7,t2) = —FEy(7,t2) =
Eo(1 + t2) — Eo(T — t2) (using Result 3.1 in Section [3). We choose ¢, = 2t and we choose t; such
that Ey(t) approximates zero for [t| > ¢, given that Ey(t) has an asymptotic exponential fall-off
rate of o[e %] (Details in |[Appendix A.4). We choose t, >> t; and hence Eo(T —ty) = Eo(1 — 2to)
approximates zero in the interval (—oo,ty| for 7, given that 0 < Ey(7 — 2ty) < Ey(—to) because
Eo(—to) = Eo(ty) = 0 and Ey(T — 2tp) is strictly decreasing for 7 > 2t, and strictly increasing for
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T < 2ty. (Details in Section [)

Hence in the interval (—oo, o], we see that Ey(7,ty) ~ —Eo(T + t5) and Ey, (7, t2) = Eo(T + t2),
for sufficiently large to. We can write Eq. 52 as follows. We use w,(t2, —tg) = w,(t2,to) (Details in
Section . We note that ¢y = 2¢; in the rest of this section and we continue to use the notation
w,(t2,to) where to = 2t.

to
Praalta, to) ~ — / Eo(7 + 2to)e 27" cos (w. (ta, 1) (7 — to))dr

—0o0

to
+e*7h / Eo(7 + 2to) cos (w (t2, to) (T — to))dT

—00

PLaq(ta, —tg) = / Ey (T, tg)G_QUT cos (w, (to, to) (T + to))dr

o

—to
2t / (7 t2) cos (w2 (ta, to) (T + to))dT
(53)
We see that the term P,q(t2, —to) in Eq. 53 approaches a value very close to zero, as real ¢,
increases to a larger and larger finite value without bounds, due to the terms e~2°% and the integrals
f::g, given () < 0 < % and ty > 0 and given that the integrands are absolutely integrable and finite
because the terms Fy(7,ty)e 2" and E,, (7,ty) = —E,(T, t5) have exponential asymptotic fall-off rate
as |7| — oo(Details in Section [Appendix C.1.1)) Hence we can ignore P,u(t2, —to) for sufficiently
large to and write Eq. 52, using Eq. 53 and ty = 2t.

to
Q(to) = Poda(t2, t0) + Poqa(tz, —to) ~ —/ Eo(7 + 2to)e™ %77 cos (w; (ta, to) (T — to))dT

—0o0

to
+e2oto / Eo(7T + 2tg) cos (w,(ta, to) (T — to))dT = 0

(54)
We substitute 7 + 2tg =t, 7 =t — 2ty and dr = dt in Eq. 54 and write as follows.
3to
Qlto) ~ —eio / Fo(t)e27" cos (w. (ta, fo) (t — 3to))dt
_0;0
+620t0 / Eo(t) COS (wz (tQ, to)(t — 3t0))dt ~ 0
(55)

We multiply Eq. 55 by e™27% and ignore the last integral for sufficiently large t,, given that
e2toe=3710 — =t and | [M0 E(t) cos (w.(ta, to) (t — 3to))dt| < [*° |Eo(t)|dt < [ |Eo(t)|dt is finite
(link and [Appendix A.l)) and expand as follows.

3to
S(ty) = Q(tg)e 7" ~ —et / Eo(t)e 27" cos (w, (ta, o) (t — 3to))dt = —e“ R(ty) ~ 0
3to - 3to
R(ty) = cos (wz(tg,to)gto)/ Ey(t)e™ 20t ¢os (w,(t2, to)t)dt + sin (wz(tg,to)?)to)/ Eo(t)e™ 20t gin (w(ta, to)t)dt
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(56)

In Section it is shown that 0 < w,(t2,y) < oo, for all |ty] < oo, for each non-zero value of
ty. For tg > 0, we see that w,(ta,%9)to > 0. In Section |§|, it is shown that w,(ts,%y) is a continuous
function of variable ¢y and ty, for all 0 < ¢y < co and 0 < t3 < co. Hence w,(ts, o)ty is a positive
continuous function.

We require w,(ty,%)ty = 5 in Section (3| for a specific ty = to. and ty = to. = 2fp.. To show

that w.(t2,%0)to = 5 can be reached, we assume the opposite case that w.(t3,%9)tg < 5 for all

0 < tp < oo and ty = 2ty (Statement C) and show that this leads to a contradiction.

Let w.(t2,t0)to = K F(t2,t0), where 0 < K < § and 0 < F(tz,tp) < 1 is a positive continuous
function for 0 <ty < 0o and ty = 2ty, such that w.(ts, o)t < 5. Hence w.(t2,ty) = %jto)

We choose t3 such that Eo(t)e™ 27" is vanishingly small and approximates zero for |t| > ¢3 (Result
4.a), given that Ey(t)e~2°! has an asymptotic exponential fall-off rate of o[e=*°] (Details in
.We choose ty >> t3 and note that t3 is independent of t,. As t; increase without
bounds, in the interval |t| < t3, we see that the term cos(w,(t2,%)t) ~ 1 and sin (w,(t2,%)t) ~
w;(te,to)t = 0 (Result 4.b), given that w,(ta, o)t = KF(fz’tO)t < KF(t2’t°)t3 << 1, because ty >> t3
and F'(ta,t9) < 1. Hence we write Eq. 56 as follows, using Result 4.2 and Result 4.b.

3to t3

R(to) == cos (w,(ta, tO)BtO)/ Ey(t)e 7" cos (w, (ta, to)t)dt ~ cos (3K F (ts, to))/ Eo(t)e dt

—00 —1
3 (57)
For sufficiently large ¢, the integral R(t;) ~ cos (3K F(ts,10)) fzg FEo(t)e 2°'dt remains finite,
because cos (w;(t2, to)3to) oscillates in the interval [—1,1] and [ Ey(t)e 27'dt > 0 (Details in
and does not approach zero exponentially, as real ¢, increases to a larger and larger
finite value without bounds. This is explained in detail in Section [4.1]

The term e’ in S(tg) = —e“™R(ty) in Eq. 56 increases to a larger and larger finite value ex-
ponentially as ¢, increases, and hence the term S(to) approaches a larger and larger finite value
exponentially, given that R(ty) does not approach zero exponentially and hence S(ty) and Q(tp) in
Eq. 55 and P,yq(t2, to) + Poaa(t2, —to) in Eq. 52 cannot equal zero, to satisfy Statement 1, in this case.

Hence Statement C is false and hence w(t2,%0)to = § can be reached for specific values of tg
and ty = 2ty as finite ¢y increases without bounds, given that w,(ts, o)ty is a continuous function

of variable tg and t,, for all 0 < £ty < oo and 0 < t5 < 0.

4.1. Alty) = fj’iz FEo(t)e™27 cos (w,(t2, to)t)dt does not have exponential fall off rate

We compute the minimum value of the integral A( to f 3o Eo( 29t cos (w, (ta, to)t)dt in

Eq. 56 , for sufficiently large t3 and ty >> t3 and 0 < 0 < 5. We note that t2 = 2ty and note that t3
is independent of ¢y below. We split A(tg) as follows.
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A(to) - B(t3, to) + C(t3, to) + D(tg, to)

—t3 t3
Blts, to) = / Eo(t)e=2" cos (w.(ta, to)t)dt,  C(ts, to) = / Eo(t)e~2" cos (w. (ta, to)t)dt

0 —t3

3to
D(tg, t()) = / E()( ) COS (wz(tg, to)t)dt
t3
(58)
We see that Ey(t)e2t > 0 for |t| < oo and EO( Je27t is an absolutely integrable function (Details
in |[Appendix A.1)) and hence Cy(t3) = ft?’ Eo(t)e ?'dt > 0 (Result 4.1.1).

Given that w,(ta,ty) = %{ft“) where 0 < K < 7 and 0 < F(t3,1p) < 1 in previous subsection
and ty >> t3, we see that w,(t2, )t = KF(:j’tO)t < KF(?O’tO)t3 << 1 in the interval |t| < t3 and
hence cos (wz<t2,t0)t) ~ 1 and cos (w,(ta,t9)t) > % in the interval |t| < t3. Hence we can write

Clts, to) = f Eo(t)e27" cos (w,(ta, to)t)dt > % > 0, using Result 4.1.1. (Result 4.1.2).

We see that \B(tg,to | = | [ Eo(t)e 27" cos (ws(ta, to)t)dt| < [~ |Eo(t)e~2!|dt ~ 0 (link) and
|D(t3,t0)| = |f3t° e~ cos (w, (ta, to)t)dt| < fgto |Eo(t)e=27dt =~ 0, for sufficiently large t3 and

to >> t3, given that EO( )e~27! has an asymptotic exponential fall-off rate of o[e "] (Details in
IAppendix A.4)) and Ey(t)e=2" > 0 for [t| < oo (Details in [Appendix A.1)).

As we increase t3 to t; and tg to t;, >> t5, we see that C(t5,t;) > C(t3,t) > 0, using Result 4.1.1
and Result 4.1.2; given that Fy(t)e 7" > 0 for |t| < oo (Result 4.1.3).

As we increase t3 to ty and o to t;, >> t4, we see that |B(t},t))| < |B(ts, to)| and |D(t5, ;)| <
|D(t3,t9)| approach zero (Result 4.1.4), given that Fy(t)e 2" has an asymptotic exponential fall-
off rate of o[e~*°M] (Details in [Appendix A.4) and Ey(t)e2°* > 0 for |t| < co (Details in [Appendix

A1),

Hence we see that A(ty) fsto Eo( cos (w,(ta, to)t)dt > % — |B(ts, to)| — |D(ts,t0)| =~
% > () using Result 4.1.2, Result 4.1.3 and Result 4.1.4.

For example, we choose t3 = 10 such that Ey(t)e 2! is vanishingly small and approximates zero

for [t| > t3. Given that Ey(t) > 0 for |¢| < oo (Details in |[Appendix A.6) and the term e 20t
has a minimum value of eIl for 0 < o < 1, we see that the integral Co(t3) f B Eo(t)e2tdt >
2 f e ldt > Cyy = 0.42 where Cy is computed by considering the first 5 terms n = 1 2,3,4,5

in Ey(t ) Zn:1[47r2 et _ 6rn2e)e ™" e3 . Hence Cy(ts) > 0.42. (Matlab simulation)

Hence we see that A(ty) = fgto Eo( teos (w(ty, to)t)dt > Colts) t3 —|B(ts,to)|—|D(ts, to)| ~ 0.21.
As t( increases without bounds, we see that A(to) does not have exponentlal fall off rate.

5. Strictly decreasing Ey(t) for t > 0

dEy (

We show that Ey(t) is strictly decreasing for ¢ > 0, by showing that <0for0<t< o0
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We set y = me? in EO( t) in the second line in Eq. A.5 and then take the first derivative of Ey(y) as

follows. We see that y = 2me?! = 2y and dE(ll(t_t) = dE‘;(_t) % = 4Eo®) 2y and hence we will show that
Yy i dy

%y(y)<0for7r<y<oo.

2 2 2t (n+1)?

EO(—t) = Z (e—w%e% _ et mmy e2t + e_w(n+1)2€2t)€%

1 n2 1 2, 1 (1?1

Ey(y) = (m)7% Z e” Tyt —e MYyl —e” 1 Yyi + e—(n+1)2yyi

(59)

n2
We take the common term e_Tyyi out and use (n + 1)? = n? + 2n + 1 and rearrange the terms
in Eq. 59 as follows.

dEo(y) -1 S L Y Lo Wt - S
20yt 3 el - ) - e

_enn, 1 (R4 1)?

(60)

We compute the maximum value of & y 2Eo(y) 5y Eq. 60, by computing the maximum value of positive

terms and minimum value of absolute value of negative terms We ignore the negative terms inside
_377,2 (2n+l) _3n .
the brackets —e™ 4 yt, —e” y41y and —(n + 1)%e~ "1 Ye~ (1Y hecause we want the maximum

dEoy(y)
f 4Eol)

value o in the interval m < y < oc.

dEy(y) 1= 22, 1, 1 n? a2
<@ Y Tl ) e

dy n=odd 4y 4
_eniy, (n+1) a2, 1
oyt o) TY,—(@n+ly —
+e T te e m

(61)

We see that y = we? is in the range y = [7,00) for 0 < ¢ < oo, and in the range y = [r,y,) for
0<t<t,=0.1, where y, = me*« = 3.8371.

o It is shown in Section [5.0.1| that “22%) < 0 for y, <y < oo for y, = 3.8371.

dEo(y) <0form <y <y,.

o It is shown in Section [5.0.2|that £ Eo(y) < 0 for 7 < y < vy, and hence
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e Hence dEO;y < 0for m <y < oo. Given y = me? and dy = 2me? = 2y and dEdt t — dEfC)l;*t)d_?z =

dEO(y) —L2y, we see that dEO ) () for ¢t > 0. Hence Ey(t) = EO(— ) is strictly decreasing for ¢ > 0.

5.0.1. W <0 for y, <y < oo for y, = 3.8371

2

We see that the maximum value of the first term inside brackets (— — %) in Eq. 61 occurs at
1 1
n=1and y =y, = 3.8371 given by D; = ya—z:m Z —01848

n2 .
We consider the second term inside brackets in Eq. 61 given by I(y,n) = nZe= 1Y, It is a
strictly decreasing function in the region y, < y < oo, with maximum value at y = y,, for each
n.

n2
We set y = y, = 3.8371 and compute MZ") = ¢~ a [2n + nz(—%)] which has an inflection
point at 2n + n?*(—%%2) = 0. Given that I(y,,n) > 0 for all finite n and goes to zero as n — oo due

3n? .. . . . . .
to the term e~ 2 ¥ this inflection point is a maximum point. We cancel common term n and get
2 + n?(—%2) = 0 which has roots at n* = % given by n = £0.5895. Hence we choose n = 0.5895
as a positive solution and I(y,,n) is strictly decreasing for n > 0.5895 and the nearest positive

integer is n = 1, where I(y,,n) has a maximum value for all positive integer n. (Result E.5.1)

Hence the maximum value of (y,n) in the interval y, <y < oo, is at y = y, and n = 1 given
by 1(ya, 1) = e~ 1% = 0.0563 = Ds.

We consider the third term inside brackets in Eq. 61 given by J(y,n) = (”21)26 25 which is

strictly decreasing function in the interval y, < y < oo, with maximum value at y = y,, for each n.

We set y = y, = 3.8371 and compute %ﬁ’n) = [2(”+1) + (”H)Q( (QZ“))] which has an

inflection point at (”H) + (”H)Q( (QZ")) = 0. Given that J(y,,n) > 0 for all finite n and goes to zero

(2n

as n — oo due to the term e~ 25 v , this inflection point is a max1mum point. We cancel common
term %L and get 1 — (n+1)% = O which has roots at n 4+ 1 = .- = 1.0424 given by n = 0.0424.
Hence J (ya, n) is strictly decreasing for n > 0.0424 and the nearest positive integer is n = 1 where
J(Ya,n) has a maximum value for all positive integer n.(Result E.5.2)

Hence the maximum value of J(y,n) in the interval y, < y < oo, is at y = y, and n = 1 given
by J(Ya,1) = e~ 1% = 0.0563 = Dj.

n2
The fourth term in Eq. 61 given by e~ ve=(n+ly L 1 has a maximum at n = 1 and y = y, given
by e~ Va3 L - =3.6706%10"° <1077 = Dy.

Hence the maximum value of the terms in square bracket in Eq. 61 for y, < y < oo and for n =1,
is given by Dy + Dy + D3+ Dy = —0.1848 + 0.0563 4 0.0563 + 10~ ~ —0.0722 < 0. This summation
is negative for n > 1, given Result E.5.1 and Result E.5.2 and D; + D3 + D, is a smaller positive

value and D; is more negative than the case for n = 1. Hence dEC?yy < 0 for y, < y < o0, given

summation of negative terms for each odd n and given that e_nTyyZ > 0 for all finite n and y.
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5.0.2. 2( <0 for n <y <y, and hence dEO(y <0 form <y <y,

We compute the second derivative % from Eq. 59 as follows.

We set y = me? in Eq. 59 as follows.

Boly) = ()8 3 eyt — ety _ o Sk iy
n=odd

dEy(y) i e, 1, 1wt o1,
= (m)73 e Tyi(— = —) —e " Vyi(— —n)

dy n%d 49y 4 4y

m+n? 11 (n+ 1)2 _ 2, 1,1
_ T Yy — _ (n+1)%y, 5( — _ 1)2
(- D) 4 e (1)
We compute the second derivative dzf;g(@” as follows.

TEW) _ (r4 3 gy + (= 28 — e (- 4 (e — )

dy? e~ dy? 4y 4 4y? My
(n+1)2 1 ]_ ]_ (n“[‘ 1)2 2 7( +1)2 1 ]_ ]_ 2\2
_ 1 A —— - n Yy a _ - 1
e (- P et (- 1

We simplify it as follows.

d’F, | — n? 1 1 1 2 4
0(y) —m Y e .

T Yyr(———

dy? S~ yi( 4y 16y* 8y 16)
2
R VAL S e
‘ yi( 4y 16y%2 2y )
—e’%yyi(—i 1 (n+1) N (n+ 1)4)
4y? - 16y? 8y 16
2

—(n+1)%y, 1 _L 1 . (n+ 1) 1 4
+e Y ( 1 + 16,7 on +(n+1)%)

(62)

(63)

(64)

We compute the maximum value of PEW) with y = me?! in the range y = [, y,) for 0 < t <

d2

te = 0.1, where y, = 3.8371, by computing the maximum value of positive terms and minimum value
of absolute value of negative terms. Let the maximum value of y be ¥mez = Yo = e’ and minimum

value of y be Y = 7 in the interval y = [7,y,).

28



The first term in curved brackets in Eq. 64 at n = 1 is given by —#—l—ﬁ— g—;—i-’f—g =2, gi—i-%

16y2
and the maximum value of the whole first term in the interval ¥ = [Ymin, Ymae) 18 given by
_1 . 19 _1 1 3 1 e e
€AY (Yppgy )1 75 — € aYmar (ymin)‘l(w + 5 ) and similarly we compute the other 3 terms at
n = 1,3,5,7,9. The maximum value of % in Eq. 64 at n = 1,3,5,7,9 in the interval

Y = [Ymin, Ymaz) 18 given by —0.0097 which is negative. (Result E.5.5) Matlab simulation))

We note that —ﬁ + ﬁ = 1632 and ignore the negative terms in Eq. 64 because we are

computing the maximum value of & E° ) for n > 11 given by [J]Q

d*E S a2, 1nt 3 n?
e D D A LT S

2 2
dy 1113 16 16y 2y
o402 1, 3 (n+1)2 B 2 1
+e 1 Yyi + e Dy (g 4 1)4
Vi + D vin+1)

(65)
We compute the maximum value of [d Eoly )]2 in Eq. 65 for n > 11 by setting first term as

e~ T ymm(ymm)i andn+ 1< 1.1n, n? < 1060'1" =10[1+0.1n? + 2n* + .. ] and
nt < 2001 = 2001 + 0.1n? + 22t + ... as follows.

d2120(y) 11 ad n? 2 1 2 3 2 1
< EETTE. — T Ymin 9017 N Ymin 10017
[ dyQ ]2 (ﬂ-) y n:;g € € 16 + € (163/3,”” + € Qymm>
SYCESVI 0102 (1.1)° —(n+1)%Ypmin 0.1n2 4
+e 1 Y (16%” + 10e 8ymm) + e~ (D Ymin 9000177 (1.1)
(66)
We use n + 1 > n for the exponent term and simplify above equation as follows.
d*Ey(y) L1 = 21, 200 2 3 20 10
< - ﬁmx -n (Zymzn_o-l)_ —N"Ymin -n (ymzn_o-l)
—gp 2 <™y n;g e o e T G~
21 . 3 201 L (1 1) * 10 ) o
12 ymin n?(1Ymin—0.1) 12 (Ymin 01)200 1.1 4
e 16ygnn e 8ynnn ( )
(67)
We use the complementary error function given by erfe(z) = % [~ e*“Qdu link) and the fact
VT
that K < / e Rt = / e du = VT e?“fc(ll\/_) using the substitution
n—%lz?),‘.. 1 VK WK

tvVK = u and dtvVK = du and write Eq. 67 as follows.
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d*Ey(y)

< ymax erfe(l —Ymin — er fe(11y/Ymin
< () 162 é /G T _ymm (11 )

4 ymm

10

67" C 11 min —0.1 eryc V min
2ymzn 2 V ymm f (y 16ymzn 24/ _ymm f y

1 1)2x1 /

ymzn

+200(1. 1 erfc(ll min — 0.1
(105 (11l — 01)
(68)
We compute Eq. 68 numerically and get [A]Q < 8.65%1073". The maximum value of [dE—O(y)]

in Eq. 67 at n = 11,13, .. in the interval y = [ymm,ymaw) is given by 8.65 * 10737 which is positive.
(Result E.5.6) Matlab simulation)

Using Result E.5.5 and E.5.6, we get the maximum value of % in Eq. 64 at n = 1,3,5, ..

in the interval ¥ = [Ymin, Ymaz) 18 given by —0.0097 + 8.65 * 10737 ~ —0.0097 which is negative.
(Result E.5.7)

a2 Eo( ) dEo(y)

Hence we have shown that
th t dEO( )

<0, for r <y <y, and hence <0 form <y <y, given

=0aty=m.

It is shown in Section [5.0.1| that dEO ) <0 for Yo < y < oo for all finite n.

HencedEdL;y) <Of0r7r<y<oo We see that y = me* and dy = 2me? = 2y and dE dBo(=t) —
dE‘zlgft) W — dEO( 2y and hence dEO ) <0 for t > 0. Hence Ey(t) = EO(—t) is strictly decreasmg for
t>0.

6. w,(ta2,tp) is a continuous function of ¢y, and t,

It is shown in Lemma 1 in Sectionthat Gr(w,ta,t9) = 0 at w = w,(t2, o) where it crosses the
zero line to the opposite sign, if Statement 1 is true (Result 2.1.5) and that w,(t2,%o) is finite and
non-zero for all |tg| < co and for each non-zero value of ¢, and that w,(t,ty) is an even function of
variable %y, for a given value of t3(Details in Section . For a given ty and tg, w,(ts,to) can have
more than one value, corresponding to multiple zero crossings in Gg(w, t2, ), but we consider only
the first zero crossing to the right of origin in the section below, where Gg(w, to,ty) crosses the zero
line to the opposite sign, as detailed in Lemma 1 in Section 2.1

We consider the Fourier transform of the even part of g(t,ts,t9) given by Gr(w,ts,to) in the
section below and show that, under this Fourier transformation, as we change ty and t5, the zero
crossing in Gg(w, ta,ty) given by w,(ts,ty) is a continuous function of ¢y and ¢y, for all 0 < ¢y < oo
and 0 < ty < 0.
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6.1. Discussion of First Method

Consider the segment S in Gg(w, ta,ty) in the neighborhood around the first zero crossing where
W < 0. (Segment S is the portion between the majenta lines in example plot)

e In the segment S, Gg(w, ta, %)) in Eq. 27 copied in Eq. 69 is a continuous function of w, for

W < 0 in the neighborhood around

each value of ty and t, as shown in |Appendix C.ll and
the first zero crossing.

e If we fix the X-coordinate w and ¢y, Gr(w,ts,t9) is a continuous function of ¢, as shown in
[Appendix C.3] Hence, for each fixed value of w and t;, as we change t, by an infinitesimal dt,
Gr(w,ta, tg — dtg) and Ggr(w,ta,ty + 0ty), move towards Gr(w,ts,t) in a continuous manner, as
dtg — 0. (Result 6.1)

0
Gr(w,ta, ty) = e~ 20t / [E(/)(’T + to, tg)G_QOT + E(I)n(T — to, t2)] cos (wT)dT

—0o0

0
+e20to / [E{)(T — to, tg)e_QUT + E(l)n(T + to, to)] cos (wT)dT

—00

(69)

e Every point in the segment S (plot), moves continuously, as we change to by an infinitesimal
0ty, for each fixed value of w and t,.

Using Result 6.1 and Result 2.1.5 in Section we can see that this also applies to the first zero
crossing in Gr(w,ts,tg) in the segment S, given by w,(ts,%y) where Gr(w,ts,tg) = 0 in Eq. 69. The
zero crossing moves continuously, as we change ¢y, by an infinitesimal d¢y. This is explained in
detail in the section below.

6.1.1. Zero Crossings in Gr(w,ts,ty) move continuously as a function of t, for a given
to.

This is shown by an example plot. Red plot corresponds to Gr(w, ta,ty) with zero crossing at
point Py, green plot corresponds to Gr(w, ta, to + dtg) with zero crossing at point Pj; and Blue plot
corresponds to Gg(w, ta, tg — dty) with zero crossing at point Psy.

We define the point Pjs in Ggr(w, 2,1y + dty) as the point which has the fixed X-coordinate
w = w,(ta,tr). We define the point Py in Gg(w,ts,ty — dtg) as the point which has the fixed
X-coordinate w = w, (s, ).

We define the point Py in Gg(w, ta,tg + dtg) as the zero crossing point which has the fixed

Y-coordinate which equals zero. We define the point P in Gg(w,ts, tg — dtp) as the zero cross-
ing point which has the fixed Y-coordinate which equals zero.
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Given Result 6.1 and Result 2.1.5 in Section as we change t( by an infinitesimal dtg, Gg(w, ta, to+
dtg) moves towards Gr(w,ts,tg) in Eq. 69 in a continuous manner, for each fixed value of w and
to, including the zero crossing point. The point Pjs in Gg(w,ts,ty + dtp) which corresponds to the
fixed X-coordinate w = w,(ts,ty), moves towards corresponding point Py in Gr(w,ta, o) , for the
same w = w;,(ts,tp) in a continuous manner, as 6ty — 0. Given that P, is a zero crossing point in
Gr(w, ta,1p), this is equivalent to the zero crossing point Py; in Gr(w, t, tg + dty) moving towards
corresponding zero crossing point Py in Gr(w, ta, 1) in a continuous manner, as 6ty — 0.

Similarly, as we change to by an infinitesimal §ty, Gr(w, to, tg — dtg) moves towards Ggr(w, to, to)
in Eq. 69 in a continuous manner as follows. The point Py in Gr(w, ta, tg — dty) which corresponds
to the fixed X-coordinate w = w, (s, 1), moves towards corresponding point Py in Gg(w,ts, %) ,
for the same w = w,(ts,1y) in a continuous manner, as 6ty — 0. Given that Py is a zero crossing
point in Gr(w, ty, 1), this is equivalent to the Zero crossing point P»; in Gr(w, ta, tg — dtg) moving
towards corresponding zero crossing point Py in Gr(w, ts,tg) in a continuous manner, as dty — 0.

0
(e (o, o).t to) — 2719 / B (7 + to, t2)e 27" + Bl (7 — to, ta)] cos (w. (ta, o) 7)dr

—0o0

0
+€20t0 / [E(I)(T . to, t2)€—20'7 + E(,)n(T + tO; t2)] CcOS (wz(tg, to)T)dT =0

(70)

As 0ty — 0, zero crossing point Pj; in Ggr(w, ta, to + 0ty) given by w,(t2, o + dty) moves towards
corresponding zero crossing point Py in Gg(w,ts,t) given by w, (2, 1), in a continuous manner,
in Eq. 70.

Similarly, the zero crossing point Py in Gr(w, ta, tg — 0tg) given by w,(te, tg — dty) moves towards
corresponding zero crossing point Py in Gg(w,ts,ty) given by w, (2, 1), in a continuous manner,
in Eq. 70, as dty — 0. |(example plot).

Hence we deduce that w,(ts,ty) is continuous in the interval [ty — dtg, to + 0tp] in the segment
S, around the first zero crossing at w = w,(ts,ty) (example plot).

Using arguments in the above paras, we see that w,(t2,to) is a continuous function of ¢y, for all
0 < ty < 0o, for each fixed value of 5.

It is shown in Section [Appendix C.4|that G (w, s, o) is a continuous function of 5. We can
use arguments similar to the above paras and show that w,(t2, %) is a continuous function of t,, for
all 0 < ty < oo, for each fixed value of .

Hence w,(ts,ty) is a continuous function of ¢, and t; for 0 < ¢y < 0o, and 0 < t5 < co. This is
shown in detail in the next section using Implicit Function Theorem.

6.2. Second Method using Implicit Function Theorem

In this section, it is shown that w,(t2, %) is a continuous function of 5 and ¢, for 0 < ¢y < oo,
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and 0 < t; < 00, in the steps below using Implicit Function Theorem.

e It is shown in [Appendix C.1jthat Gg(w,t2,t) and Ggar(w,t2, o) are partially differentiable at
least twice with respect to w, for some value of r € W (element of set of whole numbers including zero.)

e It is shown in [Appendix C.3|that Ggar(w,t2,to) is partially differentiable at least twice with
respect to to. It is shown in [Appendix C.4] that Gga.(w,t2,to) is partially differentiable at least
twice with respect to ts.

e In [Appendix C.7] it is shown that, if Gg(w,ts,ty) = 0 at w = Fw,(ts, ty), for each fixed choice

of positive tg, t € R and (2r + 1) is the highest order of the zero at w = tw,(t2, ty) for some value of

r € W (element of set of whole numbers including zero), then G, (w,ta,ty) = W =0 at

w = tw,(ts, y) and 6GR’2T8(57t2’t°) = 82T+1ai§ff{t2’t°) #0 at w = Fw, (s, 10).

e It is shown in [Appendix C.5|that the zero crossing in Gga.(w,ts,ty) given by w,(ta,p), is a
continuous function of ¢y, for a given t,, for 0 < ¢y < oo, using Implicit Function Theorem in :2.

e It is shown in [Appendix C.6|that w,(t2, %) is a continuous function of ¢y and t,, for 0 < ¢y < 0o
and 0 < ty < 00, using Implicit Function Theorem in R3.

7. Hurwitz Zeta Function and related functions

We can show that the new method is not applicable to Hurwitz zeta function and related zeta
functions and does not contradict the existence of their non-trivial zeros away from the critical line

2t 2 2t

> n2 — — t
given by Re[s] = 1. The new method defines Z(—l)”’l(e’7TT€ —e ™€ e 2 as areal and even

n=1
function and the functional equation of Riemann’s zeta function is used in Section[L.6)and Section [1.7]

It is not known that Hurwitz Zeta Function given by ((s,a) = > m can be used to derive
m=0

a real and even Ey(t) = Ey(—t) using the generalized functional equation of Riemann’s zeta function
and it is not known to be satisfied [6]. Hence the new method is not applicable to Hurwitz zeta
function and does not contradict the existence of their non-trivial zeros away from the critical line.

In the case of Hurwitz zeta function and other zeta functions with non-trivial zeros away
from the critical line, it is not known if we can derive Ey(t) as a Fourier transformable, real, even and
analytic function which is strictly decreasing function for ¢ > 0. Hence the new method presented
in this paper is not applicable to Hurwitz zeta function and related zeta functions.

Dirichlet L-functions satisfy a symmetry relation &(s,x) = e(x)€(1 — s, x) [7] which does not
translate to Ey(t) = Eo(—t) required by the new method and hence this proof is not applicable to
them. This proof does not need or use Euler product.

The proof of Riemann Hypothesis presented in this paper is only for the specific case of Riemann’s
Zeta function and only for the critical strip 0 < |o| < 3. This proof requires both E,(t) and E,(w)
to be Fourier transformable where E,(t) = Ey(t)e™ " is a real analytic function and uses the fact that
Ey(t) is an even function of variable ¢t and Ey(t) > 0 for |t| < oo (Details in |Appendix A.6) and
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Ey(t) is strictly decreasing function for ¢ > 0 (Details in Section [f]). These conditions may not be
satisfied for many other functions including those which have non-trivial zeros away from the critical
line and hence the new method may not be applicable to such functions.
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Appendix A. Properties of Fourier Transforms

Appendiz A.1.  E,(t),h(t) are absolutely integrable functions and their Fourier Trans-
forms are finite.

The inverse Fourier Transform of the function E, (w) is given by E,(t) = Eo(t)e " = 5= [°0
> n? 2t —2t ¢
In Eq. 15, we see that Ey(t) = Z(—l)”’l(e’7TT€ ¥ o™ e3> 0 and finite for all —oo < t <
n=1

oo( [Appendix A.6). Hence E,(t) = Ey(t)e " > 0 and finite for all —co < t < co.

It is shown in [Appendix A.4|that Ey(t) has an asymptotic exponential fall-off rate of o[e™ "]
and hence E,(t) = Ey(t)e°" has an asymptotic exponential fall-off rate of at least ofe=(1=2)IY] for
0 < |o| < 3. Hence E,(t) goes to zero, at t — Foco and we showed that E ( ) > 0 and finite for
all —0o <t < oo in the last paragraph. (Result 21) Hence E,,(w) = [*_ E,(t)e"™'dt, evaluated at

w = 0 cannot be zero. Hence E,,(w) does not have a zero at w =0 and hence wo # 0.

Given that E,,(w) is a holomorphic function for real w, it is finite for real w and also for w = 0.
Hence E,,(0) = [*°_ E,(t)dt is finite. Using Result 21, we can write [ _|E,(t)|dt is finite and E,(t)
is an absolutely 1ntegrable function and its Fourier transform E,.(w) goes to zero as w — £00, as
per Riemann Lebesgue Lemma (link).

Using the arguments in above paragraph, we replace o in E,(t) = Ey(t)e " by 0 and 20 re-
spectively and see that Ey(t) and Fy(t)e 2°! are absolutely integrable functions and the integrals
[ 1Eo(t)|dt < oo and [ |Eo(t)e 2!|dt < oc.

Given that E,(t) = Ep(t)e " is an absolutely integrable function, its shifted versions are abso-
lutely integrable and we see that E, (¢, t2) = e "2 E,(t—t;)—e"? E (t+t2) (Eo(t—ta)—Eo(t+ts))e™ "
in Eq. 16 is an absolutely integrable function, for a finite shift of ¢5. ( We substitute ¢ — t5 = 7 and
dt = dr and get [*°_|E,(t —to)|dt = [*°_|E,(7)|dT and hence E,(t — t5) is an absolutely integrable
function, given that E »(t) is absolutely integrable. Same argument holds for E,(t + t3).)

We see that h(t ) = e%tu(—t) + e“’tu(t) is an absolutely integrable function because h(t) > 0
for real ¢ and JoLn@)dt = [°2 h(t)dt = [[° h(t)e “tdt]u—o = [ + =Ll = 2, is finite for
0<o< 5 and its Fourler transform H (w) converges and goes to zero as w — £00, as per Riemann

Lebesgue Lemma (link).

Appendiz A.2. Convolution integral convergence

Let us consider h(t) = e”u(—t) + e “*u(t) whose first derivative given by %it) = oe’lu(—t) —
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ge~u(t) and Ay = [P0, — [2O],_ = 20 and hence 2 js discontinuous at ¢ = 0, for
1

0 <o < ;. The second derivative of h(t) given by hs(t) has a Dirac delta function Ayd(t) where
Ap = —20 and its Fourier transform Hs(w) has a constant term Ay, corresponding to the Dirac delta

function.

This means h(t) is obtained by integrating ho(t) twice and its Fourier transform H (w) has a term
Ao |(link) and has a fall off rate of % as |w| — oo and [~ H(w)dw converges.(Result C.2)

Let us consider the function g(t,ts,t0) = f(t,te,t0)e T'u(—t) + f(t, t2,t0)e” u(t) in Eq. 16 and

its first derivative given by % = [—oe 7 f(t, ta, to) + e_"tdf(t f2, to)]u( t) + [oe? f(t, ta, to) +
oot WLlzto))y () We get [Wblzlo)], (= g f(0, g, ty)+[LLLl2l0)], and [dotblato)) = g f(0, ta, to)+

[W]FM(Result C.2.1).

We note that f(¢,s,t0) is a differentiable function in Eq. 16 and get [df(t b)), o0 = iwhﬂ]—

and get [M}tzoir [W] t—0— = 20f(0,1q,1ty) using Result C.2.1. Hence dg(t;f ) s discon-

tinuous at t =0, for 0 < 0 < %, if f(0,t9,t0) # 0.

We can see that the first derivatives of g(t,ts, %), h(t) are discontinuous at t = 0 and hence
G(w, ta, to), H(w) have fall-off rate of —5 as |w| — oo, using Result C.2. Hence the convolution
integral below converges to a finite value for real w, for the case f(0,t2, ) # 0.

F(w,ty, ty) = 1 /OO G(W' ta, to)H(w — w')dw' = %[G(W,tg,to) x H(w)] (A.1)

27 J_o s

If £(0,%5,t9) = 0, and if the N derivative of g(t, ta, to) is discontinuous at ¢t = 0 where N > 1,
we see that G(w, ta, to) has fall-off rate of —x7 as |w| = oo(Details in [Appendix A.3). G(w,ts, )
has a minimum fall-off rate of 2 as |w| — oo for this case. Hence the convolution integral in
Eq. [A.1] converges to a finite Value for real w.

Appendiz A.3. Fall off rate of Fourier Transform of functions

Let us consider a real Fourier transformable function P(t) = P, (t)u(t) + P_(t)u(—t) whose

(N — 1) derivative is discontinuous at t = 0. The (N)™ derivative of P(t) given by Py(t)
has a Dirac delta function Ayd(t) where Ag = [de:V}iﬁ(t) — dNC;LE“)]t:o and its Fourier transform

Pn,,(w) has a constant term Ay, corresponding to the Dirac delta function.

This means P(t) is obtained by integrating Py (t), N times and its Fourier transform P, (w) has a
v (link) and has a fall off rate of _y as |w| — oo.

We have shown that if the (N — 1) derivative of the function P(t) is discontinuous at ¢ = 0
then its Fourier transform P, (w) has a fall-off rate of Jv as |w| — oo .

Appendiz A.4. Exponential Fall off rate of x(t) = Ey(t)e 2!

Given that Ey(t) = Eo(—t) (|Appendix A.7), we write Ey(t) in Eq. 15 as follows.
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Tl2 t t n2 t n2
Eo(t) _ Z(_l)ﬂ*l(efﬂ'TBQ . efaneQ )6% _ Z(_l)nflefwTeQ (1 . eﬂr?’Te )eé
n=1 n=1
(A.2)
= (2t)"
We use Taylor series expansion around t = 0 for e* = Z ( o given that €% is an analytic
Ir
r=0
function for real t.
Ey(t) = Z(—l)n Lot (1420) - ((232+(21§)3““)(1 - e_W#EQt)e%
n=1

(A.3)

We take the term e 3fe2 = e 10708 out of the summation, corresponding to n = 1 and write
Eq. A.3 as follows.

3n2

(1 —e i) (A.4)

For t > 0, we see that the term corresponding to n = 1 in Eq. has an asymptotic fall-off rate

of o[e"]. The terms corresponding to n > 1 have fall-off rates higher than ole™"], due to the term
T (n2-1)t
e 2 :

Hence we see that Ey(t) has an asymptotic fall-off rate of o[e™], for ¢ > 0. Given that Ey(t) =
Eo(—t)(|Appendix A.7), we see that Ey(t) has an exponential asymptotic fall-off rate of o[e~!"].

Similarly, E,(t) = Ey(t ) ~°! has an asymptotic exponential fall-off rate of o[e "] (using
ole=U=] ) for 0 < |o| < 2

Similarly, 2(t) = Ey(t)e2°* has an asymptotic exponential fall-off rate of o[e "] (using o[e=(1=27)]),
for 0 < |o| < 3 and 6 > 0.

Appendiz A.5. Absolutely integrable functions

We see that a real function y(t) which is finite for all t and has an asymptotic falloff rate of Ol L

is an absolutely integrable function, given that [ |y(t)|dt = f__; ly(t)|dt + f @O))dt+ [ y(t \dt
is finite, for non-zero and finite 7', because when we 1ntegrate the integrand |y( )| with order O[]
, we get the result O[%], which is finite at the limit ¢ = +7 and the result O[%] is zero at the
limit ¢ — 4o00. If y(¢) has an exponential asymptotic falloff rate, when we integrate the integrand
ly(¢)| with order O[e=*"] for real A > 0, we get the result O[+e~4"] which is finite at the limit
t = 7 and the result is zero at the limit ¢ — +o0 and hence y(t) is an absolutely integrable function.
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Appendiz A.6.  Ey(t) >0 for —oo <t < o0

n2
It is shown in this section that Ey(t) > 0 for —oo < t < co. We take the term e ™% ez out of
the brackets in Eq. A.5 for Ey(—t) and use (n+1)? = n? +2n+ 1 and rearrange the terms in the last
line below.

)
EO(_t) = Z(—1>n71(€7ﬂ.§62t o e*ﬂnQth)eé
n=1
9] ) ,
Eo(—t) = Z (6—7r"762t o _ (n+1) " o= m(n+1)? 2t)6%
n=odd
o0 2t t n2 ot (2n+41) ot 3n2 ot 9 1)e2t
E()(—t) — Z 6_71'76 65(1 _ e—wTe —e —T=——e€ ( n+ )e )
n=odd

(A.5)

We compute the minimum value of Ey(—t) in Eq. A.5 for 0 < ¢ < oo, by computing the minimum
value of positive terms and maximum value of absolute value of negative terms. We ignore the last

_ ﬁ 2t _ 2t . .
term e~ i ¢ e "2 HDET 5 () hecause we want the minimum value of Ey(—t).

The minimum value of the first term inside brackets in Eq. A.5 is A; = 1. The maximum value

n2 .
of the absolute value of the second term inside brackets e ™ 1 ¢ occurs at n = 1 and ¢ = 0, given by
2n+1
Ay = e ~71. The maximum Value of the absolute value of the third term e —m 2t occurs at n = 1
and t = 0, given by A3 = ¢ ~7%. Hence the minimum value of the terms inside the brackets is given

by Ai — Ay — A3 =1—2e " 4—0.81O4>0f0rallnandhenceEo( t) >0 for 0 <t < oo.

Appendiz A.7. Ey(t) is real and even

We see that E(3 + iw) = Eo,(w) = Eo.(—w) (Result 13) because E(s) = E(1 — s) in Eq. 5 and

hence E(3 + iw) = E(% — iw) when evaluated at s = £ + iw.

We take the Inverse Fourier transform of Fy,(w) and use Ey,(w) = Eo,(—w) from Result 13 and
then substitute w = —w’ in the integrand, as follows.

Ey(t) = 5- / " B ()t de = - / o (—w)e™! dus
/ Fou(w)e tde = Bo(—1)
(A.6)

We see that Fy(t) in Eq. 15 is real and Ey(t) in Eq. A.6 is even and hence we have derived the
result that Ey(t) is a real and even function of variable ¢.
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Appendiz A.8. Exponential fall-off rate of Dirichlet Eta function

e¢]
2t

The integrand in Eq. 13| given by Z(—l)”_le_m%f e 5e 7! goes to zero with exponential

n=1

fall-off rate, as t — —oo because the term e~™°¢ *" has a faster fall-off rate than the term e3¢t

oo
2,—2t

The integrand in Eq. [13| given by Z(—l)"’le’“” ezt goes to zero with exponential

n=1

2

fall-off rate, as t — 400 because the term limyyeoe ™ " =1—-14+1—1...= % (Eq.1.2.7 in page 2)

oo
- 1
for each n and hence lim;_, Z(—l)”‘%‘”ﬂe - 5 and the term lim,_, e"ie % =0for0 < o < %

n=1

The above results also hold for each n = 1,2, ...

Appendiz A.9. Functional equation for Dirichlet FEta function

We use the functional equation for Riemann’s zeta function given by ((s) = ¢(1 — s)['(1 —

s)sin ()r(s=D2% and use ((s) = n(s)

s ads=gtotiwandl—s=j—0—iw

¢(s) =¢(1 =s)'(1 —s)sin (%)W(sﬂ)y
1 ﬁ(gz_s = nil_—;)p(l — s)sin (%)W(sﬂ)Qs

(A.7)
We use well known properties of Gamma function I'(s)['(1—s) = Sin?m) = QSm(ﬂgCOS €3 in Eq. A.7
as follows. (link)
n(s) _ n(l—s) m i (5T ()
= — )r'$TY28 A8
1—20  1-2% 2sin () cos ()(s) sin (5w (A.8)

We cancel the common term sin (5°) in Eq. for 0 < Rels|] < 1 and rearrange the terms as
follows.

ST (1—2%)

77(1 - 8) - U(S)P(S) COS (7) (1 I 21_8)71'825_1

In the modified functional equation in Eq. , we see that, if Dirichlet Eta function n(s) has a
zero in the region 0 < Re[s] < 1 at s = s¢, then 7(s) also has a zero at s =1 — 59, due to the term
n(1 — s), given that for Re[s|] > 0, the gamma function is analytic in the complex plane |(link).

(A.9)

Appendix B. Properties of Fourier Transforms Part 1

In this section, some well-known properties of Fourier transforms are re-derived.
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Appendiz B.1. Fourier transform of Real g(t)

In this section, we show that the Fourier transform of a real function g(¢), given by G(w) =
Gr(w) + iG(w) has the properties given by Gr(—w) = Gr(w) and G;(—w) = —G(w). We use the
fact that g(t) is real and cos (wt) is an even function of w and sin (wt) is an odd function of w below.

Gw) = /_OO g(t)e ™“dt = Gr(w) +iG(w)

Gr(w) = /_OO g(t) cos (wt)dt = Gr(—w)

o0

Grw)=— /OO g(t) sin (wt)dt = —G(—w)

(B.1)

Appendiz B.2. Ewven part of g(t) corresponds to real part of Fourier transform G(w)

In this section, we take the even part of real function g(t), given by geven(t) = 3[g(t) + g(—t)]
and show that its Fourier transform is given by the real part of G(w).

G(w) = /_00 g(t)e ™ dt = Gr(w) +iGr(w)

o0

/ Geven (et = / %[g(t)+g(—t)]eiwtdt_@+ ! / S(te

(B.2)

We substitute ¢ = —t in the second integral in Eq. B.2. We use the fact that Gr(—w) = Ggr(w)
and Gj(—w) = —G(w) for a real function g(t). ([Appendix B.1))

- - Gw) |1 [> . Glw) G(-w)
1wt _ - 1wt —
/_ Geven (t)e™ ' dt = 5 +2/_Oog(t)e dt T

[e.9]

1 _ . 1 _ :
= é[GR(w) +iGr(w) + Gr(—w) + iG(—w)] = é[GR(w) +iG(w) + Gr(w) — iGr(w)] = Gr(w)
(B.3)
Appendiz B.3. Odd part of g(t) corresponds to imaginary part of Fourier transform
G(w)

In this section, we take the odd part of real function g(t), given by goqa(t) = 1[g(t) — g(—t)] and
show that its Fourier transform is given by the imaginary part of G(w).
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Gw) = /_ ) g(t)e ™ dt = Gr(w) +iGr(w)
| gt ar= [ 100 - g-njetan = G2 - 5[ genesar

- 2 2 2.

(B.4)

We substitute ¢ = —t in the second integral in Eq. B.4. We use the fact that Gr(—w) = Gr(w)
and G;(—w) = —G(w) for a real function g(¢). (|Appendix B.1))

/Oo Joaa(t)e™ " dt = @ - %/Zg(t)eiwtdt _ G<2°~’) N G(;w)

oo

_ %[GR(M) b iG (W) — Ca(—w) — iGy(—w)] = %[GR@) b G (W) — Ca(w) + iGr(w)] = iGr(w)

(B.5)

Appendiz B.j. Fourier transform of a real and even function ¢(t)

In this section, we show that the Fourier transform of a real and even function g(t), given by
G(w) is also real and even. We use the fact that [*_g(t) sinwtdt = 0 because g(t) is even and the
integrand is an odd function of variable t.

Gw) = /_OO g(t)e “tdt = /_OO g(t) cos wtdt — z’/oo g(t) sin wtdt

[e.e] [e.e] —00

Gw) = /_00 g(t) cos wtdt

e}

(B.6)

We see that G(w) = [ g(t) coswtdt is real function of w, given that g(¢) and the integrand are
real functions. We see that G(w) is an even function of w because coswt is a even function of w.

Appendix C. Details for Section 6

Appendiz C.1. Gpr(w,ts,t9) and Gra(w,ta,ty) are partially differentiable twice as a func-
tion of w

Gr(w,ts,tp) in Eq. 27 is copied below.
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0
Grlw, b, o) = €210 / (7 to, ba)e 27T + Bl (7 — to, £2)] cos (wr)dr

[e.9]

0
+e20to / (T —to, ta)e 277 + E(lm(T + to, to)] cos (wT)dr

[e.9]

(C.1)

We could then use Ey(r, tQ) = (Eo(T — t2) — Ey(T + t2) (using Definition 1 in Section [2.1] ) and
B, (1,t) = Ey(—7,ts) = —Ey(7,t5) (using Definition 2 in Section and Result 3.1 in Sectlon '
We see that Fy(7) and its ¢y and ¢, shifted versions are analytic functlons of 7,ty and t, given that the
sum and product of exponential functions are analytic and hence infinitely differentiable.(Result E.0)

In Eq. C.1, Ggr(w, ta, to) is partially differentiable at least twice with respect to w and the integrals
converge in Eq. C.1 and Eq. C.2 for 0 < ¢ < 3, because the terms 7" Ey(7 g, t2)e™2" and 7" E,,, (T %
to, ta) = —7" Ey(T % to, t5) have exponential asymptotic fall-off rate as |7| — oo, for r € W (Details
in [Appendix C.1.1)). The integrands in Eq. C.1 and Eq. C.2 are analytic functions of variables w
and tg, for a given t5(using Result E.0 in [Appendix C.1fand given that the terms cos (w7), sin (wT)
and e72°7 are analytic functions). The integrands have exponential asymptotic fall-off rate (Details
in |[Appendix C.1.1)) and absolutely integrable and we can find a suitable dominating function with
exponential asymptotic fall-off rate which is absolutely integrable.(Details in [Appendix C.2|) Hence
we can interchange the order of partial differentiation and integration in Eq. C.2 using theorem of
differentiability of functions defined by Lebesgue integrals and theorem of dominated convergence,
recursively as follows. (theorem)

9G r(w, t2, to) ’ /

R(g, 2, o) = _[e2t0 / T[Ey(T + to, t2)e 27 + By, (T — to, t2)] sin (w7)dr
(oY) o)

0 /
1 20to / T[E(T — to, t2)e 7" + E,, (T + to, t2)] sin (w7)d7]

0%G r(w, ta, to) ’ /
Réw; 2, to) _ —2ato/ T Ey(T + to, ta)e 27 + E,, (T — to, t2)] cos (wT)dr

W o0

0
+e2oto / 7'2[E (1 — to, t2)6_2‘” + E(lm(T + to, to)] cos (wT)dT]

—00

(C.2)

We can use the arguments in the above paras and derive the (2r)™ derivative of Gr(w, ta, ty), for
r € W, which is differentiable at least twice, as follows.

(92TG (.U,t ,t 0 / /
Groar(w, ta, tg) = Ij?(w?’“ 2, to) = (=1)"[e 2" / T Ey(T + to, ta)e 27T + By, (T — to,t2)] cos (wr)dr

—0o0

0
+e2ato / T Ey(T — to, t2)e 2T + E, (T + to, t3)] cos (wr)dr]

(C.3)
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We can prove Eq. C.3 using induction. We use Eq. C.3 as Induction Hypothesis. We take the
second derivative of Eq. C.3 and we interchange the order of differentiation and integration, using
the arguments used to derive Eq. C.2 as follows.

G r(w, ty, t 0 ,
852(r+1 = O> = ( T—H _QJtO 7_2r+1 ’7' + to, tQ) —207 + EOn(T — to, tQ)] sin (CUT)CZT

0
+e%oto / T B (T — to, ta)e 2" + E(/)n(T + to, t2)] sin (w7)dT|

827"+2GR (wv 12 ) t())
aw27’+2

(1) / B (7 4 t, )e 2T + Bl (7 — to, )] cos (wr)dr

ZUtO 7'2T+2 T — to, tg) —207 + E(/Jn<7— + th tZ)] COos (U.)T)dT]

(C.4)

We see that the second equation in Eq. C.4 is the same as the equation obtained by setting
r=r41in Eq. C.3. Thus we have proved Eq. C.3 using mathematical induction.

Appendiz C.1.1. Exponential Fall off rate of B(t) = t"Ey(t & to,t3)e™ 2t for r € W

In this section, it is shown that the term B(t) = t"Ey(t % to,t5)e°" has exponential asymp-
totic fall-off rate as |t| — oo, for 1 € W where Ey(t,ty) = Eo(t — t3) — Eo(t + t5). Hence
B(t) = t"e 2! [Ey(t — ty + tg) — Eo(t + ta £ to)] (Result E.1.1).

We consider C'(t) = t"e 2" Ey(t — t,) for real t,. We see that C(t +1t,) = (t+t )re2ote20t By (t).
We see that Ey(t)e 2" is an absolutely integrable function, for 0 < |o| < 3 given that it has expo-
nential fall-off rates as |t| — oco. (Details in |[Appendix A.4/and [Appendix A.5|.

Hence C(t+t,) = (t+t,)"e 2" Ey(t)e~ 7" also has exponential fall-off rates as |t| — oo, for r € W
and finite ¢, and is an absolutely integrable function.

Hence C(t) = t"e 2" Fy(t — t,) has exponential fall-off rates as [¢| — oo, for finite ¢, and is an
absolutely integrable function. We set t, = to+t¢ and t, = —ts -ty and see that B(t) in Result E.1.1,
has exponential fall-off rates as |t| — oo, for finite 5, ¢y and is an absolutely integrable function.

Appendiz C.2. Dominating function

We consider x(t) = Ey(t)e~2* which has asymptotic exponential fall-off rate of o[e=*°].(Details
in [Appendix A.4) We see that (¢ + ¢,) also has the same asymptotic exponential fall-off rate, for
finite shift of ¢, = t, + to and y(t,t,) = t"x(t + t,)e** also has the same asymptotic exponential
fall-off rate, for » € W. We consider the intervals 0 < ¢ty < t¢,,,., 0 <ty <ty .. and 0 <t, <t
where %o, .., t2,...,t are finite.

Amaz

Gmax

We consider tq >>t,, . where y(t,t,) = t"x(t+1,)e*7" falls off at the rate of o[e"] for t << —tg.
We consider f(t,t,,w) = y(t,t,) cos (wt) and we get W = —ty(t, t,)sin (wt) which falls off at
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the rate of 0[] for t << —t4. Let fia > 0 be the maximum value of |—8f bita,

—00 < t < o0.

| in the interval

We can find a suitable dominating function D(t) = e XM, .ef% > 0 with a fall off rate of
O[e= %] where 0 < K < 0.5 and hence D(t) has a slower fall off rate than af(ta% and D(t) = fiax
at t = —t4 and hence D(t) > ]M| for —oo <t < 0 and hence \6f Lla)| < D(t) in the interval

(—o0,0] and f (t)|dt = f X frape™tidt = L frq e[l = Kfmaxe ta is finite.(Result
E.2.1)

The first term in Eq. C.2 given by B(t) = t" Ey(t-+tg, t2)e 2" = t"e 27 Ey(t—ta+tg) — Fo(t+ta+to)]
using Result E.1.1 in |[Appendix C.1.1, We set t, = to + o and ¢, = to — tp and get B(t) =
te 2 Ey(t —ty) — Eo(t +1,)]. Hence y(t,t,) = t"x(t +1t,)e*'* = t"Eg(t +t,)e " in the second para,
corresponds to the second term in B(t) and Result E.2.1 holds for this term. The first term in B(t)
is obtained by replacing t, by —t, and Result E.2.1 holds for this term and hence for B(t). We see
that Result E.2.1 holds for the other 3 terms in Eq. C.2 using arguments in above paragraphs and
replacing ty by —ty and setting o = 0 as needed.

As to,.,.,t2, .. ta,.., increase to a larger and larger finite value without bounds, we consider
larger intervals 0 < to < t5.., 0 <ty <ty —and 0 < t, < t,... and f.. and t4 also increase
correspondingly and the results in above paragraphs are valid in these intervals.

Similarly, we consider f(t,t,,w) = y(t,t,)cos(wt) = t"Eg(t + t,)e 27" cos (wt) = t"FEy(t + to +
ty)e 27 cos (wt) and we see that (g’f:’w) and % (g:;,w) which fall off at the rate of o[e®] for t << —tg,
using Eq. C.8 and Fy(t) = Ey(—t) and due to the term e~™¢"" and we can use arguments in above
paragraphs to get a result similar to Result E.2.1 for the terms in Eq. C.5 and Eq. C.15. We can use
these arguments to get a result similar to Result E.2.1 for the second derivative terms W

0
PIlte) iy Bq. C.10 and Eq. C.19.
2

and

Appendiz C.3.  Gpar(w,ta,to) are partially differentiable twice as a function of to, r € W

In Eq. C.3, Grar(w, t2,to) is partially differentiable at least twice as a function of ¢, and the
integrals converge in Eq. C.5 and Eq. C.10 shown as follows. The integrands in the equation for
Grar(w,ta, tg) in Eq. C.5 are absolutely integrable because the terms 72" Ey(7 =+ to,%5)e”2°" and
B, (T + to, ty) = —T2 Ey(T £ to,t5) have exponential asymptotic fall-off rate as |7| — oo, for
r € W (Details in [Appendix C.1.1)). The integrands in Eq. C.5 are absolutely integrable and
are analytic functions of variables w and o, for a given t, (using Result E.0 in |Appendix C.]]
). The integrands have exponential asymptotic fall-off rate(Details in [Appendix C.1.1)) and we
can find a suitable dominating function with exponential asymptotic fall-off rate which is absolutely
integrable.(Details in [Appendix C.2)) Hence we can interchange the order of partial differentiation
and integration in Eq. C.5 using theorem of differentiability of functions defined by Lebesgue integrals
and theorem of dominated convergence as follows. (theorem)
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0
Gror(w, ta, ty) = 6_2“0(—1)’" / T2T[E(l)(7' + 1o, t2)6_2” + E(l)n(T — to, ta)] cos (wT)dr

0
—I—eg"to(—l)r / TQT[E(I)(T — to, tz)e_QUT + E(l)n(T + to, t2)] cos (wT)dT

OG ror(w, to,t 0 , ,
B2 8((; 2 to) = —20‘6_20t0(—1)r/ 7By (T + to, ta2)e 2" + By, (T — to, t2)] cos (wr)dT
0 —o0
0 ! —20T /
J(F, to,t E, — 1o, t
+e2ato(_1)r/ Lo (Eo(T + Lo, t2)e + Eg, (T — 1o, 12)) cos (wr)dr
o Oty
0
2020 (—1)" / T2 By (T — to, ta)e 2T + By, (T + to, t2)] cos (wT)dr
0 ! —20T !
O(Ey(T — to,t E to, t
+e2ato(_1)r/ 7_2r ( O(T 05 2)6 + On(T+ 05 2)) COS (WT)dT
oo Oto
(C.5)

We show that the integrals in Eq. C.5 converge, as follows. We see that E(/)(T + to,t2) =
E()(T —|—t0 — tz) — EO(T +t0 +t2> and E(l)n(T — to, tg) = —E(l)(T — to, tg) = Eo(T - to —|—t2) — E()(T — to — tQ)
(using Definition 1 in Section and Result 3.1 in Section |3 ).We see that the first and third inte-

grals in the equation for acmé—;’tm in Eq. C.5 converge because the terms 7'2TE(I) (T+tg,tz)e 2" and
T B (T & to, ts) = =72 Ey(T £ to, t2) have exponential asymptotic fall-off rate as |7| — oo(Details

in [Appendix C.1.1)).

We consider the integrand in the second integral in the equation for %&j’tm in Eq. C.5 first
and use the results in the above paragraph.

a(E£)<T + th t2>e_2m— + E[;n(T B th t2)) _ 8<E0(7— + tO - tg)e_Q‘” — E()(T + tO —+ t2)e_2‘77—)
6250 o 3150
LOB(T —to +1) = Eo(T =t — 1))

Oty

(C.6)

We consider the term FEy(T + to + t3) first in Eq. C.6 and can show that the integrals converge in
Eq. C.5, as follows. We take the factor of 2 out of the summation in Ey(7) in Eq. 7?7 copied below.

2. 27 T
—9 2 27_[_2 4 47’ 37Tn2 27]6 ™mee e2
o0
T2 AT pAltatto) _ 2 27 2(ta+to)],—wn2e?me2(tatto) z (atto)
Eo(T+ta+ty) = g Tn'e’e 3mne e le eze 2

(C.7)

We can show that ;2 g Eo(T +ta +10) = L Eo(T + ta + to) as follows, given that the equation for
Eo(T+ta+1p) in Eq. C 7 has terms of the form e™ ™ and the equation is invariant if we interchange
the variables 7 and ¢y. (Result E.3.A)
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0 > 02,27 2(tg+tg) T (tattg)
——Eo(7 4+t + 1) =2 E e T oh e [RrptedT et tio)  grp2e?Te2(tzto)

dty —
+(% _ 27Tn2627'62(t2+t0))(27T2n464T€4(t2+t0) o 37rn2€2T62(t2+t0))]
agEo(T + 1ty +tp) = 2 Z RS P [8r2ntetmettztt) _ Grp2e?m iz tio)
-
n=1
+(% o 27Tn2627'62(t2+t0))(27T2n464T€4(t2+t0) _ 37rn2€2T62(t2+t0))]
(C.8)
We can replace ty by t, = —t in Eq. C.7 and see that %E@(T‘i‘tQ +ty) = ZEo(T+12+t,) (Result
E.3.E) given that the equation is invariant if we interchange 7 and tz). Given that 8%) = 8%3—2 = —8%,

we substitute it in Result E.3.E and get %E@(T + by — tg) = —ZEo(T + t2 — ty).(Result E.3.B)

We can write the term in the second integral in the equation for %‘:’hm in Eq. C.5, corre-
sponding to the term Fy(7 +to + t2)e~ 27 in Eq. C.6, using Result E.3.A, as follows. We use the fact

that [°,, 402 B(r)dr = [°,, Qg — [0 a(r)Bilgr

[e.9]

0 0
O(E, to+t O(E, to+t
/ ( 0<T;_t 2+ 0))7'%6’2‘” cos (wr)dr = / ( 0<T;— 2 T 0)727"6’2‘” cos (wr)dr
—00 0 —00 T
_ /0 I(Eo(T + ta + to)T* e 27 cos (wT)) g /0 Eo(r -+ ta + fo) I(T?"e277 cos (wT) ir
oo or e or
0
= |Bo(T+ 1ty +ty)T7 € 7" cos (wT)|_ +w o7+ 1o+ 19))77 e 7" sin (wT)dT
E 2r —2o0T1 0OO E 2r —20T _: d
0 0o
+20/ Eo(T 4ty + 1)) 72 € 27 cos (wT)dT — 27‘/ Eo(7T 4ty + 1)) e 277 cos (wr)dT
(C.9)

We see that the integrals in Eq. C.9 converge because the integrands are absolutely integrable
because the terms FEo(7 + ta + to)7* e 27 sin (w7), Eo(T + to + to)7% e 27 cos (wr) and Ey(T +
ty + t0))7* 17277 cos (wr) have exponential asymptotic fall-off rate as |r| — oo(Details in
pendix C.1.1). The term [Eo(T + t2 + to)7% e 27 cos (w7)]° , is finite, given that 7% Ey(7)e 27
and its shifted versions go to zero as t — —oo(Details in [Appendix A.4[). Hence the integral

ffoo 8(E°(T+t2g§g)72%72m) cos (wr)dr in Eq. C.9 and in Eq. C.5 corresponding to the term Fy(7 + t3 +

to)e 2T in Eq. C.6, converges.

We set ¢ = 0 and ty = —to in the term Eo(7 + to + to)e 2°" and see that the integral

ffoo %ﬁrto))#r cos (wr)dr in Eq. C.5 corresponding to the term Ey(7 + t2 — o) in Eq. C.6 also

converges, using Result E.3.B and the procedure used in Eq. C.7 to Eq. C.9.

We set ty = —t, in the term FEo(T + to + to)e 2°" in Eq. C.7 to Eq. C.9 and see that the inte-

gral ffoo 8(E0(7_t§;;t0)672”)727" cos (wr)dr in Eq. C.5 corresponding to the term Ey(T — ty +to)e 2" in
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Eq. C.6 also converges.

We set ty = —ty, 0 = 0 and ty = —t( in the term Fo(7 + t2 + to)e 2°" and see that the integral
fi)oo %A)&TWT% cos (wr)dr in Eq. C.5 corresponding to the term Fy(T — t5 — t) in Eq. C.6 also

converges, using Result E.3.B and the procedure used in Eq. C.7 to Eq. C.9. Hence the second inte-
aGR,Q'r(wvt27t0)

5t in Eq. C.5, also converges.

gral in the equation for

We can see that the last integral in Eq. C.5 converges, by setting ty, = —ty in Eq. C.6 and using
Result E.3.B and using the procedure in Eq. C.7 to Eq. C.9. Hence all the integrals in Eq. C.5
converge.

Appendiz C.3.1. Second Partial Derivative of Gra(w,t2,ty) with respect to tg

02GRror(witato)

otz -
%%ﬁm as follows. We use the result in Eq. C.5 and the fact that the integrands are absolutely
integrable using the results in [Appendix C.3| and are analytic functions of variables w and ty for
a given ty (using Result E.0 in [Appendix C.1| ). The integrands have exponential asymptotic
fall-off rate (Details in [Appendix C.1.1) and we can find a suitable dominating function with
exponential asymptotic fall-off rate which is absolutely integrable.(Details in [Appendix C.2|) Hence
we can interchange the order of partial differentiation and integration in Eq. C.10 using theorem of
differentiability of functions defined by Lebesgue integrals and theorem of dominated convergence as

follows. (theorem)

The second partial derivative of Gga,(w,ts,ty) with respect to to is given by

PG raor(w, ta, t 0 : :
rarltaito) _ 2 2oto( _yyr / P By (7 + to, a)e T 4 By (1 — to, )] cos (wr)dr

ot? o
—4oe 20’t0( 1)7’ /O T2T8(E6(T+t0’t2)6720‘r+E(l)n(7—_tO’t2)) cos (C&)T)d'r
oo dtoy
0 2 / _9 /
0°(F, to, 1 T+ E —to,t
+ —ZUto( 1)7“ /Oo 7_27" ( 0(7-+ 05 2)6 82% + On(T 05 2)) COS (WT)dT
0
402?70 (—1)" T2 [Ey (T — to, t2)e” 2T 4 By, (T + to, ty)] cos (wr)dr
+40_€20t0( 1)7" /0 T2ra(E(lJ(T — 1o, t2)672gT + E(l)n(T + to, t2)) CoS ((UT)dT
o dty
0 2 / —20T !
0°(Ey(T — to,t E, to, T
+620t0(_1)r /Oo 7_27“ ( 0(7— 05 2)6 8t(2) + On(T + lo, 2)) COS (WT)dT
(C.10)

The first two integrals and fourth and fifth integrals in Eq. C.10 are the same as the integrals in

the equation for %‘;’m’m) in Eq. C.5 and have been shown to converge in [Appendix C.3] We

will show that the third and sixth integrals in Eq. C.10 converge, as follows.

We consider the integrand in the third integral in Eq. C.10 first. We see that Fy(7 + to,ty) =
E0(7'+t() —tg) —E0(7'+t0+t2) and E(l)n(’?'—to,tg) = —E(I)(T—tg,tg) = Eo(T—tO +t2) —E()(T—to —tg)
(using Definition 1 in Section and Result 3.1 in Section |3| ). We write an equation similar to
Eq. C.6.
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aQ(E(I)(T + o, t2)6_2UT + E(/)n(T — 1o, tQ)) B 62(E0(T +ty — t2)6_2UT — Eo(T +to + t2)€_207)

o2 o3
+82(E0(7' - to + tg) — Eo(T — to — tz))
o1
(C.11)
We consider the term Ey(7 + tg + t2) first in Eq. C.11 and copy Eq. C.7 below.
—9 Z 27T2 447 371'712627—]6_7”126276%
Eo(T + 1ty + 1) =2 Z[2ﬂ2n4e4764(t2+t0) 3mn2e” 2(t2+t°)]e‘””QGQT@Q(tQHO)e%e@
n=1

(C.12)

We can see that 2 oz EO(T +ity+tg) = 672 EO(T +t3 + to), given that the equation has terms of the
form e™*" and the equation is invariant if we interchange the variables 7 and ¢y.(Result E.3.1.A’)

We can replace ty by t, = —to in Eq. C.12 and see that —%— Ey(1 +ty +t,) = 22 Eo(T +ty + ty)

8( )2
(Result E.3.1.E’) given that the equation has terms of the form ™o and the equation is invariant
if we interchange the variables 7 and .

0 Oty _ 0 _ 9 (D _ _ 0 (Dd\_ D D\ _ _o* -
Given that Bt = 8t atg = at , We get W = 3_(8_) = —8—t0<g) = 8_156(6_%) = a(tg)Q’ we substi-
tute it in Result E.3.1.E’ and get 2 oz S Eo(T 4ty — to) = L5 Eo(1 + 1y — ty) .(Result E.3.1.B°)

We can write the term in the third integral in Eq. C.10, corresponding to the term Fy(7 + to +
t2)e™2°" in Eq. C.11, using Result E.3.1.4’, as follows. We use the fact that fi)oo %(:)B(T)dT =
fO d(A(Td)B(T))dT _ J‘O A(T)di(ﬂ dr.

7_27"6—207'

/0 82<E0(T+t2+t0)) 0 82(E0(T—|—t2+t0))
. o2 or2

/o a(an(rtherto)Tzre—%r COS (M_))d /0 8E0(7' Tty to) a<7_2r6—2m COS (w—))d
_ S

e 7 cos (wr)dT = /

— 00

cos (wT)dT

) or oo or or ’
E, ty+t 0 OF ty+t
= [3 O(Tg 2+ 0>72’"e’2‘”cos (wr)]” +w/ 0 0(7'; 2 O)Tzre’Z‘TTsin (wT)dT
T o T
O OF ty+t 0 OFE ty+t
—1—20/ OBo(r 1> + 0>7'2Te’2‘” oS (wT)dT—Q'r/ OBo(r 1> + 0)7'2“16’2‘”(:08 (wr)dT
e or e or
(C.13)

: 0 _ 0 1
We see that the integrals [°_ 22(THet0) 12r=207 o (yr)dr and [°_ 2ETHat0) £2r—10-207 (o (1) dr

in Eq. C.13 converge, using Eq. C.9 in the previous subsection. We see the term [%WTQT672UT cos (w)]°
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also converges, given that Ey(7) = Eo(—7) and Eo(T + t2 + to) = Eo(—T — t2 — to) and we consider

Eo(T+ta+t - Eo(—1—t2—t - i —mnte
OBo(rttatto) por =207 — OBo(=T—ta—to) 2r =207 yi5ino Fiq. C.8 and see that the term e=™¢"*" goes to zero

T or -
faster than the rising term 72"¢ 27"¢ %7~ 2 as 7 — —oo. (Result E.3.1.1)

It is shown below that the term [°  2E(THetlo) 22re=207 giny (yr)dr in Eq. C.13 also converges.

0
/ O(Eo(7 + t2 + 1)) e sin (wr)dT
o or
0 E 2r ,—20T o1 0 2r ,—20T &}
:/ o( 0(7’+t2+t0;7' e 77 gin (WT))dT _/ Eolr + 1 —|—t0)8(T e 8 sin (wT)dT

0
= [Eo(T +ta +to)7¥ e 2 sin (wr)]° o, —w / Eo(T + ty + to)7e 27 cos (wr)dT

0 0
+20/ Eo(T + ty + to)7* e 27 sin (wr)dT — 27“/ Eo(T + ty 4 to)7 e 2" sin (w)dr

—0o0 —00

(C.14)

We see that the integrals in Eq. C.14 converge because the integrands are absolutely integrable
because the terms Fo(T + ta + to)72 e 27 sin (w7), Eo(T +ta +to) 72 L 27" sin (w7) and Eo(7 +t2 +
to)T? e~ cos (wT) have exponential asymptotic fall-off rate as |7| — oo(Details in [Appendix C.1.1]).
The term [Eo(7+ta+1o)7* ™27 sin (wT)]®  is finite, given that 72" Fy(7)e 2" and its shifted versions

go to zero as t — —oo(Details in |[Appendix A.4]). Hence the integral ffoo 82(E°(T+t2;t2°)727'efzw) cos (wr)dr
0

in Eq. C.13 and in Eq. C.10 corresponding to the term Ey(7+ty+1t)e 2" in Eq. C.11, also converges.

We set 0 = 0 and ty = —to in the term Eo(7 + ty + to)e 2°" and see that the integral

ffoo WT” cos (wr)dr in Eq. C.10 corresponding to the term Ey(7 + t2 — tp) in Eq. C.11
0

also converges, using Result £.3.1.8" and the procedure used in Eq. C.12 to Eq. C.14.

We set ty = —ty in the term Fo(7 +ty +19)e 27 in Eq. C.12 to Eq. C.14 and see that the integral

fo 9?2 (EO (T7t2+t0)72T6_20T)
—00 Otg

Eq. C.11 also converges.

cos (wr)dr in Eq. C.10 corresponding to the term Fy(7 — ta + ty)e 2" in

We set ty = —ty, 0 = 0 and ty = —tg in the term Eo(7 + to + to)e 2°" and see that the integral
J‘O 82(E0(T7t27t0))
—o0 81%
also converges, using Result £.3.1.B’ and the procedure used in Eq. C.12 to Eq. C.14. Hence the
third integral in Eq. C.10, also converges.

7% cos (wr)d7 in Eq. C.10 corresponding to the term Ey(7 — ty — tg) in Eq. C.11

We can see that the sixth integral in Eq. C.10 converges, by setting ty = —ty in Eq. C.11 to
Eq. C.14 and using Result F.3.1.B’ and the procedure used in Eq. C.12 to Eq. C.14. Hence all the
integrals in Eq. C.10 converge.

Appendiz C.4. Gprar(w,ts, ty) is partially differentiable twice as a function of ty forr e W

In Eq. C.3, Grar(w, t2,ty) is partially differentiable at least twice as a function of ¢, and the
integrals converge in Eq. C.15 and Eq. C.19 shown as follows. The integrands in the equation for
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Grar(w, s, tg) in Eq. C.15 are absolutely integrable because the terms 72" Ey(T + to,t5)e 2" and
T B (T £ to,ty) = =72 Ey(T + 1o, t5) have exponential asymptotic fall-off rate as |7| — oo(Details
in [Appendix C.1.1)). The integrands are analytic functions of variables w and t,, for a given t, (using
Result E.0 in [Appendix C.1|). The integrands have exponential asymptotic fall-off rate (Details in
|Appendix C.1.1)) and we can find a suitable dominating function with exponential asymptotic fall-off
rate which is absolutely integrable.(Details in [Appendix C.2)) Hence we can interchange the order
of partial differentiation and integration in Eq. C.15 using theorem of differentiability of functions
defined by Lebesgue integrals and theorem of dominated convergence as follows. (theorem)

0
Groar(w,ta,ty) = e_%to(—l)’"/ TQT[E(,)(T + to,tg)e_Q(” + E(;n(T — to, to)] cos (wT)dr
0
H-e2t(—1)" / T Ey(T — to, )% + E, (T + to, t2)] cos (wT)dr
OG R or(w, ta, t 0 I(E, to,to)e 2T + B (T — to. t
Rar (W, T2, To) ZGQUto(_1>r/ L2 (Eo(T + to, ta)e™" + By, (T — to, 12)) cos (wr)dr
dts . Ot
0 / —20 /
o(E — 19,1 T+ FE to, T
+€20t0(_1)r/ 7_27" ( 0(7— 05 2)6 gy + 0n(7—+ 05 2)) COS(WT)dT
— 00 2

(C.15)

We use the procedure outlined in Eq. C.6 to Eq. C.9, with ¢, replaced by ¢, and show that all the
integrals in Eq. C.15 converge, as follows.

We see that E(l)(T+t0,t2) = E0(7+t0 —tg) —E0(7+t0+t2) and E(l)n(T—to,tg) = —E(/)(T—to,tg) =
Eo(T —tg + ta) — Eo(T — to — t2) (using Definition 1 in Section and Result 3.1 in Section [3]). We

consider the integrand in the first integral in the equation for %W in Eq. C.15 first.

8<E£)<T + to, t2)€_207— + E(;n(T — to, t?)) _ a(E10(7— +to — t2>€_2UT — E()(T +ty + t2)6_207—)
8252 o 8152
LOE(T —to + 1) = Eo(T — to — 1))

Oty

(C.16)

We consider the term FEo(T + tg + t2) first and can show that the integrals converge in Eq. C.15,
as follows. We copy Eq. C.7 below.

Ey(1) =2 Z[2ﬂ2n4e4T — 3mn2e? e ™ ¢ e
n=1

o0
- r (tattg)
EO(T + 1y + to) _ 22 :[27T2n4€4764(t2+t0) . 37Tn262762(t2+t0)]6771'n262 62@2“0)656%

n=1

(C.17)

We see that a%EO(T + s +1tg) = L Eo(T + t2 + to) given that the equation has terms of the form
e™2 and hence the equation is invariant if we interchange 7 and ¢;.(Result E.4.C)
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We can replace t, by t, = —t, in Eq. C.17 and see that %EO(T—H; +1o) = L Eo(T+1ty+1t) given
2

that the equation is invariant if we interchange 7 and t,(Result E.4.F). Given that a% = {%% =
2 2
we use it in Result E.4.F and we get 8%EO(T — by +ty) = =2 Ey(T — ta + t).(Result E.4.D)

_9
Oty

We consider the term in the first integral in the equation for %‘:’tz’m) in Eq. C.15 , corre-
sponding to the term Ey(7 +to+1t2)e 27 in Eq. C.16, as follows, using Result E.4.C. We use the fact

that [, 4By = [, UGy — 1, A i

O I(E ty+t O I(E ty+t
/ O(Eo(r + 12 + O))T2T€_2UT cos (wr)dr = / O(En(T + 2 + 0>)T2T€_2GT cos (wr)dr
—0 atQ —00 87—
0 E 2r ,—20T 0 2r ,—20T
_ / O(Eo(T +ta + t();T e oS (w7'))d7_ B / Eo(r + s + to)(?(T e . cos (wT) gr
. T . T

0
= [Eo(1T 4ty +to)T* e 27" cos (wr)]°, + w / Eo(T + ty + to)7*" e 77 sin (wr)dT

— 00

0 0
—1—20/ Eo(T + ty + to)7*e 27 cos (wr)dT — 27“/ Eo(T + ty 4 to)7 e 27 cos (wT)dr

—00 —0o0

(C.18)

We see that the integrals in Eq. C.18 converge because the integrands are absolutely integrable
because the terms Eo(T + ty + to) 7 € 277 sin (w7), Eo(T + t2 + to) 7> te 27 cos (wr) and Eo(7 + t2 +
to)T* e 2T cos (wT) have exponential asymptotic fall-off rate as |7| — oo(Details in [Appendix C.1.1]).
The term [Eo(7+1ta+1o) 72 e 27 cos (wT)]"  is finite, given that 72" Ey(7)e™2°" and its shifted versions

go to zero as t — —oo(Details in |[Appendix A.4{). Hence the integral ffoo a(EO(TH;:;tO)e_Qm)TQT cos (wT)dr

in Eq. C.18 and Eq. C.15 corresponding to the term Ey(7 + to +to)e 2" in Eq. C.16 also converges.

We set o = 0 and ty = —t( in the term Ey(7 + to + to)e 2°" and use the procedure in Eq. C.17 to

Eq. C.18 and see that the integral ff)oo %ﬁ*to))ﬂr cos (wT)d7 in Eq. C.15 corresponding to the

term Eo(7 +ta — o) in Eq. C.16 also converges.

We set ty = —t5 in the term Ey(T + to + tg)e 27 and use the procedure in Eq. C.17 to Eq. C.18

and see that the integral ffoo 8(E°(T_t§ttt°)672ﬁ)72r cos (wr)dr in Eq. C.15 corresponding to the term

Eo(T — ta + tg)e 2" in Eq. C.16 also converges, using Result E.4.D.

We ty = —ty, 0 = 0 and tg = —t¢ in the term Ey(7+ty+15)e 27 and use the procedure in Eq. C.17
to Eq. C.18 and see that the integral ffoo %ﬂrzr cos (wr)dr in Eq. C.15 corresponding to
the term Eo(7 — ta — to) in Eq. C.16 also converges, using Result E.4.D. Hence the first integral in

the equation for %{:’Q’to) in Eq. C.15 also converges.

We can see that the last integral in Eq. C.15 converges, by setting to = —tp in Eq. C.18. Hence
all the integrals in Eq. C.15 converge.

Appendiz C.4.1. Second Partial Derivative of Gra(w,ts,ty) with respect to ty for re W

02GRor(witato)

The second partial derivative of Gga.(w,ts,ty) with respect to ty is given by 52 =
2

o1



%%ﬁm as follows. We use the result in Eq. C.15 and the fact that the integrands are absolutely

integrable using the results in |[Appendix C.4] and the integrands are analytic functions of variables
w and ty for a given ¢y (using Result E.0 in [Appendix C.1}). The integrands have exponential
asymptotic fall-off rate(Details in [Appendix C.1.1)) and we can find a suitable dominating function
with exponential asymptotic fall-off rate which is absolutely integrable.(Details in [Appendix C.2)
Hence we can interchange the order of partial differentiation and integration in Eq. C.19 using theorem
of differentiability of functions defined by Lebesgue integrals and theorem of dominated convergence
as follows. (theorem)

02G R op(w, ts, t 0 0%(E, to,to)e 2T + B (17— to, t
R,2 (0;% 2, 10) :e—QUto(_l)r/ L2 (Eo(T + to, t2)e ' + B, (T — to,t2)) cos (wr)dr
ot . ot
0 2(EN(T — to, t9)e 2" + E| to,
+€2crto(_1>r/ 7_27'8( o(T —to, t2)e - + Eg, (T + 1o, 12)) cos (wr)dr
—o0 8("2
(C.19)

We consider the first integral in Eq. C.19 and using E(I) (T+to,t2) = Eo(T+to—1t2) — Eo(T+to+ 12
and E,, (7 —tg, o) = —Eo(T —to, ta) = Eo(T —to+1ts) — Eo(T —to—t,) (using Definition 1 in Section
and Result 3.1 in Section (3] ), we write an equation similar to Eq. C.16.

82(E(/)(T + o, t2)6_2m— + E(/)n(T — 1o, tQ)) . 82(E0(7' + 1ty — t2)6_2UT — Eo(T +to + t2)€_207)

ot ot3
+82(E0(7' - to + tg) - Eo(T - to - tg))
Bl
(C.20)
We consider the term Ey(7 + to + t2) first in Eq. C.20 as follows. We copy Eq. C.7 below.
=9 Z 271'2 4 47' 37m2 27’]6771'1’1,2627—6%
Eo(T + 1ty +1o) = Z 9124 AT A(t2t-t0) 37m262T62(t2+t0)]e—m%?fe?(tzﬂo)656@
(C.21)

We can see that g—;EO(T +ity+tg) = ;—;EO(T +ty + to), given that the equation has terms of the
2
form e7**2 and the equation is invariant if we interchange the variables 7 and t,.(Result E.4.1.C”)

We can replace t, by t, = —t5 in Eq. C.21 and see that = Eo(T + ty +to) = 88—7_22E0(7' 4t + to)

)
(Result E.4.1.F’) given that the equation has terms of the form ™2 and the equation is invariant
if we interchange the variables 7 and t,.

aat_a 2 _ 9 (9N _ _ 9 (dN_ 8 (oN_ _& :
Given that Bt atz = —87, we get a—t% = W(B_) = _d_t2(87) = B_tg(a_t;) = W’ we substi-
tute it in Result E.4.1.F’ and get atQ S Eo(T —ty 4+ to) = L5 Eo(T — ty 4 to) .(Result E.4.1.D°)
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We can write the term in the first integral in Eq. C.19 corresponding to the term Eo(7 + to +
ty)e=2°" in Eq. C.20, using Result E.4.1.C°, as follows. We use the fact that fi)oo %@B(T)dT =

[0 HADB@) gy (0 A(r)4BD g7,

0 2 E t t 0 2 E t t
/_OO a 0(75;2 2+ o)) 7727 cos (WT)dT = /_OO al 0(7—8—:2 2+ 0))72Te’2“T cos (wr)dr
_ /0 (2T atlo) 22 =207 (5 () g /0 OEo(T + tg + tg) O(T* €727 cos (wT) ir

oo or oo or or
E, 0 OF
= [8 o7 + 12+ to) 7727 cos (wr)]° ., + w / OBo(7 + 12 + o) e 27 sin (wr)dT
or e or
0 OF to +t 0 OF ty +t
+20/ o7+t + 0)7'27"6_2” cos (wT)dT — 27"/ o+t + 0)7‘27"_16_2” cos (wT)dT
o or o or
(C.22)

0 OFE to+t — 0 OFE to+t 1
f O(T;‘TQ'F 0)7_27’6 20T COoS ((.UT)dT and f 0(7';‘724‘ 0)7_27“ 16 20T

in Eq. C.22 converge, using Eq. C.18 in the previous subsection. We see the term
also converges, usmg Result E.3.1.1 in Section [Appendix C.3.1. It is shown in Eq. C.14 that the

cos (wT)dr
[8E0(75rt2+t0) 2r =207 (g (WT>]80‘

We see that the integrals

remaining term f_ Wﬁre 297 gin (wT)dT also converges.
We see that the integrals in Eq. C.22 converge and hence the integral f EO(THQ;?) <) cos (wr)dT
in Eq. C.19 corresponding to the term Ey(7 + ty + tg)e 27 in Eq. C.20 also converges.

We set 0 = 0 and ty = —%p in Eq. C.22 and see that the integral f WTW cos (wr)dr

in Eq. C.19 corresponding to the term FEo(T + t2 — tg) in Eq. C.20 also converges.

We set t, = —t5 in the term Eo(T + to + t2)e™2°" and use the procedure in Eq. C.21 to Eq. C.22

and see that the mtegral f EO(TJrg)tQ t2)e 1) 227 o (wr)dr in Bq. C.19 corresponding to the term
Eo(T —ta + tg)e " in Eq. C.20 converges, using Result E.4.1.D’.

We set ty = —ty, 0 = 0 and ty = —t( in the term Ey(T + t5 + tp)e” 27 and use the procedure in

Eq. C.21 to Eq. C.22 and Result E.4.1.D’ and see that the integral f WT% cos (wr)dr

in Eq. C.19 corresponding to the term Ey(T — ty — tg) in Eq. C.20 also converges. Hence the first
integral in Eq. C.19, also converges.

We can see that the second integral in Eq. C.19 converge, by setting ty = —ty in Eq. C.20 to
Eq. C.22 . Hence all the integrals in Eq. C.19 converge.

Appendiz C.5. Zero Crossings tn Gpa-(w,ts,ty) move continuously as a function of i,
for a given ty, for r € W.

Result E.5.1: It is shown in Lemma 1 in Section that Gr(w,ta,tg) = 0 at w = w,(t2,to)
where it crosses the zero line to the opposite sign, if Statement 1 is true. It is shown in

C.7) that Ggar(w,ta,ty) = 0 and w # 0 at w = w,(t2, o), for some value of r € W where

23



(2r + 1) is the highest order of the zero of Gr(w,t2,ty) at w = w,(t2,ty). (example plot)

We use Implicit Function Theorem for the two dimensional case ( link and link). Given
that Grar(w, t2, to) is partially differentiable with respect to w and ¢y, for a given value of ¢, with
continuous partial derivatives (Details in |Appendix C.1| and [Appendix C.3) and given that
Grar(w,ta,tg) = 0 at w = w,(t2,ty) and W # 0 at w = w,(ls,ty), for some value of
r € W where (2r + 1) is the highest order of the zero of Gr(w,ts,ty) at w = w,(ts,ty) (using Result
E.5.1 in this section and using |[Appendix C.7)), we see that w,(ts, %) is a differentiable function of

to, for 0 < ty < oo, for each value of t5 in the interval 0 < t5 < o0.

Hence w, (9, ) is a continuous function of ¢, for 0 < ¢y < 0o, for each value of ¢y in the interval
0 <ty < 0.

e It is shown in [Appendix C.4|that Ggar(w,t2,to) is partially differentiable at least twice with
respect to to. We can use the procedure in previous paras and Implicit Function Theorem and show
that w,(ts,%9) is a continuous function of ¢y, for 0 < t3 < oo, for each value of ¢, in the interval
0 <ty < oo.

Appendiz C.6. Zero Crossings in Gpror(w,1ts,1)) move continuously as a function of t,
and ty, for re W

We use Implicit Function Theorem for the three dimensional case ?? (link and Theorem 3.2.1
in page 36). Given that G, (w, t2, o) is partially differentiable with respect to w and ty and ¢y, with
continuous partial derivatives, for r € W (Details in [Appendix C.1| [Appendix C.3|and
C.4) and given that Gpra,(w,t2,t9) = 0 at w = w,(t2, %) and Mﬁhto) # 0 at w = w,(ts, ty), for
some value of r € W where (2r + 1) is the highest order of the zero of Gr(w,ts, ) at w = w.(ts, o)
(using Result E.5.1 in [Appendix C.5|and using [Appendix C.7)), we see that w,(t2, %) is a differen-
tiable function of ty and t5, for 0 < 5 < oo and 0 < t5 < 0.

Hence w,(ts,t9) is a continuous function of ¢y and ¢, for 0 < ¢ty < co and 0 < 3 < 00.

Appendiz C.7. Order of the zero in Gr(w,ts,ty) is finite.

It is shown in this section that, if Gg(w,ts,ty) = 0 at w = fw,(t2, 1) to satisfy Statement 1, for

each fixed choice of positive ¢y, t2 € R, then Gg o (w,t2,t)) = O Grlwitato) _ () ot () = +w,(t2,t9) and

aw2r
Gk, ZT(“} tato) _ 82”1{93’;&1”’150) # 0 at w = Fw,(t2,ty) for some value of r € W (element of set of whole

numbers including zero) and (2r+1) is the highest order of the zero of Gg(w, t2,ty) at w = fw.(ts, o)
which is finite.

This is shown using Proof by Contradiction by assuming the opposite case that PGrlutat) _

8w2r
and % =0 at w = w,(ts, ty), for r =0,1,..., as r — oo (Statement D) and show that it

leads to a contradiction.

Gr(w, ta, tp) in Eq. 27 is copied below. It is shown in Lemma 1 in Sectionthat Gr(w,ta,t9) =0
at w = w,(t2, o) where it crosses the zero line to the opposite sign, if Statement 1 is true.
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0
Gr(w, ta, o) = e~ 270 / [Eo(T + to, t2)e™ 2T + Ey (T — to, t2)] cos (wr)dr
_OOO / /
+e27to / [Ey(T — to, ta)e™ 2" + E,,, (T + to, ta2)] cos (wr)dT

(C.23)

We compute the (2r)™ and (2r + 1) derivative of Gr(w,ts,ty) and copy Eq. C.3 and Eq. C.4
below.

0% Gr(w, ta, ty)

0
= (—1)"[e 2t / T [Ey(T 4 to, t2)e 2T + Ej, (T — to, t2)] cos (wT)dr

Ow?2r oo
0 / /
+-e?7to T Ey(T — to, t2)e 27" + By, (T + to, t2)] cos (wT)dr]
82T+1GR (w7 la, to) r+17_—20tg 0 2r+17 1’ —20T1 ! :
L1 =(—-1)"""[e T Ey (T + to, ta)e + Eq, (T — to, ta)] sin (wr)dr
0
+e2oto / T2r+1[E()(T —to,ta)e 2T + E(Im(T + to, t2)] sin (wT)dT]
(C.24)
> ((5&))27" 82TGR(LL), t27 to)
We compute C(w,ts,ty) = ; 2r) D and
(dw)?r+1 62T+1GR W, t, t ,
S(w, ta,tg) = ' @ 1 8w2<"+1 2 to) below, using Eq. C.24.
o0 0
Clw, ta,ty) = Z(—l) [e~27t0 / T2 [Ey (T 4 to, t2)e 2T + Ey, (T — to, t2)] cos (wT)dr
r=0 o0

0
+e2oto / 2 (T — to, t2)e —207 4 E(l)n(T + to, ta)] cos (w)dT]
o0 S 2r4+1 0 ,
S(w, ta, tg) = Z(—l)TH'(L[ez"to / T EY (T 4 to, ta)e 2T + By, (T — to, ta)] sin (wr)dr

0
+e27to0 / 7'2”1[E(l)(7 — to,ta)e 2T + E[;n(T + to, t2)] sin (w7)dT]

(C.25)

We can interchange the order of integration and summation in Eq. C.25 using Fubini’s theorem
given that the integrands in Eq. C.25 before the interchange and the integrands in Eq. C.26 and
Eq. C.27 after the interchange are absolutely integrable as shown in Section [Appendix C.1] and
hence the integrals in Eq. C.26 and Eq. C.27 for C(w, ts,ty) and S(w,ts,ty) converge and equal the
corresponding expressions in Eq. C.25 and we write as follows. (link)
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0 2r
C(w, ty, tg) = e 27t / [Z(—l)r (0w) T2 [Ey (T + to, ta)e 2T + By, (T — to, t2)] cos (wT)dT

0 o 5 2r , ,
+e2ot0 / [Z(—l)T (‘(C;;) T [Ey(T — to, ta)e” > + Ey, (T + to, t2)] cos (wr)dr
0 2r+1
S(w, tg, ty) = e 27t / [Z(—l)TH'(dLTQT“][E (T +to, ta)e 2T + By, (T — to, t2)] sin (wr)dr
0 0 +
+-e2to / [Z(—l)”l—'(éw) T NE (T — to, ta)e” 2T + By, (T + Lo, t2)] sin (wr)dr

(C.26)

+1

> Sw)2r
We use Z(—l)r('é—i)#’" = cos ( ) and Z HlT—l—l)T%H —sin ((dw)7) and write
r=0 )

Eq. C.26 as follows. The integrands in Eq. C. 27 are absolutely integrable using the arguments in

Section [Appendix C.1, Hence interchanging the order of integration and summation in Eq. C.25 is
justified.

0
C(w, ta,t9) = e 2% T+t0,t2 20T LB (7 — to, t2)] cos (wT) cos ((dw)T)dT
On
0
+e2oto / (7 —to, ta)e 2 + E()n(r + to, t2)] cos (wT) cos ((dw)T)dT
S(w ta, o) = —[e=2710 / (7 + to, t2)e™ 2" + Ey (1 — to, t2)] sin (wr) sin ((6w)7)dr

0
+620t0 / [E(/] (7_ . tO; t2>67207 + E(l)n(T + t(]’ t2)] sin (MT) sin (((5&))7’)d7']

(C.27)

We compute Cg(w, ta, tg) = C(w, ta, to)+S(w, ta, o) as follows, using the identity cos ((w + dw)7) =
cos (w) cos ((0w)7) — sin (wT) sin ((dw)T).

Cs(w, g, tg) = e 2710 /0 [Ey (T + to, t2)e™ 2T + Ey, (T — to, t2)] cos ((w + 0w)7)dr

+e?7t0 /0 [Ey(T — to, t2)e™ 2T + Ey, (T + to, t2)] cos (wr) cos ((w + dw)T)dr
(C.28)
If Statement D is true, then W 0 and % =0 at w = w,(ta, 1) in Eq. C.24
and C(w, t2,t9) = Z.OO (f(QZJZ‘;T aZTGg(:;tz,to) — 0 and S(w, s, to) = — (6w)*r 1 9P G p(w, b, o) _

— "(2r 4+ 1) Ow?r+1
0 at w = w,(t2, t) in Eq. C.25 and hence Cg(w, ta, ty) = C(w, ta, o) + S(w, ta,t9) = 0 at w = w, (2, to)
in Eq. C.28.
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0
Cs(w,(ta, tg), ta, tg) = e~ 27" / [Ey (T + to, t2)e™ 2T + By, (T — to, t2)] cos ((w-(t2, to) + 0w)T)dT
0
+e2oto / [E(IJ(T —to,tr)e 2T + E(l)n(T + to, t2)] cos ((w,(t2, to) + dw)T)dT =0

(C.29)
Eq. C.29 is similar to Eq. 28 in Section[2.4) with cos (w. (2, t9)T) replaced by cos ((w.(t2, o) + dw)T).

Eq. C.29 holds for real dw as dw — 0, if Statement D is true. This contradicts Result 2.1.5
in Section which requires Ggr(w,ts,ty) = 0 at w = w,(t2,t9) where it crosses the zero line to the
opposite sign, to satisfy Statement 1.

Hence we see that, if Statement 1 is true, then Statement D is false and hence there exists at

least one finite s € W (element of set of whole numbers including zero) for which the (s)" derivative

of Gr(w,ts,ty) given by Gps(w,ta,ty) = W # 0 at w = w,(te,ty), where s = 2r is even or

s =2r+11is odd, for r € W, for each fixed positive ty,ts € R.

We choose the minimum value of s € W, for which Ggg(w,t2,t) = % # 0 at

w = w,(t2,to)and hence Grs_1(w,ts, ty) = W =0 at w = w,(t2,to) (Result 4.9). It
is shown in Result 4.9.a in the paras below that the case of s = 2r is ruled out and hence s = 2r+1 is

the order of the zero of Gr(w, ta, 1) at w = w,(ts2,ty) and hence Gg or11(w, t2, tg) = % #0

at w = w,(ty,t0) and Gror(w,ta,t9) = % =0 at w = w,(ts,ty), using Result 4.9. Hence

s = 2r + 1 is the order of the zero of Ggr(w,ts,ty) at w = w,(t2,to), the order of this zero is finite.

Hence we can write Gg(w, ta, to) = (w,(ta, t0)* — wW?)* TN/ (w, ta, ty), for r € W, where
N'(w,ta,tg) # 0 at w = tw, (s, ty), for each fixed positive ty,to € R and (2r + 1) is the highest order
of the zero at w = w,(t2, ty) which is finite. It is noted that w, (¢, ty) represents the zero crossing in
Gr(w, ta, 1), for each fixed positive tg,t2 € R. It is noted that N'(w,ts, ;) may or may not be zero
at w # tw,(t2,t9) and we do not claim otherwise.

The case of (w,(t2,%9)*> —w?)?" is ruled out because Gr(w, t2,ty) changes sign at w = +w, (¢, o)
and N'(w, ta,t9) # 0 does not change sign at w = Fw,(ts, o) and (w,(ta,t)* — w?)* > 0 for real w
and does not change sign at w = fw,(ts,ty).(Result 4.9.a)

We have shown that, if Ggr(w,ts,ty) = 0 at w = Fw,(ta,1y) to satisfy Statement 1, for each

fixed choice of positive g, ty € R, then Gro(w,ta,ty) = % =0 at w = Fw,(ts,%9) and

9Ckr, QT(W tato) _ aQTHaiI;T(fltz’to # 0 at w = dw,(t2, ) for some value of r € W and (2r 4+ 1) is the

hlghest order of the zero of Ggr(w, ta, 1) at w = £w, (2, ) which is finite.
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