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Abstract

We consider Riemann’s Xi function &(s) which is evaluated at s = 1+0+iw, given by £(3+0+iw) =
E,.(w), where o,w are real and compute its inverse Fourier transform given by E,(t). We study the
properties of E,(t) and a promising new method is presented which could be used to show that the
Fourier Transform of E,(t) given by Ej,(w) = £(3 + 0 +iw) does not have zeros for finite and real w
when 0 < |o] < 1, corresponding to the critical strip excluding the critical line.
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1. Introduction

It is well known that Riemann’s Zeta function given by ((s) = . n}bs converges in the half-plane
m=1

where the real part of s is greater than 1. Riemann proved that ((s) has an analytic continuation to
the whole s-plane apart from a simple pole at s = 1 and that ((s) satisfies a symmetric functional
equation given by £(s) = £(1—s) = 1s(s—1)m2['(£)((s) where I'(s) = [~ e "u*"'du is the Gamma
function.[4] [5] We can see that if Riemann’s Xi function has a zero in the critical strip, then Rie-
mann’s Zeta function also has a zero at the same location. Riemann made his conjecture in his 1859
paper, that all of the non-trivial zeros of ((s) lie on the critical line with real part of s = %, which is
called the Riemann Hypothesis.[I]

Hardy and Littlewood later proved that infinitely many of the zeros of {(s) are on the critical line
with real part of s = 3.[2] It is well known that ((s) does not have non-trivial zeros when real part
of s = %+ o+ iw, given by % +o0 >1and % + 0 < 0. In this paper, critical strip 0 < Re[s] < 1
corresponds to 0 < [o] < 1.

In this paper, a new method is discussed and a specific solution is presented to prove Riemann’s
Hypothesis. If the specific solution presented in this paper is incorrect, it is hoped that the new
method discussed in this paper will lead to a correct solution by other researchers.

In Section [2] to Section b, we prove Riemann’s hypothesis by taking the analytic continuation of
Riemann’s Zeta Function derived from Riemann’s Xi function £(3 + o + iw) = Ej,(w) and compute
inverse Fourier transform of E,,(w) given by E,(t) and show that its Fourier transform FE,,(w) does
not have zeros for finite and real w when 0 < |o| < %, corresponding to the critical strip excluding
the critical line.

In Section [7] it is shown that the new method is not applicable to Hurwitz zeta function and
related functions and does not contradict the existence of their non-trivial zeros away from the
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critical line with real part of s = %

We present an outline of the new method below.

1.1. Step 1: Inverse Fourier Transform of 5( + iw)

Let us start with Riemann’s Xi Function &(s) evaluated at s = § +iw given by £(5 +iw) = E(w) =
Eo,(w), where w is real. Its inverse Fourier Transform is given by Eo(t) = 5= [ Fo,(w)e™tdw, where
w, t are real, as follows (link).[3] (Titchmarsh pp254-255) We take the term e out of the bracket and
rearrange the terms as follows.

2.2t

Ey(t) = —22 [2n'n 2¢% —3n” 7T€2 Z47T2 tett — 6rne*]e ™ ¢ s (1)

We see that Ey(t) = Eo(—t) is a real and even function of ¢, given that Fy,(w) = Egy,(—w)
because &(s) = (1 — s) (link) and hence £(3 +iw) = £(5 — iw) when evaluated at s = § + iw.(Details
in [Appendix C.8)

The inverse Fourier Transform of £(3 + o +iw) = E,,(w) is given by the real function E,(t). We

can write E,(t) as follows for 0 < o] < 1 and this is shown in detail in |Appendix Al
Ey(t) = Eo(t)e™ = [4n?n'e™ — 6rn2e)e ™ ez~ (2)
n=1
We can see that E,(t) is an analytic function for real ¢, given that the sum and product of
exponential functions are analytic for real ¢ and hence infinitely differentiable for real .

1.2. Step 2: On the zeros of a related function G(w,t, 1))

Statement 1: Let us assume that Rlemann s Xi function &(5 + 0 + iw) = Ep,(w) has a zero at
w = wy where wy is real and 0 < |o| < 3, L corresponding to the critical strip excluding the critical
line. We will prove that this assumption leads to a contradiction.

Let us consider 0 < o < £ at first. Let us consider a new function g(t, ts, to) = f(¢, t2, to)e™ " u(—t)+
[t ta,to)e” u(t), where f(t,ts,t0) = €727 f1(t, s, to) + €27 fo(t, ta, to) and fi(t, ta, ) = " E,(t +
to,t2) and fo(t, ta, tg) = e WE,(t — to,t2) and E,(t, 1) = e "2E,(t — t3) — e”2E,(t + t2) and to, t
are real and ¢(t,ts, o) is a real function of variable t and wu(t) is Heaviside unit step function. We can
see that g(t,ta,t0)h(t) = f(t,ta,to) where h(t) = [e”u(—t) + e u(t)] .

In Section , we will show that the Fourier transform of the even function ge,e,(t,t2,ty) =
lg(t, ta, to) + g(—t, b2, )] given by Gg(w, ts,ty) must have at least one zero at w = w,(ts, o) # 0,
for every value of ty, for each nonzero value of ty, where Gr(w,ts,ty) crosses the zero line to the
opposite sign, to satisfy Statement 1, where w, (2, o) is real.


https://www.ams.org/notices/200303/fea-conrey-web.pdf#page=5
https://www.ocf.berkeley.edu/~araman/files/math_z/titchmarsh_pp254_255.pdf
https://www.ocf.berkeley.edu/~araman/files/math_z/Ellison_p147-152.pdf#page=6

1.3. Step 3: On the zeros of the function Gg(w,ts,to)

In Section we compute the Fourier transform of the function g(¢, ¢, %) and compute its real
part given by Gg(w, ts,t) and we can write as follows.

0
Grlw, ty, tg) = e 27" / [Eo(T + to, t2)e™ 2T + Ey, (T — to, t2)] cos (wr)dr

—0o0

0
+e20to / [E[;(T — to, t2)672‘” + E(/)n(T + to, to)] cos (wT)dT

(3)
We require Gg(w, ta,ty) = 0 for w = w,(ts,ty) for every value of ¢y, for each non-zero value

of ty, to satisfy Statement 1. In general w,(ts,tg) # wo. Hence we can see that P(ty,ty) =
Gr(w:(t2, ), t2,to) = 0.

1.4. Step 4: Zero Crossing function w,(ts, 1)) is an even function of variable i
In Section [2.4] we show the result in Eq. 4 and that w,(f2,%9) = w.(t2, —to). It is shown that

P(t27t0) = GR(wz(tQ,to),tQ,to) = odd(t%to) + Podd(tg,—to) = 0 and that Podd(tg,to) is an odd
function of ¢y, for each non-zero value of £, as follows.

to
P,aq(ta,to) = [cos (wz(tg,to)to)/ E(I)(T, ty)e 7 cos (w.(ta, to)T)dT
o
4 sin (w2 (fa, fo)to) / (7. £2)e=2" sin (w. (ta, t0)7)d7]
to , - to ,
€210 cos (w, (ta, to)to) / E, (7. 5) cos (w2 (ta, fo)7)dr + sin (w. (fa, fo)to) / E, (7, 12) sin (w. (ta, to)7)d7]

(4)

1.5. Step 5: Final Step

In Section @, it is shown that w,(ts,%p) is a continuous function of variable ¢, and to, for all
0 <o < oo and 0 < t5 < co. In Section ] it is shown that Ey(¢) is strictly decreasing for ¢ > 0.

In Section |3} we set ty = to. and ty = to. = 2to., such that w,(ta,to.)to. = 5 and substitute

in the equation for P,y4(ts,to) in Eq. 4 and show that this leads to the result in Eq. 5. We use
E(/)(t,tg) = Eo(t — tg) — E()(t + tg) and E{)n(t,tg) = E(/)(—t,tg)

/0 OC(EO(T — tae) — Eo(T + tac))(cosh (20ty.) — cosh (207)) sin (w, (tac, toe)T)dT = 0
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(5)
We show that each of the terms in the integrand in Eq. 5 are greater than zero, in the interval
0 < 7 < to. and the integrand is zero at 7 = 0 and 7 = tq., where to. > 0.

Hence the result in Eq. 5 leads to a contradiction for 0 < o < %

We show this result for 0 < o < 3 and then use the property £(2 +0 +iw) = (3 — 0 —iw) to show
the result for —% < 0 < 0. Hence we produce a contradiction of Statement 1 that the Fourier

Transform of the function E,(t) = Ey(t)e " has a zero at w = wy for 0 < |o| < 3.

2. An Approach towards Riemann’s Hypothesis

Theorem 1: Riemann’s Xi function £(5 + o + iw) = Ep,(w) does not have zeros for any
real value of w, for 0 < |o| < %, corresponding to the critical strip excluding the critical line,
given that Eo(t) = Eo(—t) is an even function of variable t, where E,(t) = 5= [70 Epu(w)e™!dw,

2.2t 1

E,(t) = Eg(t)e 7" and Eo(t) = > o0 [An*nte* — 6mn?e*]e ™ ¢ e2.

Proof: We assume that Riemann Hypothesis is false and prove its truth using proof by contra-
diction.

Statement 1: Let us assume that Riemann’s Xi function £(5 + o + iw) = E,,(w) has a zero at
w = wy where wy is real and 0 < |o| < %, corresponding to the critical strip excluding the critical
line. We will prove that this assumption leads to a contradiction.

We will prove it for 0 < o < % first and then use the property f(% +o+iw) = &2 — o0 —iw) to

2
show the result for —1 < o < 0 and hence show the result for 0 < |o| < 1.

We know that wy # 0, because ((s) has no zeros on the real axis between 0 and 1, when s =
s +o0+iwisreal, w=0and 0 < |o| < 3. [3] (Titchmarsh pp30-31). This is shown in detail in first
two paragraphs in [Appendix C.1}

2.1. New function g(t,ts,t0)

Let us consider the function E,(t,t2) = e "2 E,(t — t2) — e"2E,(t + t2) = (Eo(t — t2) — Eo(t +
ty))e~ " = Ey(t,ty)e !, where ty is non-zero and real, and Ey(t,ty) = Ey(t — t3) — Eo(t + to)
(Definition 1). Its Fourier transform is given by E (w,t2) = Ep,(w)(e 72~ — ¢7'2¢™!2) which
has a zero at the same w = wy, using Statement 1 and linearity and time shift properties of the
Fourier transform ( link). (Result 2.1.1).

Let us consider the function f(t,ta,t0) = e 270 f1(t, ta, tg) + €270 fo(t, ta, to) where fi(t,ta,ty) =
e E (t + to, t2) and fo(t, ta,to) = fi(t, t2, —tg) = e TE (t — to, ) where t; is real and we can see
that the Fourier Transform of this function F(w, ta,ty) = E, (w, t2)(e7 270 el 4 e20t0g=0tog—iwlo) —

E,,(w,tz)(e~"eito 4 e7oe=i@l0) also has a zero at the same w = wy, using Result 2.1.1. (Result


https://www.ocf.berkeley.edu/~araman/files/math_z/Titchmarsh_pp30_31.pdf
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2.1.2)

Let us consider a new function g(t,te,tg) = g_(t, ta, to)u(—1t) + g4 (t, to, to)u(t) where g(t,ts,1g) is
a real function of variable ¢ and u(t) is Heaviside unit step function and g_(¢, 2, tg) = f(¢,t2,tg)e "
and gy (¢, t2,t0) = f(t,t2,t0)e’" . We can see that g(t,ts,to)h(t) = f(t,ta, to) where h(t) = [e” u(—t) +
e 7tu(t)].

We can write the above equations as follows.

Ey(t,t) = e P E,(t —ts) — e Ey(t +ta) = (Eo(t — ta) — Eo(t + t2))e " = Ey(t, t2)e "
filt ta, to) = " E (4 to, )

folt ta, to) = fi(t,ta, —to) = e TE, (t — to, o)

Ftta,to) = €721 fi(t o, to) + €271 fo(t, o, to) = e OE (t + to, o) + €7 E, (t — to, o)
g(t,ta, to) = [f(, ta, to)e _Ut]u(— )+ [f(t, ta, to)e” Ju(t)

gt ta, to)h(t) = f(t,ta,t0),  h(t) = [e” u(—t) + e u(t)]

(6)
We can show that Ep<t>,E;)(t7t2),h(t> are absolutely integrable functions and go to zero as
t — Foo. Hence their respective Fourier transforms given by E,,(w), E,,(w,t2), H(w) are finite

for real w and go to zero as |w| — oo, as per Riemann Lebesgue Lemma (link). We can show that
FEo(t) and Ey(t)e~?7" are absolutely integrable functions. These results are shown in [Appendix C.1}

In Section and Section , it is shown that g(t,ts,to) is a Fourier transformable function and
its Fourier transform given by G(w, ta,tg) = ¢ 270G (w, ta, ty) + €27 G (w, to, —to) converges. (Eq. 14
and Eq. 17)

If we take the Fourier transform of the equation g(t, ta, to)h(t) = f(t,t2,to) where h(t) = [e”'u(—t)+
e~7"u(t)], using Result 2.1.2, we get 5-[G(w, ta,ty) ¥ H(w)] = F(w,ta,to) = E;Dw(w,tz)(e_gtoei“’to +
e7loe i) = Fp(w, ty, ty) + i Fr(w, tg,to) as per convolution theorem (link), where % denotes con-
volution operation given by F(w,ts,t0) = 5= [*. G(w', 2, t0) H(w — w')dw’. (Result 2.1.a)

We see that H(w) = Hr(w) = [ + = J:Zw] = (022fw2) is real and is the Fourier transform of
the function A(t) (link). G(w,ta,t9) = Gr(w,ts, to) + iG(w,ts, o) is the Fourier transform of the
function g(t,ts,t9). We can write g(t,t2,%0) = geven(t, 2, t0) + Goda(t, t2, to) Where Geyen(t,t2,10) is an

even function and geqq(t, t2, to) is an odd function of variable t.

If Statement 1 is true, then we require the Fourier transform of the function f(¢,t,t) given
by F(w,ts,1y) to have a zero at w = wy for every value of t;, for each non-zero value of ¢y, us-
ing Result 2.1.2. This implies that the real part of the Fourier transform of the even function
Geven(t, T2, t0) = 3[g(t, b2, t0) + g(—t,t2,t0)] given by Ggr(w,ts,to)(Details in [Appendix D.2) must
have at least one zero at w = w,(t2,ty) # 0 where w,(t2, o) is real, where Gr(w, ts,to) crosses the
zero line to the opposite sign, explained below. We note that w,(ts,%y) can be different from wy in
general.

Because H(w) = (JQ%F—UUJQ) is real and does not have zeros for any finite value of w, if Gg(w, 2, o)

does not have at least one zero for some w = w,(tq,ty) # 0, where Gr(w, t, o) crosses the zero line to


https://en.wikipedia.org/wiki/Riemann-Lebesgue_lemma
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the opposite sign, then the real part of F(w,ts,ty) given by Fr(w,ts,t) = %[Gg(w, to, to) * H(w)],
obtained by the convolution of H(w) and Gr(w, ts, ), cannot possibly have zeros for any non-zero fi-
nite value of w, which contradicts Result 2.1.2 and Statement 1. This is shown in detail in Lemma 1.

The proof for Lemma 1 below is shown for a fixed value of ¢, = to; and 5 = t5¢, in the interval
[to] < 0o and 0 < |t2] < oo (Interval A), where Ggr(w,ts,1p) is a function of w only. The proof
continues to hold for our choice of each and every combination of fixed values of ¢, and ¢, in
interval A, where Gg(w, t2, o) is a function of w only.

Lemma 1: Let ty,t3 € R be fixed values and t5 # 0 and 5(% + 0+ iw) = E,,(w) has a zero at
w = wy using Statement 1. Then the Fourier transform of the even function geye,(t,t2,to) given by
GRr(w,ts,ty) must have at least one zero at w = w,(t2,tg) # 0, where Gr(w, ta,t) crosses the zero
line to the opposite sign and w, (¢, o) is real.

Proof: If E,,(w) has a zero at w = wy to satisfy Statement 1, then F(w,t,to) has a zero at
w = wp, using Result 2.1.2 and its real part given by Fg(w,ts,%y) has a zero at w = wy, where
wp # 0(Result 2.1.3).

We do not have a closed form solution for Gg(w, t2,t) and do not know the exact location of its
zeros at w = w,(tq,to). For a specific choice of ty, ¢y, only one of the 2 cases is possible:
Case A: Gg(w,ty,1p) does not have a zero crossing for any choice of w # 0 or
Case B: Gg(w, ta, ) has at least one zero crossing for a specific w # 0.
If Statement 1 is true, then Case B is the only possibility and Case A is ruled out, as shown below.

We want to show the Result 2.1.5 that Gg(w, t2, ) must have at least one zero crossing at
some value of w = w,(t2,ty) # 0 (Case B), to satisfy Statement 1, for this choice of fixed ¢, t5.

To show Result 2.1.5, we assume the opposite Case A, that Gg(w,ts,%y) does not have at
least one zero for any value of w # 0, where Gg(w, t9,ty) crosses the zero line to the opposite sign
(zero crossing) and will show that Fr(w,ts,ty) does not have at least one zero at finite w # 0 for this
case, which contradicts Result 2.1.3 and Statement 1 and hence we rule out Case A and arrive at
Case B (Case B is the same as Result 2.1.5).

This does not mean that, proof of Lemma 1 will work only if Gr(w,ts,1y) does not have a zero
crossing for any value of w # 0, for any choice of t5,ty. The device Proof by Contradiction is used
here to rule out Case A and arrive at Case B. (Details of other cases in Section [2.1.1])

It is noted that, for Case B, we do not use Eq.[7] to Eq. 10 and related arguments, because
Case B is the desired Result 2.1.5. (Note 1)

The arguments above and following proof continue to hold for our choice of each and every
combination of fixed values of ¢y, and ¢, in interval A, where Gr(w,t2,ty) is a function of w only.

Given that H(w) is real, using Result 2.1.a, we write the convolution theorem only for the real
parts as follows.

1 > / !/ !/
Fr(w, ta,to) = %/ Gr(W', t2,to) H(w — w')dw (7)

[e.9]



We can show that the above integral converges for real w, given that the integrand is absolutely
integrable because G(w, ts,to) and H(w) have fall-off rate of 2 as [w| — oo because the first deriva-
tives of g(t,t2, to) and h(t) are discontinuous at ¢t = 0.(Details in [Appendix C.2land [Appendix C.6)

We substitute H(w) = ﬁ in Eq. |7l and we get

o [~ 1 ,
Fr(w, ta, to) = p /_Oo Gr(W'sta, o) (02 + (w— w/)Q)dw (8)

We can split the integral in Eq. using == ffoo + /57, as follows.

0
o 1
Fr(w,ty, tg) = ;[/ Gr(W, ta, 1) (0% + (0 —

)2>dwl —|—/0 GR(wl7t2,t0) (0’2

We see that Gr(—w,ta,t9) = Gr(w,ta,ty) because g(t, t2,to) is a real function of variable t.
(Details in [Appendix D.1)) We can substitute w’ = —w” in the first integral in Eq. 9 and substituting
w” = ' in the result, we can write as follows.

1 1

T N C R Rl

o o0
Fr(w, ty, tg) = ;/ GRr(W', ta, to)
0

(10)

We note that ¢y and ty are fixed in Eq. 10 and Gg(w,t2,1) is a function of w only and the
integrand in Eq. 10 is integrated over the variable w only.

In [Appendix C.2] it is shown that G(w', t9,to) is finite for real w’ and goes to zero as || — oco.
We can see that for w’ — oo, the integrand in Eq. 10 goes to zero. For finite w > 0, and 0 < W’ < oo,
we can see that the term (02+(Lj_w,)2) + (GQHJJW,)Q) >0, for0<o< % We see that Gr(w', ta, 1) is
not an all zero function of variable w’ (Details in Section 2.2). (Result 2.1.4)

e Case 1: Ggr(W',ta,ty) > 0 for all finite w’ >0

We see that Fr(w,ts,ty) > 0 for all finite w > 0, using Result 2.1.4. We see that Fr(—w,ts,ty) =
Fr(w, to,tg) because f(t,ts,1o) is a real function ( [Appendix D.1|) and link ). Hence Fr(w,ts,t9) > 0
for all finite w < 0.

This contradicts Statement 1 and Result 2.1.3 which requires Fr(w,ts,t) to have at least one
zero at finite w # 0. Therefore Gr(w', t2,ty) must have at least one zero at w' = w,(ts,tg) > 0
where it crosses the zero line and becomes negative, where w, (o, to) is finite.

e Case 2: Gr(W',ta,ty) <0 for all finite w’ >0
We see that Fr(w,ts,ty) < 0 for all finite w > 0, using Result 2.1.4. We see that Fr(—w,ts,t5) =

Fr(w,ts,tg) because f(t,1ts,t0) is a real function ( [Appendix D.1|) and link ). Hence Fr(w,ts,t9) <0
for all finite w < 0.
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This contradicts Statement 1 and Result 2.1.3 which requires Fr(w,ts,t) to have at least one
zero at finite w # 0. Therefore Gr(w’, t2,tp) must have at least one zero at w' = w,(t2,ty) > 0,
where it crosses the zero line and becomes positive, where w, (¢, to) is finite.

We have shown that, Gr(w, ta, ty) must have at least one zero at finite w = w,(t2, ty) # 0 where
it crosses the zero line to the opposite sign, to satisfy Statement 1, for specific choices of fixed ty, ts.
We call this Result 2.1.5.

The arguments above and the proof continue to hold for our choice of each and every combi-
nation of fixed values of ¢y and ¢, in interval A, where Gg(w, ts, ) is a function of w only.

In the rest of the sections, we consider only the first zero crossing to the right of origin, where
Gr(w, ta, 1) crosses the zero line to the opposite sign. Hence 0 < w,(t,t) < oo, for all |ty| < oo, for
each non-zero value of 5, to satisfy Statement 1.

2.1.1. Discussion of Lemma 1

Result 2.1.5: Gg(w,t2,ty) must have at least one zero at finite w = w,(ts,%y) # 0 where it
crosses the zero line to the opposite sign, to satisfy Statement 1.

For each fixed value of tg, t5, only 2 cases are possible for Gr(w, ta,ty). Case A: Ggr(w,ta, 1) does
not have a zero crossing for any choice of w # 0. Case B: Gg(w, t2, ) has at least one zero crossing
for a specific w # 0. Proof of Lemma 1 assumes Case A and uses Proof by Contradiction to rule
out Case A and arrive at Case B, for each choice of fixed tg,t5. This does not mean that Proof of
Lemma 1 does not work for Case B. For Case B, we do not use Proof of Lemma 1 and jump to the
end of the proof because we already have the desired Result 2.1.5 which is the same as Case B.

The logic used is this proof is as follows: If Statement 1 is true(RH is false), then Result 2.1.5 is
true (Case B), for each and every combination of fixed values of ¢y, t; in interval A (|¢y] < oo and
0 < |t2| < oo )and hence Case A is ruled out and only Case B is possible for Gg(w, ts,ty). Then we
proceed with Result 2.1.5 to Section 2.3, 2.4 and Section 3, to produce a contradiction of Statement
1 in Eq. |41} and thus prove the truth of RH.

Alternate Method: We present an alternate method of analyzing all possible cases of Gg(w, 2, to)
below. We can arrive at Result 2.1.5, for each and every combination of fixed values of #g, ¢y in
interval A, using Proof of Lemma 1 for Case C and Case D or using Case E, as explained below.

It is noted that Fr(w,ts,to) and Gg(w, ta, tp) may have more zeros than F'(w, ts, ty) and G(w, ta, to)
respectively. That does not affect the proof of Lemma 1, as explained below.

We do not have a closed form solution for Gg(w,t2,ty) and do not know the exact location of its
zeros at w = w;, (g, o), for each fixed choice of ¢, tg. We consider 3 possible cases of Gg(w, ta, ty) below.

e Case C: We consider the case that Gr(w,ts,%y) does not have a zero crossing, for any value
of w # 0, for each and every choice of t5,%; in Interval A and we use Proof of Lemma 1 for each
and every choice of ¢y, tg, to show that it leads to a contradiction of Statement 1, and hence prove
Result 2.1.5, for each and every choice of t9, tg.



Hence Case C is ruled out, if Statement 1 is true. (Result 2.1.1.c)

e Case D: We consider the case Gg(w,ts,ty) has a zero crossing at w = w,(t2, 1), for specific
choices of t, = t,,ty = t,.(Not for all possible choices of t,, )

For Case D, this means that Gg(w,ts,%y) has at least one zero crossing at w = w, (s, tp),
for specific choices of ty = t,,t) = té), which is the desired Result 2.1.5 and hence we do not go
through the arguments in this proof and we can jump to end of Proof of Lemma 1 (using Note 1).
In this case, we have not assumed Statement 1 and yet arrived at Result 2.1.5, for specific choices
of ty = th, tg = t,.

For Case D, there is at least one choice of ty = tor,ty = tos for which Gr(w,?s,t) does not
have a zero crossing, for any value of w # 0. For this choice of ty, = tof,t9 = tos, we use Proof of
Lemma 1 to show that it leads to a contradiction of Statement 1, and hence prove Result 2.1.5.

Hence Case D is ruled out, if Statement 1 is true. (Result 2.1.1.d)

e Case E: We consider the case Gg(w, ta, %) has at least one zero crossing at w = w,(ts, o), for
each and every choices of t,, ¢y in Interval A. We call this Statement 3.

For Case E, this means that Gg(w, ts,ty) has at least one zero crossing at w = w,(ts,tg), for
each and every choices of t5,t; which is the desired Result 2.1.5 and hence we do not go through
the arguments in this proof and we can jump to end of Proof of Lemma 1 (using Note 1). In this
case, we have not assumed Statement 1 and yet arrived at Result 2.1.5, for each and every choices
of o, tg.

For Case E, we see that we arrive at Result 2.1.5 by assuming Statement 3 only. Then we proceed
with Result 2.1.5 to Section 2.3, 2.4 and Section 3, to produce a contradiction of Statement 3 in
Eq. 41} Hence Statement 3 is false and Case E is ruled out.

There are only 3 possible cases for Gg(w,ts,ty) given by Case C,D and E. We have ruled out
Case E in above para. If Statement 1 is true, Case C and Case D have been ruled out using Result
2.1.1.d and Result 2.1.1.e. Given that Case C,D and E are the only 3 possible cases for Gg(w, t2, to),
this means Statement 1 is false.

Thus we have produced a contradiction of Statement 1 that the Fourier Transform of the
function E,(t) = Ey(t)e " has a zero at w = wp for 0 < |o| < 3 and hence prove the truth of

2
Riemann’s Hypothesis.

2.2. Ggr(w',ts,ty) is not an all zero function of variable W'

If Gr(w',ts,ty) is an all zero function of variable w’, for each given value of ¢y,ts € R and
to # 0 (Statement 2), then Fg(w,ts,%y) in Eq. [7]is an all zero function of w, for real w. Hence
2feven(t,ta, to) = f(t,ta,to) + f(—t, ta, 1) is an all-zero function of ¢, given that the Fourier transform
of feven(t,ta,t0) is given by Fgr(w, ta, 1), using symmetry properties of Fourier transform(
and link ). Hence f(t,1s,1) is an odd function of variable ¢.(Result 2.2).


https://lpsa.swarthmore.edu/Fourier/Xforms/FXProps.html

From Eq. 6 we see that E (t,t5) = e "2 E,(t — t3) — €72 E,(t + t5) = [Eo(t — ta) — Eo(t + t2)]e "
Hence fi(t,ta,t9) = e"tOEI/)(t + to, ta) = €7 [Eg(t + to — t2) — Eo(t + to + t2)]e “"e 7" and we use
e7e7% =1 and hence fi(t,t2,t0) = [Eo(t + to — t2) — Eo(t + to + t2)]e 7" and
falt, ta, to) = f1(t,ta, —to) = [Eo(t — to — t2) — Eo(t — to + t2)]e™7" . Hence we can write
f(t, tg, to) = 6_2Utofl(t, ta, to) + 620t0f2(t, tg, tg) in Eq 6, as follows.

[t o, tg) = e 270 Ey(t+tg—to) — Eo(t +to+ts)]e 7 4+ e [Ey(t —tg—to) — Eo(t —to+12)]e " (11)

Case 1: For tg # 0 and t5 # 0, it is shown that Result 2.2 is false. We will compute f(t,ts,%0) in
Eq.[11}at ¢t = 0 and show that it does not equal zero.

We see that f(O, tQ, to) = 6_2Ut0 [Eo(tg — tg) — Eo(t() + tQ)] + €20t0 [E()(—to — tg) — Eo(—to + tg)]
= —2sinh (20tg)[Eo(to — t2) — Eo(to + t2)]. We use the fact that Ey(ty) = Eo(—to) (Details in
’ and hence Eo(to — tg) = E()(—to + tg) and Eo(t() + tg) = Eo(—t() — tg)

If Result 2.2 is true, then we require f(0,ts,%)) = —2sinh (20ty)[Eo(to — t2) — Eo(to + t2)] = 0.
For our choice of 0 < 0 < % and ty # 0, this implies that Ey(tg — ta) = Eo(to + t2). Given that tg # 0
and ty # 0, we set to = Kty for real K # 0 and we get Eo((1 — K)ty) = Eo((1 + K)tp). This is
not possible for ¢y # 0 because Fy(ty) is strictly decreasing for ¢, > 0 (Details in Section [5)) and
1-K#1+Korl—K#—(1+K) for K # 0. Hence Result 2.2 is false and Statement 2 is false
and Gr(w', s, 1) is not an all zero function of variable w’.

Case 2: For ty = 0 and ¢y # 0, we have f(t,ta,t0) = 2[Eo(t — t2) — Eo(t + t2)]e” 7" = 2D(t)e "
in Eq. where D(t) = Eo(t — t3) — Eo(t + t2). We see that D(t) + D(—t) = Eo(t — t5) —
Eo(t + to) + Eo(—t — ta) — Eo(—t + t2). Given that Ey(t) = Eo(—t), we have D(t) + D(—t) =
Eo(t — tg) — Eo(t + tQ) + Eo(t + tg) — E()(t — tg) = 0 and hence D(t) = Eo(t — tg) — Eo(t + tg) is an
odd function of variable ¢t (Result 2.2.1).

If Result 2.2 is true, then we require f(t,t2,t9) = 2D(t)e™ " to be an odd function of variable
t. Using Result 2.2.1, we require D(t) to be an odd function of variable ¢. This is possible only for
o = 0. This is not possible for our choice of 0 < 0 < % Hence Result 2.2 is false and Statement 2 is
false and Gr(w’, ta, 1) is not an all zero function of variable w’.

Case 3: For t, = 0 and [to| < oo, we have E,(t,ts) = e "2E,(t — t5) — e E,(t + t) = 0 and
f(t,ta, to) = g(t,ta,tg) = 0 for all ¢t in Eq. 6 and Lemma 1 is not applicable for this case.

2.3.  On the zeros of a related function G(w,t, 1))

In this section, we compute the Fourier transform of the function geyen (£, t2,t0) = %[g(t, to, to) +
g(—t,ta,t0)] given by Gr(w,ta,to)(using |[Appendix D.2)). We require Gr(w,ts,tg) = 0 for w =
w,(t2,to) for every value of ty, for each non-zero value of t, to satisfy Statement 1, using Lemma
1 in Section 211

We define gy(t,t2,t0) = fi(t,t2,t0)e” " u(—t) + fi(t, t2,t0)e” u(t) = egtoEz;(t + to, ta)e” " u(—t) +
e E (t + to, t2)e”"u(t), using Eq. 6 (Definition 3). First we compute the Fourier transform of the
function ¢ (t,ta,t9) given by Gy (w,te,tg) = Gir(w,ta, to) + 1G1r(w, Lo, to) as follows.
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00 0

G1 (W, tg, to) = / g1 (t, tg, to)eiiwtdt = /

—00 —00

0
G1<W, t27 tO) - /

—0o0

91 <t’ t27 to)efi‘“tdt + / g1 (ta t27 t())eii(m&dt
0
€gtOEI/,<t + to, tQ)e—ote—iwtdt + /0 eato E;;(t + t()a t2)€0t€—iwtdt

(12)

We use E(t,t2) = Ey(t,t2)e " from Eq. 6, where Eg(t,ty) = Eo(t — t2) — Ey(t + t3), using
Definition 1 in Section and we get E(t + to,ta) = Eqg(t + to, t2)e 7'e 7" and write Eq. 12 as
follows. Then we substitute t = —t in the second integral in first line of Eq. 13.

0 o0
Gi(w,ta, to) = / Eyo(t + to, to)e™ 2 e tdt + / E)(t + to, ta)e “idt
- ;
0 ! y 0 ! .
Gh(w,tz, tg) = / Ey(t + to, ta)e e ™ dt + / Eo(—t + to, to)e™tdt

(13)

We define E), (t,t5) = FEy(—t,t;) (Definition 2) and get Fy(—t+to,t2) = Ey,(t —to,t2) and write
Eq. 13 as follows. The integral in Eq. 14 converges, given that Ey(t)e 2! is an absolutely integrable
function and its to, £, shifted versions are absolutely integrable, using E(t,ty) = Eo(t—ts)— Eo(t+ts)
in Definition 1 in Section and Definition 2. (Details in |[Appendix C.1J)

0 0

G1 (LL), tQ, tO) = / E(l)(t -+ to, t2)€72ateiiw’fdt —+ / Eé)n(t — to, tz)ethdt = GlR(w, tg, to) -+ iGH(w, tQ, to)

(14)
The above equations can be expanded as follows using the identity ™! = cos(wt) + isin(wt).
Comparing the real parts of G;(w, to, ), we have

0 0

Gir(w, te, tg) = / Ey(t + to, ta)e™27 cos (wt)dt + / E,, (t — to, ) cos (wt)dt

—00 —00

(15)

2.4. Zero crossing function w,(t2,ty) is an even function of variable t,, for a given t,

Now we consider Eq. 6 and the function f(, s, tg) = e727% f1(t, to, tg)+€27%0 fo(t, ta, tg) = et EI/)(H—
to, ta) + e E (t — to,ts) where fi(t,ta,t) = e™MEl(t + to,t2) and fa(t, ta,t0) = fi(t, t2, —to) =
e~ 7B (t—to, t2) and g(t, ta, to)h(t) = f(t, 2, to) Where g(t, o, to) = f(t, 12, to)e™ " u(—t)+f(t, L2, to)e” u(t)
and h(t) = [e”'u(—t) + e “"u(t)]. We can write the above equations and g (¢, ta, t) from Definition 3
in Section , as follows. We define go(t, t2, o) below and write g(t,ts,to) as follows.
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(1),  gi(t, ta, to)h
(t)v 92<t7 t27 tO)h’
e~ 270 g (t, g, to) + €270 gy (t, tg, to)

g1 (t, tg, to) = f1 (t, t2’ to)e*”tu(—t) + f1 (t, tQ, to)e t) = f1 (t, t2, to)
(

ot
u
ga(t ta, to) = falt ta, to)e™ " u(—t) + fo(t, ta, to)e u
g(t,ta,t0) =

(16)

We use the fact that, for ¢ < 0, e72%%g, (¢, ty,t0) + €270 gy(t, ta, tg) = €270 f1 (¢, ta,t9)e 7" +
€270 fo(t, tg, to)e 7" = e 270 EN (t + to, ta)e 7 + €270 NEN (t — to, ty)e™ = [eTTNE (t + to, t2) +
T (t — to, t2)]e” " = f(t,ta,t0)e™"" = g(t, 12, o) using Eq. 16 and the paragraph before Eq. 16.

For ¢ = 07U(t) = U(—t) = % and hence g1(07t27t0) = fl(oat27t0)7 g?(t7t27t0) = f2(07t27t0)
and hence €727 g, (0, t, tg) + €7 go(0, t2, t9) = €727 f1(0,ta,t9) + €*7 f5(0, 12, o) = f(0,t2,t9) and
9(0,22,t0) = % = f(0,ts,t9) and hence g(t,t2,tg) = € 270 gy(t, 1o, o) + €70 ga(t, t2, ty) at t = 0.

Similarly, for ¢t > 0, €727 g, (¢, to, to) + €270 gy(t, ta, tg) = €720 f1 (L, Lo, to) e + 200 fo(t, 1o, tg) e =
e 20T B (T + to, ta)e 4 €270 E] (t — to, t)e”" = [e7 B (t 4 to, ta) + OB (t — to,t2)]e”" =
[t ta, t0)e” = g(t,ta,ty). Hence g(t,ta, to) = e 270 gy (¢, ta,ty) + €270 ga(t, t2, to) for all t in Eq. 16 .

We compute the Fourier transform of the function g¢(t,t2,%9) in Eq. 16 and compute its real
part Gg(w, ta, o) using the procedure in Section [2.3] similar to Eq. 15 and we can write as follows in
Eq 17. We use GQR(CO, ta, to) = GlR(w, ta, —to) given that fQ(t, ta, to) = fl(t7 o, —to) and gg(t, to, to) =
g1(t, ta, —to) and Gao(w, te,tg) = Gi(w,ta, —tg). We substitute t = 7 in the equation for Gyg(w, ta, o)
below, copied from Eq. 15.

GR(UJ, t27 Z50) - eizo’tOGlR(wa t?a tO) + e2atOG2R(w7 t27 tO) = 672Ut0G1R(w7 t27 tO) + BQUtOGlR(wa t2> _tO)
0

G, tasto) = / B (7 + to, ta)e ™2™ + Ey (7 — to, ta)] cos (wr)dr

—00

0
Grlw, ty, tg) = e 2% / [Ey(T + to, 12)e™ 2T 4 Ey,, (T — to, t5)] cos (wr)dr

—00

0
+e?7to / [Ey(T — to, t2)e 2T + Ey, (T + to, ty)] cos (wr)dr

(17)

We require Gr(w, ta,ty) = 0 for w = w,(t2, o) for every value of ¢y, for each non-zero value of t,,
to satisfy Statement 1, using Lemma 1 in Section . In general w,(t2, %)) # wo. Hence we can see
that P(te,tg) = Gr(w.(t2,t0),t2,tp) = 0 and we can rearrange the terms in Eq. 17 as follows. We
take the first and fourth terms in Gg(w,t2, %) in Eq. 17 and include them in the first line in Eq. 18.
We take the second and third terms in Eq. 17 and include them in the second line in Eq. 18.

0
P(tg, to) = GR(wZ(tQ, to), tQ, to) = / [672Gt0E{)(T + t(), t2)€7207 -+ QQUtOE(l)n(T + t(), tg)] COS ((A)Z(tg, to)T)dT
0
+/ [e2gt0 E(/] (’T — to, t2>€_2m— + G_QUtOE(I)n(T - t(), tg)] COS (wz (tQ, to)T)dT =0

—0o0
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(18)

We use the fact that f(¢,ts, ) = e 7E (t 4 to, t2) + € E,(t — to, t2) = f(t, t2, —to) in Eq. 6, is

unchanged by the substitution ty = —to. If f(t,t9,t0) = f(t,t2, —1p) is unchanged by the substi-

tution tg = —to, then g(¢,t,t0) = g(t,t2, —to) is unchanged by the substitution tq = —t, using the
fact that g(t,ts, to)h(t) = f(t,t2,t0) and h(t) = [ u(—t) + e~ u(t)].

Hence the Fourier transform of g(t, s, %) given by G(w,ta,ty) = G(w,ta, —tp) and its real part
given by Gg(w,ta,ty) = Gr(w,ts, —tg) is unchanged by the substitution ty = —t; and the zero
crossing in Gr(w, ta, —to) given by w,(t2, —to) is the same as the zero crossing in Gr(w, ta, %) given
by w,(t2,t0) and we get w,(ta,ty) = w.(t2, —ty) and hence w,(t9, o) is an even function of variable ¢,
for each non-zero value of 5.

We can write Eq. 18 as follows, where P,y(t2,%9) is an odd function of variable ¢y, for each
non-zero value of t5. We use w,(ta,to) = w,(t2, —to).

P(ty,t0) = Poaa(t2, to) + Poaa(ta, —to) =0
0
Podd(tQ, to) = / [672at0E{; (’7' + t(), t2)€7207 + €2UtOE(lm(T + to, tg)] COS ((A)Z (tQ, to)T)dT

—00

(19)

3. Final Step

We expand P,gq(ts, o) in Eq. 19 as follows, using the substitution 7+ ty = 7. We get 7 = 7/ — ¢
and dr = dr’ and substitute back 7/ = 7 in the second line below. We use e 27%¢27% = 1 and use
the identity cos (w,(t2,t0)(T — to)) = cos (w,(te, to)to) cos (w,(tae, to)T)+sin (w,(tse, to)to) sin (w,(ta, to)T)
below.

tO / ! / 1
PLaq(ta, to) = / [e7 270 E (1, t5)e ™27 2700 4 270 E (7', t5)] cos (ws (ta, to) (T — to)dr
o .
P,aa(te, tg) = [cos (wz(tg,to)to)/ Ey(T, t2)6_2” cos (w, (te, to)T)dT
o
+ sin (wz(tg, to)to) / EO(T, tg)e_z‘” sin (wz (tz, to)T)dT]
to , - to ,
+e20to [cos (w,(tz2, to)to) / E,, (T, t2) cos (w.(te, to)T)dT + sin (w,(te, to)to) / E,, (7, t2) sin (w, (ta, to)7)dT]

(20)

In Section it is shown that 0 < w,(t2,t9) < oo, for all |ty| < oo, for each non-zero value of ¢,.
In this section, we consider ¢y > 0 and ¢, > 0 only.

In Section |§|, it is shown that w,(t2,1%9) is a continuous function of variable ¢y, and 5, for all
0<tyg<ooand 0 <ty < o0.
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In Section [5] it is shown that Eq(¢) is strictly decreasing for ¢ > 0.

Given that w,(t2,19) is a continuous function of both ¢y and ¢, we can find a suitable value of
to = toc and ty = ty. = 2t such that w, (tac, to.)to. = 5. Given that w.(t2,1o) is a continuous function
of ty and t5 and given that ¢y is a continuous function, we see that the product of two continuous
functions w, (s, t9)to is a continuous function and is positive for tq > 0 because 0 < w,(t2, ) < o0.

We see that w,(t2,t9)to is a continuous function of variable ¢, and ¢, and that w.(ts, o)ty = §
can be reached for specific values of ¢y and to = 2t¢, as finite ¢y increases without bounds.(Details in
Section . As ty, ty increase from zero to a larger and larger finite value without bounds, the contin-
uous function w; (ts, to)to starts from zero and will pass through 7, for specific values of ¢y and t, = 2t,.

We set g = to. > 0 and ty = ty. = 2to. such that w,(ta., toc)toe = 5 in Eq. 20 as follows. We use
the fact that cos (w,(t2c, toc)toe) = 0, sin (w,(t2e, toc)toe) = 1 and w, (tae, —toe) = ws(tae, to.) shown in
Section [2.4]

toc

Podd(tZCy toc) = / Eé(’i', tQC)€72UT sin (wz (tgc, tOC)T)dT + GZUtOC / Eén<7_7 t?c) sin (CLJZ (tgc, tOC)T)dT

—00 —00

toc

(21)
We compute P,qq(ta, —to) in Eq. 20 as follows. We use w,(ts, —tg) = w,(t2,t9) (Details in Sec-

tion .

Praa(ta, —to) = [c08 (w1, to)to) / (7, 12)e=27 cos (wa (ta, to)7)dr
__O:O |
— sin (w, (t2, to)to) / Eqy(T, t2)€_20T sin (w, (tg, to)T)dT]
—to ’ N —to ’
e 20t [cos (w,(ta, to)to) / E,,, (7, t3) cos (w,(ta, to)T)dT — sin (w,(ta, to)to) / Eq, (7, t2) sin (w, (t2, to)T)dT]

(22)

We set tg = to. > 0 and ty = ty. = 2to. such that w,(ta., toc)loc = 5 in Eq. 22 as follows. We use
oS (W, (tae, toc)toe) = 0, sin (w, (tae, toc)toc) = 1.

—toc

E(l)(T, tgc)e’z” sin (w, (tae, toe)T)dT — g~ 20toc / E(;n(T, toc) sin (w, (tac, toe)T)dT

(e 9]

—toc

Podd(t207 _tOC) = _/

(23)

We compute Pogq(te,to) + Poaa(ta, —to) = 0 in Eq. 19, at ty = to. and ty = t9. using Eq. 21 and
Eq. 23.

toc toc
/ E(l) (T, tgc)e_2‘” sin (w, (tae, toe)T)dT + g2otoc / E(Im (7, tae) sin (w, (tae, toe)T)dT
_tOC , - _tOc 7/00
— / Ey(T, tQC)€_2UT sin (w, (tac, toe)T)dT — ¢~ 20toc / Eq, (T, tae) sin (w, (tac, toe)T)dT = 0
— 00 — 00
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(24)
We split the first two integrals in the left hand side of Eq. 24 using fff; = f:otgc + [™ as follows.

—toc

toc

_t()c
[/ Eé(T, tgc)e_2‘” sin (w, (tae, toe)T)dT + / E(l)(T, tgc)e_Q‘” sin (w, (t2e, toe)7)dT]
—00 _tOC

tOc

—toc
+€20't0c [/ E(/)n(T, tQC) sin (WZ (tzc, toc)T)dT + / E(l]n (T, tgc) sin (wz (tgc, tOC)T>dT]

oo —toc

—toc —toc
— / Ey (T, tae) e 2T sin (w, (tae, to.)T)dr — e~20t0¢ / Ey, (T, tae) sin (ws (tae, toe)7)dT = 0

(25)
We cancel the common integral [~'° Ej(7, ta.)e 27 sin (w, (tac, to.)7)dT in Eq. 25 and rearrange

the terms as follows, using 2sinh (20tg.) = e?7%0c — ¢=27t0c,

tOc tOc
/ E(l) (T, tgc)e’Q‘” sin (w, (tae, toe)T)dT + g2atoc / E(l)n(T, toe) sin (w, (tac, toe)T)dT

—toc —toc
—toc

— _94inh (201p,) / B, (7, tae) sin (w. (fae, oo 7)dr

(26)
We can combine the integrals in the left hand side of Eq. 26 as follows.

tOc
/ [E(/)(T, tgc)6_2‘” + E(l)n(’]', tQC)BQUtOC] sin (w, (tae, toe)T)dT

—toc
—toc

— _9sinh (201p,) / Bl (7, t2e) sin (. (fae, toe) ) dr

(27)
We denote the right hand side of Eq. 27 as RHS. We can split the integral in the left hand side

of Eq. 27 using fiﬂOC = fEtOC + JOC as follows.

0
/ [E(I)(T, tQC)e_2UT + E(l)n (T, tgc)e%toc] sin (w, (tae, toe)T)dT

—toc

toc
" / [E(,) (T, tQC)e_%T + E(,)n(7-7 tzc)e%toc] sin (w;(fac, toe)7)dT = RHS
0

(28)

We substitute 7 = —7 in the first integral in Eq. 28 as follows. We use Ey(—7,to.) = Ep, (7, tac)
and Ey, (—7,t5.) = Fy(T, ta.) using Definition 2 in Section .

0
/ [E(l)n(T, tzc)e%T + E(l)(T, tQC)ez"toc] sin (w, (tae, toe)T)dT

toc

toc
4 [Ty ta)e 7 4 Bl (i) sin (st to) ) = RHS
0
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Given that j;?)c = — goc, we can simplify Eq. 29 as follows.

tOc
/ [E(/)(T, tgc)(e_QW — 62“06) + E(/]n<7', tgc)(—eQW + GQUtOC)] sin (w, (tae, toe)7)dT = RHS
0
(30)

We substitute 7 = —7 in the right hand side of Eq. 27 as follows. We use Ey,, (=7, t2.) = Ey(T, ta.)
using Definition 2 in Section [2.3]

RHS = 2sinh (20, / E(r, tae) sin (w- (fae, toe) 7)dr

toc
(31)
We split the integral on the right hand side in Eq. 31 using J;Zj =[5 - JOC, as follows.
o0 , toc ,
RHS = 2sinh (QUtOC)[/ Eq (T, tae) sin (w, (toe, toe)T)dT — / Eo(T, tae) sin (w, (tae, toe)T)dT
0 0
(32)

We consolidate the integrals of the form fotoc By (7, tae) sin (w; (tae, to.)7)dr in Eq. 30 and Eq. 32 as
follows. We use 2sinh (20tg.) = 27t — ¢=27%0c,

tOc
/ [E(/](T, tgc)(e_QUT — 2toc 4 p20toc _ e_%toc) + E(/]n<7', tgc)(—ez‘” + GQUtOC)] sin (w, (tae, toe)T)dT
0

_ 2sinh (20t5.) / (7, t22) sin (. (fae, too) ) dr
0

(33)
We cancel the common term e2°%¢ in the first integral in Eq. 33 as follows.
tOC ! /
/ [Ey (7, toe) (67277 — e727%¢) 1 B (7, tae)(—€*7T + €270°)] sin (w, (tae, toe)T)dT
0
— 2sinh (20t5.) / (7, tae) sin (w- (tae, toe) 7)dr
0

(34)

We substitute Fy(7,to.) = Eo(T — tae) — Eo(T + ta) (using Definition 1 in Section ) and
B, (T,te) = Ey(—T,ta.) = Eo(—T — ty) — Eo(—T + t2.) (using Definition 2 in Section [2.3). We see
that Eo(—7 — ta.) = Eo(T + ta) and Eo(—7 + t2.) = Eo(T — ta.) given that Ey(7) = Eo(—7)(Details
in [Appendix C.8). Hence we see that Ey, (7, to.) = Eo(T + tae) — Fo(T — tae) = —Eo(7, tac)

(Result 3.1) and write Eq. 34 as follows.
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tOc
/ (Eo(T — toe) — Eo(T + tgc))(e_z‘” — g7 20tc 4 20T _ GQUtOC) sin (w, (tae, toe)T)dT
0
— 2sinh (2010,) / (Fo(7 — toe) — Bo(r + tae)) sin (ws (fae, too)7)dr
0

(35)

We substitute 2cosh (207) = €27 + €277 and 2cosh (20t.) = e*" 4 ¢727%: and cancel the
common factor of 2 in Eq. 35 as follows.

/0 OC(EO(T — to.) — Eo(T + ta.))(cosh (207) — cosh (20tq.)) sin (w, (L, to.)T)dT
= sinh (20to,) /OOO(EO(T — tae) — Eo(T + tae)) sin (w, (tae, toe)T)dT

(36)
Next Step:

We denote the right hand side of Eq. 36 as RHS'. We substitute 7 — to. = 7 and 7 +
ts. = 7" in the right hand side of Eq. 36 and then substitute 7/ = 7 and 77 = 7 in the sec-
ond line below. We use the identity sin (w,(tac, toc) (T + tac)) = sin (w, (t2e, toe)T) cos (W (tac, toc)tac) +
cos (w, (tae, toe)T) sin (w, (tae, toc)ta:) below.

[e.9]

RHS' = sinh (20to.)] / Eo(7') sin (w, (tae, toe) (7 + tae))d7’ — / Eo(7") sin (W (tae, toe) (7" = tac) )d7"]

—toc toc
RHS' = sinh (20t0c)[cos (w. (tae, toce) )t2e) / Eo(7) sin (w, (tae, toe)T)dT
_tQC
+ sin (wz (tgc, toc>t26) / Eo(T) COs (wz (tgc, toc>7')d7'
_t2C
— 08 (@ (oo, foo) ) ae) / Fo(7) $in (s (fae, foo) )T -+ sin (s (faes foc)tac) / Eo(7) 08 (. (fae, too)7)d7]
toc tac
(37)
In Eq. 37, given that w.(ta, toc)toc = 5 and ty, = 2to. and hence w,(tac, toc)loe = 25 = ™ and
sin (w, (tae, toe)tae) = 0 and cos (w,(ta, toc)t2c) = —1. Hence we cancel common terms and write
Eq. 37 and Eq. 36 as follows.
tOc
/ (Eo(T — tae) — Eo(T + tac))(cosh (207) — cosh (20ty.)) sin (w, (tac, toe)T)dT
0
= —sinh (QJtOC)[/ Eo(7) sin (w, (tae, toe)T)dT — / Eo(7) sin (w, (tac, toe)T)dT]
*t2c t2c
(38)
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We use ff;c Eo(7) sin (w, (tae, toe)T)dT = fzt; Eo(7) sin (w, (tae, toe)T d7'+ft Eo(7) sin (w, (tac, toe)T)dT
and cancel the common term ftzo Eo(7) sin (w,(tae, toe)7)dT in the right hand 81de RHS" of Eq. 38 as
follows.

tac
RHS" = —sinh (QO'tOC)/ Eo(7) sin (w,(tac, toc)T)dT (39)

—t2c

Given that Ey(7) is an even function of variable 7 (Details in [Appendix C.8)) and Ey(7) sin (w,(tac, toe)T)
is an odd function of variable 7, we get sz Ey(7) sin (w, (tac, toe)7)dT = 0 explained below.

We see that I = ft% Eo(7) sin (ws (tae, toe)7)dr = [° 1. Fo(T) sin (W (tac, toe)T)dT
+ ft2‘ ) sin (w (tae, toe)T)dT. We substltute 7 = —7 in the first integral and get
I= ft EO ) sin (w; (tae, toe)T)dT + f(f% Eo( )sin (W, (tae, toe)T)dT
— t2c Eo(7) sin (w, (tae, toe)T)dT + ft2° ) sin (w,(tae, toe)7)dT = 0. Hence RHS" = 0 in Eq. .

We erte Eq. 38 as follows.

tOc
/ (Eo(T — tae) — Eo(T + tae))(cosh (207) — cosh (20t¢.)) sin (w, (tac, toe)T)dT = 0 (40)
0
We can multiply Eq. 40| by a factor of —1 as follows.

/0 ; [Eo(T — tae) — Eo(T + tae)](cosh (20tg.) — cosh (207)) sin (w, (tae, toe)T)dT =0 (41)

__ TT
o 22ch

In Eq. , given that w.(ta, toc)to. = 5, as 7 varies over the interval (0,%o.), w.(t2c, toe)T
varies from (0, 5) and the sinusoidal function is > 0, in the interval 0 < 7 < tq., for 5. > 0.

In Eq. 1], we see that the integral on the left hand side is > 0 for to. > 0, because each of the
terms in the integrand are > 0, in the interval 0 < 7 < #. as follows. Given that Ey(t) is a strictly
decreasing function for ¢ > 0(Details in Section [5]), we see that Ey(7 — ta.) — Eo(T + tac) is > 0
(Details in Section in the interval 0 < 7 < tg.. The term (cosh (20t(.) — cosh (207)) is > 0 in the
interval 0 < 7 < ty..

The integrand is zero at 7 = 0 due to the term sin (w, (2., to.)7) and the integrand is zero at 7 = t..
due to the term cosh (20ty.) — cosh (207) and hence the integral cannot equal zero, as required by
the right hand side of Eq. . Hence this leads to a contradiction, for 0 < ¢ < %

For o = 0, both sides of Eq. |41]is zero, given the term (cosh (20t,.) — cosh (207)) = 0 and does
not lead to a contradiction.

We have shown this result for 0 < o < 3. If the Fourier transform of E,(t) = Ey(t)e " given
by Ep(w) = Epre(w) + iE,,(w) has a zero at w = wy, to satisfy Statement 1, then the real part
E,ro(w) and imaginary part E,j,(w) also have a zero at w = wy.(Result 3.2)

Given that E,(t) = Ey(t)e " is real, its Fourier transform Epw( ) =
properties and hence E,p.,(— ) = pr( ) and E,r.(—w) = —Epr(w
hence Ep,(—w) =&(5 + 0 — iw) = Eppy(—w) + iE,p.(—w) = ( ) —
w = wy to satisfy Statement 1, using Result 3.2. (Result 3. 3)

(3 + 0 + iw) has symmetry
) (Symmetry property) and
iEpr.(w) also has a zero at
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Using the property &£(s) = £(1 —s), we get (3 + 0 —iw) =&(5 — 0+ iw) at s = 3 + 0 — iw and
hence Ey,(w) = £(2 — 0 +1iw) also has a zero at w = wy to satisfy Statement 1, using Result 3.3. We

see that Ey,(w) = &(3 — 0 +iw) is obtained by replacing ¢ in E,,(w) = £(3 4+ 0 +iw) by —o. Hence

the results in above sections hold for —1 < ¢ < 0 and hence for 0 < |o| < 1.

Hence we have produced a contradiction of Statement 1 that the Fourier Transform of the
function E,(t) = Eo(t)e " has a zero at w = wy for 0 < |o| < 3.

Hence the assumption in Statement 1 that Riemann’s Xi Function given by £(34+0+iw) = Ep, (w)
has a zero at w = wy, where wy is real, leads to a contradiction for the region 0 < |o| < 3 which
corresponds to the critical strip excluding the critical line. Hence ((s) does not have non-trivial zeros
in the critical strip excluding the critical line and we have proved Riemann’s Hypothesis.

3.1.  Result Ey(t —to.) — Eo(t + o) >0

It is shown in Section [5| that Ey(t) is strictly decreasing for ¢ > 0. In this section, it is shown
that Fo(t — ta.) — Eo(t + ta.) > 0, for 0 < t < tg. and to, = 2tg. in Eq. {41].

Given that Ey(t) is a strictly decreasing function for ¢ > 0 and Ey(t) is an even function of
variable ¢ (Details in [Appendix C.8), and t5. = 2t(., we see that, in the interval 0 < ¢ < o,
Eo(t + ta.) = Eo(t + 2to.) ranges from FEy(3to.) < Eo(t + to.) < FEo(2to.)(Result 3.1.1) and
Eo(t — tae) = Eo(t — 2tp.) which ranges from Eo(—2to.) < Eo(t — ta.) < Eo(—to.) respectively.
Given that Ey(t) = Eo(—t), we see that Ey(2tg.) < Eo(t — ta.) < Ey(toc) in the interval 0 < t < to.
(Result 3.1.2).

Using Result 3.1.1 and Result 3.1.2, we see that Ey(t—ta.) > Eo(t+tac), in the interval 0 < t < t.

Hence Fy(t — ta.) — Eo(t +ta.) > 0 for 0 < ¢ < to. in Eq. 41], for to. > 0 and to. = 2t

4. w(t2,to)to = 5 can be reached for specific 2o, t,

It is noted that we do not use lim;, , in this section. Instead we consider real ¢, > 0 which
increases to a larger and larger finite value without bounds. We use 0 < 0 < % below.

We copy P,aa(ta, to) from the first line in Eq. 20 using 7/ = 7 and copy the first line in Eq 19
derived assuming Statement 1, concisely as follows.

to to

Poaalto, to) / (7, 12)e=27 cos (wa (ta, to) (7 — to))dr + €271 / B, (7. 5) cos (ws (b2, £o) (7 — to))dr

—00 —00

Poaa(ta, to) + Poga(tz, —to) =0

(42)

We note that Ey(7,t2) = Eo(T — t2) — Eo(7 + t2) and Ey,(7,t2) = Eg(—7,t2) = —Ey(7,12) =
Eo(1 + t2) — Eo(T — t2) (using Result 3.1 in Section [3). We choose ¢, = 2t and we choose ¢; such
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that Ey(t) approximates zero for |t| > ¢, given that Ey(¢) has an asymptotic exponential fall-off
rate of o[e™*I*l] (Details in |[Appendix C.5). We choose ty >> t; and hence Ey(7 —to) = Eo(T — 2t)
approximates zero in the interval (—oo, ] for 7, given that 0 < Ey(7 — 2ty) < Ey(—tp) because
Eo(—to) = Eo(ty) = 0 and Ey(T — 2ty) is strictly decreasing for 7 > 2¢, and strictly increasing for
T < 2ty. (Details in Section

Hence in the interval (—oo, o], we see that Ey(7,ty) ~ —Eo(T + 1) and Ey, (7, t2) =~ Eo(T +to),
for sufficiently large to. We can write Eq. 42 as follows. We use w,(ts, —to) = w.(t2, %) (Details in
Section . We note that t5 = 2¢; in the rest of this section and we continue to use the notation
w,(t2, to) where to = 2t.

to

Poaa(ts, to) = —/ Eo(T + 2to)e 27T cos (w (t2, to) (T — to))dT

—0o0

to
+e?to / Eo(T + 2to) cos (w (T2, to) (T — to) )dT

—00
_to

PLaq(ta, —tg) = / E(,)(T, tg)e_QUT cos (w, (to, to) (T + to))dr

—00

—to
et [ B () st )+ )

(43)

We see that the term P,q4(t2, —to) in Eq. 43 approaches a value very close to zero, as real
increases to a larger and larger finite value without bounds, due to the terms e~2°% and the integrals
f:;f, given 0 < 0 < % and ty > 0 and given that the integrands are absolutely integrable and finite
because the terms E(7,ty)e 2" and Ej, (7,t2) = —Ey(7, t2) have exponential asymptotic fall-off rate

as |T| — oo(Details in Section [Appendix E.1.1) Hence we can ignore Ppuq(t2, —to) for sufficiently
large to and write Eq. 42, using Eq. 43 and t5 = 2t.

to

Qlte) = Poaa(tarto) + Poalts, —to) ~ — / Fo(r + 2t0)e=2" cos (w. (ta, 1) (7 — to))dr

—0o0

to
L e2oto / o7 + 2to) cos (w. (ta, o) (7 — to))dr ~ 0

(44)
We substitute 7 + 2tg = t, 7 =t — 2ty and d7 = dt in Eq. 44 and write as follows.
3to
Q(ty) = —et7to / Eo(t)e 7" cos (w,(ta, to)(t — 3tg))dt
,0320
+-e2eto / FEo(t) cos (w,(ta, to)(t — 3to))dt = 0
(45)

We multiply Eq. 45 by e27% and ignore the last integral for sufficiently large t,, given that
e2toe=370 = =t and | [M° E(t) cos (w,(ta, to) (t — 3to))dt| < [°° |Eg(t)|dt < [ |Eo(t)|dt is finite
(link and |[Appendix C.1]) and expand as follows.
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3to

S(to) = Q(tg)e 7" ~ —et / Eo(t)e 27" cos (w.(ta, to)(t — 3ty))dt = —e"™ R(ty) ~ 0

—00

3to 3to

R(to) = cos (w. (ta, to)3to) / Eo(£)e27" cos (w. (t, fo)t)dt + sin (w. (ta, to)3to) / Fo(t)e27" sin (w. (ta, to)t)dt

(46)

In Section it is shown that 0 < w,(t2,%y) < oo, for all |ty] < oo, for each non-zero value of
ty. For tg > 0, we see that w,(ta,%9)to > 0. In Section @ it is shown that w,(ts,%y) is a continuous
function of variable ¢y and t5, for all 0 < ¢y < co and 0 < t3 < co. Hence w,(ts, o)ty is a positive
continuous function.

We require w,(ty,%)ty = 5 in Section (3| for a specific ty = to. and ty = to. = 2tg.. To show

that w.(f2,%9)tp = 5 can be reached, we assume the opposite case that w.(ts, o)ty < 5 for all

0 <ty < oo and ty = 2t; (Statement C) and show that this leads to a contradiction.

Let w.(ta,t0)to = K F(t2,t0), where 0 < K < J and 0 < F(tz,tp) < 1 is a positive continuous

function for 0 <ty < oo and ty = 2t,, such that w,(t2, %)ty < 5. Hence w.(t2,ty) = %ﬂ”o)
We choose t3 such that Ey(t)e™ " is vanishingly small and approximates zero for |t| > ¢3 (Result

4.a), given that Ey(t)e~2°! has an asymptotic exponential fall-off rate of o[e=*°] (Details in
.We choose tg >> t3 and note that t3 is independent of t,. As ty increase without
bounds, in the interval |t| < t3, we see that the term cos (w,(t2,%)t) ~ 1 and sin (w,(t2,)t) ~
w,(t2,to)t = 0 (Result 4.b), given that w,(ts,t)t = KF(EQ’tO)t < KF(tQ’tO)t?’ << 1, because ty >> t3
and F'(ta,t9) < 1. Hence we write Eq. 46 as follows, using Result 4.a and Result 4 b.

3to t3

R(to) =~ cos (wz(t27t0)3t0)/ Eo(t)e " cos (w.(t2, to)t)dt ~ cos (BKF(tQ,tO))/ Eo(t)e 2t dt

(47)

For sufficiently large to, the integral R(ty) ~ cos (3K F(ts,t0)) ff‘; FEo(t)e™27'dt remains finite,

because cos (w;(t2, to)3to) oscillates in the interval [—1,1] and [ Ey(t)e 2'dt > 0 (Details in

and does not approach zero exponentially, as real ¢y increases to a larger and larger
finite value without bounds. This is explained in detail in Section [4.1]

7t3

The term e in S(ty) = —e“R(ty) in Eq. 46 increases to a larger and larger finite value ex-
ponentially as ¢y increases, and hence the term S(to) approaches a larger and larger finite value
exponentially, given that R(ty) does not approach zero exponentially and hence S(ty) and Q(tp) in
Eq. 45 and P,y4(t2, to) + Poaa(t2, —to) in Eq. 42 cannot equal zero, to satisfy Statement 1, in this case.

Hence Statement C is false and hence w,(ts, o)ty = 5 can be reached for specific values of #,
and ty = 21y, as finite ¢y increases without bounds, given that w,(t2, %)ty is a continuous function

of variable tg and t,, for all 0 < ty < oo and 0 < ty < .
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4.1. Alty) = ffioo Eo(t)e ™27 cos (w,(t2, to)t)dt does mot have exponential fall off rate

We compute the minimum value of the integral A( to = [0 0 Bo(t)e27t cos (w, (ta, to)t)dt in
Eq. 46 , for sufficiently large t3 and ty >> t3 and 0 < 0 < 5. We note that t2 = 2ty and note that t3
is independent of ¢, below. We split A(ty) as follows.

A(tg) = B(ts, to) + C(ts, to) + D(ts, o)

—t3 t3
Blts,to) — / Eo(£)e=27 cos (w.(ta, to)E)dt,  Clts, to) = / Eo(t)e=27 cos (. (fa, to)t)dt

o0 —t3

3to
Dits, ty) = / Eo(H)e27 cos (w. (s, to)t)dt

(48)

We see that Ey(t)e 2" > 0 for |t| < oo and EO( Je~ 29" is an absolutely integrable function (Details
in |Appendix C.1)) and hence Cy(t3) = f Eo(t)e ?tdt > 0 (Result 4.1.1).

KEl2b) where 0 < K < 7 and 0 < F(tz,t9) < 1 in previous subsection

Given that w,(t2,t0) = =
and ty >> t3, we see that w,(ts,ty)t = KF(ttj’tO)t < KF(ttZ’tO)t3 << 1 in the interval [t| < t3 and
hence cos (Cdz(tz,t0>t) ~ 1 and cos (w;(t2,t)t) > 3 in the interval [¢| < ¢3. Hence we can write

C(ts, to) = f Eo(t)e 27t cos (w,(ta2, to)t)dt > Co(t‘”’) > 0, using Result 4.1.1. (Result 4.1.2).

We see that |B(t3,t0 | = |f 5 Bo(t)e 20t cos (w,(ty, to)t)dt| < 2 B Eo(t)e27t|dt ~ 0 (link) and
|D(t3,t0)| = |f3t° t)e™27 cos (w, (ta, to)t)dt| < f3t° |Eo(t)e 27 dt =~ 0, for sufficiently large 3 and

to >> t3, given that Eo( )6_20t has an asymptotic exponential fall-off rate of o[e=*%l] (Details in
IAppendix C.5)) and Ey(t)e=27" > 0 for |t| < oo (Details in [Appendix C.1)).

As we increase t3 to t and to to t{, >> t§, we see that C(t},t;) > C(t3,t9) > 0, using Result 4.1.1
and Result 4.1.2, given that Fy(t)e 27" > 0 for |t| < co (Result 4.1.3).

As we increase t3 to t; and to to t, >> t}, we see that |B(t5, ;)| < |B(ts,t0)| and |D(t5, )] <
|D(t3,t9)| approach zero (Result 4.1.4), given that Fy(t)e 2" has an asymptotic exponential fall-
off rate of o[e=*1!l] (Details in [Appendix C.5) and Ey(t)e=27* > 0 for [t| < oo (Details in [Appendix

).

Hence we see that A(t) fgto Eo(t)e2 cos (w. (ta, to)t)dt > 8L | B(ty, to)| — | D(ts, to)| ~
% > ( using Result 4.1.2, Result 4.1.3 and Result 4.1.4.

For example, we choose t3 = 10 such that Ey(t)e~2°" is vanishingly small and approximates zero
for |t| > t3. Given that Ey(t) > 0 for [¢] < oo (Details in |[Appendix C.7)) and the term e~ 20t
has a minimum value of e7I'l for 0 < o < 1, we see that the integral Cp(t3) f Eo(t)e 2otdt >

2 fots Eo(t)e !dt > Cyy = 0.42 where Cy is computed by considering the first 5 terms n = 1, 2,3,4,5

2,2t

in Ey(t) = 3200 [An?niet — 6rn2e?]e ™" e2. Hence Cy(ts) > 0.42. (Matlab simulation)

Hence we see that A(ty) = f3t° Eo(t)e™27 cos (w,(t2, to)t)dt > Colts) t* —|B(t3, to)|—|D(ts3,t0)| ~ 0.21.
As ty increases without bounds, we see that A(ty) does not have exponentlal fall off rate.
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5. Strictly decreasing Ey(t) for t > 0

Let us consider Ey(t) = ®(t) = 3. [4n’ntet — 6rn2e?]e ™" 2 in Eq. , where ¢ is real, whose
Fourier Transform is given by the entire function Ey,(w) = £(3 +iw). It is known that ®(t) is positive
for |t| < oo and its first derivative is negative for t > 0 and hence ®(t) is a strictly decreasing
function for ¢ > 0. (link). This is shown below. We take the term 27n? out of the brackets.

Ey(t) =d(t) = Z[47T2n464t 6rne®)e ™ e = ZQ?TTZQ —m?e o3 [2rn2ett — 3¢
n=1
(49)
We show that X (t) = 2( L is a strictly decreasing function for ¢ > 0 as follows.

e In Section , it is shown that the first derivative of X (¢),
t, = %logyf and y, = 3.16.

e In Section it is shown that, d)éft) <0Ofor0<t<t,.

Hence d)ét(t) < 0 for t > 0 and hence X (t) is strictly decreasing for t > 0 and Ey(t) = 2X(t) is
strictly decreasing for ¢t > 0.

5.1. 0 <0 fort>t,

We consider X (t) = 200 — S gp2e ™ e5[2mn2et — 3¢%] in Bq. 49 and take the first
derivative of X (t). We note that Ey(t) and X (t) are analytic functions for real ¢ and infinitely
differentiable in that interval. We compute d)ét(t) below and take the term e* out, in the last line
below.

1
Z mnle ™ %[87m264t — 6e* 4 (2mne* — Iiezt)(2 2mn2e?)]

2 3
Z7m2 —me o3 [8rn2ett — 6% + (mnle’ — 3¢ — Am*ne™ + 6mne™)]

> 15
_ Z e e ;[ Am2ndebt £ 15mn2et — ?e%]
> 4 15
SN E 7Tn267ﬂn2€2te§e [ 47‘(2 4 4t + 1577'7”& e 2 ]

(50)

We substitute y = me?* in Eq. 50 and define A(y) such that d)ét(t) = Te
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- 15
= Z n2eY[—4n*y? + 15n%y — ?] (51)

We see that A(y) = 0 at y = m which corresponds to t = 0 given y = me* and d‘);ft) = We%A(y),
() =0 at t = 0. Because X(t) = E(’T(t) is an even function of variable ¢(Details in

Appendix C. 8[) and hence d);t(t) is an odd function of variable t.

The quadratic expression B(y,n) = (—4n4y2+15n2y—§) in Eq. equals zero at y = —18n7EV225n1-120n1

—8n?
_ (15+V105) dB(y n) _

=z We see that the first derivative of B(y,n) is given by —8n*y + 15n? is zero

15 d?>B(y,n)

at ¥ = Ym = gz- The second derivative of B(y,n) given by e = —8n*, is negative for all y

and n > 1 and hence B(y,n) is a concave down function for each n, which reaches a maximum at
Y = Ym = % and has zeros at y = (1518\/2W and given the dominant term —4n*y? in Eq. , wWe
see that B(y,n) < 0, for y > (15+m = 3.1559, for n > 1 and hence B(y,n) <0 for y > 3.16 =y,

and hence A(y) < 0 for finite y > yz. Using y = me? and d)éft) = Te% FA(y),
t > 1log% =t.(Result 5.1). (concave down function)

We show in the next section that d)fl—ft) < 0 for 0 <t <t,. Itsufficesto show that dA;y) < 0 for
m <y <y, =3.16 and hence A(y) < 0 for 7 < y <y, = 3.16, given that A(y) =0 at y = . [ We
use y = me? and B = e A(y) and B =0 at t = 0]

5.2. d)ét(t) <0 for0<t<t,

It is shown in this section that %S”) < 0 for m <y < 3.16 and hence A(y) < 0 for 7 < y < 3.16

[8] , given that A(y) = 0 at y = m. We take the derivative of A(y) in Eq.[51|and take the factor n?
out of the brackets in the last line below.

15
Zn eV [=8ny + 15n° + (—4n*y? + 1502y — 7)(—n2)]

- 4
-8 15+ 4 —15 n? Y4 —23
Z:: n’y + 15 + 4n'y* — ny—l— Zne ny+2]
(52)
We examine the term C(y,n) = n'e ™ ¥(4n'y? —23n%y+ %) in Eq. 52 in the interval 7 < y < 3.16
and show that dA(y) =C(y,1)+> 77, C(y,n) <0, as follows. We want the maximum value of C(y, n)

for each n and We consider the maximum value of positive terms and minimum value of absolute value
of negative terms in the paragraphs below. (Result 5.1.a)

For n = 1, we see that C(y,1) = e ¥(4y* — 23y + 425) e —23ye Y+ 2 45 e~ ¥ < 0 in the interval
7 <y < 3.16 as follows. Given that 3.16% < 10 and 7 > 3.14, in the 1nterval m <y < 3.16, we see
that C(y,1) < 4% 10e™31 — 23 % 3.14¢ 7316 4 L7314 = —0.3588 < —6e % = Cra0(1) where Cpnau(1)
is the maximum value of C(y, 1) in the interval 7 <y < 3.16, using Result 5.1.a.
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45
C(y,1) = e Y(4y* — 23y + 7) < —6e3, 7T<y<3.16 (53)

For n > 1, in the interval 7 <y < 3.16, we can write C(y,n) as follows, given that = > 3.14 and
3.16% < 10 and the term —23n2%y < 0 is omitted below, given that we want the maximum value of
C(y,n). We write the term %2 < 4n % 0.5 and e 14" ¥ 10.5 < 10 for n > 2, using Result 5.1.a .

45 2 2 2 2
Cly,n) = n*e ™Y (4n*y? — 23n%y + 5 ) < nteT™ (4n*((3.16)% + 0.5)) < 4ne " e M £ 10.5 < 40nPe "

(54)

We want to show that %;‘y) =C(y, 1)+ >.02,C(y,n) < 0 in the interval 7 < y < 3.16. Using
Eq. b3l and Eq. 54, we write as follows. We multiply both sides by e? in the second line below.

dA(y)

e C(y,1) +ZC(y, < —6e~ +Z4On8 —3n?
= n=2

dA
<6+ Z4on8 3—3n’

(55)

3dA() (833n)

We want to show that e < 0 in the interval 7 < y < 3.16. We compute log as

follows. We note that f(z) = logx is a concave down function whose second derivative given by
—% < 0 for |z| < oo and we can Write f(z) =logz < f(xg) + [%]w:zo (x — xp) using its tangent
df = 2. We set x = n and z¢y = 2 and get logn < log2 + %(n — 2) below.

llne equation. We see that
1
log (%) = 8logn + (3 — 3n?) < 8(log2 + é(n —2)) + (3 — 3n?)
log (n®e*~%"") < 8log2 + 4n — 5 — 3n?
(56)

We note that g(z) = 4z —5—3z? in Eq. 56 is a concave down function (concave down function)),
whose second derivative given by —6 < 0 for all z and we can write g(z) < g(20) + [52] sz, (z — 20)

using its tangent line equation. We see that Z—g =4 —6x. Weset x =n and o = 2 and get
g(n) < g(2)+[4 —6x],—2(n —2) = —9 — 8(n — 2) and write Eq. 56 as follows. We take the exponent
e of both sides in the second line below.

log (nd¢*~ 3n)§810g2_9_8(n—2)§810g2—1+8(1—n)

—3n2 _ _ _ _
nde3—3n" < (Blog2-148(1-n) _ 98,~18(1-n)

We substitute the result in Eq. 57 in Eq. 55 and simplify as follows.
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63_dA(y) < —6+40 % 287! Z S—n)

dy n=2
dA -
63# < —64+40% 28 xe® Z e 8n
dA(y) 3 6—8*2
3 8,=1 . o8
ed—y<—6+40*26 R
dA( ) 81, e®
40 % 2%
dy < —6+40 * 1 ——
dA(y) -
3 8 —1
d—y<—6+40*2€ *68—1
(58)
We multiply Eq. 58 by ) and write as follows.
dA 81 256
&3 d;y) (e - L o 2352 (59)

We see that e3dAZ(/ DED iy Eq. Hence %;y) < 0 in the interval 7 < y < 3.16, given

that 31 5 —1) >Oande>2 leenthatA( ) =0 at y = 7w, we see that A(y) <0inEq.,for
m <y <3.16 and % — me2 A(y) < 0 in the interval 0 < ¢ < ¢..(Result 5.2)

In Section it is shown that ¢ t) < 0 for t > t, (using Result 5.1). In this section, we have
D<0for0<t<t,. Hence ) <0 fort > 0.

Hence Ey(t) =
t < 0 given that Ej

2X(t) is a strictly decreasing function for ¢ > 0 and strictly increasing for
(t) = Eo(—t) (Details in [Appendix C.8)).

6. w.(ta,tp) is a continuous function of ¢y, and t,

It is shown in Lemma 1 in Section[2.1]that Gr(w, t2,9) = 0 at w = w,(ta, to) where it crosses the
zero line to the opposite sign, if Statement 1 is true (Result 2.1.5) and that w,(ts, %) is finite and
non-zero for all |ty| < 0o and for each non-zero value of t5 and that w, (s, ) is an even function of
variable tg, for a given value of t5(Details in Section . For a given ty and tg, w,(ts,ty) can have
more than one value, corresponding to multiple zero crossings in Gr(w, ta, o), but we consider only
the first zero crossing to the right of origin in the section below, where Gg(w, ts,ty) crosses the zero
line to the opposite sign, as detailed in Lemma 1 in Section [2.1]

We consider the Fourier transform of the even part of g(t,ta,ty) given by Ggr(w,ts,to) in the
section below and show that, under this Fourier transformation, as we change ¢, and ¢, the zero
crossing in Gg(w, ta,ty) given by w,(ts,ty) is a continuous function of ¢y and ¢, for all 0 < ¢y < oo
and 0 < ty, < 00.
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6.1. Discussion of First Method

Consider the segment S in Gg(w, tg, %) in the neighborhood around the first zero crossing where

W < 0. (Segment S is the portion between the majenta lines in example plot)

e In the segment S, Gr(w,t9,ty) in Eq. 17 copied in Eq. 60 is a continuous function of w, for
g q p q

each value of ¢ty and ¢, as shown in |Appendix E.ll and W < 0 in the neighborhood around

the first zero crossing.

o If we fix the X-coordinate w and ty, Gr(w,ts,1y) is a continuous function of ¢y, as shown in
[Appendix F.3l Hence, for each fixed value of w and ¢5, as we change ¢y by an infinitesimal dt,
Gr(w,ta,tg — dtp) and Ggr(w,ta,ty + 0ty), move towards Gr(w,ts,ty) in a continuous manner, as
dto — 0. (Result 6.1)

0
Grlw, ty, tg) = e 27" / [Eo(T + to, t2)e™ 2T + Ey (T — to, t2)] cos (wr)dr

—0o0

0
+e20to / [E(/)(T — to, t2)€_2aT + E(l)n(T + to, to)] cos (wT)dT

—0o0

(60)

e Every point in the segment S (plot), moves continuously, as we change t, by an infinitesimal
0tg, for each fixed value of w and t,.

Using Result 6.1 and Result 2.1.5 in Section we can see that this also applies to the first zero
crossing in Gr(w,ts,tg) in the segment S, given by w,(ts,%y) where Gr(w,ts,tg) = 0 in Eq. 60. The
zero crossing moves continuously, as we change t; by an infinitesimal dty. This is explained in
detail in the section below.

6.1.1. Zero Crossings in Ggr(w,ts,ty) move continuously as a function of t, for a given
to.

This is shown by an example plot. Red plot corresponds to Gr(w, ts,tg) with zero crossing at
point P, green plot corresponds to Gr(w, ta, tg + dtg) with zero crossing at point Pj; and Blue plot
corresponds to Gr(w, ta, tg — dty) with zero crossing at point P.

We define the point Ps in Gr(w,ts, g + dtp) as the point which has the fixed X-coordinate
w = w,(ta,ty). We define the point Py in Ggr(w,ts,tg — dty) as the point which has the fixed
X-coordinate w = w,(ts, ).

We define the point Py in Ggr(w,ta,to + 0ty) as the zero crossing point which has the fixed

Y-coordinate which equals zero. We define the point P,; in Gg(w, ta,ty — dtg) as the zero cross-
ing point which has the fixed Y-coordinate which equals zero.

Given Result 6.1 and Result 2.1.5 in Section as we change t by an infinitesimal §to, Gg(w, ta, to+
dto) moves towards Gr(w,ts,to) in Eq. 60 in a continuous manner, for each fixed value of w and
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to, including the zero crossing point. The point Pjs in Gr(w, ta,ty + dtg) which corresponds to the
fixed X-coordinate w = w,(ts,ty), moves towards corresponding point Py in Gr(w, ta, o) , for the
same w = w,(ty,tp) in a continuous manner, as 0ty — 0. Given that F, is a zero crossing point in
Gr(w,ts, tp), this is equivalent to the zero crossing point P; in Gg(w, to, tg + dtg) moving towards
corresponding zero crossing point Py in Gg(w, t2, ) in a continuous manner, as 6ty — 0.

Similarly, as we change tq by an infinitesimal dty, Gr(w, t2, tg — dtg) moves towards Gg(w, ta, tg)
in Eq. 60 in a continuous manner as follows. The point Ps; in Gg(w, ta,ty — dty) which corresponds
to the fixed X-coordinate w = w,(ts,ty), moves towards corresponding point Py in Gg(w, te,t) ,
for the same w = w, (s, 1) in a continuous manner, as 6ty — 0. Given that Py is a zero crossing
point in Gg(w, ta, to), this is equivalent to the Zero crossing point Py, in Gr(w, t2, tg — dtg) moving
towards corresponding zero crossing point Fy in Gr(w, ta,tp) in a continuous manner, as dtg — 0.

0
Gr(ws(ty, to), ta, tg) = e 2t / [Ey(T + to, t2)e™ 2T + By, (T — to, 2)] cos (w,(ta, to)T)dT

—0o0

0
120t / [E(’)(T —to, 1) + E(l)n(T + to, to)] cos (w,(ta, to)T)dT =0

(61)

As tg — 0, zero crossing point Py in Gg(w, te, to + dtg) given by w,(ts,to + dtg) moves towards
corresponding zero crossing point Py in Gg(w,ts, ty) given by w,(ts,%y), in a continuous manner,
in Eq. 61.

Similarly, the zero crossing point Py in Gr(w,ts, tg — 0tg) given by w,(ts, tg — dty) moves towards
corresponding zero crossing point Py in Gg(w,ts, ty) given by w.(ts2,ty), in a continuous manner,
in Eq. 61, as dty — 0. |(example plot).

Hence we deduce that w,(ts,%y) is continuous in the interval [ty — dtg, to + 0tp] in the segment
S, around the first zero crossing at w = w,(ts, tg) (example plot).

Using arguments in the above paras, we see that w,(ts, %) is a continuous function of t, for all
0 < ty < 00, for each fixed value of t,.

It is shown in Section [Appendix E.4|that Gg o (w, t2, o) is a continuous function of t,. We can
use arguments similar to the above paras and show that w, (¢, ) is a continuous function of ¢, for
all 0 < ty < o0, for each fixed value of t.

Hence w,(t2,ty) is a continuous function of ¢y and t; for 0 < ¢y < 0o, and 0 < t3 < co. This is
shown in detail in the next section using Implicit Function Theorem.

6.2. Second Method using Implicit Function Theorem

In this section, it is shown that w,(t2, %) is a continuous function of ¢y and ¢, for 0 < ¢y < oo,
and 0 < t3 < 00, in the steps below using Implicit Function Theorem.
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e It is shown in [Appendix E.1|that Gr(w,ts,to) and Gga(w,ts,ty) are partially differentiable at
least twice with respect to w, for some value of r € W (element of set of whole numbers including zero.)

e It is shown in [Appendix E.3|that Gga-(w,ts,t) is partially differentiable at least twice with
respect to to. It is shown in [Appendix E.4| that Ggar(w,t2,to) is partially differentiable at least
twice with respect to t».

e In [Appendix E.7| it is shown that, if Gg(w, s, %)) = 0 at w = Fw.(ts, ty), for each fixed choice

of positive tg, ty € R and (2r + 1) is the highest order of the zero at w = 4w, (s, ty) for some value of

r € W (element of set of whole numbers including zero), then Ggo,(w,ta2,ty) = W =0 at

G R 2r(Wita,to) _ 927G R(w,ta,to)
w = Fw,(ta,ty) and o &J’;H 2:t0) # 0 at w = Fw,(ts, ty).

e It is shown in [Appendix E.5|that the zero crossing in Gga,(w,ts, %) given by w,(ta,1o), is a
continuous function of ty, for a given t,, for 0 < ¢, < oo, using Implicit Function Theorem in :2.

e It is shown in [Appendix E.6[that w.(ts,t0) is a continuous function of ¢y and t,, for 0 < ¢y, < 0o
and 0 < t5 < 00, using Implicit Function Theorem in R3.

7. Hurwitz Zeta Function and related functions

We can show that the new method is not applicable to Hurwitz zeta function and related zeta func-
tions and does not contradict the existence of their non-trivial zeros away from the critical line given
by Re[s] = 5. The new method requires the symmetry relation £(s) = f (1—s) and hence £(5 +iw) =
£(E —iw) When evaluated at the critical line s = £ + iw. This means £(3 + iw) = Eg,(w) = EOw(

2
2,2t

and Ey(t) = Eo(—t) (Details in |[Appendix C.8) Where Eo(t) = D07 [Ar?nte® — 6rn2e?le ™ e
and this condition is satisfied for Riemann’s Zeta function.

m\«—“ .

It is not known that Hurwitz Zeta Function given by ((s,a) = Z e M) satisfies a symmetry

relation similar to £(s) = £(1 — s) where £(s) is an entire function, for @ 7& 1 and hence the condition
Ey(t) = Eo(—t) is not known to be satisfied [6]. Hence the new method is not applicable to Hurwitz
zeta function and does not contradict the existence of their non-trivial zeros away from the critical
line.

Dirichlet L-functions satisfy a symmetry relation £(s,x) = e(x)é(1 — s,x) [7] which does not
translate to Ey(t) = Eo(—t) required by the new method and hence this proof is not applicable to
them. This proof does not need or use Euler product.

We know that ((s) = > -L= diverges for Re[s] < 1. Hence we derive a convergent and entire
m=1
o n2
function £(s) using the well known theorem F(z) = 1+ 2 E —T —(1 +2 E e ™= ), where

\/_ n=1

x > 0 is real [4](link) and then derive Ey(t) = > oo [47?n e 4t — 6rn2e2)e~™"¢2. In the case of
Hurwitz zeta function and other zeta functions with non-trivial zeros away from the critical
line, it is not known if a corresponding relation similar to F'(x) exists, which enables derivation of
a convergent and entire function £(s) and results in Fy(t) as a Fourier transformable, real, even and

analytic function. Hence the new method presented in this paper is not applicable to Hurwitz zeta
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function and related zeta functions.

The proof of Riemann Hypothesis presented in this paper is only for the specific case of Riemann’s
Zeta function and only for the critical strip 0 < |o| < 1. This proof requires both E,(t) and Ep,(w)
to be Fourier transformable where E,(t) = Ey(t)e " is a real analytic function and uses the fact that
Ey(t) is an even function of variable ¢t and Ey(t) > 0 for |t| < oo (Details in [Appendix C.7)) and
Ey(t) is strictly decreasing function for ¢ > 0 (Details in Section [f]). These conditions may not be
satisfied for many other functions including those which have non-trivial zeros away from the critical
line and hence the new method may not be applicable to such functions.
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Appendix A. Derivation of E,(t)

Let us start with Riemann’s Xi Function £(s) evaluated at s = 1 + iw given by &(

i
2 .
Eoy,(w). Tts inverse Fourier Transform is given by Ey(t) = 5= [0 Eou(w)e™dw = >0 [4r?n*et —
6rn2e2]e ™" e2 using Eq. .

N |=
b

We will show in this section that the inverse Fourier Transform of the function £(3 + o + iw) =
By, (w), is given by E,(t) = Ey(t)e™" where 0 < |o] < 1 is real. We use Ep,(w) = Eg,(w —i0) below.
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5(% bodiw) = g(; 4 i(w = i0)) = Ep(w) = Eou(w — i0)

1 o0 ) )
E,(t) = 5 /_OO By (w)e™tdw = 7 /_Oo Eoo(w —io)e™ dw
(A1)
We substitute w’ = w — io in Eq. A.1 as follows. We get w = &’ + ic and dw = dw'.
—ot 1 o N iw't 3,1
E,(t)=e 2—/ Eo,(whe™  dw (A.2)
T J-—co—ic

We can evaluate the above integral in the complex plane using contour integration, substituting
w' = z = x + iy and we use a rectangular contour comprised of C; along the line z = (—o0, c0), Cy
along the line z = (00, 00 — i), C3 along the line z = (0o —io, —0o0 — i0) and then Cj along the line
z = (—00 —io, —00). We can see that Ey,(z) = £(5 + i2) has no singularities in the region bounded
by the contour because & ( +iz) is an entire function in the complex plane.

We use the fact that Eo,(z) = £(5 +1i2) = £(5 —y+ix) = [*o Eo(t)e #dt = [*7 Ey(t)eve " dt,
goes to zero as r — +o0o when —o < y < 0, as per Riemann-Lebesgue Lemma (link), because
Eo(t)e? is a absolutely integrable function for real ¢(Details in [Appendix A.1]). Hence the integral

in Eq. vanishes along the contours Cy and Cy. Using Cauchy’s Integral theroem, we can write
Eq. as follows.

1 [ w
E,(t)=¢""— / FEou(W)e™ tdw'
m

o )
Ep(t) _ Eo(t)e—ot 2[47‘_2 4 4t 67Tn2 Qt}e—mﬁe%e%e—at
n=1

(A.3)

Thus we have arrived at the desired result E,(t) = Ey(t)e ?". Alternate derivation of Ey(t) and
E,(t) are in [Appendix B.1|

Appendiz A.1. E,(t) = Eo(t)e’" is an absolutely integrable function

We see that Ey(t) > 0 and finite for —oo < ¢ < oo (Details in |[Appendix C.7). Hence
Ey(t) = Eo(t)e¥" > 0 and finite for all —oo < ¢ < 00, for —o <y < 0and 0 < |o] < 5 (Result A.1.1).

Ey(t) has an asymptotic exponential fall-off rate of o[e™*I*l] (using [Appendix C.5| and hence
E,(t) = Ep(t)e¥" has an asymptotlc exponential fall-off rate of ofe™!l] (using o[e=(1>+9IH] ) for
—0 <y <0and 0 < |o| < 5. Hence E,(t) = Ey(t)e’" decays exponentially, at ¢ — +oo.(Result

A.1.2)

Using Result A.1.1 and A.1.2, we can write [ |E,(t)|d¢ is finite and E,(t) is an absolutely
integrable function (Details in [Appendix C.6]) and its Fourier transform FE,,(w) goes to zero as
w — £00, as per Riemann Lebesgue Lemma (link).
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Appendix B. Details of entire function £(s)

In this section, we will start with Riemann’s Xi function £(s) and take the inverse Fourier Trans-
form of &(5 + zw) = Eg.(w) and show the result Eo(t) = Y2°° [4n’ntet — 6mn?e]e ™" ez and
E,(t) = Eolt)e".

We will use the equation for £(s) derived in Ellison’s book ”Prime Numbers” pages 151-152 which
uses the well known theorem 1 + 2w(z) = %(1 + 2w(1)), where w(z) = Ze_m% and z > 0 is
real.[4] (link).

€(5) = go(s = DG 10(6) = gl (s = 1) [ (ot 40T o) T

(B.1)

We see that £(s) is an entire function, for all values of s in the complex plane and hence we get
an analytic continuation of £(s) over the entire complex plane. We see that £(s) = (1 — s) [4].

Appendiz B.1. Derivation of E,(t) and Ey(t)

o0
Given that w(z) = Y. e ™%, we substitute z = e*, € — 2dt in Eq. B.1 and evaluate at s =
n=1
1+ 0+ iw as follows.

2,2t

1 1 1 1 > °° ‘ :
5(5 +o0+iw) = 5[1 + 2(5 +o0+ iw)(—§ +0+iw) / e ™ (eze7t ™+ eze e dt] (B.2)

We can substitute ¢ = —t in the first term in above integral and simplify above equation as follows.

1 1 1 _ot =
§(§+a+iw):—+(——+a — w? +iw(20)) / Ze’””QGQ 2 e et

2 4
+ / Z e—7rn262t€%6—0t6—iwtdt]
0 n=1

(B.3)
We can write this as follows.
(tvotiv) = Lr (ot i) /OO [i e e u(— +Z Tt osu(t) e te Tt
2 2 4 oo
(B.4)
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We define A(t) = [Z e e T u(—t) + E e ™ esy(t))e ot and get the inverse Fourier

transform of £ ( +o + zw) in above equation glven by E,(t) as follows. We use dirac delta function

5(1).

1 1 dA(t)  d2A(t

Ey(t) = 56(1) + (=7 + 07) A(t) + 20 di ) dt2( )

A(t) = [Z e—mﬂe_me—ztu + Z —7rn262t t ]e—at
n=1

(B.5)

We compute the derivatives of A(t) as follows. We note that [A(t)];—0y = [A(t)]i=0— = Z e ™’

= o - 1 = 1
Z —mteT g _"t[—§ — o+ 2rnPe” Hu(—t) + Z e_”"%%e%e_"t[é — o — 2mn*e*|u(t)

d?A(t > 2 -2t —t 1
dt2( ) Z e ™ ez e % [—dmnie H + (—5 — o+ 2mn*e” ) Ju(—t)

) . 1
+ Z "™ ere o [ —dmn?e® + (5 — o —2mn%e?)?|u(t) + Agd(t)

n=1
(B.6)
We use Ay = | dEt)]t 0+ — [ ]t 0— = Z e~ (3 —0—2mn?— (-1 —o+2mn?)) = i e ™ (1 —
n=1
47n?). We can simplify above equation as follows.
PA) o st o]
e Z —e oS ﬂt[i + 0% + o+ 4rinte ™ — 6mnle® — domnie M |u(—t)
-1
o0 . 1 o0
+ Z e 03 [4 + 0% — o +4r*nte" — 6mne* + domn’e®u(t) + 0(t) [Z e (1 — 47n?)]
n=1
(B.7)
We use the fact that F(z) = 14+2w(z) = \%(1—1—210(%)), where w(z) = 3 ™% and z > 0 is real
n=1
[], and we take the first derivative of F'(x) and evaluate it at x = 1 and get z e~ ™ (1 —4mn?) = -3

(Details in |[Appendix B.2)) and hence dirac delta terms cancel each other in Eq. B.5 written
as follows using Eq. B.6 and Eq. B.7.
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E,(t) = 1(S(t) + (_411 + 0?)A(t) + 20

dA(t) N d?A(t)
dt dt?

Cor - 1 1
Ze—wrﬂe 2t 7’5 _Jt[—Z—I—O'Q—FQO'(—ﬁ—0+27T7’L26_2t)

1
—1—1 + 0% + o +ar*nte ™ — 6mn*e " — domnie *|u(—t)

1 1 1
+Ze_wn2€2t€%€_at[_1 +0_2 _|_20_(§ o — 27TTL2 Qt) 4+ . +0_ —0+47T2 4 4t 67TTL2 2t—|—40'71'7’LZ Qt]u(t)

_ Zefﬂ'nze—2t o'tD £, n + Z e~ %efatc(t’ n)u(t)
n=1

(B.8)

We cancel the common terms in Eq. B.8 and simplify above equation as follows.

1 1
C’(t,n)——Z+a +0—20° —4a7m262t+4+0 — o 4 4r*ntet — 6mn?e? + domnie®

C’( n) = dr’ntet — 6rn2e?

1 1
D(t,n) = ~1 + 0% -0 —20° +4domne ? + = 1 + 0+ o +drinte ™ — 6mne ' — domnie
D(t,n) = 4r’n*e ™ — 6rnie
(B.9)
We see that D(t,n) = C(—t,n). Hence we can write Eq. B.8 as follows.
Ep(t) = [Eo(—t)u(=t) + Eo(t)u(t)]e™
ZC t TL —7rn e? % Z 24040 67T’I’L2 2t]6—7m2e2t€%
(B.10)

We use the fact that Ey(t) = Eo(—t) (Details in [Appendix C.8)) we arrive at the desired result
for E,(t) as follows.

Ey(t) = Z[47T2 Lt _ grn2e)e ™ ez
n=1
E,(t) = Ey(t)e " = Z[47T2n4e4t 6mne®)e ™ ez
n=1

(B.11)
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Appendiz B.2. Derivation of 3 e ™ (1 — 4nmn?) = —

n=1

1
2

In this section, we derive 21 e ™ (1 — 4nn?) = —1. We use the fact that F(z) = 1+ 2w(z) =
\/Lf(l +2w(2)), where w(z) = > e~ ™% and z > 0 is real [4], and we take the first derivative of F(x)

and evaluate it at = 1.

—=(+2u(7)

x):1+2ie”"21:%(1+2iem2i)
> L ( 1 ey —1 1
;Qﬂ'n a:_ 1—1—22

F(z)=1+2w(z) =

i

[e.9]
— E ’7TTL —’TI'T'L x —

x2
(B.12)
We evaluate the above equation at x = 1 and we simplify as follows.
dF —7n? = 2\ —mn? = —7n?
[ 1_22 —mn’ =Y @mn?)e ™ 4 (142 e ™)
n=1 n=1
Z e (1 — 4mn?) = —=
n=1
(B.13)

Appendix C. Properties of Fourier Transforms

Appendiz C.1. E,(t),h(t) are absolutely integrable functions and their Fourier Trans-
forms are finite.

The inverse Fourier Transform of the function Ep,(w) = (3 +0+iw) is given by E,(t) = Eo(t)e "

(|Appendix Al). In Eq. , we see that Eo(t) = S2°° [4n?nte! — 6mn2e®)e ™" ez > 0 and finite

for all —oo < t < oo(Details in |[Appendix C.7). Hence E,(t) = Eo(t)e " > 0 and finite for all
—oo<t<ooand0<a<%.

It is shown in [Appendix C.5|that Ey(t) has an asymptotic exponential fall-off rate of ofe=1-°I"]]

and hence E,(t) = Fy(t)e~! has an asymptotic exponential fall-off rate of o[e*l] (using e~(*->=)I*l),
for 0 < 0 < 3. Hence E,(t) goes to zero, at t — Foo and we showed that E,(t) > O and fi-
nite for all —oco < t < oo in the last paragraph.(Result C.1.1) Hence E,,(w f E,(t)e~™'dt,

evaluated at w = 0 cannot be zero. Hence E,,(w) does not have a zero at w = O and hence wo # 0.
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Given that (3 + 0 + iw) = Ep(w) is an entire function in the whole of s-plane, it is finite for
real w and also for w = 0. Hence E,,(0 f E,(t)dt is finite. Using Result C.1.1, we can write
J7 1B, (t)|dt is finite and E,(t) is an absolutely 1ntegrable function and its Fourier transform
E,.(w) converges and goes to zero as w — 00, as per Riemann Lebesgue Lemma (link).

Using the arguments in above paragraph, we replace o in E,(t) = Ey(t)e " by 0 and 20 re-
spectively and see that Ey(t) and Ey(t)e=2°" are absolutely integrable functions and the integrals
[ 1Eo(t)|dt < oo and [ |Eo(t)e !|dt < oc.

Given that E,(t) = Ey(t)e " is an absolutely integrable function, its shifted versions are abso-
lutely integrable and we see that E,(t, t) = e 72 E,(t—ty) —e72 E,(t+t5) = (Eo(t—ta) — Eo(t+t2))e !
in Eq. 6 is an absolutely integrable function, for a finite shift of ¢5. ( We substitute ¢t — ¢t = 7 and
dt = dr and get [*_|E,(t — t2)|dt = [*°_|E,(7)|dT and hence E,(t — t») is an absolutely integrable
function, given that E »(t) is absolutely integrable. Same argument holds for E,(t + t3).)

We see that h(t ) = e%tu(—t) + e“’t (t) is an absolutely integrable function because h(t) > 0
for real ¢ and o h)]dt = [75 h(t)dt = [[70 h(t)e ™ dt]u—o = |25 + s355)w=0 = 2, is finite for
0<o< 5 and its Fourler transform H ( ) converges and goes to zero as w — £00, as per Riemann

Lebesgue Lemma (link).

Appendiz C.2. Convolution integral convergence

Let us consider h(t ) = e’'u(—t) + e “"u(t) whose first derivative given by %Ef) = oe”lu(—t) —

oe~tu(t) and Ay = [¢ t)]t 0+ — [d};i)]t o— = —20 and hence %Ef) is discontinuous at ¢t = 0, for
1

0 <o < ;. The second derivative of h(t) given by hs(t) has a Dirac delta function Ayd(t) where
Ap = —20 and its Fourier transform Hs(w) has a constant term Ay, corresponding to the Dirac delta

function.

This means h(t) is obtained by integrating ho(t) twice and its Fourier transform H (w) has a term
(;?J_OV (link) and has a fall off rate of & as |w| — oo and [~ H(w)dw converges.(Result C.2)

Let us consider the function g(t,ta,t0) = f(¢,t2,t0)e " u(—t) + f(t,t2,to)e” u(t) in Eq. 6 and
its first derivative given by M = [—oe 7 f(t, ta, to) + e_”tW]u(—t) + [oe? f(t, ta, to) +
et dlbizto) ]y (1), We get [LLz0)], = —g f(0, o, to)+[LEt20)], o and [WL20)], = 5 f(0, s, to)+

_ dt dt
[—df(tgf’to)] =0+ (Result C.2.1).

We note that f(t,ts,t) is a differentiable function in Eq. 6 and get [zt tQ’tO)]t:M = [W]tzo_

and get [M}tzm [W] t—0— = 20f(0,1q,1y) using Result C.2.1. Hence % is discon-

tinuous at t =0, for 0 < 0 < %, if f(0,t9,t9) # 0.

We can see that the first derivatives of g(t,ts, %), h(t) are discontinuous at t = 0 and hence
G(w, ta, to), H(w) have fall-off rate of 5 as |w| — oo, using Result C.2. Hence the convolution
integral below converges to a finite value for real w, for the case f(0,ts, ) # 0.

F(w,ty, tg) = x /00 G(W' ta, to)H(w — w')dw' = %[G(w,tz,to) x H(w)] (C.1)

27 J_o T
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If £(0,t,t0) = 0, and if the N derivative of g(t, ta, to) is discontinuous at ¢t = 0 where N > 1,
we see that G(w, ta, to) has fall-off rate of —x+ as |w| — oo(Details in [Appendix C.3). G(w,ts, )
has a minimum fall-off rate of 12 as |w| — oo for this case. Hence the convolution integral in
Eq. [C] converges to a finite value for real w.

Appendiz C.3.  Fall off rate of Fourier Transform of functions

Let us consider a real Fourier transformable function P(t) = P, (t)u(t) + P_(t)u(—t) whose

(N — 1) derivative is discontinuous at ¢ = 0. The (N)" derivative of P(t) given by Py(t)
has a Dirac delta function Agd(t) where Ay = [det]lvlD+ — dNC;VIi](t)]t:O and its Fourier transform

Py, (w) has a constant term A, corresponding to the Dirac delta function.

This means P(t) is obtained by integrating Py (t), N times and its Fourier transform P, (w) has a
term 2o ~ (link) and has a fall off rate of _y as |w| — oo.

We have shown that if the (N — 1) derivative of the function P(t) is discontinuous at ¢ = 0
then its Fourier transform P, (w) has a fall-off rate of Jv as |w| — oo .

Appendiz C.4. FExponential Fall off rate of analytic functions.

We know that the order of Riemann’s Xi function &(3 + iw) = Ep,(w) = Z(w) is given by

O(w”e~ ‘WJW) where A is a constant [3] (Titchmarsh pp256-257 and Titchmarsh pp28-31).

We consider z(t) = Eo(t)e™°" and its Fourier transform is given by X (w) = [7_ Fy(t)e e dt =

f Bo(t)e— =20t gt — EOW(W —i20) = §(§ +i(w —120)) = 5(5 + 20 + zw) EOw(w —i20). Hence

both EOw( ) and X (w) = Ey,(w —i20) have exponential fall-off rate O(wAe_%) as |w| — oo, for
0<o< % and they are absolutely integrable (Details in |Appendix C.G[) and Fourier transformable,

given that they are derived from an entire function £(s).

Given that £(s) is an entire function in the s-plane, we see that X (w) is an analytic function
which is infinitely differentiable which produces no discontinuities for real w and 0 < o < % Hence
its inverse Fourier transform z(t) has fall-off rate faster than limy/_ 777, as [t} = oo (Details
in |Appendix C.3) and hence x(t) = FEy(t)e~** should have exponential fall-off rate of e 2/l as
[t| = oo, where B > 0 is real.

Appendiz C.5. Exponential Fall off rate of x(t) = Ey(t)e 7

We can write Ey(t) = Y200 [4n?niel — 6mn2e®|e ™" ez in Eq. |1 as follows. We take the term

2mn2e? out of the brackets below. In the term e ™€ we use Taylor series expansion around ¢ = 0

> r
for e? = Z ( : ) , given that e?’ is an analytic function for real ¢.
Iy
r=0
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_ t
E 2mn2e* [2mn2e? — 3le ™ ¢ ez

2 2 t
— § 271'712 2t 27Tn e 3]6 ™ (1+2t)€ Trn( 5 + 5 ....)62

(C.2)

We take the term e2™ out of the summation, corresponding to n = 1 and then take the term
9 .
omeltes = 2res out and write Eq. C.2 as follows.

P 2 3
Eolt) = ore—2m o % an 2mn? — 36721‘/]e*ﬂn26727r(n271)t677m2((2!2 +E ) (C.3)

For t > 0, we see that the term corresponding to n = 1 in Eq. [C.3 has an asymptotic fall-off rate
of ole™" 5t](usmg e~(2m2)1) The terms corresponding to n > 1 have higher fall-off rates, due to the
term e~ 27(* =1t

Hence we see that Fy(t) has an asymptotic fall-off rate of o[e™'?!], for ¢ > 0. Given that
Ey(t) = Eo(—t)(Details in [Appendix C.8), we see that Ey(t) has an exponential asymptotic
fall-off rate of o[e=!-2!"].

Similarly, Eo(t)e~"* has an asymptotic exponential fall-off rate of o[e~!l] (using e=(1-5=)) and

Eo(t)e?" has an asymptotic exponential fall-off rate of o[e =] (using e~(>=22)l) ‘for 0 < |o| < 1

The above results which show exponential fall-off rates for above mentioned functions, continue
to hold, as |t| increases to a larger and larger finite value, without bounds.

Appendiz C.6. Absolutely integrable functions

We see that a real function y(¢) which is finite for all ¢ and has an asymptotic falloff rate of O[]
is an absolutely integrable function, given that [ |y(t)|dt = f__oz ly(t)|dt + f @O))dt+ [ [y(t)|dt
is finite, for non-zero and finite 7', because When we 1ntegrate the integrand |y( )| with order O[%]
, we get the result O[%], which is finite at the limit ¢ = +7 and the result O[%] is zero at the
limit t — 4o00. If y(¢) has an exponential asymptotic falloff rate, when we integrate the integrand
ly(t)| with order O[e=4!] for real A > 0, we get the result O[%e~A], which is finite at the limit
t = +T and the result is zero at the limit ¢ — 400 and hence y(t) is an absolutely integrable function.

Appendiz C.7.  Ey(t) >0 for —oo <t < o0

For 0 <t < 0o, we can show that Eo( ) =>02, f(t,n) > 0 where
f(t,n) = [Ar2nte — 6mn2e?)e ™" ez = 2rn2e[2mn%e2 — 3le~™ "¢ as follows.
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The sum is positive because each summand f(¢,n) is positive for finite n, and each summand
is positive because the term 2mn2e* — 3 > 0 for all ¢ > 0 and n > 1, given that # > 3 and
2,2t

2mn2e2e ™ ¢35 > 0 for 0 < t < oo and finite n > 1.(Result C.7.1)
For t =0 and n = 1, we see that f(0,1) = 2727 — 3]e™™ > 0.

For t = 0 and for each finite n > 1, we see that f(0,n) = 2rn?[2rn? — 3]e™™ > 0.

For 0 < t < oo and for each finite n > 1, we see that f(t,n) = 2rn2e®[2rn%e? —3)e~ "¢

using Result C.7.1.

t
‘o3 > 0,

™

Asn — oo, f(t,n) goes to zero, for 0 < t < 0o due to the term e~ ¢ We do summation over

n and see that the sum of the terms >~ f(t,n) > 0, for 0 <t < oo.
Hence Eo(t) => 07, f(t,n) > 0 for 0 < ¢ < 0.
Given that £(5 + iw) = Eo,(w) is an entire function in the whole of s-plane, it is finite for real w

and also for w = 0. Hence Ey,(0) = [*°_ Ey(t)dt is finite. We see that Ey(t) is an analytic function
for real ¢ (Details in Section [L.1)). Hence Ey(t) = Y oo, f(t,n) > 0 is finite for 0 < t < oo.

Given that Fy(t) = Eo(—t)(Details in [Appendix C.8)), we see that Fy(t) > 0 and finite for all
—00 <t < 00.

Appendiz C.8. FEy(t) is real and even

We see that £(3 + iw) = Eo,(w) = Eou(—w) (Result C.8.1) because £(s) = £(1 — s) |(link) and
hence £(1 + iw) = £(3 — iw) when evaluated at s = 3 + iw.

We take the Inverse Fourier transform of Ey,(w) and use Eoy,(w) = Ep,(—w) from Result C.8.1
in the first line in Eq. C.4 and then substitute w = —w" in the second line in Eq. C.4, as follows.

1 o - 1 [~ :
Ey(t) = %/ By (w)e™' dw = %/ B, (—w)e™!dw
1 © ! . ! !
=5 - Eoo(w)e ™ tdw = Ey(—t)

(C.4)

We see that Ey(t) in Eq. [1]is real and Ey(t) in Eq. C.4 is even and hence we have derived the
result that Fy(t) is a real and even function of variable t.
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Appendix D. Properties of Fourier Transforms Part 1

Appendiz D.1. Fourier transform of Real g(t)

In this section, we show that the Fourier transform of a real function g(t), given by G(w) =
Gr(w) + iG(w) has the properties given by Ggr(—w) = Gr(w) and G;(—w) = —G(w). We use the
fact that g(t) is real and cos (wt) is an even function of w and sin (wt) is an odd function of w below.

Gw) = /00 g(t)e “tdt = Gr(w) +iGr(w)
Gr(w) = /00 g(t) cos (wt)dt = Gr(—w)
Grw) = — /00 g(t) sin (wt)dt = —G(—w)

(D.1)

Appendiz D.2. Even part of g(t) corresponds to real part of Fourier transform G(w)

In this section, we take the even part of real function g(t), given by geven(t) = 3[g(t) + g(—1)]
and show that its Fourier transform is given by the real part of G(w).

G(w) = /_00 g(t)e ™“dt = Gr(w) +iGr(w)

o0

/_ " Gt = / L) + g—tjean - Gw) 1 /_ " g(—t)edt

[e's) —002 2 2 o0

(D.2)

We substitute ¢ = —t in the second integral in the last line of Eq. D.2. We use the fact that
Gr(—w) = Gr(w) and G;(—w) = —G(w) for a real function g(t). (Details in [Appendix D.1))

- —i Glw) 1 [% : Gw) G(-w)
1wt _ - 1wt —
/_Oo Geven(t)e™ " dt = 5 t3 /_Oog(t)e dt T

= £ [GR(w) +iG1(w) + Cr(—w) +iCr(~w)] = 5[Galw) +iCr(w) + Crlw) — iG1(w)] = Calv)

(D.3)
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Appendix E. Details for Section 6

Appendiz E.1. Gpr(w,ta,t0) and Gra,(w,ta,ty) are partially differentiable twice as a func-
tion of w

Gr(w,ta,19) in Eq. 17 is copied below.

0
Grlw, b, tg) = 2710 / B (7 + to, ta)e 27" + B\ (7 — to, ta)] cos (wr)dr

—00

0
+e2oto / [E[I)(T — to, tg)e_z‘” + E(l)n(T + to, to)] cos (wT)dr

(E.1)
We could then use Ey(7,ty) = (Eo(T — t3) — Eo(7 + t2) (using Definition 1 in Section ) and

E,, (1,ty) = Ey(—7,t3) = —Ey(7,t5) (using Definition 2 in Section and Result 3.1 in Section .
We see that Ey(7) in Eq. |I] and its tg and ¢, shifted versions are analytic functions of 7,ty and to,
given that the sum and product of exponential functions are analytic and hence infinitely differen-

tiable.(Result E.O)

In Eq. E.1, Ggr(w, ta, t) is partially differentiable at least twice with respect to w and the integrals
converge in Eq E.1 and Eq. E.2 for 0 < o < 3, because the terms 7" Eo(T £, t2)e” " and 7" Ey, (1 +
to, ta) = —7" Ey(T % to, t5) have exponentlal asymptotlc fall-off rate as || — oo, for r € W (Details
in [Appendix E.1.1). The integrands in Eq. E.1 and Eq. E.2 are analytic functions of variables w
and to, for a given ty(using Result E.0 in [Appendix E.1jand given that the terms cos (wT), sin (wT)
and e72°7 are analytic functions). The integrands have exponential asymptotic fall-off rate (Details
in |[Appendix E.1.1)) and absolutely integrable and we can find a suitable dominating function with
exponential asymptotic fall-off rate which is absolutely integrable.(Details in [Appendix E.2|) Hence
we can interchange the order of partial differentiation and integration in Eq. E.2 using theorem of
differentiability of functions defined by Lebesgue integrals and theorem of dominated convergence,
recursively as follows.(theorem)

9G r(w, ta, o) ‘ /
R(wa 2 0 —_ —QO'to / 7_ 7_ + tO, t2) —20T + Eon(,]- _ tO) tQ)] Sin (w7—)d7—
Ow oo
0 /
1 e20t0 / T[Ey(T — to, t2)e 2 + Ey, (T + to, t2)] sin (wT)d7]
0%G r(w, t2, to) ’ /
Réw; 2, to) _ 2ato/ 2By (T + to, ta)e 27T + E,,, (T — to, t2)] cos (wT)dT
0y e

0
2ot / Tz[E[;(T — to, t2)672” + E(/]n(T + to, to)] cos (wT)dT]

o0

(E.2)

We can use the arguments in the above paras and derive the (2r)"" derivative of Gg(w, t2,y), for
r € W, which is differentiable at least twice, as follows.
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0¥ Gr(w, ta, t 0 , ,
Gror(w, ta, to) = I;(:;T 2 o) = (=1)"[e 2" / T [Ey(T + to, t2)e 277 + By, (T — to,t2)] cos (wr)dr

—00

0
+e20to / T2T[E(/](T — to, tQ)e_zaT + E(/)n(T + to, t2)] cos (wT)dT]

—00

(E.3)

We can prove Eq. E.3 using induction. We use Eq. E.3 as Induction Hypothesis. We take the
second derivative of Eq. E.3 and we interchange the order of differentiation and integration, using
the arguments used to derive Eq. E.2 as follows.

0 LG p(w, b, t ’ /
852(r+71 2 0) _ ( r+1 —2at0 7_2r+1 T+t0,t2) —20T —|—E0n(7' —to,tQ)] sin (WT)dT

—00

0
+e2oto / T HE (T — to, ta)e 277 + E(;n(T + to, t2)] sin (w7)dT]

82T+2GR (Cd, tQ ) tO)
aw2'r+2

(1) / B (7 4 t, ta)e 2T + Bl (7 — to, )] cos (wr)dr

0
_ /
20't0 7_2r+2 7_ - t07 tg) 20T 4 EO
—o0

(T + to, t2)] cos (w)dT]

mn

(E4)

We see that the second equation in Eq. E.4 is the same as the equation obtained by setting
r=r+1in Eq. E.3. Thus we have proved Eq. E.3 using mathematical induction.

Appendiz E.1.1. Exponential Fall off rate of B(t) = t"Ey(t £ty,t2)e 2" forr ¢ W

In this section, it is shown that the term B(t) = t"Ey(t + to,t5)e"°" has exponential asymp-
totic fall-off rate as |t| — oo, for r € W where Ey(t,ty) = Eo(t — t3) — Eo(t + t5). Hence
B(t) = t"e 2" [Ey(t — ta + t9) — Eo(t + ta £ to)] (Result E.1.1).

We consider C'(t) = t"e 27 Ey(t — t,) for real t,. We see that C'(t+t,) = (t+tq) e 2727 Ey(t).
We sce that Ey(t)e 2" is an absolutely integrable function, for 0 < |o| < 3 given that it has expo-
nential fall-off rates as |t| — co. (Details in |[Appendix C.5/and [Appendix C.6).

Hence C(t+t,) = (t+t,)"e 2" Ey(t)e~ 7" also has exponential fall-off rates as |t| — oo, for r € W
and finite ¢, and is an absolutely integrable function.

Hence C(t) = t"e 2" Fy(t — t,) has exponential fall-off rates as [¢| — oo, for finite ¢, and is an

absolutely integrable function. We set t, = to+to and t, = —ts -ty and see that B(t) in Result E.1.1,
has exponential fall-off rates as |t| — oo, for finite 5,y and is an absolutely integrable function.
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Appendiz E.2. Dominating function

We consider z(t) = Ey(t)e 2" which has asymptotic exponential fall-off rate of o[e=*°"].(Details
in [Appendix C.5) We see that z(t + t,) also has the same asymptotic exponential fall-off rate, for
finite shift of ¢, = to + to and y(t,t,) = t"x(t + t,)e*** also has the same asymptotic exponential
fall-off rate, for » € W. We consider the intervals 0 <ty < t,,., 0 <ty <ty .. and 0 <t, <, ..
where tg, . ,to, . .1 are finite.

Amazx

We consider tq >>t,, . where y(t,t,) = t"x(t+1t,)e** falls off at the rate of o[e®] for t << —t,.
We consider f(t,t,,w) = y(t,t,)cos (wt) and we get M —ty(t, t,)sin (wt) which falls off at

the rate of 0[] for t << —t4. Let fiae > 0 be the maximum value of |—af bita,
—o0 <t < o0.

| in the interval

We can find a suitable dominating function D(t) = e XM f, X% > 0 with a fall off rate of
Ole= %] where 0 < K < 0.5 and hence D(t) has a slower fall off rate than af(t% and D(t) = fiax
at t = —tg and hence D(t) > ]M| for —oo < t < 0 and hence |8f Lla) | < D(t) in the interval

(—o0, 0] and f (t)|dt = f e frgeeStadt = & frape® R0 = Kfmaxeth is finite.(Result
E.2.1)

The first term in Eq. E.2 given by B(t) = t" Ey(t+to, t)e™27t = t"e 27 Ey(t—ty+to) — FEo(t-+ta+to)]
using Result E.1.1 in [Appendix E.1.1. We set t, = to + tg and t, = ty — ty and get B(t) =
tre 2 Ey(t —ty) — Eo(t +t,)]. Hence y(t,t,) = t"x(t +1t,)e*' = t"Ey(t +t,)e 27" in the second para,
corresponds to the second term in B(t) and Result E.2.1 holds for this term. The first term in B(t)
is obtained by replacing ¢, by —t, and Result E.2.1 holds for this term and hence for B(t). We see
that Result E.2.1 holds for the other 3 terms in Eq. E.2 using arguments in above paragraphs and
replacing ty by —ty and setting o = 0 as needed.

As to,..,to, . ta, .. increase to a larger and larger finite value without bounds, we consider
larger intervals 0 < ¢y < tg,,,., 0 < to <ty . and 0 < t, < t, .. and fpne and t; also increase
correspondingly and the results in above paragraphs are valid in these intervals.

Similarly, we consider f(t,t,,w) = y(t,t,)cos(wt) = t"Eg(t + t,)e 27" cos (wt) = t"Eo(t + to +

ta)e 27" cos (wt) and we see that (gfg’“) and % (g’tt:’w) which fall off at the rate of 0[e®5] for t << —tg,

using Eq. E.8 and Ey(t) = Ey(—t) and due to the term e=™¢* and we can use arguments in above
paragraphs to get a result similar to Result E.2.1 for the terms in Eq. E.5 and Eq. E.15. We can use

these arguments to get a result similar to Result E.2.1 for the second derivative terms P ilttaw)

ot?
—82fg£§a’w) in Eq. E.10 and Eq. E.19.
2

and

Appendiz E.3. Gpror(w,ta,ty) are partially differentiable twice as a function of ty, r € W

In Eq. E.3, Grar(w,ts,ty) is partially differentiable at least twice as a function of ¢, and the
integrals converge in Eq. E.5 and Eq. E.10 shown as follows. The integrands in the equation for
Graor(w,ta, tg) in Eq. E.5 are absolutely integrable because the terms 72" Ey(7 =+ to,15)e”2°T and
T By, (THto, ts) = —72 Ey(T+ty, t5) have exponential asymptotic fall-off rate as |7| — oo, forr € W
(Details in [Appendix E.1.1). The integrands in Eq. E.5 are absolutely integrable and are analytic
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functions of variables w and to, for a given ¢, (using Result E.O in [Appendix E.1|). The integrands
have exponential asymptotic fall-off rate(Details in |Appendix E.1.1) and we can find a suitable
dominating function with exponential asymptotic fall-off rate which is absolutely integrable.(Details
in [Appendix E.2)) Hence we can interchange the order of partial differentiation and integration in
Eq. E.5 using theorem of differentiability of functions defined by Lebesgue integrals and theorem of
dominated convergence as follows. (theorem)

0
GRrar(w,ta, tg) = 6_2‘”0(—1)’” / T2T[E(l)(7' + to, tg)e_Q‘” + E(/)n(T — to, ta)] cos (wT)dr

0
Heoto(—1)" / T2T[E(l)(7' —tg,ta)e 2T + E(l) (T + to, t2)] cos (wr)dr

n
—0o0

OG por(w, ta, t 0 : ,
R2 (‘;(:7 2, to) = —20e 27 (1) / T Ey(T + to, ta)e 27T + By, (T — to,t2)] cos (wr)dr
0

0 / —20T !
o(E to,t E — to,t
+€20to(_1)r/ L2 (Eo(T 4 to, t2)e + Eg, (T — to, 12)) cos (wr)dr
e Oty
0 / /
+20e270(—1)" / T [Ey(T — to,t2)e 27" + By, (T + to, t2)] cos (wT)dr
0 / —20T !
O(Ey(T —to,t E to,t
+620t0(_1)r/ 7_21" ( O(T 05 2)6 + On(T + to, 2)) COS (LUT)dT
oo Jto
(E.5)

We show that the integrals in Eq. E.5 converge, as follows. We see that E{)(T + to, ta) =
Eo(T —|—t0 — tg) — Eo(T +t0 —f—tg) and E(l),n(T — t07 tg) = —E(I)(T — t(), tg) = E()(T — t() —f-tg) — Eo(T — t() — tg)
(using Definition 1 in Section and Result 3.1 in Section [3] ).We see that the first and third inte-

grals in the equation for %ﬁ”“) in Eq. E.5 converge because the terms 72" E, (1T 1o, t2)e 2" and
T B, (T & to, ts) = =72 Ey(T £ to, t5) have exponential asymptotic fall-off rate as |7| — oo(Details

in [Appendix E.1.1J).

We consider the integrand in the second integral in the equation for %‘:’t?’m) in Eq. E.5 first
and use the results in the above paragraph.

O(Eo(T + to, t2)e™ ™ + Eg (T — to, t2))  O(Eo(T +to — ta)e 2 — Eo(T + to + ta)e27)
8t0 B atO
+a(E0(T — to —|— tg) — E()(T — to — tg))

Oty

(E.6)

We consider the term Eo(7 + ¢ + t2) first in Eq. E.6 and can show that the integrals converge in
Eq. E.5, as follows. We take the factor of 2 out of the summation in Ey(7) in Eq. |1 copied below.

2,27

Eo(1) =2 Z[2W2n4e4T — 3mn?e*)e e
n=1

T
€2

o0
02,27 2(tg+tg) T (tatto)
Eo(T+ta+ty) =2 g (212t ettt tto) _ 3227 2(tatlo)] pmmnTet TR0 5 o

n=1
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(E.7)

We can show that (%)EO(T +ty+ty) = (%EO(T + ty + tg) as follows, given that the equation for

Eo(T+t2+to) in Eq. E.7 has terms of the form ™" and the equation is invariant if we interchange
the variables 7 and ¢y. (Result E.3.A)

0 > 2,27 2(tg+tg) T (t2tto)
> E[)(T +ty + tO) -9 E :6—7rn e27e2(t2 o eieT[8W2n4e4T€4(t2+to) _ 67Tn262762(t2+t0)
0

n=1

+(l . 27Tn262762(t2+t0)) (27T2n4e4T€4(t2+t0) . 37rn262762(t2+t0))]
2

0 > 2,27 2(tg+tg) T (tattg)
—FEo(T +ta +tg) =2 E S o [87r2n4e4764(t2+t0) — 6rn2e’ et to)

or —
+(% . 27Tn262762(t2+t0)) (27T2n4€4r€4(t2+t0) . 37Tn2€2r€2(t2+t0))]
(E.8)
We can replace ty by t, = —to in Eq. E.7 and see that %EO(T—HQ +ty) = ZEo(T+12+t,) (Result
E.3.E) given that the equation is invariant if we interchange 7 and tz). Given that 8%) = 8%)3—2 = —8%),

we substitute it in Result E.3.E and get 8%EO(T + by — tg) = =2 Eo(T + t — ty).(Result E.3.B)

We can write the term in the second integral in the equation for %ﬁj’h’m) in Eq. E.5, corre-

sponding to the term Fy(T +ty +t2)e 27 in Eq. E.6, using Result E.3.A, as follows. We use the fact
that [, 24 By = 0, QI [0 ()

o I(E ty 4+t o I(E
/ (Bo(r + 2+ 0))72%_207 cos (wT)dr = / O(Bo(r + 12 + tO)Tz’"e_Q‘” cos (wT)dT
—c0 8t0 — 0o 87'
_ /0 I(Eo(T + t2 + to(??TQ”e_QUT cos (wT)) g /0 Eo(r + ta + o) (9(7'27’6_2;7 cos (wT) ir
. T . T

0
= [Eo(T +t2 +to)T*" e 27" cos (wr)]°, + w / Eo(T +ty + 1)) 7% e 2" sin (w7)dr

— 00

0 0
+20/ Eo(T 4ty + 1)) 72 e 7 cos (wT)dT — 2r/ Eo(T 4ty + 1)) e 277 cos (wr)dT

—00 —00

(E.9)

We see that the integrals in Eq. E.9 converge because the integrands are absolutely integrable
because the terms Eo(7 + to + to)72 e 2T sin (wT), Eo(T + ta + )7 e 27 cos (wr) and Ey(T +
ty + to))72 " te™2°7 cos (wT) have exponential asymptotic fall-off rate as |r| — oo(Details in
pendix E.1.1). The term [Eo(7 + to + to)72 e 2" cos (w7)] is finite, given that 72" Ey(7)e 27

and its shifted versions go to zero as t — —oo(Details in [Appendix C.5[ ). Hence the integral
2r ,—20T
fi)oo 8<E0(T+t2§z3)7 <) cos (wr)dT in Eq. E.9 and in Eq. E.5 corresponding to the term Eo(T + t5 +

to)e 2" in Eq. E.6, converges.

We set o = 0 and ty = —t; in the term FEo(7 + to + to)e 2°" and see that the integral

fi)oo %ﬁto))ﬁr cos (wr)dr in Eq. E.5 corresponding to the term FEy(7 + ¢, — ty) in Eq. E.6 also
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converges, using Result E.3.B and the procedure used in Eq. E.7 to Eq. E.9.

We set ty = —to in the term Ey(T + to + to)e 27 in Eq. E.7 to Eq. E.9 and see that the inte-

gral fi)oo B(EO(T_%Z?O)(%T)TZT cos (w7)dr in Eq. E.5 corresponding to the term Fo(7 —ty +t9)e 2" in

Eq. E.6 also converges.

We set ty = —to, 0 = 0 and tg = —tg in the term Ey(7 + to + tg)e 2°" and see that the integral
ffoo %ﬁfrm))r” cos (wr)dr in Eq. E.5 corresponding to the term Ey(7 —ta — tp) in Eq. E.6 also
converges, using Result E.3.B and the procedure used in Eq. E.7 to Eq. E.9. Hence the second integral

oG tato) -
9Grarlwilalo) 3 By F.5, also converges.

in the equation for Bt

We can see that the last integral in Eq. E.5 converges, by setting t) = —ty in Eq. E.6 and using
Result E.3.B and using the procedure in Eq. E.7 to Eq. E.9. Hence all the integrals in Eq. E.5
converge.

Appendiz E.3.1. Second Partial Derivative of Gra-(w,ts,ty) with respect to t,

The second partial derivative of G, (w,s,ty) with respect to ¢ is given by PCrarlwtate) _

ot? -
%%};’tm as follows. We use the result in Eq. E.5 and the fact that the integrands are absolutely

integrable using the results in [Appendix E.3| and are analytic functions of variables w and ty for
a given ty (using Result E.0 in [Appendix E.I| ). The integrands have exponential asymptotic
fall-off rate (Details in [Appendix E.1.1)) and we can find a suitable dominating function with
exponential asymptotic fall-off rate which is absolutely integrable.(Details in [Appendix E.2|) Hence
we can interchange the order of partial differentiation and integration in Eq. E.10 using theorem of
differentiability of functions defined by Lebesgue integrals and theorem of dominated convergence as
follows. (theorem)

0

O*Gror(w, ty, t , )
rorltato) _ 22ty / P E(7 + to, )T + B (7 — to, )] cos (wr)dr

ot? o
—4oe 20to( 1)r /O T?ra(E(l)<T + 1o, t2>e_2m— + E(l)n(T — to, t2>> COS (WT)CZT
o Oty
+672at0<_1)r /O 7_2ra2(E(l)(T + 1o, t2)6_2m- + E(l)n(T — to, t2)) COS (CUT)dT
. o2
0
+40%e*70(—1)" / T2 Ey(T — to, ta)e™ 2T + E, (T + to, t2)] cos (wr)dT
+4O_€20to( 1)7" /0 T2T8(E6(7' — 1o, t2)€_2m— + E(/)n(T + 1o, t2)> COS (WT)CZT
o Oto
0 2 1 2 /
0°(E — 1o, t T+ E to, t
+e2ato(_1)r /_Oo 22 (Eo(T — to, ta)e at% + By, (T + to,12)) cos (wr)dr
(E.10)

The first two integrals and fourth and fifth integrals in Eq. E.10 are the same as the integrals in

the equation for %{;’two) in Eq. E.5 and have been shown to converge in |Appendix E.3| We will

show that the third and sixth integrals in Eq. E.10 converge, as follows.
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We consider the integrand in the third integral in Eq. E.10 first. We see that Ey(7T + to,ty) =
E()(T +t0 — tg) - Eo(T +t0 +t2) and E(l)n(T - to, tg) = —E(l)(T - to, tg) = Eo(T — t() —f-tg) - Eo(T — t() — tQ)
(using Definition 1 in Section and Result 3.1 in Section |3| ). We write an equation similar to
Eq. E.G.

82(E(l)(7' + o, tg)@iQUT + E(l)n(T — 1o, tg)) o aQ(E()(T +ty — tg)@iQUT — E()(T + ity + t2)€7207—)

ot3 ot3
+82(E0(7' — t() + tz) — E()(T — t() — tg))
ot?
(E.11)
We consider the term Ey(7 + tg + t2) first in Eq. E.11 and copy Eq. E.7 below.
Z 2 4 47' 37Tn2 27']6 ﬂnzeQTe%
=1
Eo(T +ta+to) = Z omntetmettatto) _ 34p2e?T 2(t2+t°)] —mn?elrel(tatio) g Ll
(E.12)

We can see that TE()(T +ta+ty) = 25 2% Eo(7 +ty +to), given that the equation has terms of the
form e7*" and the equatlon is invariant if we interchange the variables 7 and ¢y.(Result E.3.1.A”)

We can replace ty by t/o = —tp in Eq. E.12 and see that EO(T +ty + to) 672 Eo(T +ty + to)

a(t )
(Result E.3.1.E’) given that the equation has terms of the form e™** o and the equation is invariant
if we interchange the variables 7 and t,.

00y _ _ o 2 _ 00N _ _0(0\_ 0 (0y_ & :
Given that - = o o0 = at’ , we get (%2 = 7¢ (762 )— 3t0<8t ) = atg(atg) = 5y Ve substi-

tute it in Result E.3.1.E’ and get (%2 S Eo(T 4ty — to) = o 5 Eo(T + ty — t) .(Result E.3.1.B)

We can write the term in the third integral in Eq. E.10, corresponding to the term Eo(7 + to +
t2)e™2°" in Eq. E.11, using Result E.3.1.A’, as follows. We use the fact that f dA( T)B( Ydr =

0 A(r
ffood(T _f—ooA Td :

0 a2 0 92
0*(E t t 0“(E t 1
/ (Eo(r +2 2+ 0))7'2%—2” cos (wr)dr = / (Eo(T + 1t + 0))727’6_2‘” cos (wr)dr
oo ots o or?
_ /0 a(BEo(T;}f2+t0)7_2r€—2aT COS ((,UT)) d7_ B /O aE()(T T t2 4 tO) 8<T2r6—207' CoS (UJT)) .
oo or o or or
OF ty+t 0 9F ty+t
= [ o(7 + 12 + 0>72Te_2” coS (oJT)] + w/ o7 + 24 O)Tzre_Q‘” sin (wr)dr
or - or
0 0
oF t t OF t t
+20/ ol —(; 2 0>72Te_2‘” cos (wr)dr — 27’/ ol g 2 0>72T_16_20T cos (wr)dr
. T . T
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(E.13)

We see that the integrals [©_ 2Z(tetlo) 2r =207 ¢og (47 )dr and ffoo 9By (rttatlo) 20 =10 =207 (g (w7 )dT

—0o0 or or
in Eq. E.13 converge, using Eq. E.9 in the previous subsection. We see the term [Wﬂ% cos (w)]
also converges, given that Ey(7) = Eo(—7) and Eo(T + t2 + tg) = Eo(—7 — ta — to) and we consider
OEn(T ttatto) por o —20m — IBo(CT—ta—to) 227 =207 yging Eq. E.8 and see that the term e~™¢" goes to zero

or or

faster than the rising term 727¢"2°7¢~7¢~2 as 7 — —oo. (Result E.3.1.1)

0

—0o0

—20T

It is shown below that the term [°  2E(THatlo) 22re=207 giny (yr)dr in Eq. E.13 also converges.

/0 I(Eo(T + 12 + o)) o,

e 27 sin (wT)dT

o or
_ /0 O(Eo(T 4+t + tO;TQ’"eQ"T sin (wT)) gr /0 Eo(r + ts + to) 8(7'%62;7 sin (wT) ir
oo T - -

0
= [Eo(T 4ty + to)T* e 27" sin (wr)]° . — w / Eo(T +ty + to)7* e 27 cos (wr)dT

—0o0

0 0
—|—20/ Eo(T + ty + to)7* e 27 sin (wr)dT — 27“/ Eo(T + ty 4 to)7 e 2" sin (w)dr

—0o0 —00

(E.14)

We see that the integrals in Eq. E.14 converge because the integrands are absolutely integrable
because the terms Ey(7 + to + to) 72 € 277 sin (wT), Fo(T +to + o) 7 " te 27 sin (wT) and Eo(T + to +
to)T* e~ cos (wT) have exponential asymptotic fall-off rate as |7| — oo(Details in [Appendix E.1.1]).
The term [Eo(7+ta+t0)7* €277 sin (w7)]° _ is finite, given that 72" Ey(7)e 2" and its shifted versions

go to zero as t — —oo(Details in |[Appendix C.5[). Hence the integral ffoo BZ(EO(THQ&?)T(A)%_%U cos (wr)dr
0

in Eq. E.13 and in Eq. E.10 corresponding to the term Ey(7+ty+t)e 2°" in Eq. E.11, also converges.

We set ¢ = 0 and ty = —to in the term Eo(7 + ty + to)e 2°" and see that the integral
fo 82(E0(r+t27t0))
—00 8%

also converges, using Result £.3.1.8" and the procedure used in Eq. E.12 to Eq. E.14.

7% cos (wr)dr in Eq. E.10 corresponding to the term Fo(7 + to — o) in Eq. E.11

We set ty = —t5 in the term Ey(7 +ta +t)e 2" in Eq. E.12 to Eq. E.14 and see that the integral
2 2r ,—20T
fi)oo 2 (EO(T‘W;QO)T D cos (wr)dr in Eq. E.10 corresponding to the term Eo(T — ty + to)e 2" in
0

Eq. E.11 also converges.

We set ty = —ty, 0 = 0 and ty = —t( in the term Eo(7 + t3 + to)e 2" and see that the integral
2
fi)oo WT% cos (wr)dr in Eq. E.10 corresponding to the term Ey(7 — t5 — tp) in Eq. E.11
0

also converges, using Result F.3.1.B’ and the procedure used in Eq. E.12 to Eq. E.14. Hence the
third integral in Eq. E.10, also converges.

We can see that the sixth integral in Eq. E.10 converges, by setting t, = —ty in Eq. E.11 to

Eq. E.14 and using Result F.3.1.B’ and the procedure used in Eq. E.12 to Eq. E.14. Hence all the
integrals in Eq. E.10 converge.
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Appendiz E.4. Gprar(w,ta,to) is partially differentiable twice as a function of ty forr € W

In Eq. E.3, Grar(w,ts,ty) is partially differentiable at least twice as a function of ¢, and the
integrals converge in Eq. E.15 and Eq. E.19 shown as follows. The integrands in the equation for
Gror(w, s, tg) in Eq. E.15 are absolutely integrable because the terms 72" Ey(T + to,t5)e 2" and
T By, (T Eto,ty) = =T Ey(T + tg, t5) have exponential asymptotic fall-off rate as |7| — oo(Details
in |[Appendix E.1.1)). The integrands are analytic functions of variables w and t,, for a given ¢y (using
Result E.0 in [Appendix E.1|). The integrands have exponential asymptotic fall-off rate (Details in
|Appendix E.1.1) and we can find a suitable dominating function with exponential asymptotic fall-off
rate which is absolutely integrable.(Details in [Appendix E.2) Hence we can interchange the order
of partial differentiation and integration in Eq. E.15 using theorem of differentiability of functions
defined by Lebesgue integrals and theorem of dominated convergence as follows. (theorem)

0
Grar(w, ta, ty) = e 200 (—1)" / TQT[E(;(T +tg, ta)e 27T + E(,m(T — to, ta)] cos (wT)dT

—00

0
—i—eZ”tO(—l)T / TZT[E(/](T — to, t2)€7207 + E(lm(r + to, to)] cos (wT)dr

—00

0GR o (w, tg, t 0 O(E, to, t2)e 2" 4+ Ey (1 — to,
R2 (wa 2 0) _ 6—20to(_1)r/ 2 ( O(T+ 05 2>€ + On(T 05 2)) COS (wT)dT
8252 o 8t2
0 / _9 /
o(E, — 1o, 1 T+ F to,t
+€20t0(_1)r/ T2r ( 0<T 05 2)6 gy + 0n<T+ 05 2)) COS(WT)dT
o 2

(E.15)

We use the procedure outlined in Eq. E.6 to Eq. E.9, with ¢, replaced by t5 and show that all the
integrals in Eq. E.15 converge, as follows.

We see that E(I)(T+t0, tg) = E()(T‘i‘t() —tg) — E()(T"—to +t2) and E(l)n(T —to, tg) = —E(/)(T —to, tg) =
Eo(T —to + ta) — Eo(T — to — t2) (using Definition 1 in Section [2.1] and Result 3.1 in Section (3| ). We

consider the integrand in the first integral in the equation for %}:t?’to) in Eq. E.15 first.

8(E(l)(7' + o, t2)672m— + E(/)n(T — 1o, tg)) o a(Eo(T + 1ty — tg)@iQUT — E()(T +to + t2)67207—)
Ot B Ot
+8<EU(T - t(] + tg) — EQ(T — to — tg))

Oty

(E.16)

We consider the term FEo(T + to + t2) first and can show that the integrals converge in Eq. E.15,
as follows. We copy Eq. E.7 below.

_ T
_2§ :27_[_2 4 47' 37T7’LQ€27]€ ™ e e2

0o
02,27 2(tg+tg) T (t2+tq)
E (7_ + tg + tO § 2n4€47'e4 (ta+to) 37Tn262762(t2+t0)]e m™m4e’Te eze 3
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(E.17)

We see that -2 3 Eo(T+ 12+ 1) = L2 Eo(T + 1 + o) given that the equation has terms of the form
e™"2 and hence the equation is invariant if we interchange 7 and ¢5.(Result E.4.C)

We can replace ty by t, = —t, in Eq. E.17 and see that %E@(T +ty+to) = QEO(T+t'2 +1tp) given
2

that the equation is invariant if we interchange 7 and t,(Result E.4.F). Given that -2- at = {%% =
2
a9

— 305> we use it in Result E.4.F and we get 3 Eo( —ty+ty) = —ZEy(T —ta+ to).(Result E.4.D)

We consider the term in the first integral in the equation for %ﬁ:’tm in Eq. E.15 | correspond-

ing to the term Ey(T + to + t2)e 277 in Eq. E.16, as follows, using Result E.4.C. We use the fact that
fo dA(r B( Ydr = f - —d(A(Td)TB(T))dT — ffoo A(T) diy) dr.

oodT

O(E, to + 1t O O(E, to + 1t
/ ol T+ 2+ to)) 72767297 cos (wT)dr :/ o O(T; 2 F 0))7'2?67207 cos (wr)dr
- T
O(F, T+t +t =207 cos (wT 0 O(T27e™2°7 cos (wT
[ A sl [ g O e,

0
= [Eo(T 4ty +to)7* e 27" cos (wr)]°, +w / Eo(T +ty + to)7* €27 sin (wr)dT

— 00

0 0
—1—20/ Eo(T + ty + to)7*e 27 cos (wr)dT — 27"/ Eo(T +ty 4 to)7 e 277 cos (wT)dr

—00 —00

(E.18)

We see that the integrals in Eq. E.18 converge because the integrands are absolutely integrable
because the terms Eo(T + to + to)72 e 27 sin (wT), Eo(T + ta + to)7* 1e™27 cos (wr) and Eo(T +t5 +
to)T* e~ cos (wT) have exponential asymptotic fall-off rate as |7| — oo(Details in [Appendix E.1.1]).
The term [Eo(7+ta+1o) 72 e 27 cos (wT)]"  is finite, given that 72" Ey(7)e™2°" and its shifted versions

go to zero as t — —oo(Details in [Appendix C.5[). Hence the integral ffoo B(EO(THC?,::O)@_QM)TQ’" cos (wr)dT

in Eq. E.18 and Eq. E.15 corresponding to the term Ey(7 + t3 + t5)e 2°" in Eq. E.16 also converges.

We set o = 0 and ty = —t( in the term Ey(7 + t2 +tp)e~2°7 and use the procedure in Eq. E.17 to

Eq. E.18 and see that the integral ffoo %52_“))72’” cos (wt)dr in Eq. E.15 corresponding to the

term Eo(7 +t2 — o) in Eq. E.16 also converges.

We set ty = —1y in the term Eo(7 + ty + tg)e 27 and use the procedure in Eq. E.17 to Eq. E.18

and see that the integral ffoo 8(E°(Tft§:;t0)efzm)7'2r cos (wr)dr in Eq. E.15 corresponding to the term

Eo(T — ty + tg)e 2°7 in Eq. E.16 also converges, using Result E.4.D.

We ty = —ty, 0 = 0 and ty = —t in the term Ey(7+ts+1t9)e 2" and use the procedure in Eq. E.17

to Eq. E.18 and see that the integral f EO+QM))72’" cos (wt)dr in Eq. E.15 corresponding to the

term Fo(T — ty — to) in Eq. E.16 also converges, using Result E.4.D. Hence the first integral in the
0GR 2r (w,t2,t0)

equation for 5t

in Eq. E.15 also converges.

We can see that the last integral in Eq. E.15 converges, by setting ¢ty = —tp in Eq. E.18. Hence
all the integrals in Eq. E.15 converge.
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Appendiz E.4.1. Second Partial Derivative of Ggar(w,ts,ty) with respect to ty for r ¢ W

2GR or(witato)

The second partial derivative of Gga,(w,s,ty) with respect to ty is given by 52 =
2

%%ﬁ’tm as follows. We use the result in Eq. E.15 and the fact that the integrands are absolutely

integrable using the results in [Appendix FE.4] and the integrands are analytic functions of variables
w and t, for a given ¢, (using Result E.0 in |[Appendix E.1|). The integrands have exponential
asymptotic fall-off rate(Details in |[Appendix E.1.1)) and we can find a suitable dominating function
with exponential asymptotic fall-off rate which is absolutely integrable.(Details in [Appendix E.2)
Hence we can interchange the order of partial differentiation and integration in Eq. E.19 using theorem
of differentiability of functions defined by Lebesgue integrals and theorem of dominated convergence
as follows. (theorem)

02G R o (w, to, t 0 9%(E, to,to)e 2T + B (17— to,t
R,2 (0;’7 2, 10) :e—QUto(_l)r/ L2 (Eo(T + to, t2)e ' + B, (T — to,t2)) cos (w7)dr
o2 . o2
0 2(EN(T — tg, t9)e 2" + E| to,
+€20to(_1>r/ 7_27'8( o(T — o, t2)e - + Eo, (T + 1o, 12)) cos (wr)dr
—0o0 a252
(E.19)

We consider the first integral in Eq. E.19 and using E(l)(7+t0, to) = Eo(T+to—ta) — Eo(T+1tg+ 1o
and B, (T —to,t2) = —Ey(T —to, ta) = FEo(T —tg+1t9) — Eo(T —to—ts)(using Definition 1 in Section
and Result 3.1 in Section (3] ), we write an equation similar to Eq. E.16.

82(E6<T + to, t2)6_207— + E(l)n(T - to, tg)) . 82<E0(T + to - t2)€_207— - E()(T + t(] + t2)€_207)

ot ot3
+82(E0(T - to + tg) - E()(T — to — tg))
ot2
(E.20)
We consider the term Ey(7 + to + t2) first in Eq. E.20 as follows. We copy Eq. E.7 below.
_ QZ 27_[_2 4 47' 37T7’LQ 27]6 7rn262"e%
o
E (T Tty to Z 9 r2niedt pAltatto) _ 37Tn262762(t2+t0)]efnn262762<t2+to)egew
(E.21)

We can see that 2 oz EO(T +io+ 1) = 872 EO(T + to + 1), given that the equation has terms of the
form e™*"2 and the equation is invariant if we interchange the variables 7 and t5.(Result E.4.1.C’)

We can replace t, by t, = —t5 in Eq. E.21 and see that - O Fo(T +ty + o) = fQ Eo(T + ty + to)

)
(Result E.4.1.F’) given that the equation has terms of the forrn ™+ and the equation is invariant

o1
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if we interchange the variables 7 and t,.

/
: ) o ot i) _ 9 (d\_ _0 (2 o (0 02 .
Given that g7 = ol 0 = at” we get 2 8t2 o5 (963 ) = a2‘/2(&,2) = at;(at;) = s e substi

tute it in Result E.4.1.F” and get 2 oz S Eo(T — ty +tg) = 372 Eo(T — ts + to) .(Result E.4.1.D’)

We can write the term in the first integral in Eq. E.19 corresponding to the term Eo(T + to +
t2)e™2°" in Eq. E.20, using Result E.4.1.C’; as follows. We use the fact that ffoo dA(r) (r)dr =

0  d(A(r)B(r 0 dB(T
o S A5

0 2 E 0 2 E
/ O (Eo(r + 2+ t0>)72re_2‘” cos (wr)dr = / O (Eo(r + 12 + to))TQTe_z‘” cos (wr)dr

oo ot3 oo or?
B /0 8(%72%*2“ cos (wT)) gr /0 OEo(T + ta +ty) O(T?e™2°7 cos (wT) .
) or oo or or
OF, o+t 0 OF, to+t
= [ O(Tg 2+ 0)T2Te’2‘77 cos (wr)]% . + w/ 0(7'; 2 0)72%72‘” sin (wT)dr
T . T
0 0
OF, t t OF, t t
—1—20/ ol g 2 O)T2T€_2UT cos (wr)dr — 27‘/ ol —{; 2+ O)TQT_16_2GT cos (wr)dr
o T o T
(E.22)

We see that the integrals ono OBo(ritatto) 22r =207 (o (wr)dr and ff)oo OBy (T ttatlo) 20 =10 =207 (g (w7 ) dT

or or
in Eq. E.22 converge, using Eq. E.18 in the previous subsection. We see the term [WT%K%T cos (wT)]° .,

also converges, using Result E.3.1.1 in Section [Appendix E.3.1l It is shown in Eq. E.14 that the

remaining term LO QBT ttatio) r2ro=207 gin (wr)dr also converges.
We see that the integrals in Eq. E.22 converge and hence the integral EO(TH?”LZO) ) cos (wr)dr
g q. g g o2

in Eq. E.19 corresponding to the term Ey(7 + to + tg)e 27 in Eq. E.20 also converges.

We set 0 = 0 and ty = —ty in Eq. E.22 and see that the integral f WT% cos (wr)dr

in Eq. E.19 corresponding to the term Ey(7 4ty — o) in Eq. E.20 also converges.

We set ty = —t, in the term Ey(7 + to + t2)e 2°" and use the procedure in Eq. E.21 to Eq. E.22

2 —20T

and see that the integral fi)oo 9 (EO(T+?t§t2)e )72 cos (wT)dr in Eq. E.19 corresponding to the term
2

Eo(T — ty +t9)e 2" in Eq. E.20 converges, using Result E.4.1.D’.

We set ty = —ty, 0 = 0 and ty = —to in the term Eo(7 + ty + to)e 2°" and use the procedure in
Eq. E.21 to Eq. E.22 and Result E.4.1.D’ and see that the integral f MTW cos (wT)dT
2

in Eq. E.19 corresponding to the term FEyo(7 — to — tp) in Eq. E.20 also converges. Hence the first
integral in Eq. E.19, also converges.

We can see that the second integral in Eq. E.19 converge, by setting tq = —ty in Eq. E.20 to
Eq. E.22 . Hence all the integrals in Eq. E.19 converge.
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Appendiz E.5. Zero Crossings in Gra(w,ts, 1)) move continuously as a function of t,,
for a given t,, for r € W.

Result E.5.1: It is shown in Lemma 1 in Section that Gr(w,t2,tg) = 0 at w = w,(t2,to)
where it crosses the zero line to the opposite sign, if Statement 1 is true. It is shown in
E.7) that Gra,(w,ta,tp) = 0 and w # 0 at w = w,(ta, 1), for some value of r € W where

(2r + 1) is the highest order of the zero of Gr(w,t2,ty) at w = w,(t2,ty). (example plot)

We use Implicit Function Theorem for the two dimensional case ( link and link). Given
that Grar(w, 2, to) is partially differentiable with respect to w and ¢, for a given value of t5, with
continuous partial derivatives (Details in [Appendix E.1| and [Appendix E.3) and given that
Gror(w,ta,tg) = 0 at w = w,(ta,tp) and W # 0 at w = w,(t2,1), for some value of
r € W where (2r + 1) is the highest order of the zero of Gr(w,ts,ty) at w = w,(ts,ty) (using Result
E.5.1 in this section and using |[Appendix E.7), we see that w,(ts,%o) is a differentiable function of

to, for 0 < ty < oo, for each value of t5 in the interval 0 < t5 < o0.

Hence w, (9, 1) is a continuous function of ¢y for 0 < ¢y < 0o, for each value of ¢y in the interval
0 <ty < 00.

e It is shown in [Appendix E.4|that Gga(w,ts,) is partially differentiable at least twice with
respect to to. We can use the procedure in previous paras and Implicit Function Theorem and show
that w,(ts,%9) is a continuous function of ¢y, for 0 < t3 < oo, for each value of ¢, in the interval
0 <ty < oo.

Appendiz E.6. Zero Crossings in Gpra.(w,ta,ty)) move continuously as a function of t,
and ty, for r € W

We use Implicit Function Theorem for the three dimensional case #? (link and Theorem 3.2.1
in page 36). Given that G, (w, t2,9) is partially differentiable with respect to w and ¢y and t5, with
continuous partial derivatives, for r € W (Details in |[Appendix E.1| |Appendix E.3/and
E.4) and given that Ggar(w,t2,t)) = 0 at w = w,(t2,tp) and Mf:t?to) # 0 at w = w,(ta, 1), for
some value of r € W where (2r 4 1) is the highest order of the zero of Gr(w,t2, %) at w = w.(ts, ty)
(using Result E.5.1 in [Appendix E.5land using |[Appendix E.7)), we see that w,(ts,t) is a differen-
tiable function of ty and %4, for 0 < tg < oo and 0 < t5 < o0.

Hence w, (s, t9) is a continuous function of g and ¢o, for 0 < ¢y < 0o and 0 <ty < oc.

Appendiz E.7. Order of the zero in Gr(w,ty,ty) is finite.

It is shown in this section that, if Gr(w,ts,t9) = 0 at w = tw,(t2, o) to satisfy Statement 1, for

each fixed choice of positive ¢y, 2 € R, then Gg o (w,ts2,t)) = PGrlato) _ () ot () — +w,(t2,t9) and

aw2'r
9G, 27"(“, tato) _ azr+;i§£fltz,t0) # 0 at w = Fw,(ts, t) for some value of r € W (element of set of whole

numbers including zero) and (2r+1) is the highest order of the zero of Gg(w, t2,ty) at w = fw.(ts, o)
which is finite.
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This is shown using Proof by Contradiction by assuming the opposite case that P Gnlutato) _

8w27‘
and W =0 at w = w,(tg,t), for r=0,1,..., as r - oo (Statement D) and show that it

leads to a contradiction.

Gr(w, ta,to) in Eq. 17 is copied below. It is shown in Lemma 1 in Section2.1]that Gg(w, ta, tg) = 0
at w = w,(ta,ty) where it crosses the zero line to the opposite sign, if Statement 1 is true.

0
Grlw, ty, tg) = e 27" / [Eo(T + to, t2)e™ 2T + Ey (T — to, )] cos (wr)dr

0
+e20to / [E(/)(T — to, t2)€_2aT + E(l]n(T + to, to)] cos (wT)dr

(E.23)

We compute the (2r)" and (2r + 1) derivative of Gr(w,t,t5) and copy Eq. E.3 and Eq. E.4
below.

0> Grlw,ta, t ’ :
1;(002, 2, to) _ —2ato/ T Ey(T + to, ta)e 277 + By, (T — to, t2)] cos (wr)dr
=" 0o
0 /
|20t / 2 —to,t2)e 2T + By, (T + to, t2)] cos (wT)dT]
o0

82T+1GR (w, tQ, to)
Ow?2r+1

= (-1 T‘+1 e 20to / 7-27“+1 (T + to, ta)e —20T 4 E(l)n (7 — to, t2)] sin (wT)dT

0
20’t0 / 7_2T+1 ,7_ _ t07 tg) —20T + E(l)n(T + t07 tQ)] Sin (QJT)dT]

(E.24)
— (6w)?" 0" Gr(w, ta, to)
We compute C(w, to,tg) = ; 2r) D and
50) 2r+1 02T+1G w. 1 ,t .
S(w, ta, tg) = Z @ 1 3:?2(r+1 2 to) below, using Eq. E.24.

(o] 0 ,

Clw, s o) = Z(_mr =210 / B (7 + to, t2)e 27 + Bl (1 — to, ta)] cos (wr)dr
r=0 o0

0 /
+e2oto / T —to, ta)e 27T + By, (T + to, t2)] cos (wT)dT]

- g (dw)? 0 2r+1 2 ’
S(w, ta, tg) = 2:(—1)TJr m[e‘ 7to /OOT "HUEN(T 4 to, t2)e T + Ey, (T — to, t2)] sin (w7)dr

r=0

0
+e27to / T2T+I[E(/)(T —tg,ta)e 2T + E(l)n(T + to, to)] sin (w7)dr]

(E.25)

We can interchange the order of integration and summation in Eq. E.25 using Fubini’s theorem
given that the integrands in Eq. E.25 before the interchange and the integrands in Eq. E.26 and

o4



Eq. E.27 after the interchange are absolutely integrable as shown in Section [Appendix E.I| and
hence the integrals in Eq. E.26 and Eq. E.27 for C(w, ts,ty) and S(w, ts,ty) converge and equal the
corresponding expressions in Eq. E.25 and we write as follows. |(link)

0 2r
C(w, ta,tg) = e~ 2710 / [Z(—l)’” (0w) T2 [Ey (T + to, ta)e 2T + Ey, (T — to, )] cos (wT)dT

T r=0

+e2oto / [Z(—l)r (f(c;)ﬂ)? T2T][E(/](T —to,ta)e 2T + E(l)n(T + to, t2)] cos (wT)dr

0 0 (5w>2r+1 , ,
S(w, tg, to) = G_QJtO / [Z(_l)r+l|—7_2r+l] [EO(T + to, t2)6_2UT + EOn(T — to, tQ)] sin (UJT)dT

oo (2r+1)
20t e r1 (00)2 o —207 ' .
+e D (1) G Ty Ee(T —to,ta)e™" & By (7 + fo, fa) sin (wr)dr
% r=0 )
(E.26)
+1
We use Z 2" = cos ( ) and Z T—H—TQT—H = —sin ((0w)7) and write

[(2r +1)
Eq. E.26 as follows The integrands in Eq. E. 27 are absolutely integrable using the arguments in

Section [Appendix E.Il Hence interchanging the order of integration and summation in Eq. E.25 is
justified.

0
C(w, ty,tg) = e 27" / [Ey(T + to, t2)e™ 2T 4 Ey, (T — to, t3)] cos (wr) cos ((w)7)dr
(T — to, t2)e™ 2T + Ey, (T + to, t3)] cos (wr) cos ((0w)T)dr

[
[

0
S(w,tg,to) = — €2Gt0/

e
0
+620’t0 /
(B.27)

We compute Cg(w, ta, tg) = C(w, ta, to)+S(w, ta, to) as follows, using the identity cos ((w + dw)7) =
cos (wt) cos ((0w)T) — sin (wT) sin ((dw)T).

oo

£y
[Ey(T + to, t2)e™ 2T 4+ Ey (T — to, ty)] sin (wr) sin ((0w)7)dr
0

[E/ (T —to, ta)e 277 + E(/m(T + to, t2)] sin (wT) sin ((0w)T)dT]

o0

0
Cs(w, ta, ty) = e 2% / [Ey(T + to, t2)e™ 2T + Ey, (T — to, )] cos ((w + 0w)7T)dr

—00

0
+e2oto / [E[/)(T —to,ta)e 2T + E(/)n(T + to, t2)] cos (wT) cos ((w + dw)T)dT

—0o0

(E.28)
If Statement D is true, then P Grwiato) _ () apd LU GR@I0) _ () gt ) = w,(ta,t0) in Eq. E.24

w2 Ow?2r+1
(6w)?" 0* G g(w, ta, to) (0w)*™ G r(w, ta, to)
and C'(w, ta, ty) = Z 2r) G =0 and S(w, 2, %) = Z 2 + 1) EES] =
r=0
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0 at w = w,(t2,to) in Eq. E.25 and hence Cg(w, ta,ty) = C(w, ta, o) + S(w, ta, ) = 0 at w = w, (2, to)
in Eq. E.28.

0
Cs(w,(ta, 1g), ta, tg) = e~ 27" / [Eo(T 4 to, t2)e” 2T + Ejy, (T — to, t3)] cos ((ws(ta, to) + 6w)T)dT
0
+e27t0 / [Ey(T — to, t2)e™ 2T + By, (T + to, t2)] cos ((wa(ta, to) + dw)T)dr =0

(E.29)
Eq. E.29 is similar to Eq. 18 in Section[2.4] with cos (w, (ts, t9)7) replaced by cos ((w; (ta, tg) + dw)T).

Eq. E.29 holds for real dw as dw — 0, if Statement D is true. This contradicts Result 2.1.5
in Section [2.1] which requires Gg(w, t2,t9) = 0 at w = w,(t2, tg) where it crosses the zero line to the
opposite sign, to satisfy Statement 1.

Hence we see that, if Statement 1 is true, then Statement D is false and hence there exists at
least one finite s € W (element of set of whole numbers including zero) for which the (s)" derivative
of Gr(w,ta,ty) given by Gps(w,ts, ty) = w # 0 at w = w,(te,ty), where s = 2r is even or
s =2r+1is odd, for r € W, for each fixed positive tg,ts € R.

We choose the minimum value of s € W, for which Ggs(w,t2,t) = W # 0 at
w = w,(t2, to)and hence Gpr_1(w,ts,ty) = W = 0 at w = w,(ts,ty) (Result 4.9). It

is shown in Result 4.9.a in the paras below that the case of s = 2r is ruled out and hence s = 2r+1 is
2r4+1
the order of the zero of Ggr(w, ta, 1) at w = w,(t2,ty) and hence Ggor11(w, ta, tg) = % #0

at w = w,(ta,to) and Gror(w,ta,ty) = % =0 at w = w,(ta,1p), using Result 4.9. Hence

s = 2r + 1 is the order of the zero of Gr(w,ts,ty) at w = w,(ta, o), the order of this zero is finite.

Hence we can write Gg(w, ta, to) = (w.(ta, t0)* — w?)* T N'(w, ta, o), for r € W, where
N'(w,ta,t9) # 0 at w = fw,(ts, ty), for each fixed positive ty,to € R and (2r + 1) is the highest order
of the zero at w = w, (2, tp) which is finite. It is noted that w,(t2, ty) represents the zero crossing in
Gr(w, ta,1g), for each fixed positive tg,t2 € R. It is noted that N'(w,ts,ty) may or may not be zero
at w # tw,(t2,t9) and we do not claim otherwise.

The case of (w,(ta,tg)* — w?)?" is ruled out because Gr(w,ts,1y) changes sign at w = +w. (ts, to)
and N'(w, ts,t9) # 0 does not change sign at w = +w,(ts,ty) and (w,(ts,t)* — w?)* > 0 for real w
and does not change sign at w = tw,(ts,ty).(Result 4.9.a)

We have shown that, if Ggr(w,ts,tg) = 0 at w = Ffw,(t2, 1) to satisfy Statement 1, for each

fixed choice of positive ty,t; € R, then Gro(w, s, ty) = PrGrltato) _ () gt () = = 4w,(ts,tp) and

aw2'r
9GR,2r (w ta,to) 82T+1ai§fflt2’t0 # 0 at w = dw,(t2, o) for some value of r € W and (2r 4+ 1) is the

hlghest order of the zero of Gr(w,ts,ty) at w = Fw,(t9,tg) which is finite.
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