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Abstract

This thesis posits the existence of invariant high-level musical concepts that persist

regardless of changes in sonic qualities, akin to the symbolic domain where essence

endures despite varying interpretations through different performances, instruments,

and styles, among many other, almost countless variables.

In collaboration with Epidemic Sound AB and the Music Technology Group (MTG)

at Universitat Pompeu Fabra (UPF), we used self-supervised contrastive learning

to uncover the underlying structure of Western tonal music by learning deep audio

features for music boundary detection. We applied deep convolutional neural net-

works with triplet loss function to identify abstract and semantic high-level musical

elements without relying on their sonic qualities. This way, we replaced traditional

acoustic features with deep audio embeddings, paving the way for sound-agnostic

and content-sensitive music representation for downstream track segmentation tasks.

Our cognitively-based approach for learning embeddings focuses on using full-resolution

data and preserving high-level musical information which unfolds in the time do-

main. A key component in our methodology is triplet networks, which effectively

understand and preserve the nuanced relationships within musical data. Drawing

upon our domain expertise, we developed robust transformations to encode heuristic

musical concepts that should remain constant. This novel approach combines music

and machine learning intending to enhance machine listening models’ efficacy.

Preliminary results suggest that, while not outperforming state-of-the-art, our musically-

informed technique has significant potential for boundary detection tasks. Most

likely, so does for nearly all downstream sound-agnostic and content-sensitive tasks

constrained by data scarcity, as it is possible to achieve competitive performance to

traditional handcrafted signal processing methods by learning only from unlabeled

audio files.

The question remains if such general-purpose audio representation can mimic human

hearing.



Keywords: MIR; music structure analysis; boundary detection; deep audio embed-

dings; audio representations; representation learning; embeddings; transfer learning;

multi-task learning; multi-modal learning; aural skills



Chapter 1

Introduction

Music 1, a cornerstone of human culture, has developed hand in hand with our

societies since ancient times. However, its study presents unique challenges due to

its subjectivity, fluctuating ground truth, and the vast array of styles and cultural

contexts.

Prior research emphasizes the necessity of selecting suitable audio features to distin-

guish and label unique music segments for music segmentation tasks. The challenge

lies in acquiring annotated data for these feature transformations, which can be

time-consuming and expensive. In response, scholars have turned to unsupervised

deep learning using readily available audio data [1, 2]. This method has substan-

tially improved the generalization capacity of machine-listening models in down-

stream applications. Among others, segmentation algorithms have seen significant

enhancements and delivered state-of-the-art results [3, 4].

Beyond applications in music structure analysis, the evolution of neural networks

has empowered the creation of latent representations encapsulating crucial musical

traits, technically known as representation —or feature— learning. Such spaces can

be imploded into low dimensional and digestible representations, as shown in Figure

1Throughout this thesis, "music" refers to the Western tradition, defined by the conventions,
practices, and aesthetics that primarily evolved in Europe and North America. This term’s usage
does not negate the diversity and richness of other musical traditions worldwide. Instead, it specifies
this study’s concentration on a particular cultural context.

1
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1.

This evolution has simplified the computational process for various task-specific

elements, including but not limited to:

• Creating an audio embedding that excels across numerous applications without

the necessity for fine-tuning [5].

• Boosting the classification of environmental sounds [6].

• Enhancing vocal-centric music tasks through cross-domain audio embeddings

[7].

• Integrating task-specific and pre-trained features to optimize audio classifica-

tion [8].

• Developing a music similarity search engine for video production [9].

• Improving Music Emotion Recognition (MER) performance [10].

• Evaluating the effectiveness of speaker recognition via pre-trained model em-

beddings [11].

• Embedding songs for artist identification to facilitate similarity comparisons

[12].

• Addressing cross-modal text-to-music retrieval issues [13].

• Enabling automated music rearrangement [14, 15].

Furthermore, deep audio embeddings offer the benefit of transferability, establishing

a foundation for multiple tasks. Compared to training a model from scratch, this

approach saves computational resources and time [16, 17, 18].

Unsupervised settings to learn those embeddings confront the persistent challenge of

acquiring labeled data, an endeavor often time-consuming and expensive. By capi-

talizing on the vast volumes of available unlabeled music data, we bypass the need
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Figure 1: Dimensionality reduction and latent space representation: Mapping between
the original high-dimensional space X and the lower-dimensional latent space F using
functions f and g.

for laborious hand annotation, offering a pathway to potentially more comprehensive

generalization.

It is yet to be determined whether a general-purpose audio representation can suc-

cessfully emulate human hearing [5], even though some techniques have demon-

strated generalizability across many music-understanding tasks [4, 19]. Deep learn-

ing’s role in music understanding remains relatively nascent, with scarce work on

deep music representations, a dearth of large-scale datasets, and a lack of a universal

community-driven benchmark [5, 20].

All in all, given the proven effectiveness of deep audio embeddings in existing research

and their potential for transfer learning, they hold considerable promise; therefore,

we will leverage deep convolutional neural networks to replace traditional acoustic

features with sound-agnostic and content-sensitive embeddings with applications for

boundary detection and track segmentation tasks.

1.1 Motivation

This thesis, a collaboration between Epidemic Sound (ES) and the Music Technology

Group (MTG) at Universitat Pompeu Fabra (UPF), has been driven by personal,

industrial, and academic motivations.

ES, a Swedish company, curates a vast global library of over 40,000 royalty-free

https://www.epidemicsound.com/
https://www.upf.edu/web/mtg
https://www.upf.edu/web/mtg
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music tracks and 90,000+ sound effects. Based in Barcelona, the MTG specializes

in innovative sound and music technologies, such as information retrieval, digital

signal processing, interactive music systems, and computational musicology.

The collaboration aims to deepen our understanding of music’s fundamental struc-

tures, which could enhance ES’s technical offerings and further advancements in

MIR research.

As a musician, my passion for music has driven me to investigate the foundational

elements of musical composition, various creation techniques, and their intricate

relationships. I am dedicated to extracting valuable information embedded within

music across all domains, focusing on audio and sheet music (symbolic domain).

Musicians who endeavor to bridge the gap and uncover musical truths within the

tonal paradigm, such as Heinrich Schenker [21], or those who challenge it, like Arnold

Schoenberg [22], George Russell [23], and Ernst Levy [24], have been a continual

source of inspiration. They aim to identify abstract concepts that reinforce or disrupt

the tonal foundation, advancing the tonal landscape and providing a solid base for

musicians’ growth, development, and understanding of tonal and atonal paradigms.

Advancements in AI research, building on the theoretical groundwork laid by pio-

neers such as Alan Turing and Claude Shannon, have led to significant breakthroughs

[25]. With AI being applied broadly in skyrocketing popular tech products [26], re-

searchers and corporations must stay abreast of this rapidly evolving field.

The emergence of self-supervised models capable of learning embedding spaces to re-

trieve musical content from audio signals presents new opportunities. These models,

which autonomously extract information from audio data, can potentially transform

multiple aspects of the music industry. Industrially, these embedding spaces can be

used to devise innovative products, enhance user experiences for content creators,

and stimulate innovation and collaboration across the industry.
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1.2 Objectives

Can deep audio embeddings be learned from reordering, scrambling, and augmenting

sequences of musical information to improve unsupervised music boundary detec-

tion?

Our research aims to develop and learn a unified numerical understanding —or em-

bedding 2— for a piece of music that integrates the high-level relationships between

elements as they unfold over time.

This approach aims to replicate human auditory capabilities by understanding and

identifying abstract and semantic musical elements independent of their sonic qual-

ities.

1.3 Contributions

Our study is centered around the following topics of investigation:

• We demonstrate that the size of the audio file dataset used for learning em-

beddings directly influences the results of music segmentation. Larger datasets

lead to improved results.

• We show that achieving competitive performance with traditional handcrafted

signal processing methods is possible by learning solely from unlabeled audio

files.

• While our musically-informed technique does not currently surpass existing

state-of-the-art baselines, it shows significant promise in boundary detection

tasks, especially when the training set is expanded.

2A learned representation or embedding is a numerical output - usually a fixed-size vector -
produced by a machine-learning model. Good non-supervised representations should be versatile
across various tasks and require limited supervision, therefore appears as an attractive methodology
to be employed [5].
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1.4 Assumptions

This thesis posits that enduring, high-level musical elements persist regardless of

sonic changes, mirroring the nature of the symbolic domain. A single waveform can

correspond to a finite set of representations. Still, one sheet music excerpt can yield

infinite interpretations.

The premise of our work is that regardless of the waveform or production style,

abstract high-level features can be discerned, offering objective and thorough insight

into a composition’s musical content, analogous to analyzing sheet music for its basic

behaviors as shown in Figure 2.

Figure 2: Small excerpt of Wandrers Nachtlied, Op. 4, D. 224 by Franz Schubert. Pas-
sage’s original score, the schenkerian unfolding of the melody, the chord degrees analysis,
and their tonal function.

These characteristics aid listeners in recognizing and recreating musical structures,

promoting deeper interaction with music. Mental shortcuts or heuristics enable a

swift understanding of complex musical notions, revealing underlying patterns.

For example, despite differing cultural contexts, styles, time and key signatures, and

sonic properties, we suggest a concept commonality between Figure 3 and Figure 4.

Both pieces display the same ’musicological flavor’ derived from their melodic and

harmonic contour envelopes through non-diatonic major thirds.

This concept aligns with the theories of Kurt Koffka, a founding member of the
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Gestalt school of psychology, who advocated for a holistic approach to understand-

ing complex forms, as opposed to the structuralist practice of dissecting mental

processes into their elemental components [27]. In the context of music, Gestalt

psychology principles suggest that our minds process auditory input similarly to

visual input by seeking patterns and structures. This understanding significantly

enhances the comprehension of cognitive processes in musical perception and orga-

nization, influencing music theory, cognition, and therapy [28].

Figure 3: A small excerpt from Mahler’s 9th Symphony, 2nd movement: The melodic and
harmonic contour propels through non-diatonic major thirds.

1.5 Music boundary detection as a downstream task

While the usefulness of similar self-supervised learned embeddings can be evaluated

in countless downstream tasks [4, 19], we have chosen music boundary detection.

Also known as track segmentation and commonly tackled with spectral analysis,

it is a subset of music structure analysis (MSA) suitable for its popularity [29],

complexity, and product-compelling nature.

This interdisciplinary field aims to understand the structure of music [30]. Due

to subjectivity, ambiguity, and data scarcity, audio-based MSA faces non-solved

challenges like boundary placement ambiguity and similarity quantification [31].
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Figure 4: John Coltrane’s Giant Steps head, featuring rapid chord changes in non-diatonic
major thirds.

1.5.1 Related work

Related research investigates audio embeddings derived through unsupervised meth-

ods to enhance the performance of music segmentation algorithms [1, 32]. Both stud-

ies leverage the power of deep learning and data-driven feature learning, presenting

advancements over traditional manually-engineered methods.

The study in [1] presents a novel approach for music segmentation, utilizing au-

dio embeddings learned via few-shot learning and a music auto-tagging model. This

method, which replaces the traditionally handcrafted MFCC and CQT features, sig-

nificantly improves multi-level music segmentation, achieving state-of-the-art results

and outperforming existing baselines.

While [1] approach and ours are very similar, there are some contrastive differences

worth mentioning. These nuances stem from how much the approaches are task-

tailored: the authors train their model on a dataset of audio features labeled with

their corresponding music segments. They use a sampling strategy to create positive

and negative examples likely from the same or different music segments. The method
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by [1] requires music with clear beats and onsets. The sampling strategy relies on

the fact that beats or onsets typically separate music segments. If the music does

not have clear beats or onsets, it will be difficult for the method to create positive

and negative examples likely to be from the same or different music segments.

Our approach is slightly different in two ways. First, we use physical time as

input data rather than audio features. Second, our triplet selection pipeline is

more abstract and designed for broader music understanding scope —yet still to be

evaluated— rather than specifically tailored to music segmentation.

On the other hand, [32] explores using unsupervised deep learning methods for

creating meaningful music representations and applying them to music structure

analysis tasks. The research employs the same kind of deep architecture trained

on millions of tracks from a music streaming service. The study reveals that these

embeddings, derived via unsupervised learning, are effective at capturing musical

structures, particularly when integrated with traditional feature engineering meth-

ods and a multi-level section fusion algorithm to merge short sections into longer

ones.

Both studies emphasize the significant potential of deep learning-based feature learn-

ing in enhancing music segmentation tasks, which have traditionally relied on man-

ual feature engineering methods only. Furthermore, they demonstrate how using

deep learning techniques improves the performance of segmentation algorithms and

enables a more nuanced and detailed analysis of music structure.

The results prove that unsupervised deep-learning techniques which derive audio

embeddings offer more robust and efficient alternatives to exclusively traditional

manual feature-engineering methods in music segmentation.



Chapter 2

Methods

This work employs unsupervised training of neural networks to extract meaningful

features for music segmentation methodologies. As assertively stated by [1], this

constitutes a logical evolution in applying contemporary machine learning techniques

to music segmentation.

2.1 Deep Learning modeling

Deep learning (DL), a subset of machine learning (ML), employs deep neural net-

works (DNNs) to decipher hierarchical data representations, allowing models with

multiple processing layers —as shown in Figure 6—to abstract data across numerous

levels [33, 34]. DL models have significantly improved various domains due to their

nonlinear modeling capabilities and scalability with large datasets.

They leverage the central algorithm, backpropagation, which calculates gradients of

the loss function related to network parameters through forward and backward pass

processes, thereby optimizing model performance. A high-level representation can

be seen in Figure 5.

These computational models, somewhat rooted in biological neural systems, utilize

layers of artificial neurons for tasks such as pattern recognition, classification, and

regression. They evolve by adjusting connections between neurons during learning,

10



2.1. Deep Learning modeling 11

y
(l)
i

y
(l+1)
1

...

y
(l+1)

m(l+1)

δ
(l+1)
1

δ
(l+1)

m(l+1)

Figure 5: Backpropagation of errors through the network; once evaluated for all output
units, the errors δ

(L+1)
i can be propagated backward.

a concept initiated in the mid-20th century but modernized with Frank Rosenblatt’s

single-layer perceptron in 1957, capable of learning linearly separable patterns [35].
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Figure 6: Network graph of a perceptron with D input units and C output units. The
lth hidden layer contains m(l) hidden units. Each neuron in a layer receives input from the
previous layer and computes an output value using an activation function. The output of
the last layer represents the prediction or classification result.

Another crucial component in the operation of DNNs is the activation function. This

function is applied at every layer, transforming the linear combination of the input

with the layer weights into an output passed onto the next layer. It introduces non-

linearity into the network, enabling it to learn complex patterns and relationships.

See Figure 7 for further visual understanding.
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Figure 7: Input a(0)i and output a(1)j layers are connected by weight matrix W(0) and bias
vector b(0), processed by activation function σ.

2.2 Implementation details

Our implementation falls broadly under cognitive modeling, which seeks to simu-

late human cognitive processes and problem-solving through a computerized model.

We advocate for exposure-based learning in music, encouraging active engagement

with as many musical styles, genres, techniques, and learning methods as possi-

ble. This approach promotes comprehensive musical proficiency and efficient per-

formance when encountering novel and unseen data in practical applications.

According to Piaget’s theory of cognitive development, children gain knowledge

through sensory experiences and gradually develop abstract reasoning and schemas—basic

cognitive structures [36]. These schemas evolve by incorporating new information

through assimilation and accommodation [37].

In pattern recognition, models are designed to exhibit robustness against known

invariances—transformations of input data —thereby ensuring consistent output.

Even unknown invariances not explicitly considered in the model’s design can be

accommodated due to the model’s inherent learning capacity.
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Our implementation slightly modifies the Contrastive Learning of Music Representa-

tions (CLMR) method [38], which learns valuable, discriminative music representa-

tions without explicit labels by contrasting positive augmentations of a musical piece

against negative ones. CLMR falls under a branch of ML known as self-supervised

learning (SSL) [39], where models learn autonomously from unlabeled data to create

their own supervisory signals [37]. This method resembles how humans learn from

observations and interactions, transforming unsupervised problems into supervised

ones by auto-generating labels. SSL benefits include reduced dependence on labeled

data, contributing to more robust and generalizable data representations.

Although SSL has proven effective in speech and audio, its application to music

audio remains relatively unexplored. This is primarily due to the unique challenges

of modeling musical knowledge, especially regarding music’s tonal and pitched char-

acteristics [4].

2.2.1 Deep architecture design

This work suggests employing a Triplet Siamese Network (TSN), a model architec-

ture known for its efficacy in music similarity retrieval tasks [12]. The aim is to

minimize the loss function between a triplet of anchor, positive, and negative sam-

ples, utilizing online triplet mining for optimizing memory resources [40]. This SSL

model aims to distinguish between similar and dissimilar samples effectively.

Introduced by Bromley and LeCun [41], Siamese Networks are DL architectures

designed for tasks requiring comparison or similarity assessment between instances.

The architecture comprises identical subnetworks that share the same parameters,

improving memory usage and computational efficiency. Rather than learning specific

features of individual classes, they focus on a similarity metric, making them ideal for

imbalanced datasets. Each subnetwork processes an input independently, combining

the outputs to yield a similarity score. Training with shared weights enables the

model to learn invariant input representation, improving comparison efficiency. This

is accomplished through a specialized loss function called triplet loss, which aims to

minimize the distance between similar inputs and maximize it for dissimilar ones.
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Figure 8: The spectrum of the estimated filters in the intermediate layers of SampleCNN
is sorted by the frequency of the peak magnitude. The x-axis represents the index of the
filter, and the y-axis represents the frequency range from 0 to 11 kHz. The model used for
visualization is 39—SampleCNN with 59,049 samples as input. [42]

The loss function will be explained later in Subsection 2.2.4.

The TSN extends the traditional binary contrastive architecture by comparing three

input instances instead of two. It strives to learn an embedding space where similar

instances are closer and dissimilar ones are more distant.

Encoder: SampleCNN

The SampleCNN model [42] is a CNN designed for raw waveform audio data, treating

each audio sample as an independent channel and applying 1-dimensional convolu-

tion along the temporal axis. Our implementation is an adaptation of [38] using

PyTorch [43] and PyTorch Lightning [44].

With only 2.4 million trainable parameters, this fully convolutional model reduces

computational requirements and learns features at different scales through its multi-

resolution architecture. See layer specifications in Table 1.

The original model has been subtly adjusted by introducing an average pooling op-

eration to the final convolutional layer. This modification is strategic for handling

various input data sizes. Condensing the feature maps to a fixed-size output ensures

consistency for subsequent layers like fully connected ones, streamlining computa-

tions while maintaining crucial information.
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Layer Type In Channels Out Channels Num. of layers

Conv + ReLU 1 128 1
Conv + BatchNorm + ReLU +

MaxPool
128 128 2

128 256 1
256 256 6
256 512 1

Conv + BatchNorm + ReLU +
AvgPool

512 512 1

Fully connected layer 512 128 1

Table 1: Layer specifications for our SampleCNN model implementation; extracted and
extended from [38].

2.2.2 Optimizer and learning rate

We’ve employed the AdamW optimizer [45], an optimized variant of the widely-

used Adam optimizer for training neural networks. AdamW adeptly balances the

learning rate across network weights, providing an efficient strategy for weight decay

management by isolating it from gradient updates.

The learning rate, set at 0.003, is a pivotal parameter dictating the step size at each

iteration towards loss function minimization. It’s a delicate balancing act —a high

rate promises swift convergence with a risk of minimum overshoot, while a lower rate

provides careful convergence but necessitates more iterations. Given that delicacy,

we set it to a standard number broadly used in the literature.

2.2.3 Audio augmentation and transformation pipeline

The choice of input data is guided by the task, computational resources, and the

need to balance data retention with computational efficiency.

Previous research has utilized CNNs with various features such as Mel-Scaled Log-

magnitude Spectograms (MLS), Self-Similarity Matrices (SSM), and Self-Similarity

Lag Matrices (SSLM) as inputs [3]. However, features derived from raw audio may

lack interpretability in some scenarios [46], and raw audio presents unique advan-

tages despite being highly computationally demanding. It ensures the preservation
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of the original signal, potentially uncovering novel insights, and allows for direct

feature extraction via advanced DL models [47, 48]. Nevertheless, it comes with

challenges, such as high —the highest— dimensionality requiring substantial com-

putational resources.

Time-domain processing naturally handles temporal patterns and sequences in data,

thereby avoiding windowing artifacts. Although audio feature-based methods are

effective for various audio-related machine learning tasks, their limitations lie in

representing perceptual similarity. MLS, for example, captures frequency distribu-

tion over time. Yet, the complexity of human auditory perception, encompassing

temporal patterns, phase relationships between frequencies, and higher-level musical

structures means that musically similar sounds can have distinct spectrograms. This

discrepancy implies that using spectrogram distance alone for measuring high-level

music content may not always align with human perceptions [19, 49].

In conclusion, raw audio waveforms were our final choice for input for the anchor.

Each input sequence was 15 seconds long, roughly equivalent to 8 bars of 4/4 music

at 120 beats per minute. The audio was sampled at a frequency of 16 kHz, a decision

influenced by computational resources. We are confident that this choice of input

contains a significant amount of meaningful musical information. Although it may

not encompass the complexity of a symphony, it is sufficient for the scope of our

experiments.

Positive sample generation chain

The positive waveform in every triplet of input data must preserve its intelligible

content when subjected to transformations, regardless of alterations in sonic qualities

and processing artifacts. Maintaining the temporal structure and meaningfulness of

the content allows it to present musical elements remarkably close to the original

track.

While we have experimented with helpful audio augmentation tools such as [50, 51],

the specific requirements of our experiments required the development of our own

transformation chain using torchaudio’s [52] implementation of SoX [53]: given an
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anchor audio signal A[n], we generate a positive signal P [n] by applying a series of

amplitude, time-domain, frequency-domain, modulation, reverberation, and nonlin-

ear effects with additive noise on top of it.

Amplitude effects: The signal’s amplitude is modified by a constant factor using

gain g ∈ [−12, 0].

Time-domain effects: The signal’s playback speed and duration are altered through

speed change and stretching, preserving the relative perceptual musical relationships

between wave points. The respective factors are α ∈ [0.9, 1.1] for speed change and

β ∈ [0.9, 1.1] for stretch.

Frequency-domain effects: The frequency content is adjusted through pitch-

shifting, modifying the pitch by ∆p ∈ [−1200, 1200] cents.

Nonlinear effects: Nonlinear distortion is introduced via overdrive with a param-

eter d ∈ [0, 30].

Modulation effects: Utilize a control signal or low-frequency oscillator. Six vari-

ables determine the chorus parameters. The tremolo’s amplitude modulation fre-

quency and depth are controlled by ts ∈ [0.1, 100] and td ∈ [1, 101], respectively.

Reverberation effects simulate a physical space’s acoustic reflections and rever-

berations by applying an impulse response.

Noise effects: A noise signal Noise[n] is added with a signal-to-noise ratio (SNR)

in the range [12, 100].

The positive signal P [n] is generated by convoluting the various impulse responses

of specific effects. The noise signals are included with a set SNR ratio within the

above range on top of the effect chain.

Random parameter updates within hardcoded ranges generate unique audio P [n]

images out of A[n] anchor for each run-through. Adding random white noise and

varying SNR creates countless noisy waveform variations. Although possible com-

binations can be estimated by multiplying discrete parameter values, the presence

https://github.com/oriolcolomefont/Uncovering-High-Level-Content-in-the-Time-Domain/blob/24057f4160a4ecb7ccef16146ad086ab5160aef8/dataset.py#L120C9-L128C10
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of continuous parameters and randomness in noise generation effectively results in

infinite unique audio versions.

Negative sample generation

Circling back to our premises and assumptions, we posit that high-level musical

content unfolds over time; therefore, we argue that the temporal structure of the

negative images, in contrast to our anchor, must be disrupted. While maintaining

similar sonic qualities, the content should be rendered unintelligible.

The computation for the negative signal N [n] per every A[n] goes as follows:

1. We first calculate the minimum and maximum audio chunk lengths in samples:

lmin = tmin × S, lmax = tmax × S (2.1)

The minimum duration tmin is set to 0.05 seconds, and the maximum duration

tmax is set to 1 second. This range is chosen thoughtfully to strike a balance

between two factors: on the one hand, it is above the just noticeable difference

(JND) threshold, the smallest change in a stimulus that can be perceived. On

the other hand, it is short enough to maintain a reasonably-sized window to

avoid discernible musical content [54].

2. We then generate random audio chunk lengths l1, l2, . . . , ln−1 from the uniform

distribution on the interval [lmin, lmax]. Calculate the final audio chunk length

as:

ln = LA −
n−1∑
i=1

li (2.2)

where LA is the length of the anchor signal in samples.

3. The third step is to split the anchor signal A into audio chunks C1, C2, . . . , Cn

according to the calculated audio chunk lengths in the previous step.

4. Shuffle the audio chunks randomly to get the permuted slices Cσ(1), Cσ(2), . . . , Cσ(n),

where σ is a random permutation of indices from 1 to n.
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5. We finally concatenate the shuffled audio chunks to generate the negative signal

that will have similar production while the content is completely ruined:

N [n] = Cσ(1) ⊕ Cσ(2) ⊕ . . .⊕ Cσ(n) (2.3)

The whole purpose of this process is to disturb the content unfolding in the time

domain so it becomes musically unintelligible while maintaining the production and

sonic attributes.

2.2.4 Loss function

Schroff, F., Kalenichenko, D., and Philbin, J. from Google first proposed and applied

triplet loss for the learning of facial recognition, catering to varied poses and angles

of the same individual [55].

Contrary to the widespread contrastive loss [56], the triplet loss function directs

the learning process by minimizing the distance between the anchor and positive

instances and maximizing the distance between the anchor and negative instances.

Including a margin parameter in the loss function guarantees a minimum separation

between positive and negative instances in the embedding space.

The triplet loss function L(a,p,n) aims to ensure that an anchor vector ai is closer

in the embedding space to a positive vector pi (representing an example of the same

class) than to a negative vector ni (representing an example of a different class) by

at least a margin α. It is calculated by summing the losses overall N triplets in the

dataset, where the equation gives the loss for each triplet:

L(a,p,n) =
N∑
i=1

max
(
0, |ai − pi|22 − |ai − ni|22 + α

)
(2.4)

The max(0, x) operation ensures zero loss when the distances satisfy this condition.

The final loss used for model training is then the average loss over a mini-batch of

N triplets:
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L =
1

N

N∑
i=1

L(ai,pi,ni) (2.5)

The margin is a task-dependent optimal value determined empirically based on

model performance. If it’s too small, the model might not differentiate classes

effectively; if it’s too large, it might focus on outliers.

While some packages can be found in the MIR online community [57], we wrote our

own PyTorch [43] implementation for the sake of our experiments.

As previously stated, the goal of minimizing this loss function is to learn discrimina-

tive embeddings, where similar examples are grouped closely together. In contrast,

dissimilar examples are placed farther apart in the embedding space.

2.2.5 Online triplet mining and batch normalization

Online triplet mining is beneficial for managing large datasets by dynamically select-

ing the most informative triplets during training, focusing on each mini-batch. This

strategy makes the process memory-efficient by negating the need to store all possi-

ble triplet combinations. Still, it also enhances model performance through quicker

convergence by focusing on challenging examples based on the current model state.

This hard triplet mining selects triplets (a, p, n) to maximize the Euclidean distance

between the anchor and positive samples and the anchor and negative samples.

These distances, DAP and DAN, are computed respectively:

DAP =

√∑
i

(Ai − Pi)2 DAN =

√∑
i

(Ai −Ni)2 (2.6)

In implementing the batch normalization step, it is necessary to standardize the

audio lengths across all elements in the minibatch. We opted to zero-pad all clips to

the length of the longest clip, valuing data integrity and completeness over potential
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performance trade-offs. Thus, the length of the longest array in the batch, which

sets the standard for all others, is as follows:

Lmax = max
i∈I

(max (|Ai|, |Pi|, |Ni|)) (2.7)

I represents the set of all items in the batch, |Ai|, |Pi|, and |Ni| denote the lengths

of the anchor, positive, and negative vectors for the i-th item, respectively. The max

function is applied to find the longest of these three lengths for each item, and then

the maximum of these maximum lengths is taken over all items in the batch. This

gives the maximum length, Lmax, of any vector in the batch.

Hardware and training strategy

The deep learning models were trained on a high-performance cloud computing setup

hosted on the Google Cloud Platform. The machine was of type n1-standard-32,

equipped with an Intel Skylake processor and four NVIDIA Tesla T4 GPUs. The

multiple GPUs allowed for efficient parallel processing, significantly reducing the

training time.

To tackle the computational demands of training models on extensive raw audio

data, we incorporated a couple of strategies to optimize efficiency and performance.

First, we utilized 16-mixed precision training. This approach leverages the improved

performance of modern GPUs for 16-bit computations, enabling the model to run

faster and use less memory without sacrificing model performance [58].

Secondly, to capitalize on the computational capabilities of multiple GPUs and has-

ten training times, we employed the Distributed Data-Parallel (DDP) strategy [59].

DDP operates on distinct mini-batches of data across GPUs and synchronizes the

gradients after each backward pass, providing a more efficient scaling than other

parallel strategies.

These strategies collectively enhance the computational efficiency while maintaining

the robustness of the model training on lengthy raw audio data.

https://cloud.google.com/
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2.2.6 The embeddiogram, a deep audio feature representation

The embeddiogram, a deep audio feature representation, is derived by applying our

pre-trained neural network to sliding windowed segments across the audio signal,

generating a sequence of embedding vectors. These relatively low-dimensional vec-

tors collectively form a two-dimensional description of the audio signal’s musical

content. A visual representation can be seen in Figure 9.

Below is a detailed explanation of how we compute the embeddiogram from a given

audio signal of length N . This process comprises loading the audio data, slicing the

audio data into windowed segments, processing each window using our pre-trained

model to produce a vector per window/time frame, collecting and stacking these

embeddings, and finally, normalizing the resulting matrix.

1. Load the audio data: The audio data is loaded into memory as a one-

dimensional array of length N .

2. Slice the audio data: The audio data is segmented into overlapping win-

dows. Each window contains w samples, and a hop size h separates consecutive

windows. This gives a total of H windows, defined as:

H = 1 +

⌊
N − w

h

⌋
(2.8)

We have conducted experiments using a window duration of 4 seconds (w =

4 × sampling rate). As a general rule of thumb, this duration corresponds to

two 4/4 bars of a piece of music with a tempo where the quarter note equals

120 BPM.

We find this a good starting compromise solution, allowing enough time to

capture musical content while not being so large that downsampling reduces

the information to an unintelligible vector.

3. Process each window: Each window of audio data is processed indepen-

dently, passed through the pre-trained neural network, and transformed into
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an embedding vector. Formally, for each window wi of audio data, we have:

embeddingi = model(wi) (2.9)

4. Collect the embeddings: The embedding vectors are collected and stacked

together. Each row represents a feature vector for a given time frame to form

the embeddiogram, denoted as E:

E =


embedding1
embedding2

...

embeddingH

 (2.10)

5. Normalize the embeddiogram : The embeddiogram is normalized to have a

minimum value of 0 and a maximum value of 1 per dimension. The normal-

ization process is given by:

E ′
ij =

Eij −min(E)

max(E)−min(E)
(2.11)

These deep audio features can be a foundation for current state-of-the-art meth-

ods, which are expected to receive as input standard traditional audio features.

Consequently, they can be processed and manipulated like conventional features as

described by [60] and displayed in Figures 10, 11, 12, 13, and 14. Employing such

embeddings in a traditional music segmentation algorithm can achieve state-of-the-

art performance [1].
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Figure 9: Embeddiogram. Track 355 (SALAMI dataset).

Figure 10: Novelty curve and peak detection. Track 355 (SALAMI dataset).
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Figure 11: Self-similarity matrix com-
putation of the embeddiogram. Track
355 (SALAMI dataset).

Figure 12: Self-similarity lag matrix.
Track 355 (SALAMI dataset).

Figure 13: Cumulative matrix com-
putation of the embeddiogram. Track
355 (SALAMI dataset) .

Figure 14: Transitive Binary Matrix
computation of the embeddiogram.
Track 355 (SALAMI dataset).
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Evaluation

3.1 Datasets and metrics

The developed model has been trained on GTZAN [61], the Million Song Dataset

(MSD) [62] and evaluated on the SALAMI dataset [63].

3.1.1 The GTZAN dataset

The GTZAN Genre Collection is a widely-used dataset for music genre classification

tasks. It comprises 1,000 audio tracks that are each 30 seconds long. These tracks

are evenly distributed across ten genres: blues, classical, country, disco, hip hop,

jazz, metal, pop, reggae, and rock, each containing precisely 100 songs. The audio

files are stored as WAV files with a sample rate of 22,050 Hz [61].

3.1.2 The Million Song Dataset

The Million Song Dataset (MSD) is a publicly available audio and metadata collec-

tion for a million contemporary popular music tracks.

The MSD encourages research on large-scale recommendation systems, exploration

of musicological properties, and general research on large datasets. It provides a

massive scale and diversity of data, making it an excellent resource for complex,

26
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large-scale music-related machine-learning tasks [62].

3.1.3 The SALAMI dataset

The Structural Analysis of Large Amounts of Music Information (SALAMI) project

conducts extensive structural analyses on a wide variety of music. SALAMI seg-

ments music pieces into distinct sections, integrating different analyses, including

perceptual, functional, and transcriptional. While there are some limitations, this

approach offers a nuanced and thorough understanding of musical structure.

SALAMI covers an extensive range of music genres and styles, including but not

limited to classical, jazz, popular, and world music. These pieces originate from

diverse sources, including Codaich, the Internet Archive’s Live Music Archive, the

RWC Music Database, and the Isophonics database.

Each piece of music in SALAMI is accompanied by detailed metadata such as title,

artist, duration, names of the annotators, and the time taken for the annotation

process. This metadata is provided in multiple formats, catering to each source

database’s needs.

While SALAMI does not directly distribute audio, it directs users to corresponding

audio files on streaming platforms. This makes it a valuable resource for researchers

working on music structure analysis, genre classification, music summarization, and

other related fields [63].

Note: We used SALAMI’s original release from 2011, featuring 1,359 tracks.

3.1.4 Metrics

Three primary metrics have been utilized to assess the model performance: Preci-

sion, Recall, and F-measure.
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Precision

Precision quantifies the proportion of accurately identified boundaries relative to all

estimated boundaries to indicate the algorithm’s accuracy in boundary detection.

Precision =
True Positives

True Positives + False Positives
(3.1)

Recall

On the other hand, recall measures the proportion of accurately detected boundaries

against all reference boundaries, indicating the completeness or sensitivity of the

algorithm.

Recall =
True Positives

True Positives + False Negatives
(3.2)

F-measure

Lastly, the F-measure provides a harmonized measure of precision and recall. As

a widely adopted metric for boundary detection, it compares predicted boundaries

with ground truth ones, yielding a score between 0 and 1. This score, calculated

as the harmonic mean of Precision and Recall, effectively accounts for both under-

segmentation and over-segmentation. Given the inherent inaccuracies in human

annotations and prediction errors, the F-measure allows for minor deviations be-

tween predicted and actual boundaries. The F-measure can adjust the tolerance

threshold, permitting a predicted boundary to be considered correct if it falls within

a predefined window of a ground truth boundary [31, 64]. In this work, we opted for

an F-measure tolerance of 0.5 seconds, a decision largely guided by established norms

in existing literature and music information retrieval research. This 0.5-second tol-

erance balances precision and flexibility, demanding accurate boundary predictions

while accommodating slight variations inevitable due to the subjective nature of

music segmentation.
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We computed the F-measure for each track and then calculated the average rather

than aggregating all tracks into a single dataset and calculating the F-measure on

this combined set.

F-measure =
2× Precision × Recall

Precision + Recall
(3.3)
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Results

As mentioned in Section 3.1, the evaluation results were obtained using standard

and commonly used MIR tools, frameworks, and metrics. These include the MSAF

[65] implementation for segmentation algorithms, the SALAMI dataset [63] for eval-

uation ground truth, and mireval Python package [66] for metric computation.

Table 2 provides a comparative analysis across four features using three segmenta-

tion algorithms. The results reveal that the performance of the algorithms varies

depending on the feature type. For instance, the CQT feature exhibits the high-

est precision (0.570), recall (0.339), and f-measure (0.353) when processed with

the Foote algorithm. Nevertheless, this table proves that our embeddiograms can

achieve competitive performance compared to traditional handcrafted signal pro-

cessing methods by learning only from unlabeled audio files.

These results are also represented in Figure 15 to understand the metrics’ distri-

bution for each feature visually. The high outliers suggest that there is significant

variability in the performance of the model. While the model performs exceptionally

well in some instances, it performs average in most cases.

Table 4 and Figure 16 compare the current study’s boundary detection F-measure

results with those of previous studies using unsupervised methods. The most accu-

rate result was reported in 2019 by McCallum [1], who used a CNN on CQT and

30
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Figure 15: Boxplot visual comparison of different features’ average precision, recall, and
f-measure. Sliding windowed segments across the audio signal input signal is 4 seconds.

achieved an F-measure of 0.535. On the other hand, our study’s approach yielded

an F-measure of 0.288. Numbers show that our unsupervised method is competitive

with research conducted a decade ago, trailing behind the current state of the art.

However, this is a promising starting point, as the unsupervised nature offers ample

and almost effortless opportunities for enhancement.

Feature SF Foote CNMF

PCP 0.311 0.324 0.305 0.288 0.331 0.295 0.228 0.310 0.250

Tonnetz 0.312 0.312 0.300 0.272 0.317 0.280 0.212 0.306 0.237

CQT 0.311 0.339 0.312 0.570 0.311 0.353 0.296 0.311 0.287

Embeddiogram 0.333 0.280 0.288 0.275 0.318 0.280 0.248 0.296 0.254

Table 2: Comparison of precision (left column), recall (middle column), and f-measure (right
column) metrics for different features using the Structural Feature (SF)[67], Checkerboard-like
Kernel (Foote) [68], and Convex Non-negative Matrix Factorization (CNMF) [69] algorithms on
the SALAMI dataset. The sliding windowed segments across the input signal is 4 seconds long.

Table 3 compares the performance of the Structural Feature (SF) algorithm on the

SALAMI dataset, utilizing two distinct sets of embeddiograms as input features.
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Training dataset [Ref] Precision Recall F-measure

GTZAN [61] 0.228 0.171 0.185

MSD [62] 0.333 0.280 0.288

Table 3: Comparison of precision, recall, and F-measure for GTZAN-trained versus
MSD-trained embeddiograms on SALAMI dataset computed using the Structural Fea-
ture (SF)[67] algorithm.

These embeddiograms were generated with the neural network trained using the

GTZAN and MSD datasets, respectively, and the results show a clear advantage

when trained on the MSD dataset compared to the GTZAN dataset. Specifically,

the precision, recall, and f-measure are all higher for the MSD-trained algorithm.

The GitHub repository containing all the code needed to run the experiments can

be found HERE.

https://github.com/oriolcolomefont/Master-Thesis.git
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Figure 16: Previous studies’ boundary detection f-measure results using unsuper-
vised methods for a 0.5s time-window tolerance. Only the top-performing algorithm
for each year on the SALAMI dataset is displayed. This figure has been extended
from [3].
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Authors [Ref], Year Input1 Method F-measure

Turnbull et al. [64], 2007 MFCCs,
chromas,

spectrogram

Boosted Decision
Stump

0.378

Kaiser et al. [70], 2012 SSM Novelty measure 0.286

Sargent et al. [71], 2011 MFCCs, chromas Viterbi 0.356

McFee & Ellis [72], 2013 MLS Fisher’s Linear
Discriminant

0.317

Nieto & Bello [73], 2014 MFCCs, chromas Checkerboard-
like kernel

0.299

Cannam et al. [74], 2015 Timbre-type
histograms

HMM 0.213

Nieto [75], 2016 CQT
Spectrogram

Linear
Discriminant

Analysis

0.299

Cannam et al. [74], 2017 Timbre-type
histograms

HMM 0.212

Ullrich et. al [76], 2014 MLS CNN 0.465

Grill & Schlüter [77], 2015 MLS, SSLMs CNN 0.523

Grill & Schlüter [2], 2015 MLS, PCPs,
SSLMs

CNN 0.508

Hadria & Peeterss [78],
2017

MLS, SSLMs CNN 0.291

McCallum [1], 2019 CQT CNN 0.535

Ours, 2023 Raw waveforms CNN 0.288

Table 4: Previous studies’ boundary detection f-measure results using unsupervised
methods for a 0.5s time-window tolerance. Only the top-performing algorithm for
each year on the SALAMI dataset is displayed. This table has been extended from
[3].

1 Legend: SSM: Self-Similarity Matrix, MLS: Mel Spectrogram, MFCC: Mel-Frequency Cep-
stral Coefficient, CQT: Constant Q-Transform, PCP: Pitch Class Profile, SSLM: Self-Similarity
Lag Matrix.
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Conclusions

5.1 Conclusions

In this work, we introduced a method that leverages self-supervised deep neural

networks to learn low-dimensional music latent representations with applications to

music boundary detection tasks. Building on existing approaches and architectures,

we replaced traditional features with deep embeddings trained to represent high-level

musical information to analyze its performance in music segmentation tasks.

While our musically-informed technique does not yet outperform the existing state-

of-the-art baselines, it exhibits significant potential in boundary detection tasks,

particularly when expanding the training set. The improvement we’ve observed be-

tween datasets is noteworthy, and when compared with two of the acoustic features,

our results are highly competitive.

We have also managed to circumvent the typical issues associated with dataset

enlargements, such as the need for extensive supervision or human annotation, which

gives our method an edge in terms of practicality and scalability, effectively turning

what is usually seen as an expensive hurdle into a much more manageable task.

35
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5.2 Discussion

One of the main reasons why [1, 32] might outperform our method might be their

task-tailored and MSA-focused designs specifically oriented towards music segmen-

tation. In contrast, our method aims to be broader and more abstract, which may

present a downside when evaluating specific tasks.

Whether our model effectively decodes underlying high-level musical content remains

open to scientific investigation. It’s plausible that our technique possesses significant

potential for nearly all content-based MIR downstream tasks, given its intention to

be both sound-agnostic and content-sensitive. Queries persist about whether such

a general-purpose audio representation can mimic human hearing [4, 5], or if it can

accurately decode high-level musical content. Such questions remain unresolved due

to the current lack of evaluative measures.

We argue whether factors such as the size of the representation layer and the size of

the model [48] might be insufficient. Furthermore, we posit that the loss function

could decrease further with additional time to iterate repeatedly over the stochastic

and never-ending dataset.

The proposed embeddiograms are a promising new approach for music boundary

detection. While they do not yet rival state-of-the-art methods, they are competi-

tive with traditional handcrafted signal processing methods and can be trained on

unlabeled audio files. This makes them a cost-effective and scalable solution for

music boundary detection tasks.
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Future Work

This research merely scratches the surface, and vast territories are yet uncharted.

In future studies, the following areas will be explored to extend the current research

further:

• Investigate the effect of different transformations and augmentation pipelines.

Incorporating track stems and different takes of the same piece as natural,

human-made augmentations could yield exciting results.

• Expand input data to include dB-scale Mel-spectrum magnitude and CQT

of audio. This approach has been widely used in music-related tasks with

CNNs [1, 19]. Though raw audio provides a rich representation, dB-scale Mel-

spectrum offers a frequency-domain summarization that is not only grounded

in psycho-acoustics but is also computationally efficient and hard to repro-

duce solely through data-driven methods. Therefore, this trade-off is worth

exploring.

• Implement k-fold cross-validation to improve the robustness of the model’s

performance.

• Experiment with different hyperparameters. For instance, setting the kernel

size to 0.005 times the sample rate could match the Just Noticeable Difference

37
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(JND). As for the loss function margin, a starting point of 0.2 has proven

effective, but different values should be explored to optimize performance on

the validation set.

• Increase the size of the representation layer to 512 or 1024 dimensions.

• Apply easy triplet mining to improve the model’s performance [79].

• Implement visual and auditory evaluations: 2D or 3D visualization of the

latent space as displayed in Figure 1, coupled with a Graphical User Interface

(GUI) that enables playback for evaluation, can help assess the extent to which

the model considers sonic attributes. It would also facilitate the understanding

of the clustering of complex musical content.

This represents a ’thorn in our side’ that we intend to address in future research.
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