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Abstract

Virtual analog modelling emulates the processing characteristics of a given physical device. This
has been an active field of research and commercial innovation in which two main perspectives
have been historically adopted. The first one: white-boz, seeks to reproduce the exact behaviour
through algorithmic simulation of circuits or physical phenomena. The second one: black-box,
aims to learn the approximation function from examples recorded at the input and output stages
of the target device. In this second approach, deep learning has emerged as a valuable strategy
for linear systems, such as filters, as well as nonlinear time-dependent ones like distortion

circuits or compressors.

The spring reverb is as audio effect with a very long and rooted history in music production and
performance, based on a relatively simple design, this device is an effective tool for artificial
reverberation. The electromechanical functioning of this reverb makes it a nonlinear time-
invariant spatial system that is difficult to fully emulate in the digital domain with white-box

modelling techniques.

This thesis wants to address the modelling of spring reverb, leveraging end-to-end neural audio
effect architectures through supervised learning. Recurrent, convolutional and hybrid models
have successfully been used for similar tasks, especially compressors and distortion circuits
emulations. Using two available datasets of guitar recordings, we evaluate with quantitative
metrics, acoustical analysis and signal processing measurements the efficiency and the results
of four neural network architectures to model this effect. We present the results and outline
different strategies for this modelling task, providing a reproducible experimental environment

with code [

Thttps://github.com/francescopapaleo/neural-audio-spring-reverb
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Chapter 1

Introduction

Audio effects are essential tools in the generation or treatment of an audio signal. The most
schematic definition of an audio effect is that of a chain that can be described as: audio input -
processing on user defined parameters - output signal. Each audio effect can be described with
respect to the backing physical and acoustical effect, the underlying digital signal processing
and the audio application. For clarity, we need to differentiate the "sound transformation", i.e.
the object or what is perceived, and the "audio effect" that produces it. The first corresponds
to the subjective perception and its representation, while the latter uses a subject-related term,
effect[I]. Applying signal processing techniques to sounds in order to modify how they will be
perceived has a great interest for many applications in audio. Over time, this has led to the
development of a vast number of techniques to achieve many different transformations that
makes a universal classification impossible. Each different "users community" has developed
its own taxonomy to meet their specific needs. The development of audio signal processing
in the analog domain has led to the invention of a multitude of devices to transform a signal.
Not only with the purpose of imitating an acoustical or physical phenomena, but also with a

creative intent. We can enumerate four main analog technologies for audio effects:
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1. Mechanic / acoustic

2. Electromechanic

3. Electromagnetic

4. Electronic
Progressively, those analog devices have found their "translation" into the digital domain em-
ulating acoustical or perceptual properties of analog effects like filtering, wah-wah, echo, Leslie
and reverberation. One way of building a taxonomy in the digital domain, could adopt the
standpoint of the "instrument-maker", the software engineer. Indeed, a classification based on
the underlying techniques appears to be the most straightforward. This can be done depending
on two criteria: one focuses on the implementation technique itself (i.e. resampling, modula-
tors/demodulators, non-linear processing, spatial effects, etc.) the other on the domain where
the signal processing is applied:

e Time domain

e Frequency domain

e Time and frequency domain
Limiting the analysis only to the engineering aspects would miss a substantial dimension of the
audio effects realm. In psychoacoustics literature, sound has five main fundamental perceptual
attributes [2] listed below.

1. Loudness: the perceived intensity of the sound through time.

2. Time and rhythm: perceived through the duration of sound and its gaps.

3. Pitch: with height (high/low frequency) and chroma as attributes.



4. Spatial hearing: with location, directivity and room effect as attributes.

5. Timbre: with complex relations between spectral centroid, noisiness, texture and for-

mants.

It is worth notice that each audio effects can be seen in relation with the manipulation of one or
multiple attributes. Based on these considerations, the attributes become the main classification
criteria. In this way, the perspective is flipped and the standpoint of the listener is adopted:
which is the one that experiences the alterations made by signal processing. It is important to
emphasize that by the combination of multiple principles, like the ones previously mentioned,
originates an interdisciplinary classification that links the various layers of each single discipline-

specific criteria. Ranging from low-level to high-level features, it can be summarized as follows:

Digital implementation technique

e Processing domain

Applied processing

Control type

Perceptual attributes

Semantic descriptors

With this multidisciplinary conceptual framework, we want to address the digital implemen-
tation of the spring reverb with deep learning techniques in the time domain. Each of the
aforementioned features is involved in the design and the deployment of the project and plays

a fundamental role for the quality of the outcome.
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Figure 1: High level schematics of a spring reverb and its main components (source: Elliot
Sound Products).

1.1 Motivation

The history of spring reverb can be traced back to the late 1920s, when the first electrome-
chanical reverberation units were developed by Hammond to add acoustic quality to the sound
of his electric organ. Its long history has seen many different construction strategies and im-
provements. Nonetheless, it always includes a metal spring coiled tightly in an enclosure, with
a transducer at one end to convert the electrical signal into vibrations in the spring, and a
transducer at the other end to convert the vibrations back into an electrical signal. The rever-
beration effect is created by the sound waves bouncing back and forth between the metal spring
coils, creating a dispersive propagation with a complex pattern of reflections and echoes that
characterized its unique sound. The signal is transduced from the electrical domain into the
mechanical domain before being transduced back into the electrical domain. This electrome-
chanical functioning makes the spring reverb a time-invariant nonlinear system with a number
of parameters involved into the shaping of sound. Each unit has its own distinctive sound that
is also affected by preamps, number of springs and size of the tank. During the 1950s and the
early 1960s, great development and improvement has been done with the introduction of small-
diameter springs that paved the way for the widespread use in guitar amplifiers. Towards the

end of the 1960s, impedance discontinuities began to be placed along the springs to increase the
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echo density and achieve a very natural room-like sound, the most iconic example is the: AKG
BX20E reverberator[3]. Its simplicity of construction and its versatile and distinctive sound
guaranteed the spring reverb its place in the toolbox of musicians and producers along the
contemporary music history and in many different genres. The enduring popularity of spring
reverb in music history and its central role in music production serve as primary motivations

for this thesis.

In recent years, the wide adoption of Digital Audio Workstations (DAW) and the democrati-
zation of the music-making process have also increased the demand for plug-ins emulating of
analog devices. Knowledge-based approaches have reached very high quality standards, this
process often comes with a costly design process and computational cost, in addition it is rarely
generalizable to an entire class of effects. Recent developments in data-driven approaches have
demonstrated its effectiveness in many audio applications including speech synthesis [4], source
separation [5] and neural audio synthesis [6]. The advantages offered by these solutions have
created great interest in the application of deep learning techniques for modelling audio ef-
fects; previous work on guitar amplifiers has been well documented by Vanhatalo et al. [7] and

real-time implementations have been proposed|§].

Third motivation for this project is the possibility of expanding the creative capabilities for mu-
sic production with the introduction of conditioning elements in the model. Early results have
been documented in the literature by Steinmetz et al. [9]. Often an implementation technique
comes with its own specific parameters that may expand the ones previously considered from
the acoustical or physical phenomena and lead to new creative possibilities [I]. In particular,
some previous work by Comunita et al. [I0] have proven that time-varying feature-wise linear
modulation into existing temporal convolutional systems as a valid approach for the network

to adaptively learn.
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1.2 Objectives

The core research question this thesis seeks to address is: "which neural network architecture
is most adapt at modelling a non-linear, time-invariant effect such as the spring reverb?" To
comprehensively address this inquiry, we must traverse the landscape of various neural network
architectures, supervised learning methodologies, integrate domain-specific knowledge and deep
dive into the nuances specific to the spring reverb’s electro-mechanical functioning. Outlined

below are the refined objectives that will guide this research:

1. Data Examination: Evaluate the dataset proposed by Martinez Ramirez et al. [1]
together with the one published by Pedroza et al. [12].The aim is to ensure we train our

models on the most relevant and comprehensive data available.

2. Architectural Exploration: Delve into the state-of-the-art neural network architec-
tures—both convolutional [9, [4] and recurrent [13, 14, T0]—and assess their potential in

virtual analog modelling.

3. Use Case Analysis: Undertake a comprehensive analysis to discern the most optimal
use case for each examined architecture, ensuring a focused and relevant application of

each methodology.

4. Domain-Specific Knowledge Integration: We posit that combining traditional deep
learning methodologies with domain-specific insights is pivotal for success in music tech-
nology research. This objective will revolve around actualizing this blend to ensure the

models’ effectiveness and robustness.

5. Open and Reproducible Research: A commitment to transparency and reproducibil-
ity underpins this thesis. While a detailed discussion will be presented in Chapter 3, it’s

vital to underscore the intention to provide open-source code, data, and comprehensive



1.2. Objectives 7

documentation. This ensures that the research can be independently verified, built upon,

and validated by the wider scientific community.



Chapter 2

State of the Art

When a source emits a sound, it radiates through the medium, and is received directly by
the listener. This sound is referred to as the direct sound. However, sound waves also reflect
on the surfaces in the environment before reaching the listener. These reflections arrive with
a delay and are attenuated in intensity. These reflected and attenuated copies of the direct
sound are perceived as reverberation. In audio signal processing, reverberation effects are
often introduced synthetically to give the listener a sense of the space where the audio was
recorded, or to enhance the richness and sustain of musical tones. Techniques for creating such
effects range from convolution with measured or simulated room impulse responses (RIRs) to
algorithmic methods that mimic the diffuse nature of reverberation, such as digital reverberators
and feedback delay networks. The first idea of artificial reverberation has been introduced by

Schroder in 1961 [3].

2.1 Virtual Analog Modelling

Virtual analog modelling (VAM) is a technique that emulates the sound and behaviour of

analog audio equipment, such as guitar amplifiers, vintage synthesizers, and effects processors,
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using digital signal processing methods. The primary aim of VAM is to reproduce the distinct
characteristics, including non-linearities, of analog circuits, which can be challenging to achieve
using purely digital signal processing techniques. Historically, VAM started in the 1980s with
the development of digital signal processing and the need to emulate analog sound. Since then,
it has been continually refined, leading to the creation of white-box, gray-box, and black-box
modelling techniques. Each presents advantages and disadvantages and is chosen based on the
specific requirements of the virtual analog model being coded. The next subsection will outline

the main characteristics and differences of these techniques.

2.1.1 White-box

The "white-box" method involves analysing the analog circuitry of the effect and simulating
it using discrete-time techniques. This approach is based on a complete study and analysis of
the circuit that implies creating a detailed mathematical model of the original device, including
all the individual components and their interactions [I5]. In some cases, Wave Digital Filters
(WDFs), a class of digital filters, have been used. WDFs are closely related to classical filter
networks, preferably lossless filters inserted between resistive terminations [16]. Together with
other techniques [I7], they proved to be an efficient and accurate way of VAM using digital
signal processing techniques. Especially for non-linear devices. One significant downside of the
white-box approach is that it requires a high level of expertise and knowledge of the original
analog equipment, as the mathematical models are based on circuit diagrams or other technical
specifications of the original equipment. This can make the modelling process time-consuming
and expensive, particularly for complex equipment. It can also result in a computationally
intensive algorithm, particularly for large and complex circuits, which can limit its real-time

performance in some applications.
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2.1.2 Black-box

On the other hand, the "black-box" method treats the circuit as a whole and attempts to learn
its behaviour through the use of "examples". This approach consists on measuring the circuit’s
response to some input signals, and creating a model which replicates the observed input-
output mapping. Unlike white-box, which divide the device into blocks and components that
can be individually interpreted, this approach reproduces the target device with a mathematical
representation that is not strictly derived by its internal functioning [7]. Gray-box, is a hybrid
technique that tries to combine the advantages of the previous two. In gray-box approach,
a mix of circuit analysis and neural networks to create a model that emulates the behaviour
of the original effect. The circuit analysis is used to identify the main non-linearities and
other important features, then the effect’s behaviour under various input signals is predicted
[18]. While requiring less in-depth analysis of the original device, gray-box as well as black-
box approaches may have difficulties into generalization since the resulting models are often
very specific to the analog circuit used as reference [19]. In recent years, the use of machine
learning and Artificial Neural Networks (ANNs) is becoming increasingly popular for black-box
modelling, thanks to the availability of large amount of data and the increased computational
capabilities. From a machine learning perspective, the process of modelling an audio effect can
be regarded as a sequence modelling task. This is also referred to as data-driven approach:
the process is guided by the insights and the conclusions inferred from the data. From the
study of the existing literature emerges that a few datasets have been made and used for VA
modelling through neural networks for audio effects in general. Each of them includes different
dry and wet sounds of different devices. Some of them use as a reference a digital plugin (VST
or AU). Table [l summarize the most relevant dataset and gives an overview of their main

characteristics.
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Name Year Sources Samples Hours Sample Rate Reference
IDMT-SMT-Audio-Effects 2010  Bass/Guitar 55044 30 44.1 kHz [20]
IDMT-SMT-Bass 2013  Bass (dry) 6000 - 44.1 kHz [21]
IDMT-SMT-Guitar 2014  Guitar (dry) 849 120 44.1 kHz [22]
SignalTrain LA2A 2019 Noise 18179 43 44.1 kHz 23]
DL-AFx 2019 Bass/Guitar 2500 - 16.0 kHz [24]
SpringSet 2020 Bass/Guitar 2400 1.5 16.0 kHz [25]
EGFxSet 2022 Guitar 8970 11.5 44.1 kHz [12]

Table 1: Main datasets used for audio effects modelling, their characteristics and the papers
that introduced them.

2.2 Neural Audio Effects

Sequence modelling consists on predicting a series of outputs based on a series of inputs over
time. For a given input sequence xg, x1, ..., x7, the aim is to estimate the corresponding outputs
Yo, Y1, - - -, yr- A fundamental principle of sequence modelling is causality: the prediction at a
specific time t, represented as y;, should be contingent solely on the inputs seen up to that time

X, - .., x; and not be influenced by future inputs z;,1, ..., x7.

Mathematically, a sequence model f can be expressed as:

Z)Oa"'ayT:f(:EO)"'axT)

where it’s essential that each y; is reliant only on x, ..., z;.

The primary objective in sequence modelling is to pinpoint a model f that reduces the dis-
crepancy between the predicted and actual outputs of a sequence. This discrepancy is typically
quantified using a loss function. Within the domain of virtual analog, this method is applicable
to tasks like autoregressive prediction, where the subsequent sample of an audio signal is fore-

casted using its preceding samples. Artificial Neural Networks (ANNs) are a sub-category of
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machine learning algorithms inspired by the structure and function of the human brain. ANNs
consist of multiple interconnected processing nodes that work together to learn from data and
perform tasks. There are several types of ANNs architectures, each designed to solve specific
problems. In this thesis, we will focus on two main types: Deep Neural Network (DNN) and
Recurrent Neural Network (RNN). It is difficult to formulate a consensual definition of deep
learning, here we adopt the Briot and Pachet formulation in [26]: it is a repertoire of machine
learning techniques, based on artificial neural networks. The common ground is the term deep,
which means that there are multiple layers processing multiple levels of abstractions, which are
automatically extracted from data, as a way to express complex representations in terms of sim-
pler representations. From there we can outline the Deep Neural Network, as one sub-set of
ANN that rely on deep learning for patterns identification across input data. This architecture
suits well the processing of static, non-sequential data and can be applied to problems where
the input and output have a fixed size. For tasks of virtual analog modelling, this involves
transforming the raw input data into the frequency domain using Fast Fourier Transform. The
DNN is a feedforward type of NN where the input flows in one direction through the network’s

layers, without feedback connections. This is a radical element that separates it from the RNN.

2.2.1 Recurrent Architectures

This architecture has feedback connections: the output of a node in one layer can be used as an
input for the same or a different node in another layer. This makes the RNN an architecture
designed to handle sequential data. Unlike feedforward networks, which process input data in
a single pass, it maintains an internal state that allows to process input sequences of arbitrary
length. Technically, a Recurrent Neural Network (RNN) is a type of Deep Neural Network
(DNN), as it contains multiple layers of neurons and uses non-linear activation functions. How-
ever, in practice, the term "DNN" is often used to refer to feedforward neural network, which
is the most common type of deep neural network and this is why the RNN very often treated

as a separate category. Historically, recurrent neural networks (RNNs) have been the preferred
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Source Year Audio Effect Architecture Loss Function
Covert et al. [27] 2013 Tube Amp mod. RNN RMS
Zhang et al. [2§] 2018 Tube Amp Multi-Layer LSTM MSE
Damskagg et al. [29] 2019 Distortion WaveNet ESR
Wright et al. [13] 2019 Tube + Dist LSTM, GRU, WaveNet ESR + DC
Damskagg et al. [30] 2019 Tube Amp WaveNet, MLP ESR
M. Ramirez et al. [31] 2019 Various CNN + DNN MAE
M. Ramirez et al. [I9) 2019 Var. Time-Varying LSTM + Conv MAE, MSED
M. Ramirez et al. [24] 2020 Amp, Leslie LSTM + Conv MAE
Wright et al. [§] 2020 Valve Amp WaveNet, LSTM ESR + DC
M. Ramirez et al. [11] 2020 Reverb LSTM + Conv MAE + MSE
Steinmetz et al. [9] 2020 Reverb, Comp TCN STFT
M. Ramirez et al. [32] 2021 Various DeepAFX Delay-invariant
Comunita et al. [I0] 2022 Fuzz, Comp GCN MAE, MR STFT
Wright et al. [33] 2021 Phaser, Flanging LSTM + Conv ESR + DC
Steinmetz et al. [14] 2022  Dyn Range Comp TCN MAE, STFT, LUFS
Simionato et al. [34] 2022 Opt Comp Encoder-Decoder MSE

Table 2: Selected literature for black-box modelling, with audio effects, architectures and loss
functions.

framework for handling sequential data: they enhance feed-forward neural networks by using
previous states to inform current predictions. Initial versions of RNNs faced several obstacles
during training, like the issues of exploding and vanishing gradients [35]. Early introduction of
a feedforward neural network model for VA emulation can be traced back to 2013 by Covert
and Livingston [27]. Despite the inaccurate results (100% of root-mean-square error), it can be

considered as a first attempt to emulate tube amplifiers by neural networks.

The vanishing/exploding gradient descent problem in neural networks refers to a phe-
nomenon that can occur during the training phase, where the gradients of the loss function with
respect to the weights of the network become either too small (vanishing gradient) or too large

(exploding gradient) to allow effective training. The gradient is used to update the weights



14 Chapter 2. State of the Art

of the neural network during backpropagation. During training, the gradients are propagated
backwards through the layers of the network, and the weight updates are determined by the
product of the gradient and the learning rate. If the gradient becomes very small, then the
weight updates become negligible, which leads to slow convergence and may cause the network
to get stuck in a local minimum. This is known as the vanishing gradient problem. Conversely,
if the gradient becomes very large, the weight updates become too large, and the optimization
algorithm may overshoot the minimum and fail to converge. This is known as the exploding
gradient problem. The vanishing gradient problem typically occurs in DNN, which have many
layers. As the gradients are propagated backwards through the layers, they are multiplied to-
gether, and if the gradients are small, the product of many small numbers becomes very small.
The exploding gradient problem is more common in RNNs, which have loops in the network. If
the weights in the loops are too large, the gradients may become very large and cause the opti-
mization algorithm to diverge. Several techniques have been developed to address the vanishing
and exploding gradient problem. One approach is to use different activation functions, such
as the rectified linear unit (ReLU), which can help mitigate the vanishing gradient problem
by allowing gradients to flow more easily through the network. Another approach is to use
weight initialization techniques that can help prevent the gradients from becoming too small or
too large. Additionally, gradient clipping can be used to limit the size of the gradients during

training, which can help prevent the exploding gradient problem.

Long Short-Term Memory (LSTM) is a variant of the recurrent architecture that was
introduced to overcome the vanishing/exploding gradient problem that was afflicting "vanilla"
RRNs [36]. In 2018, Schmitz and Embrechts, introduced a model based on the LSTM, enabling
the emulation of tube guitar amplifiers with a small root-mean-square error and an accurate
perceptual accuracy [37]. Similarly to RNNs, these networks are specifically designed to handle
long-term dependencies. Unlike standard RNNs, LSTMs use gated units to selectively remem-

ber and forget information over time. The unit consists of two vectors: the cell state is the
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Figure 2: 1D convolution

long-term memory, while the hidden state keeps the short-term one.

2.2.2 Convolutional Architectures

Despite these advances, RNNs, known for capturing long-term temporal structures, are limited
by their inherent inability to be parallelized due to their autoregressive nature. This results in
slower processing speed when compared to feed-forward approaches. In contrast, convolutional
neural networks (CNNs), which were originally used in computer vision, have demonstrated
superior performance to analogous RNNs across various sequence modelling tasks, offering
improved efficiency [4]. Consequently, our research prioritizes CNNs for spring reverb neural
audio effect modelling. Many relevant scientific contributions are available on general VA

modelling with neural network, a selection of which is summarized in Table [2]

Digital audio signals, at their core, are 1-dimensional sequences of samples representing changes
in air pressure over time. To capture patterns in these sequences, the operation of convolution
can be particularly effective. A filter, also known as kernel, with its own set of weights, slides
over the audio signal (the sequence). At each position of this filter over the signal, the element-
wise product of the kernel’s weights with the current section of the audio signal is taken, and

then sum the results. This sum forms the signal point in the output sequence. Sliding the
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kernel over by one position and repeating until the entire signal is covered is what is called a
1D convolution (see Figure[2). 1D convolution can be formalized as follows [38]:
Cin_l
out(N;, Coutj) = bias(Couts) + Z weight(Couij, k) * input(V;, k) (2.1)
k=0
Where: x is the valid cross-correlation operator, N is a batch size, C' denotes a number of

channels and L is a length of a signal sequence.

The causality of convolutional architectures is the innovation that led to perform extremely
well on audio signals: each output sample predicted by the model depends only on r previous
input samples: r is known as the receptive field of the model. This is achieved using dilated
convolution that can exponentially increase the receptive field of a convolutional unit without
increasing the number of parameters. The receptive field of a model is a function of the kernel

size (k;), stride (s;), dilation factor (d;), for the i*h layer of the network is:
T, =11+ dz X (Si X (kz — 1)) (22)

The total receptive field of a convolutional model with [ layers represents the span of input
data influencing the output of the final layer. Starting with the receptive field of the first layer,
which is the size of its kernel, the receptive field expands at each subsequent layer according to
the layer’s kernel size, stride, and dilation factor. By the time we reach the I'h layer, the total
receptive field encapsulates influences from a range of input data, governed by the cumulative

effects of all previous layers.

WaveNet - A prominent architecture in audio processing, WaveNet was introduced by van
den Oord et al. in 2016 [4], it stands out as a deep generative model for raw audio waveforms. Its
speciality lies in using dilated causal convolutions, enabling it to generate coherent, high-quality

waveforms over extended periods, solidifying its position in tasks such as speech synthesis, music
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generation, and virtual analog modelling.

Temporal Convolutional Network — A convolutional deep neural network variant, the
Temporal Convolutional Network (TCN) was first proposed by Lea et al. [39] for video action
segmentation. TCN, equipped with dilated, causal 1D convolutional layers, maintains consis-
tent input-output lengths. Its architecture, leveraging dilation rates, ensures a robust receptive

field, thus proficiently handling long-term input sequence dependencies.

2.3 Building Blocks

With this section we want to outline some important elements that connected together de-
termine the functioning, hence the performance, of a neural network architecture. From the
selected literature (see Table [2) we summarize the most recurrent ones that are relevant in the

field of audio effects virtual analog modelling.

2.3.1 Activation Functions

Activation functions are a key component in a network architecture, there is a great number
of them used in different branches of deep learning. Here follows a non-exhaustive selection of

the ones relevant for the purpose of this work [13] 4].

Sigmoid - Also called the "logistic" function, is probably the most used activation function.
Takes any real values as input and outputs values in the range of 0 to 1. The larger the input
(more positive), the closer the output value will be to 1.0, whereas the smaller the input (more

negative), the closer the output will be to 0.0. Mathematically, its formula is:

o(z) = (2.3)
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Tanh (Hyperbolic Tangent) - Also a very commonly used activation function in neural
networks. It is a non-linear function that squashes the input values between -1 and 1. It is
commonly used in neural networks because it is non-linear, and it is symmetric around zero,
meaning that it can model both positive and negative inputs. For higher inputs, its output
will be closer to 1.0, whereas for a smaller input (negative), the closer it will be to -1.0. It is

mathematically represented as:

1) (exp(x) — exp(—1x)) (2.4)

(exp(r) + exp(—x))

ReLU (Rectified Linear Unit) - It is a simple yet efficient function that returns zero for
negative inputs and the input value itself for positive inputs. ReLLU is widely used because it is
computationally efficient and does not suffer from the vanishing gradient problem, as it allows

the gradient to flow more easily through the network. Mathematically, it is defined as:

f(x) = max(0, ) (2.5)

PReLU (Parametric ReLU) - Although widely used, the ReLU has a known limitation
termed as the "Dying ReLU" problem. This problem arises because the gradient value becomes
zero for all negative inputs, leading to certain neurons becoming inactive or "dead" during the
backpropagation process. Consequently, these neurons do not update their weights and biases,

reducing the model’s capacity to fit or train effectively on the data.

To address this limitation, the Parametric ReLU (PReLU) was introduced with a slope param-

eter, a, for negative input values. The function is mathematically represented as:

x ifz>0
flw) = 2.6)

a-x ifx <0
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Here, the slope a isn’t fixed but is learned through backpropagation, allowing the model to
determine the most suitable value. PReLU is particularly useful when the more simplistic
Leaky ReLU variant fails to address the Dying RelLU issue and vital information isn’t effectively
transmitted to subsequent layers. However, it’s worth noting that PReLU’s performance can

vary across different tasks, primarily influenced by the value of the slope parameter.

SoftPlus - Is part of a class: the gated activation functions, these allow the network to learn
continuous gating mechanisms. The softplus is used in neural networks to model continuous
and time-varying phenomena. It has a gating mechanism that is based on a smooth version
of the ReLU function, which allows the network to learn continuous gating and its output is
scaled by another function that ranges between zero and one, allowing for continuous gating.
It is defined as:

f(z) =log(1 + exp(x)) (2.7)
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Figure 3: Plot of the output and the derivative for the Sigmoid, PReLU, Tanh and SoftPlus
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2.3.2 Loss Functions

A loss function, also known as cost function, measures the difference between the predicted
output of the model and what the output should be, the target or ground truth. It quantifies
how the model is performing by calculating the error or loss. The goal of the model is to
minimize the value of the loss function, indicating that the predicted output is as close as

possible to the expected/desired output for the task.

Mean-Absolute-Error (MAE) . In supervised learning regression tasks and in the context
of audio effect modelling, calculates the absolute value of the distance in the samples between
the predicted signal and the ground-truth [24]. The model output being y and target (ground
truth) being 3, the MAE is defined as:

N
1 X
Lyap = N Z lyi — il (2.8)
i=1

where N is the number of samples used to calculate the MAE. In some cases, the difference
between the observed ground truth and the predicted samples is squared, as in the previous
formula the result is then divided by the number of samples. This results in the average squared

error across all samples, named: the Mean Square Error [I1].

Error-to-Signal Ratio (ESR) Measures the difference in magnitude between the predicted
value and the true value. The ESR is computed by dividing the absolute difference between
the true value and the predicted value by the magnitude of the true value. The resulting ratio
indicates how much the error deviates from the true value, relative to the true value itself. Its

mathematical formalization is:

N-1 12
- >ico |Yi — Uil (2.9)
ZI'N:? ?Jz‘|2

where |y| is the magnitude of the true value (also called target) and || is the prediction by the

neural network. The denominator in the ESR normalises the loss with regard to the energy of
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the target signal, preventing it from being dominated by the segments with higher energy.

Difference in DC offset Wright and Valimaki [40], proposed to measure the difference in
DC offset between the target and the output of the neural network, it is given by:

1 N-1 ~ 2

N 2ono (W[N] — G[n])

Ipc = - (2.10)
LS y(n]|?

In previous work on distortion and compressors modelling with deep neural networks, a combi-
nation of Error-to-Signal-Ratio (ESR) and DC offset as loss function has been proposed. These
two terms combined, address the low-frequency artefacts that are often introduced by deep
neural network at their output stage and keeps a perceptual relevance given by the use of the

ESR [40]. the overall error is then simply the sum of the two terms:

€ =€rgSr + €pc (2.11)

Pre-Emphasis Filter In many implementations of compressor and distortion circuits [29],
[13], [30], the computation of the ESR between target and output is preceded by a pre-emphasis
filter. This filter doesn’t affect the DC offset. Pre-emphasis is a filtering technique that amplifies
the high frequencies of a signal, in VAM, a pre-emphasis filter is often applied before the
extraction of features to balance the frequency spectrum. Higher frequencies in the spectrum
have lower energy magnitudes compared to lower frequencies, applying a filter compensates
for this difference, by doing so, the neural network becomes more sensitive to the changes
in the high-frequency range, which is crucial for a realistic VAM. As presented by Wright
and Valimaki. in [40], high-pass pre-emphasis filters with different orders and weightings are

intended to compensate for human-ear particular perception of loudness at different frequencies,
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as an example in PyTorch library, a pre-emphasis filter is defined as:

yli] = x[i] — coef f - x[i — 1] (2.12)

The Short-time Fourier Transform (STFT) implemented by Steinmetz and Reiss in [41]
loss is composed of two main terms: spectral convergence and spectral log-magnitude. Spectral
convergence (2.13)) and spectral log-magnitude (2.14]) are computed as follows, where || - ||F is

the Frobenius norm, || - ||; is the L1 norm, and N is the number of STFT frames:

s ) = [ISTET(y)| = [STET @)l
T I[STET(y)lll#

(2.13)

lsm(9,y) = %HZOQUSTFT(?J)D — log(|[STFT(9)])]lx (2.14)

The overall STFT loss is defined as the sum of these two terms.

Multi-Resolution STFT Is an extension of the STFT loss that increases robustness and
limits the potential bias. The spectral convergence (SC) and the log magnitude (LogMag or

LM) loss for a single resolution are defined as:

1. Spectral Convergence (SC):

_|ISTET()] — [STET()| |+

lsc (4, 2.15
scldy [ISTET ()T (215)
2. Log Magnitude (LogMag or LM):
X 1 .
lsm(9,y) = 5l log(ISTFT(9)]) — log(ISTFT(y)[)llx (2.16)

For multiple resolutions, the combined loss is:
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M:

Ivr(9,y) (Isc (9, y) + ol (9,y)) (2.17)

m=1

Where:

e ) is the total number of resolutions.

e o is a weighting factor for the log magnitude loss.

2.3.3 Optimizers

Backpropagation is the algorithm used to compute the gradient of the loss function with respect
to the weights and biases of the neural network. The gradient tells us the direction in which
the weights and biases should be adjusted to decrease the value of the loss function. This
adjustment is then performed by an optimizer algorithm, such as gradient descent, SGD, Adam,
or RMSProp. The loss function is a function that measures the error between the predicted
output of the neural network and the ground truth, while backpropagation is an algorithm
used to compute the gradient of the loss function with respect to the weights and biases of
the network. The gradient is then used by the optimizer to adjust the weights and biases
to minimize the loss and increase performance. An optimizer is an algorithm that is used to
update the weights and biases of the network during the training process in order to minimize
the error between the predicted output and the true output. The goal of an optimizer is to find
the optimal set of weights and biases that will minimize the cost or loss function of the network.
This is achieved through an iterative process in which the optimizer adjusts the weights and
biases in small steps, based on the gradient of the cost function with respect to the weights and

biases. There are several types of optimizers used in NNs, including:

e Gradient Descent is the most basic optimizer that updates the weights and biases in

the direction of the negative gradient of the cost function. It works by calculating the
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gradient of the loss function with respect to the weights and biases, and updating them in
the direction of the negative gradient to minimize the loss. The learning rate determines
the size of the steps taken in the direction of the gradient, and needs to be carefully

chosen to avoid overshooting the minimum or getting stuck in a local minimum.

Stochastic Gradient Descent (SGD) is a variant of gradient descent that updates the
weights and biases based on a randomly selected subset (or batch) of the training data,
instead of the entire dataset. This can speed up training and avoid getting stuck in a

local minimum, but it may also introduce more noise into the optimization process.

Adam is an adaptive optimizer that adjusts the learning rate for each weight and bias
based on the magnitude of their gradients. It combines elements of both momentum-based
and adaptive learning rate-based optimization algorithms. Adam adapts the learning rate
for each weight based on the first and second moments of the gradient, and uses a bias
correction to correct for initialization bias. This allows Adam to converge faster and with
more accuracy than other optimization algorithms. ADAM is a popular choice because
it can handle large datasets and high-dimensional data efficiently, it does this combining
the strengths of both SGD and root-mean-square propagation (RMSProp). An adaptive
learning rate is used for each parameter, which means that it adjusts the size of the
updates to the model’s parameters based on the gradient of the loss function. This allows
to converge to the optimal solution faster and more reliably than other optimization

algorithms, such as SGD.

RMSProp is another adaptive optimization algorithm that scales the learning rate for
each weight and bias based on the magnitude of their gradients. It is similar to Adam, but
does not use the second moment of the gradient. Instead, it calculates an exponentially
weighted moving average of the squared gradients and uses this to adjust the learning
rate. This can help RMSProp to converge faster and with more accuracy than standard

gradient descent or stochastic gradient descent.
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The choice of optimizer can have a significant impact on the training performance of a neural
network, and it is often a matter of experimentation to determine which optimizer works best

for a given problem.



Chapter 3

Methods

In this section will be described the methodology applied for the development of the Neural
Spring Reverb. We will start by describing the architectures selected for comparison, to then
analyse the available datasets and finally outline the design of the experimental environment.
The Python code together with the data pipeline, pre-trained models and Jupyter Notebooks
is publicly available in a GitHub Repository [] The code is designed with great attention to

the reproducibility of the experiments, a command line interface has been implemented.

3.1 Models

Previous work in this field has shown that convolutional (WaveNet, TCN, GCN) models can
be very effective for ’style transfer’ tasks and at the same time there is evidence and studies
on the effectiveness of 'recurrent’ type architectures (LSTM, GRU). We therefore propose here
five architectural patterns that revolve around these two principles of operation and, in some

cases, attempt to optimise performance with hybrid-type systems.

Thttps://github.com/francescopapaleo/neural-audio-spring-reverb
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3.1.1 Temporal Convolutional Network

The TCN model presented here was introduced by Steinmetz and Reiss as a style-transfer
architecture for audio effects [42]. As seen in Chapter 2, this architecture is designed for
sequence modelling tasks and often outperforms traditional recurrent networks. It uses causal
(non-future-looking) convolutions. The model consists of a stack of multiple TCN blocks, each
increasing in dilation as we go deeper. The first block takes in the input sequence and passes it
through a TCN block, transforming it to a specified number of channels. Intermediate blocks
are identical in structure and simply transform the input without changing its channel count.
Finally, the last block maps the transformed features into the desired output channels. Figure

4] shows the inner structure of those blocks.

v TCN Block
| TCNBlock | Convid
e [ (s | [
C rew o " o [ o ]
) | O
e ,

y |

Figure 4: Block diagram representation of the baseline TCN architecture

The core component is the 1DConvolution that forms the backbone of the TCN, working as

a sliding filter across the time axis of the input signal. Additionally, there’s a skip connection
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(residual) added to the output of the convolution, which helps training for deeper networks.
BatchNorm, or Batch Normalization, is an essential normalization technique aimed at accelerat-
ing training and stabilizing the activations of neural networks. In this architecture, BatchNorm
is introduced to normalize the output from each layer, ensuring that the activations do not reach
extremely high or low values, thus addressing the internal covariate shift. By maintaining the
activations within a certain scale, it promotes smoother optimization landscapes and a more
efficient training process. Furthermore, FILM (Feature-wise Linear Modulation) conditioning
mechanism [43]. Following this, the architecture introduces the PReLU (Parametric Rectified
Linear Unit) as its activation function. The inclusion of PReLU is noteworthy due to its ability
to introduce non-linearity into the model, enabling the network to capture complex patterns
and relationships in the data. Unlike the standard ReLU, which nullifies negative values, the
PReLU allows a small gradient when the unit is inactive (i.e., for negative values), making it
more flexible and often leading to better performance in deeper networks. This small gradient,
determined by a learned parameter, ensures that even "inactive" units can adapt during the

training process, reducing the risk of neuron "death" seen in some deep network trainings with

standard ReLUs.

3.1.2 Feed-Forward WaveNet

The second architecture implemented is a simplified, feed-forward variant of the WaveNet
model, employing the principle of causal convolutional layers. Each CausalConvid ensures
that the output at time ¢ is only influenced by inputs from time ¢ and earlier. This is achieved
by adding specific padding, ensuring that no future information leaks into the current computa-
tion. Per each layer, a number of convolutional channel is established with the hyperparameters
of the model, this represents the number of feature channels (or filters) used in the causal con-
volutional layers. Ultimately, it dictates the depth or richness of feature representation at
each layer of the network. It’s a design choice that allows to trade off between expressive-

ness and computational efficiency, this parameter can have a dramatic impact on the model’s
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performance.
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Figure 5: High-level block representation of the feed-forward WaveNet architecture.

The output from each convolutional layer (after the PReLU activation function) is stored. At
the end of the network, the outputs of all the convolutional layers are concatenated together
to form a combined feature map. The concatenated feature map is then passed through a
1x1 convolution, called "linear mix" in the code. This acts as a mixing function, allowing the
network to weight the contribution of each feature map before producing the final output, as
described by Wright et al. [§]. Finally, a function calculates the receptive field of the network,
which is essentially the number of input samples that influence a single output sample. The

receptive field grows with each layer due to the dilation growth in the convolutional layers.

3.1.3 Gated Convolutional Network

Similar to the feed-forward WaveNet architecture and the Temporal Convolutional Network,
this architecture can be briefly described as a TCN that leverages the power of dilated con-

volutions combined with gating mechanisms to capture long-range dependencies without signifi-
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cantly increasing computational costs. The main GCN structure consists of a list of GatedConv1d

T, > Convid

h 4
B
=

Figure 6: Block Diagram of the dilated 1 dimensional gated convolution.

layers. The number of such layers depends on the hyperparameters selected. Dilation increases
exponentially with the layer depth, allowing the network to capture wider ranges of input con-
text as depth increases. After reaching the maximum dilation at the final layer, it resets and
starts again, marking the beginning of a new block. This structure helps in capturing multiscale
patterns in the data. The outputs from all layers are stored and combined in a single tensor
(z_storage) to which a final mixing convolution of kernel size 1 is applied and generates the
network’s output. This mixing ensures the network can use information from all layers in its
final decision. The core component of the network is the GatedConv1d layer, each one has two
convolutional operations. The first operation has its output channels doubled in size, and this
output is split into two equal parts. One part undergoes a tanh activation, while the other
undergoes a sigmoid activation. The element-wise product of these two activations creates
the gating mechanism, effectively controlling the flow of information through the network. To
maintain consistent tensor sizes throughout the network and enable residual connections, zero-
padding is added at the beginning of the tensor after the gated operation. A mixing convolution
of kernel size 1 follows the gating mechanism to control the number of output channels. The
layer’s output is a sum of the original input (residual connection) and the result from the mixing

convolution.
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3.1.4 Long Short-Term Memory Network

The provided code includes a basic implementation of an LSTM (Long Short-Term Memory)
model using PyTorch’s neural network library (nn). In this design, the model starts by receiving
audio data, which is permuted to the preferred input shape for LSTM layers: batch, sequence,
channel. It’s worth noting that the LSTM layer is set up with a batch first configuration,
optimizing for batch processing of sequential data. The number of LSTM layers and the number
of hidden units in each are determined by the hyperparameters chosen [34]. By design, the model
is able to handle bidirectional sequences, though in this instance, it’s set to process sequences
in a single direction. After the LSTM layer processes the sequences, the model employs a fully

connected layer to map the output of the LSTM to the desired output size.

From the analysis of previous work, [33] and [8] emerges the use of a residual layer, also
referred to as "skip connection". When enabled, the model selectively bypasses certain parts of
the data, ensuring these initial features are directly carried to the output without undergoing
transformations. This is useful for preserving specific characteristics or nuances in the audio.
As in the previously exposed implementation, the subsequent linear layer maps the LSTM’s
outputs to the desired output dimensions. The Convolutional LSTM model with skip connection
presented in this work (LstmConvSkip), is a hybrid, recurrent and convolutional, architecture
design. The design aims to capitalize on the spatial feature extraction capabilities of CNNs and
the temporal sequence modelling capabilities of LSTMs [19], [31I]. The 1D convolutional layer
acts as the feature extractor. By sliding the convolutional kernel across the input sequence, it
captures localized spatial patterns. The kernel size and padding are set such that the output
retains the same sequence length as the input. As a recurrent network layer, the LSTM processes
the sequence step-by-step, maintaining an internal memory state. Additionally, it introduces
an optional skip (or residual) connection, inspired by ResNet architectures [44], to improve
learning and convergence in deeper networks. This linear transformation projects the input

sequence directly to the output size, providing a shortcut or direct path. It can assist the
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Figure 7: Block diagram of the LSTM architectures, (a): the basic model with the skip connec-
tion, (b): the convolutional feature extraction layer with Batch Normalization, then connected
to a LSTM cell with skip connection.

model in learning identity mappings and, in some cases, can accelerate convergence.
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3.2 Datasets

From Table [I] we see that specific to the spring reverb, there are only 2 datasets publicly
available. Both those datasets use physical devices to record wet samples of guitar and bass
notes. They are quite different either for the sampling rates and bit depths and for the format
in which they are distributed. In this section, we analyse their characteristics and differences,

providing some audio descriptors and visualizations.

3.2.1 SpringSet

The first dataset, named here: "SpringSet", introduced by Martinez Ramirez et al. [24], is
derived from the clean samples of the IDMT-SMT-Audio-Effects [20] a large dataset of guitar
and bass notes processed with effects other than the spring reverb. The dry samples selected
from this parent dataset are processed with a spring reverb tank Accutronics 4EB2C1B, the
dry mix is set to 0 %, and the wet mix to 100 %. All the recordings are downsampled to 16
kHz, each one has a length of 2 seconds and a fade-out is applied in the last 0.5 seconds of the

recordings. Table [3| summarizes the main characteristics.

Data Samples Length Size Min Max DC offset SNR
Train Dry 1122 37247 287 MB -1.019 1.018 —6.685-10"7 0.201 dB
Train Wet 1122 37247 287 MB  -1.006 1.007 —4.383-10"% 0.196 dB
Test Dry 64 28" 16 MB -1.003 1.003

Test Wet 64 2’8" 16 MB -1.006 1.007

Total 2372 794" 606 MB

Table 3: SpringSet overview: dataset characteristics and statistics, Min, Max, DC offset and
SNR values represent the mean of the subset.

All the samples are compressed into four HDF5 archives and encoded with the data type
NumPy "float64". While this dataset is distributed with only two parts: train and test, in our
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experiments we split it into 3 parts, adding one for the validation step. In terms of total length,
this dataset appears to be more than sufficient for the task, as demonstrated in the available

literature documenting similar research [8] [13] 19] 9] [14].
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Figure 8: SpringSet: visualization of three random waveforms for input-target pairs overlapped.
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Figure 9: SpringSet: visualization of 3 spectrograms, comparing input (top row) - target (bot-
tom row).

No metadata is provided with this dataset, and the original pipeline for the pre-processing is
not publicly available. Given that, a preliminary analysis is performed on the data. For the
scope of this work, only the subset related to the spring reverb samples is considered, discarding
the samples related to plate reverb. Figure [§ and [9] show visual representations of the samples

in the time and frequency domains. The review of a certain number of waveforms, confirms
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the irregularity in the dry-wet loudness level of the SpringSet, motivating further analysis.
From listening to the samples a perceptible difference in loudness between dry and wet samples
is present, some background noise is also, occasionally, present in the data. To verify these
hypotheses and check the quality of the data, we compute the minimum and maximum array
values, which confirm a maximum range going from -1 to 1. The DC offset values are quite low
across the entire data, well below the minimum quantization value at 16 bitsﬂ These figures

are also be beneficial to ascertain the uniformity between the training and testing subsets.

3.2.2 EGFxSet

From the theorems at the foundations of digital signal processing [45] , [46], we know that at a
given sampling rate SR the highest frequency represented without artefacts will have frequency
f = SR/2 Hz, for this reason the current recording standard is at 44100Hz. Nevertheless, for
some deep learning applications downsampling and upsampling might be appropriate, in gen-
eral, working with neural networks at a lower resolution than the Nyquist rate can significantly
shorten the training process and reduces the computational resources needed, facilitating the
development process, especially in the early stages, This lightweight and flexibility come at
the cost of a reduced spectrum, introduction of artefacts due to downsampling / upsampling
operations and results in networks trained that can’t operate at higher sampling rates suc-
cessively (limiting their possibile inter-operability in a digital signal chain). These limitations
become particularly relevant in the context of a reverb emulation, such as the spring reverb.
High-frequencies play a key role in the representation of artificial reverberation, they define and
characterize resonances and spatial perception in general, for a human listener those elements

are essential for him to recognize the natural psychoacoustic and physical phenomenon.

The Electric Guitar Effects Dataset (abbreviated: "EGFxSet"), introduced at the end of 2022

by Pedroza et al. [12], is a collection of dry-wet pairs recorded from 12 popular guitar effects,

2The minimum quantization value for a 16-bit resolution is 3.05 - 10~°
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Data Samples Length Size Min Max DC offset SNR
Dry 690 57’307 502 MB  -1.000 1.000 8.121-107% 0.596 dB
Wet 690 577307 502 MB  -0.891 0.899 —1.39-10"7 0.596 dB
Total 1380 115’ 1004 MB

Table 4: EGFxSet: overview of the dataset with its characteristics and some audio statistics.
For Min Max and DC offset the mean values are shown.

including the spring reverb. A total of 8970 unique, annotated guitar tones, each of five seconds,
it is published with full open-access rights, the main advantage of this dataset resides into being
recorded at 48kHz and 24 bit resolution, the standard for broadcasting and film industry. For
the purpose of this project, only the Clean and the Spring-Reverb sections are considered here.
The device used is a CR60C digital, reverb emulation of an Orange Crush Pro 60 with a 12-
inch speaker combo amplifier, it integrates Plate, Hall and Spring reverberations. To record
the spring reverb clips, the volume dial has been set at 50%, the dry mix at 0% and the wet at
100% [12]. This dataset is not split at the origin, all the clean samples have their correspondent
wet sample for each of the 12 audio effect. There is little difference in the peak level of wet

samples compared with the peak of dry ones. The DC offset values measured are also very low.
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Figure 10: EGFxSet: visualization of 3 waveforms of input-target pairs.
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Figure 11: EGFxSet: visualization of 3 spectrograms comparing input-target pairs.

3.2.3 Audio Features Extraction

While basic numerical statistics may offer a valuable initial inspection, they only give a high-
level view on the analysed data. This initial insight acquired can be further deepened by
extracting audio descriptors. A preliminary analysis of loudness, pitch and noise level is done
with Librosa and Torchaudio, then we use a selection of 9 algorithms from the Essential47]
library to extract low level audio features across both datasets. These features are stored in
json files that are available in the GitHub repository with the rest of the code. The algorithms
selected are essentially aimed to validate the data pipeline and the split of the data into train,
validation and test based on randomness, it also aims at checking that the no other audio

problems might be present, here follows a summarization of them.

e ReplayGain: the distance to the suitable average replay level ( -31dbB) defined by
SMPTE standard and is expressed in decibels (dB). As a pre-processing step, the algo-

rithm applies equal-loudness filtering to the input signal.

e Leq: the equivalent sound level estimate of the audio signal. This measure can be derived
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from the Revised Low-frequency B-weighting (RLB) or from the raw signal. If the signal

contains no energy, the default value for silence is set at -90dB.

Loudness: the loudness of the audio signal as defined by Steven’s power law: i.e. as the

energy of the signal raised to the power of 0.67.

FlatnessDB: this algorithm computes the ration between the geometric mean and the
aritmetic mean converted to dB scale of an input signal. This is useful to measure how a
sound is "noise-like" or on the contrary "tone-like". White-noise would theoretically have

a value of 1.0, a pure tone, on the contrary, would present a value close to 0.0.

HFC: the High-Frequency-Content of a spectrum computed according to the 'Masri’

technique. This measure is purely mathematical and have a perceptual relevance.

SpectralCentroidTime: spectral centroid of a signal in the time domain. A difference
filter is applied to the input, then the centroid is computed by dividing the norm of the
resulting signal by the norm of the input. It is expressed in Hertz (Hz).

ZCR: Zero-Crossing-Rate, i.e.: the rate at which the input signal changes of sign. Often

used to detect percussive sounds.

PitchYin: ‘implementation of the Yin algorithm for the estimation of the fundamental
frequency in the time domain. The algorithm returns two values, one for the estimated

f0 and one for the pitch confidence.

Upon examining the extracted audio features in Figure [I2] we can derive a few observations

about the SpringSet:

nsn

e Wet samples ("y") in the SpringSet, are generally lower in Leq level than dry samples

("x"), Loudness standard deviation also shows higher values for y samples.
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SpringSet - Selected Stats

springset_x_train-  -14.33 2.84 32291 209.29 0.80 33.57 0.25

springset_y_train-  -12.26 6.11 0.86 52.10 0.28
springset_x_valid-  -14.27 2.82 0.80 32.11 0.25
g
2
2
springset_y_valid-  -12.30 6.04 0.86 48.76 0.28
springset_x_test - -14.34 2.83 0.79 33.27 0.25
springset_y_test - =2, ILE] 6.37 0.86 52.10 0.28
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Figure 12: SpringSet: selection of mean and standard deviation values from the extracted
features.

There’s a high confidence score on the pitch estimation that allows the classification of
guitar and bass notes. This results into approximately 10% of bass notes over the ensemble

of the samples for the three splits.

In general, processed sounds have lower pitches and tend to be more clustered, the effect
of the spring reverb samples acts also a low-pass filter, making the y samples "darker"

compared to their x pairs.

The higher values of the HFC coefficient, for the processed sounds, might correspond to
the resonances and the reflections added by the springs during the processing of the input

samples. This descriptor isn’t necessarily correlated with the pitch.

Flatness is fairly low all across the data, this is coherent with the fact that the dataset is

composed essentially of guitar and bass notes with a low amount of noise and no particular
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sound with a noisy or percussive envelope.

The same algoritms are computed for the EGFxSet, the results are presented in Figure

e The loudness across the data presents a standard deviation between 1 and 2dB. Compared

with the SpringSet here, the difference is lower, the data seems more consistent.

e Pitch is generally higher as well as its standard deviation. The recordings used for this
dataset are divided into 5 different positions of execution on the guitar: Bridge, Bridge-

Middle, Middle, Middle-Neck, Neck. This corresponds into a more distributed selection

of notes that includes more high-pitched ones.

e As with the other dataset, wet samples have a higher HFC coefficient.

EGFXSet - Selected Stats

egfxset_x_train-  -21.49 1.42 0.89 12.56 0.22
egfxset_y train-  -21.54 2.18 0.92 16.01 0.15
egfxset_x_valid-  -21.61 1.42 0.88 11.65 0.22
g
2
2
egfxset_y valid-  -21.66 1.86 0.92 14.57 0.15
egfxset_x_test-  -21.46 1.29 0.88 13.08 0.23
egfxset_y test-  -21.48 2.03 0.92 16.80 0.15
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Figure 13: EGFxSet: selection of mean and standard deviation values from the extracted
features.
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3.3 Experimental design

In developing an experimental environment, our primary goal is to ensure both clarity of results
and ease of replicability, the design of such environment is structured in several steps to achieve

this goal:

Reproducibility - With a commitment to transparent and open research, we place great
emphasis on the ease of replicating our experiments. Through consistent setups, fixed random
seeds, and comprehensive documentation, we strive to ensure that our results are both verifiable

and easily adoptable by the broader research community.

Preliminary Steps - The explorative phase of the project laid the groundwork for our ex-
periments. Initial tests were vital to understanding the potential and limits of our proposed
methods. This initial phase is instrumental in setting the stage for more in-depth experimen-

tation and to gain insight on the context into which to develop a comparative study.

Benchmarks and Baselines - To judge the efficiency and accuracy of the models considered,
it is crucial to have benchmarks. We identify three baselines to provide diverse performance

metrics, further detail on those will be given in the next chapter.

Experiments on Different Sampling Rate and Bit Depth - For computational resource
optimization, the entire first part of the work has been done on 16kHz, 16 bits data. Successively
a higher resolution of 48kHz, 24 bits have been adopted to match the industry standard for

audio processing.

Code Structure - Our project’s codebase is organized systematically, ensuring modularity
and scalability. This structure facilitated both the integration of new models and the tweaking

of existing ones.
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Command Line Interface - For ease of interaction with our models and experiments, a
command-line interface (CLI) is designed. This CLI not only streamline the process of model
training and evaluation, but also ensures a consistent and easy-to-use environment for all our

experiments.

Documentation - Comprehensive documentation is maintained throughout the project. This
ensures that any researcher, either extending our work or trying to reproduce our results, has

a clear and detailed guide, minimizing the knowledge gap and maximizing clarity.

Hyperparameters TCN | WaveNet | GCN | LSTM
Channels 8-64 8-64 8§-32 | 16 - 128
Dilation 1-12 1-12 1-8 -
Kernel Size 1-19 1-19 3-41 0-3
Layers 1-10 10-24 1-10 1-4

Common Ranges for All Models

Batch Size 1-32
Learning Rate 107t —1074
Total Configurations 30 25 15 15

Table 5: The "search space": hyperparameters and ranges assessed during the initial scaling
phase.

3.3.1 Hyperparameter Scaling

Hyperparameter tuning and model selection, especially across multiple architectures, is a metic-
ulous process that requires a structured approach to ensure optimal outcomes. Once the archi-

tectures are implemented, the process of scaling follows these steps:

e Defining the search space: specify the range and type of hyperparameters under

consideration, Table | summarizes the main parameters and their ranges.
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e Progressive pruning: Systematic removal of the models that underperform, ensuring

that only potential contenders proceeded to subsequent stages of assessment.

e Detailed evaluation of shortlisted models: a meticulous evaluation process, with a

focus on their generalization capabilities, computational efficiency, and robustness.

We proceed to approximately 300 runs of training for short amounts of epochs (below 50) to

define the models that respond to the criteria before mentioned. This process leads to the

definition of 9 models, detailed in Table [6]

Model CH / HS Dilation Kernel Size RF (ms) Parameters Layers
TCN-1800 32 10 9 5000 31.5k 5
TCN-4000 32 10 19 4000 62.9k 5
WaveNet-10 16 10 3 160 18.6k 10
WaveNet-18 16 10 3 215 33.4k 18
WaveNet-24 16 10 3 47 44.6k 24
GCN-250 16 6 41 250 65.6k 10
GCN-2500 16 3 5 2500 26.4k 10
LSTM-cs-32 32 - 3 - 17.1k 1
LSTM-cs-96 96 - 3 - 75.2k 2

Table 6: Hyperparameters of the selected models after the scaling process.

(convolutional layers), HS: hidden size of LSTM, RF = Receptive Field.

3.3.2 Training

CH: channels

The training process is implemented using PyTorch version 2.0.1, encompassing both training

and validation loops across all models. For both datasets, 50% of the samples is used for

training, 25% for validation and another 25% is reserved for the evaluation process. For every

validation epoch, a checkpoint with the model parameters is saved if the loss has decreased
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Dataset SR BS Init. LR Epochs (max) ES Patience

SpringSet  16kHz 16 0.005 1000 25

EGFXSet 48kHz 8 0.005 250 25

Table 7: Training configurations for each dataset, SR: sample rate, BS: batch size, LR: learning
rate, ES: early stopping.

with respect to the previous validation loop. To track metrics like the learning rate, average
training loss, average validation loss, example audio files (including input, output, and target),
and spectrograms, Tensorboard [48] is employed for logging. Some experiments are conducted
on the most common optimizers for similar tasks, Adam together with ReduceLROnPlateau
as scheduler seems to work better in this context. A patience range is tested, spanning from
50 epochs down to 10. The initial learning rate is another area of exploration, with values
tested between 1-107° and 5- 107!, The rate of 0.005 seems to guarantee the best balance
in our experiments. Batch sizes also underwent rigorous testing [49]. For data at 16kHz, a
batch size of 16 is optimal, while the 48kHz data has better results with a batch size of 8.
This difference also responds to the limited computing resources available and the difference in
necessary memory when working at 48kHz. A single Nvidia Tesla T4 GPU with 16GB of RAM

and CUDA version 12.0 is used for the whole experimental process.

From an analysis of the previous literature in this field emerges a consistent set of loss functions
widely used for successful modelling of audio effects. In particular, as shown in Table [2, Mean
Absolute Error, Error-to-Signal-Ratio and Multi-Resolution STFT, alone or in combination,
appear to be quite common as loss functions for tasks similar to the one approached here. To
ensure thoroughness in our approach and potentially identify the most effective loss function
for our needs, we systematically test various loss functions - MR-STFT, STFT, ESR, MAE,
and DC - across all architecture configurations. These tests on baseline models with subsets of

the data reveal that a combined loss of MAE and Multi-Resolution STF'T represent the optimal
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Multi Step LR Scheduler 5 Reduce LR on Plateau

Learning Rate
Learning Rate

0 10 20 30 40 50 0 20 40 60 80 100 120 140

Figure 14: An example of two different schedulers adjusting learning rate during training:
MultiStepLR (a), ReduceLROnPLateau (b).

solution. The overall loss is given by:

L = OéLMAE + (1 — Oé)LMRfSTFT (31)

with @ = 0.5. The rationale behind the use of time and frequency domain losses is to ensure
that the model not only captures the overall structure and envelope of the audio waveform,
but also respects the harmonic complexities in the spectral domain. Loss in the time domain,
represented by MAE, is more sensitive to phase discrepancies and temporal structures, while
loss in the frequency domain, represented by MR-STFT, focuses on ensuring that the spectral

characteristics of the processed audio closely match those of the original [24].
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Results

In this chapter, we delve into the core findings of our research, meticulously examining the
results of experiments conducted on 10 distinct models. These models, a mix of convolutional
and recurrent architectures, were carefully chosen during the hyperparameter optimization
phase discussed in the preceding chapter. We’ve undertaken these experiments as comparative
studies, aiming to discern the most optimal architecture for accurately modelling the spring
reverb effect. Our results suggest that hybrid neural network patterns exhibit exceptional
performance across various evaluation criteria. Such models not only demonstrate enhanced
adaptability to data, but they also seem particularly suited for actual use cases in a production
context. Furthermore, we also evaluate the computational efficiency of the trained models,
and we propose the adoption of impulse response and RT60 as analytical measurements deeply

connected with reverberation either as a physical phenomenon as well as audio effect.

46
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4.1 Objective Evaluation

4.1.1 Baselines

While the loss functions delineated earlier in Chapter 2 primarily guide the training phase, they
are also adopted as evaluation metrics during testing. Quantitative metrics don’t always fit
within predefined bounds: when there’s no previous work on the same data or for a similar task,
it is difficult to establish without a baseline the range of possible values. Defining and testing
a baseline is essential for the evaluation process based on objective metrics. Consequently, we
define and test three baseline models, built to ascertain potential metric ranges, thus aiding the

subsequent evaluations of the model under comparison, the results are summarized in Table [§

Baselines MAE ESR DC MR-STFT
TCN-baseline (16kHz) 0.196 4.480 0.1601 2.555
Naive-baseline 0.193 1.396 5-107¢ 1.897
Noise-ceiling 0.219 1.922 5-1076 2.914

Table 8: Baselines results for the selected objective metrics.

1. TCN-baseline: Serving as our primary baseline, the Temporal Convolutional Network
(TCN), as presented in Chapter 3, is trained on a sequence made of concatenated samples
belonging to the SpringSet. Its training is carried for 2500 steps without validation, the

metrics are computed on a testing sequence, unseen by the model during training.

2. Naive Baseline: Drawing inspiration from the DummyRegressor in the Python package
Scikit-learn, this model emulates a prediction that corresponds to the wet sample and
a target replaced by the dry sample. The metrics are computed between the dry and wet
signals of the dataset. The underlying logic of this regressor is to provide a quantitative

measure of the inherent variance of the target device that we are modelling.
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3. Noise Ceiling: Represents the upper boundary, sometimes referred to as the "topline".
It is designed to make a random prediction that is uncorrelated with the input and the
target. Metrics are computed between a target and the random tensor (similar to white

noise) that represents this baseline.

To ensure meaningful and significant results in the context of our evaluation, the chosen models
for further consideration and deployment should consistently outperform these baselines across

the different objective metrics.

4.1.2 Testing

16kHz, 16bit - For each of the datasets used in this study, 25% of the samples are reserved
solely for the final test on data that the model has not seen during training or validation.
Table [0 shows the evaluation metrics for the selected models on the SpringSet. The Gated
Convolutional Network performs significantly better on all the evaluation metrics, except for
the Multi-Resolution STF'T where the LSTM-96 leads. This is a rather simple architecture with
a single recurrent layer followed by a linear layer just before the output, its biggest drawback
is the training time that is 3 to 5 times longer than other models for the same amount of
steps / data. On MAE, ESR and MR-STFT all the selected models perform better than
the baselines presented earlier, supporting the selection process carried until this point and the
hyperparameters scaling. The only exception to this improvement is DC offset, it is significantly
lower for the baselines than for the models under evaluation. This is partially due to the
calculation of DC offset itself, as defined by Wright and Valimaki [40], for the Naive baseline and
the noise ceiling, since there is no processing through neural networks before the computation
of the metrics the average value measured is very close to 0, either on negative or the positive
side. With these insights from the results on the SpringSet, we now pivot our attention to
the EGFxSet results, this transition allows us to evaluate how our models generalize across

different datasets, revealing any architecture-specific nuances or tendencies.
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Model Parameters MAE ESR DC MR-STFT
TCN-baseline 3.15-10* 0.194 0.101 1.44 0.00066
TCN-4000 6.29 - 104 0.148 0.0583 0.824 0.000761
GCN-250 6.56 - 10* 0.0658 0.012 0.223 0.000242
WaveNet-18 3.34 - 10* 0.173 0.092 1.31 0.000619
WaveNet-24 4.46 - 10* 0.123 0.0519 0.749 0.000457
LSTM-96 3.81-10* 0.146 0.0553 0.772 7.21-107°
LSTM-cs-96 7.52-10* 0.178 0.0821 1.13 0.000268

Table 9: Test results for SpringSet (16kHz). Lowest values highlighted in bold.

48kHz, 24bit - Table summarizes the metrics for the EGFxSet test. The GCN-250
model consistently outperforms its counterparts in three of the four metrics. This underscores
its ability to generalize well across different datasets, suggesting its architecture is particularly
suitable for these audio tasks. This phenomenon is evident from the performances of GCN and
WaveNet models. While GCN-250 achieved the best results in terms of MAE, ESR, and DC,
the TCN-4000 surpasses in the MR-STFT metric. This highlights the importance of multi-
metric evaluations: no single model may be the best across all metrics, and trade-offs must be
considered. The results don’t show a strict linear relationship between the number of parameters
and performance. For example, the GCN-250 with 65.6k parameters outperforms the GCN-
2500 with 26.4k in most metrics despite the latter having fewer parameters. The advantage
of convolutional architectures, particularly those equipped with gated activation functions, is
apparent in these results. Evaluated under the light of objective metrics, they are adapted for

capturing and modelling audio effects with prolonged temporal dependencies.

In neural network research, quantitative analysis, supported by proven metrics, is a valuable
tool. It provides an objective basis for measuring progress, facilitating comparisons and ensur-
ing consistency of evaluation. However, an exclusive reliance on these metrics is inappropriate,

especially when studying neural networks for music and audio. As we pointed out in the first



50 Chapter 4. Results

Model Parameters MAE ESR DC MR-STFT
GCN-2500 26.4k 0.087 0.035 3.1 0.000380
GCN-250 65.6k 0.029 0.004 0.616 0.000058
LSTM-cs-32 17.1k 0.080 0.029 3.0 0.000170
LSTM-cs-96 75.2k 0.036 0.005 0.65 0.001610
TCN-4000 62.9k 0.084 0.031 3.08 0.000043
TCN-baseline 31.5k 0.042 0.008 0.842 0.005130
WaveNet-10 18.6k 0.035 0.006 0.683 0.000094
WaveNet-18 33.4k 0.081 0.030 3.22 0.000140
WaveNet-24 44.6k 0.081 0.029 3.21 0.000470

Table 10: Test results for EGFxSet (48kHz). Lowest values in bold.

chapter, the task of modelling an electromechanical reverberation device such as spring rever-
beration is quite challenging and requires an interdisciplinary approach, capable of adopting
multiple points of view. This mentality leads to the need for further measurements and tests
that are more related to the sound characteristics captured by the models during the training

process.

4.2 Efficiency

Utilizing neural networks for real-time music applications presents a challenge influenced by the
trade-off between computational efficiency and model performance. There are two main nu-
merical measures for assessing a model’s suitability for real-time deployment within a common

digital audio workstation (DAW) workflow.

time(decode(a))

TE =
R length(a)

(4.1)
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Real Time Factor (RTF) - As introduced above, this is an intuitive metric to ascertain the
possible deployment real-time of a system. It measures the time it takes the system to process
an input compared to the actual duration of that input. As a rule of thumb: an RTF less
than or equal to 1 indicates that the system is employable in real time. On the other hand, an
RTF greater than 1 indicates a delay in processing. For example, an RTF of 2 implies that the
system requires twice the duration of the input to process it. Using the inference on CPU, it
is possible to measure the time required by the models during testing to process the data and
compute the RTF. Although this approach may not offer a completely objective assessment
of the deployment in a framework like Neutone or JUCE;, it is still valuable as it sheds light
on the computational demands posed by the model and allows a better tuning to improve its
performance. From the results summarized in table [I1, when operating at 16kHz the slowest
model (WaveNet-18) takes 0.438 seconds to process 1 second of audio at the same resolution,

the fastest model being the WaveNet-24 taking 0.157 seconds per second of audio processed.

Computational Load - Is the amount of memory required by a model to run an inference.
This is another critical aspect to consider in the design and the development of a neural network
architecture, particularly in audio applications. The values, reported in Table [T} refer to an
inference running on an Apple MacBookPro laptop with CPU Intel i7 and 16Gb of RAM.
Despite having a similar number of parameters to other models: WaveNet exhibit a high
memory consumption, probably due to the stratification of many hidden layers and connections.

In contrast, GCN models, even with higher parameter counts, seem to be more memory efficient.
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48kHz 16kHz

Model Parameters RTF CL RTF CL
GCN-2500 26.4k 0.713  3.58GB

GCN-250 65.6k 0.059 1.48GB 0.176  187MB
LSTM-cs-32 17.1k 0.665 756MB

LSTM-cs-96 75.2k 1.349  2.23GB 0.422 297MB
LSTM-96 38.1k - - 0.036 99MB
TCN-4000 62.9k 1.114  2.98GB 0.091 764MB
TCN-1800 31.5k 0.606  2.98GB 0.185  396MB
WaveNet-10 18.6k 0.851  3.82GB

WaveNet-18 33.4k 1411  6.67GB 0479 6.77GB
WaveNet-24 44.6k 1.810  8.98GB 0.161 8.98GB

Table 11: Real Time Factor (RTF) and Computational Load (CL) of 48kHz and 16kHz models.

Lowest score in boldface.

4.3 Techniques for Neural Audio Effect Analysis

Every audio effect can be associated with one or more perceptual attributes of sound. As an
example: compression is related to loudness, distortion to the distribution and amplitude of the
perceived harmonics, while reverberation to spatial perception and timbre. Digital modelling
of a given effect has to somehow reproduce the related transformation in the sound signal in a
manner that will cause in the listener the perception of that effect. Translating this process to
neural audio modelling demands a specific set of tools in order to "steer" the learning process
of the neural network towards the best possible approximation of the effect that we want to
emulate. From Acoustics and digital signal processing, the study of artificial reverberation rely
mainly on two techniques to measure the characteristics of reverberation: the Impulse Response

(IR) and the Reverberation Time (RT60)[3].
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Figure 15: The model prediction, in blue, and the target sample, in orange. In many cases, the
simple visual inspection of random samples retrieved during training and testing can help to
diagnose problems in the experimental design or in the learning process of the network. The
GCN-250 (a), seem to attenuate the level compared to the target, despite normalization. On
the right, the TCN-1800 (b) has repeatedly shown problems in the alignment of the predicted
signal with the target.

4.3.1 Impulse Response (IR)

Angelo Farina in the year 2000 [50], standardized a method that, using a sinusoidal sweep,
with a single measurement is able to measure and describe a system in the time and frequency

domains. This process can be breakdown in these steps:

1. Generate a sine sweep tone, i.e. a sinusoidal sound that goes logarithmically from a f0 to
fmax, together with that we generate its inverse filter, which is a time-reversed version

of the first sweep. Both have the same length and the same f0 and fmax.

2. The first sine sweep is played through the system under measurement, which could be a

room, an analog device or the inference of a neural network, its output is recorded.

3. The processed sweep is convolved with the inverse filter: with this operation, we isolate
the system impulse response (IR) from the noise that is present in the captured version

of the impulse response.
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Figure 16: 2D plot of the IR recorded from the GCN-250 48kHz, only the second half of the
recordeding is selected.

The significant advantage of this technique is providing a representation of the IR of the device
under study using just a single, relatively straightforward measurement. In this study, we
measure impulse responses for all our models, employing these measurements for fine-tuning
and evaluating perceptual aspects of the trained models, this step is also essential for analysing

reverberation time.

3
Magnitude (d8)

Figure 17: 3D visualization, "waterfall", of the impulse response obtained from the GCN-250
(48kHz) model, showing the magnitude (z) of the different frequencies () over time (y). Such
tools are essential to interpret the information gathered by the measurements.
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) Figure 19: RTyy computed of the GCN-250
Figure 18: RTgy values for each model. (48kHz)

4.3.2 Reverberation Time (RT)

In 1965, M.R. Schroeder, introduced a new methodology for measuring reverberation time [51],
this is based on the use of short pulses of acoustic energy (traditionally tone bursts or gun
shots) to excite the space being studied to then measure the decay time of the sound between
two predefined levels. From this definition there are different deltas commonly used for this
measurement: 20dB, 30dB and 60dB, these differences are stated as RTjs, in which ¢ is the
difference in decibels. As an example, the measure of the RTg, is done calculating the decay
time from the point in which the sound has -5dB with respect to its peak to the level of -65dB,
the -5dB threshold is introduced because in acoustic measurements this part of the signal consist
mainly of early reflections and other types of perturbations that are not relevant to compute
the actual reverberation.Measuring the IR is a preliminary step for determining reverberation
time. In our experiments, we consistently measured the RTgy of the trained models with this
technique, the results of our measurements are shown in Table [11] together with an example of

2D plot visualizing the RT.
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Discussion

This final chapter provides a comprehensive review of the research findings presented in this
thesis. It begins with a summary of the main conclusions and our contributions, placing them in
the context of the overall research objectives. The subsequent section will address the inherent
limitations encountered in the course of this research, ensuring a transparent and thorough
understanding of the scope and boundaries of the results presented. Finally, an overview of
potential future work will be presented, highlighting areas that merit further investigation

based, also, on the knowledge gained with this work.

5.1 Conclusions

Modelling a nonlinear, time-invariant audio effect such as the spring reverb using neural net-
works represents a significant challenge, that is at the core of this study. The strategies un-
derscored in the title emphasize the intricacy of the problem and the necessity for meticulous

attention throughout the entire process of designing a neural audio effect.

Our experimental findings highlight that all tested models surpass the benchmarks across most

metrics, with the sole exception of DC offset. Convolutional networks, especially those leverag-

o6
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ing gated activation function, like the GCN-250, standout in terms of quantitative evaluation.
LSTM models, while advantageous in computational efficiency, face longer training and infer-
ence times compared to the other networks studied and don’t seem to outperform the other
models in any of the quantitative metrics here considered. We’ve improved significantly their
performance applying a convolutional layer and batch normalization as feature extractors, and
we could observe much less sensitivity to alignment issues. WaveNets, the most resource-
intensive models considered here, also showed good predictions with low artefacts and rare
alignment issues, on the other hand, this architecture can be very complex to train on limited
GPUs without necessarily yielding higher evaluation scores. As we approach the end of this
study, the synthesis of these elements suggests that tackling the intricacies of this complex
challenge may indeed require a hybrid approach under the neural network architecture point
of view. Ideally, a system that would combine the strengths of both recurrent and convolu-
tional neural network classes. Throughout our exploration, it’s clear that all the models under
scrutiny exhibit superior performance when compared with the baselines. However, a common
feature emerges: the resulting impulse responses tend not to have the desired reverberation,

this aspect requires further investigation.

5.2 Contributions

e Among our contributions, a key one in this research is the creation of a complete ex-
perimental pipeline with fully reproducible steps and an extensive documentation. This

constitutes the core of the background work that has been done during this thesis.

e A notable result of this effort is the ability of the models to operate at the industry-
standard resolution of 48 kHz, 24-bit. In perspective, this achievement amplifies the

practicality and real-world application of the developed models.

e Incorporating metrics such as impulse response (IR) and reverberation time (RT60) en-

hances our ability to address these challenges. While uncommon in the deep learning
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literature, these metrics prove to be indispensable tools.

e Other critical indicators such as real time factor (RTF) and memory consumption offer

insights that go beyond mere performance, shaping the very architecture of these systems.

5.3 Limitations

Every research has its constraints, the following are the key limitations of this study.

Dataset Constraints The primary limitation is the restricted nature of the datasets used.
Training data was sourced from a limited selection of electric guitars. While this specificity
might enable better performance for those particular inputs, it may limit the generalization

capability of the models to handle other instruments or audio sources.

Computational Boundaries The computational constraints during the research phase meant
that the models, especially the deeper architectures, might not have been trained to their full

potential. Extended training could have possibly yielded better results.

Depth vs. Efficiency Trade-off The challenge of balancing between the depth (and conse-
quently the potential accuracy) of a model and its computational efficiency has been highlighted
and documented. Although deeper models appear to offer better performance, they often do

so at the cost of higher computational demands, which affects real-time usability.

Evaluation Metrics The metrics utilized predominantly provided a quantitative perspective.
Even though they offer objective insights, they clearly do not capture the subjective nature of

audio perception completely.
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5.4 Future Work

The findings and conclusions drawn from this thesis provide a foundation for future research
in the field of neural audio effect modelling. Given the rapidly evolving nature of deep learning

and audio processing techniques, numerous strategies might be adopted for future research.

Model Optimization Leveraging methods such as knowledge distillation, where a smaller
model is trained to mimic the behaviour of a larger model, might allow for more efficient models
without compromising on performance. Ensemble techniques or other forms of optimization

are certainly worth further experiments.

Human Perception Assessment The metrics utilized in this study provide a quantitative
assessment of model performance. However, audio perception is inherently subjective, and these
metrics might not always correlate with human perception. Future studies can involve more
extensive perceptual evaluations, where human listeners are involved to rate the quality of the
generated audio effects. Such assessments can offer invaluable insights that purely quantitative
metrics might miss. The Multiple Stimuli with Hidden Reference and Anchor (MUSHRA)
methodology is widely recognized as an intermediate audio quality assessing tool. Furthermore,
the Perceptual Evaluation of Audio Quality (PEAQ) as introduced by Imort et al. in [52] can
also be applied for a perceptual evaluation based on the degree of impairment perceived by the

listener.

Incorporating User Controllable Parameters Introducing feedback mechanisms within
the models can emulate more traditional artificial reverberation effect units and might lead to
richer and more dynamic audio effects. This and other traditional DSP techniques to control the
pre- and post-stages of the neural audio effect can significantly improve its real-world usability

and respond better to the original device behaviour.

This thesis aimed to shed some light on the challenges and possibilities inherent in emulating
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the spring reverb, using deep learning techniques. The results have provided insights into
the trade-offs and decisions necessary in the design and deployment of such systems, with
emphasis on the balance between model performance and computational efficiency. While the
journey to a perfect emulation continues, this research serves as background work that seeks
to identify and trace paths to be explored. Neural audio effects are evolving rapidly, and the
synergy between traditional signal processing and deep learning techniques offers opportunities

for future innovations towards expanded creativity.
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