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Abstract

Numerous cutting-edge approaches employed in Music Information Retrieval (MIR)

tasks are now leveraging representation learning. This technique entails learning

meaningful representations of the desired data through a source task, which can

act as compact, efficient inputs to separate downstream tasks. With the growing

interest in developing general audio representations that are useful for multiple tasks,

the need for thorough, consistent, and fair evaluation is more pertinent than ever.

However, evaluation efforts so far are often fragmented, owing to differences in data

availability and computational resources, missing implementation details, or lack

of agreed-upon design choices. Public benchmarks often opt for a fixed evaluation

setup that provides consistency in exchange for a narrower-scoped investigation of

MIR systems.

In this master’s thesis project, we present a toolkit for reproducible music audio

representation evaluation. The toolkit provides an easy and configurable way to run

evaluation experiments for MIR systems utilizing representation learning. It pro-

vides a variety of MIR datasets and tasks for evaluating performance given different

input representations, embedding extraction frequency, downstream models, and

audio perturbations. It also includes tools for exploring and visualizing evaluation

results under different experimental setups. The toolkit is primarily focused on aid-

ing the development of music audio representations while ensuring every evaluation

experiment is transparent and can be faithfully reproduced. We use the toolkit to

conduct an extensive evaluation of multiple representations from widely used music

embedding models for a variety of MIR tasks, datasets, and deformation scenarios.

Keywords: Music Audio Representation Learning, Embedding Evaluation, Evalua-

tion Toolkit, Representation Robustness, Reproducible Research





Chapter 1

Introduction

This thesis project aims to contribute methods and software for the advancement

of reproducible evaluation of music audio representation learning systems. In the

following sections of the introduction, the concept of representation learning and

its history will be briefly explained (see Sec. 1.1.1), followed by an overview of the

current approaches to music audio representation evaluation and their limitations

(see Sec. 1.1.2), as well as how they motivate this thesis project (see Sec. 1.1.3).

Subsequently, a summary of music audio representation learning techniques will

be presented (see Sec. 1.2.1), followed by the current tools and frameworks for

evaluating them (see Sec. 1.2.2). Finally, the contributions of this thesis project

will be presented (see Sec. 1.3).

1.1 Background

1.1.1 Music Representations

By the early 2000s, statistical and machine learning methods such as Support Vector

Machines (SVMs), Decision Trees, k-Nearest Neighbors (kNN), and even some early

architectures of small neural networks had started being used for tasks in a variety

of computational fields. Similarly, in the field of Music Information Retrieval (MIR),

the interdisciplinary domain concerned with extraction, analysis, and organization

1



2 Chapter 1. Introduction

of information from music data, researchers adapted and extended those promising

paradigms to deal with music data, both audio-based, like music recordings, and

symbolic, such as music notation. Up to the end of the decade, however, limitations

in computational resources, data, and annotations, as well as, often, methodological

constraints, prevented the use of raw data representations or even ones that closely

represent most aspects of the data with high fidelity. For music audio, particularly,

the raw digital waveform and even frequency-based audio representations were too

information-dense to be used as inputs to statistical and machine learning systems.

Researchers in MIR, therefore, elected to employ algorithmically derived represen-

tations, otherwise denoted as handcrafted features or descriptors, which were often

designed or adapted in an attempt to closely describe particular characteristics of the

audio that could be relevant to the task at hand. Some especially popular examples

of those features are Mel-Frequency Cepstral Coefficients (MFCC) [1, 2], descrip-

tors of the power spectrum of a sound, which were often used as timbre descriptors

for instrument recognition [3, 4, 5], and chroma-based features [6], descriptors of

spectrum energy per pitch class of a music scale, which were often used for chord

detection [7, 8, 9] and music alignment [10, 11]. Combinations of those features

were also used, particularly for tasks that required descriptions of various musical

aspects of the audio, like genre classification. Feature engineering, the process of

creating a set of relevant features for a task, also gained traction in MIR [12, 13, 14],

while some software provided configurable or preset feature extractors useful for

MIR tasks, like the Essentia [15] music extractor [16] and Wekinator [17]. While

these features were less information-dense than the raw data, many were still too

high-dimensional and, particularly, too dense temporally to be practically useful. In

many cases, their mean or variance over less granular intervals was instead computed

and used, leading to some information loss.

Computational power and hardware acceleration advances leading up to the early

2010s coupled with the evolution of model architectures and training methodologies

allowed researchers, particularly in the field of computer vision and speech, to start

demonstrating the viability of end-to-end workflows [18, 19]. These holistic pipelines,
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commencing from general data representations and culminating in predictive out-

comes, often outperformed shallower networks reliant on handcrafted features, par-

ticularly in scenarios where substantial data volumes were available. However, this

paradigm, often referred to as end-to-end deep learning due to the large model size

required, was certainly not accessible to all researchers due to the cost of the com-

putational resources required to train deep models. Another significant barrier to

end-to-end deep learning particularly for MIR was the scarcity of annotated data

[20, 21], an issue that is still faced to some degree today partially due to the par-

ticularities of music copyright laws. In spite of this, many researchers demonstrated

the potential of end-to-end deep learning for MIR on one task in particular: music

auto-tagging. The relative availability of tags without a strict vocabulary compared

to other types of annotation coupled with work from Creative-Commons-licensed

and public domain music sources led to the creation of two large music datasets:

MagnaTagATune [22] in 2009 and the Million Song Dataset [23] in 2011. Researchers

demonstrated that large models using spectral audio representations [24, 25] or even

the waveform [26, 27] could be used to improve auto-tagging performance compared

to approaches using handcrafted features and combinations of them with shallower

classifiers.

Even with these advancements, it remained impractical to use large models for other

MIR tasks that required harder-to-obtain annotations and data. In the early 2010s,

however, the paradigm of representation learning started attracting interest in MIR.

Representation learning refers to techniques for learning data representations usually

from raw or close-to-raw data representations through one or more source tasks.

Most often, this is done by utilizing the representation of an intermediate layer,

often called an embedding, of the model used for the source task or tasks, rather

than the prediction layer. The trained representation model can then be used for

inference of representations, which in turn can be used as inputs to shallower models

solving separate so-called downstream tasks. Initially, approaches utilizing Deep

Belief Networks (DBN) [28, 29, 30], described in more detail in Sec. 1.2.1, attempted

to learn representations without labels with mixed but promising results. In the mid-

2010s, however, the popularity of DBNs declined in favor of newer architectures that
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didn’t suffer from the same training difficulty and limited scalability of DBNs, which

was partially attributable to the vanishing gradient problem [31]. Instead, successful

representation learning attempts using auto-tagging on the Million Song Dataset as

the source tasks were published [32, 33, 34], reigniting interest in representation

learning.

Representation learning promises many theoretical benefits. Among others, by train-

ing a single, appropriate large model on appropriate data, one can use the learned

representation to solve separate downstream tasks with a lot less computational

power. Researchers with limited computational resources often take advantage of

this fact by using large, pre-trained models, often from different but neighboring

domains such as speech and vision, released by corporations and research centers

with leading computing capabilities to extract representations that can improve per-

formance on several, separate MIR downstream tasks [35, 36]. Additionally, again

depending on good source model and data selection, one can theoretically learn

relevant representations to deal with limited-data scenarios, such as when dealing

with a new instrument sound or music genre. Representation learning also provides

control over the size and fidelity of representation; one can attempt to learn a high-

dimensional representation appropriate for use in a variety of downstream tasks, or

they can instead attempt to create a compact representation capturing a specific

aspect of the data. The practical benefits of dealing with learned representations

have also interested the MIR field. Embeddings can be compact, which makes deal-

ing with and transferring datasets a lot easier compared to the information-dense

digital audio recordings. They also provide an avenue for obtaining data without

violating copyright law: corporations such as record labels, who often own the rights

of music produced by their artists, are, compared to providing audio, less reluctant

to provide extracted embedding representations of audio. This is because, apart

for the case of embeddings from generative models like autoencoders, embeddings

generally cannot be used to recover the original audio.
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1.1.2 Music Representation Evaluation

In the current landscape of machine learning, especially within the realm of deep

representations, a prevailing trend is the reliance on complex, deep models, whose

layer-to-layer transformations are often elusive to decipher in terms comprehensible

to humans. The result is that we don’t immediately know what information these

compact, dense representations contain, or how easy it is to extract. This sets

them apart from certain handcrafted features which offer visualizability and intuitive

interpretability. It is therefore all the more important to adequately evaluate and,

ideally, also attempt to interpret these deep representations to some degree.

In the field of Music Information Retrieval, evaluating deep representations has tra-

ditionally implied the following setup: researchers, on a paper-to-paper basis, would

construct a set of experiments where their newly developed representations are used

as input to models aimed to solve downstream MIR tasks. Tedious effort would be

put into implementing experiments on at least a few downstream tasks and datasets,

but also to compute results for other relevant representations, potentially both deep

and handcrafted ones. Even still, there are often slight or moderate differences across

evaluations, such as the exact data splits, the data quality and preprocessing, the

representation sampling frequency, the downstream model setup, and many others.

Thus, even though significant effort is spent to design each evaluation, results across

them are often not directly comparable [37].

The other primary means for deep representation evaluation have been public bench-

marks and challenges. The MIR community has shown interest in benchmarks al-

most since its first official conference-symposium in the year 2000 with the inception

of the first Annual Music Information Retrieval Evaluation eXchange (MIREX)

just five years later [38, 39]. The main evaluation format of MIREX has been

submission-based, with results computed on predetermined tasks and data setups

by the organizing committee. The fixed evaluation setup ensured fairness and con-

sistent, directly comparable evaluation between submissions. Ever since, a series of

benchmark-challenges have been created, many of which are aimed specifically at
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representation learning for audio (see Sec. 1.2.2. Their core principle is the same:

a submission-based setup with evaluation on a fixed set of tasks and datasets to

ensure fairness and comparability.

In reality, however, benchmarks have limitations that often prevent them from being

useful indicators of the real-world performance of systems. In the case of represen-

tation learning systems in particular, almost every aspect of the downstream evalu-

ation pipeline is often frozen, including, but not limited to, the downstream model

setup like its type, number and size of layers, optimizer, and training parameters,

and the evaluation metrics used. In practice, a badly performing representation for

a specific task might have greatly benefited from an extra layer in the downstream

model, or, generally, might have performed differently under different downstream

setups. Freezing a particular downstream pipeline provides consistent results for

that particular setup, but ignores other optimizations in the complete representa-

tion learning pipeline. Moreover, benchmarks provide an exciting but, often, too

simplistic view of system performance. In practice, in a deployed audio machine

learning system, we might care about its resilience to various audio perturbations,

its behavior in unseen data, its computational requirements, its interpretability,

and its fairness. For representation learning, for example, one might consider: will

a genre classification system based on deep representations perform inadequately

if slight background noise was present in the audio, or if the audio was slightly

time-stretched, or are there underlying assumptions during the learning of the rep-

resentation, such as it being pitch-invariant, that might render it unusable on new

data or subtasks like Turkish Makam recognition? Since evaluation in benchmarks

is usually narrow-scoped, they don’t eliminate the need for extensive, individual

evaluations, and, coupled with their submission-based framework, aren’t great tools

for the development process of a deep representation.

1.1.3 Motivation

The aforementioned limitations of benchmarks and the difficulty of building exten-

sive, consistent, and reproducible evaluations for representation learning systems are
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the factors that motivated the creation of this thesis project. In thinking beyond

benchmarks for deep representation evaluation, we arrived at the requirements that

follow.

Embedding development

Given the tediousness of building evaluation experiments and the narrow-scoped and

delayed evaluation results public benchmarks often compute, we need a local-first,

easy-to-set-up, and extensive evaluation tool. This tool would facilitate embedding

development by making it easier to extensively evaluate a deep representation at

every development iteration.

Embedding understanding

While performance in the target downstream tasks is usually the primary indicator

of the representation’s suitability, it’s not always clear how the downstream task

design might be limited compared to scenarios faced in the system’s deployment.

Having some understanding of the information that is contained in a representation,

something that isn’t trivial for deep representations, could help us expand our under-

standing of the representation’s suitability for certain tasks. For example, it would

be useful to be able to investigate whether the learned representation is the result

of learning shortcuts, meaning it might not generalize to out-of-dataset scenarios,

whether it’s invariant or equivariant to specific audio transformations such as gain

adjustment or pitch-shifting, or whether it correlates with a particular characteristic

of the data such as the timbre, which could indicate tasks it might be suitable for.

Pipeline evaluation

Different deep representations, given differences in their size, in their generalizability,

and in how disentangled or easy to extract relevant information from them is, might

perform differently under different downstream pipeline setups. We need control

over those setups in order to understand how to better leverage a representation

and what performance compromises we might have to make.
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Reproducibility

In order to ensure the consistency and comparability of evaluation results for dif-

ferent deep representations, the entire representation learning pipeline needs to be

transparent and easily reproducible. We need an easy way to configure as many

aspects of the pipeline as possible, while being able to share our configuration and

have other researchers reproduce our results without worrying about missing im-

plementation details, data and software versioning differences, and different metric

definitions.

Modularity and extendability

While a rigid, consistent evaluation configuration is important for reproducibility,

we also need to be able to easily expand various aspects of the evaluation, like, for

example, the embedding model and its version used, the downstream classifiers, the

tasks, the datasets, and the evaluation metrics. To do this, we need a framework

decoupled enough to allow contributions from multiple parties. At the same time,

users should be able to easily interface the toolkit with their own datasets and tasks,

a use case that is particularly relevant for industry applications.

With these requirements in mind, we set to build a framework for music audio

representation evaluation.

1.2 Related work

In this section, we present existing approaches for learning music audio represen-

tations for MIR tasks (see Sec. 1.2.1) and frameworks for evaluating them 1.2.2.

Representation learning approaches are categorized based on the learning principle

and type of data they employ. Given that current representation learning approaches

rely on representations from intermediate model layers called embeddings, the terms

"deep representation" and "embedding" are used interchangeably in this context.
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1.2.1 Deep Audio Representations

In the early days of machine learning, researchers in MIR were concerned with de-

signing handcrafted features, descriptors of music information extracted from the

audio signal. After the success of the representation learning paradigm in neigh-

boring fields such as computer vision and speech processing, however, approaches

attempting to automatically learn useful representations that could be transferred

to other tasks started appearing in MIR.

Unsupervised learning

The first category of representation learning approaches applied to music tasks can

be said to be those employing Deep Belief Networks (DBN). DBNs [40] are generative

probabilistic models with a greedy layer-wise unsupervised pretraining phase. They

were seen as an attractive alternative to Deep Neural Networks (DNN), which were

considered difficult to train using gradient descent [41].

In 2009, Lee et al. [28] used Convolutional DBNs (CDBN), a variant of DBNs with

convolutional layers, a type of layer where the same weights and biases are applied

to groups of contiguous inputs, typically using small kernels. They demonstrate

how representation learning can be a powerful alternative to handcrafted features

in various audio-related tasks. For music specifically, they decide to train a CDBN

on an unlabelled music collection, using a short-window spectrogram that is then

PCA-whitened as the input. The representations from the CDBN are then evaluated

on music genre and music artist classification by using their L1 and L2 distances,

outperforming experiments using the raw spectrogram and Mel Frequency Cepstral

Coefficients (MFFCs), a popular handcrafted feature often used as a timbre descrip-

tor.

Hamel et al. [29] further experiment with DBNs for music domain tasks. They

pretrain a DBN in an unsupervised manner with the training data from the GTZAN

dataset [42], and then fine-tune the model with the same training data using gradient

descent to predict the genre annotations in the dataset. As an input feature, they
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instead use the Discrete Fourier Transforms (DFT) of 46.44ms audio chunks, and

they run an extensive hyper-parameter optimization. Using the activations from

different combinations of layers as features fed to a Support Vector Machine (SVM),

they achieve state-of-the-art performance in genre classification and music auto-

tagging.

Lastly, Dieleman et al. [30] attempt to leverage the large Million Song Dataset

(MSD) by training a DCBL in an unsupervised fashion with beat-synchronized

chroma and timbre components as input. They then initialize a Convolutional Mul-

tilayer Perceptron (CMLP) with the same architecture and the learned weights and

biases from the DCBL, and fine-tune it in a supervised manner on artist recogni-

tion, genre recognition, and key detection. The authors observe that unsupervised

pretraining helped the model converge faster, but it only modestly improved the

accuracy in the tested tasks.

Classification

Soon after these self-supervised pretraining approaches, supervised pretraining ones

based on descriptive tags and, later, editorial metadata started gaining interest.

Tagging Van den Oord et al. [32] demonstrate that the representations learned

from an auto-tagging model using MSD and the associated last.fm tags outper-

form handcrafted features in genre classification in the GTZAN, Unique, and 1517-

Artists datasets, as well as tag prediction in the MagnaTagATune (MTAT) dataset.

To do this, they utilize the spherical K-means algorithm [43] on the audio’s mel-

spectrogram to extract low-level features in an unsupervised manner, and they re-

duce the dimensionality of the tags using Weighted Matrix Factorization (WMF) to

handle the large, overlapping label set. They use this feature-label correspondence

to train a linear regression model and two MLPs, one with a single and one with

two hidden layers. The linear regression model generally performs the best, always

outperforming an SVM using the handcrafted features and only falling behind the

MLPs in tagging. Liang et al. [33] take a similar approach, utilizing auto-tagging on

MSD for representation learning, but, instead, for improving collaborative filtering
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music recommendation models. They vector-quantize timbre features and train a 3-

hidden-layer MLP, using the output of its last hidden layer to create a content-aware

collaborative filtering latent space.

For the same dataset and tags, Choi et al. [34] propose a 5-hidden-layer Convolu-

tional Neural Network (CNN) inspired by VGGNet [44] and using a mel-spectrogram

as the input feature. They extend the suite of downstream tasks to Ballroom dance

genre classification in the Extended ballroom dataset, genre classification and speech

vs. music classification in GTZAN, emotion prediction in EmoMusic, vocal vs. non-

vocal classification in a dataset from Jamendo, and audio event classification in

Urbansound8K. Using a hyperparameter-optimised SVM and various combinations

of the CNN activations, they show it significantly outperforms MFFCs and achieves

performance close to the state-of-the-art. Further exploring CNNs for representation

learning, Pons and Serra [25] release a set of CNNs trained in music auto-tagging

in MSD and MTAT in a library entitled MusiCNN that also contains modules to

facilitate transfer learning using the models’ embeddings. The models at the time

achieved state-of-the-art performance in music auto-tagging and competitive perfor-

mance in many downstream tasks, with the musically-motivated CNN kernel design

seemingly facilitating learning in limited-data scenarios [37].

In the direction of using domain knowledge to improve music representation learning,

Won et al. [45] introduce a trainable frontend of triangular band-pass filters operat-

ing on the spectrogram exploiting the inherent harmonic structure. Combined with

a simple CNN backend, they show improved performance in auto-tagging on MTAT,

keyword spotting on the Speech Commands dataset, and sound event tagging on

the DCASE 2017 subset of AudioSet.

Editorial Metadata Park et al. [46] use artist metadata with the premise that

editorial metadata is subjective, unlike descriptive tags, and can relate to stylistic

content in the music track. They use a deep, 1-dimensional CNN, and, to deal with

the high dimensionality of the output layer and to avoid retraining every time a new

artist is added, they use a Siamese network, a neural architecture that compares two
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inputs for similarity by processing them through shared weights. The models are

trained on the MSD dataset and 30-second preview clips from the 7digital platform.

They use the k-Nearest Neighbors classifier and a linear softmax classifier for genre

classification on GTZAN, FMA, and tracks from NAVER, a Korean music service,

and find that both the representations from the CNN and the Siamese network can

learn useful representations, particularly for similarity-based retrieval. Lee et al. [47]

later use a very similar approach to extend the metadata used to include album and

track information. They train separate models for each type of metadata, but find

that a joint model that uses all metadata generally works best in genre classification

in the same datasets.

Correspondence

Tags Favory et al. [48] propose the use of text labels to enhance representations

with audio semantics. They use an autoencoder (AE) with convolutional layers, a

bottleneck, and a reconstruction objective to learn a representation of audio, and

an AE with linear layers instead to learn a representation of the text labels. Con-

trastive loss is then used to align the two representations, minimizing the distance

of audio features with similar semantic information. To pretrain, they create and

preprocess a dataset of Freesound sounds and their associated tags, extracting a

mel spectrogram from the former and multi-hot encoding the latter. Although the

performance of other deep CNNs is still superior for genre classification in GTZAN

and instrument classification in NSynth, the authors show their method outper-

forms both MFCCs but also a shallow CNN solely using the features from the audio

autoencoder, suggesting the successful learning of music semantics from text. The

authors later expand this approach to use a pretrained word embedding model to

project the tags into a semantic space and an attention mechanism to better learn

representation similarity [49].

Editorial Metadata Alonso-Jiménez et al. [50] collect a large set of metadata

such as the artist, year, record label, and genres from the Discogs online music

database. They opt to use COLA [51], a simple contrastive learning framework.
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They design 4 experiments with different conditions for creating the positive and

negative audio segment pairs, namely, whether they are from the same 1. track,

2. release, 3. artist, or 4. label. Using these objectives, they pretrain an Effi-

cientNet [52], a CNN with width, depth, and resolution optimized for performance

and inference time on image data, using the audio’s mel spectrogram. The learned

representations, as well as combinations of them from the different experiments, are

evaluated using a 1-hidden-layer MLP on various downstream MIR tasks. All four

experiments, with a slight edge for the artist association model, perform competi-

tively or even better than other embedding models and task-specific models.

Playlists Ferraro et al. [53] use a very similar alignment-inspired approach to Fa-

vory et al. [48, 49]. They instead use three encoders, one aligning audio to genre tags,

one for audio-to-playlist co-occurrences, and one for genre-to-playlist co-occurrences.

They obtain data and metadata for training from Melon, a Korean music streaming

service, and show that their approach utilizing contrastive loss to align the audio-

genre-playlist correspondences typically outperforms approaches trying to directly

predict genres or playlist co-occurrences. Alonso et al. [54] propose an approach

utilizing a convolutional backbone and a contrastive learning framework similar to

SimCLR [55]. They propose different heuristics for pair generation, including ran-

domly selecting pairs based on playlist co-occurrences, prioritizing cases with the

most co-occurrences, or aligning the projection of the audio representation to that

of a Word2Vec model trained using the playlist name as sentences and the track

IDs as words. They train the models on MSD using two architectural variants: one

VGGish model [44], and one ResNet50 model [56]. They evaluate all these setups in

multiple tasks, including genre, instrument, and mood tagging, showing generally

higher performance compared to models trained on other image data.

Language Instead of text labels, other approaches have attempted to use natural

language. Manco et al. [57] use an extension of BERT named Vision-and-Language

BERT (ViL-BERT) [58] for joint music and language pretraining. They use a weakly

aligned dataset of audio-caption pairs and pass audio segments through a MusiCNN

model before feeding the embedding to the multimodal transformer. They intro-
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duce three learning objectives: 1. a Masked Language Modelling (MLM) objective,

masking some of the tokens and tasking the model to predict the masks, 2. a

Masked Audio Modelling (MAM) objective, following the same principle as MLM

but for audio tasks, and 3. an Audio-Text Matching (ATM) objective, tasking the

model to learn if an audio-text pair matches. After pretraining on approximately

200,000 audio-caption pairs, the learned representations are evaluated on a variety

of downstream tasks, performing competitively with other embedding models and

task-specific models. The authors also present an audio-language-learning frame-

work based on contrastive learning [59]. The approach is similar to Favory et. all

[48], although encoders are used for both the audio and text modalities with the

objective that the resulting embeddings will lie as closely as possible in the joint

embedding space if the audio and text are paired. The authors additionally propose

a multi-task learning framework where the contrastive objective is combined with a

self-supervised objective for the audio, similarly to SimCLR [55]. This approach en-

ables state-of-the-art performance in audio-to-text and text-to-audio retrieval, and

the produced embeddings are competitive in genre classification and auto-tagging.

Video Cramer et al. [60] exploit audio-visual correspondence for representation

learning. They investigate different configurations of L3-Net models [61], particu-

larly focusing on the amount of data used for training and the impact of using an

audio representation that is more perceptually relevant. They train the models on

AudioSet [62] and demonstrate high performance with less training data compared

to other models, particularly for the model configuration using a mel spectrogram

rather than a linear one.

Self-Supervised Learning

Self-supervised contrastive learning, training a model with unlabeled data to be

invariant to specific perturbations of that data, had been attracting interest for audio

representation learning [63, 51]. Spijkervet and Burgoyne [64] employ this paradigm

for music representation learning. They introduce domain-relevant perturbations

such as additive white noise, gain reduction, random time offset, pitch shifting, and
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reverb applied to the waveform. In this framework, the perturbed signals would

form a positive pair with the original signal, while other signals would form negative

ones. The waveforms are then fed to a SampleCNN encoder [27], where the model’s

objective is to minimize the resulting embeddings’ distance for positive pairs, while

maximizing it for negative ones. Trained on MSD, this model was shown to perform

at least on par with embeddings from supervised models, while being much smaller

than models such as those in MusiCNN [25]. Similarly, Chang et al. [65] use

contrastive learning to create suitable representations for audio fingerprinting. They

choose relevant augmentations for identification such as adding noise and a random

offset in the extraction window to create positive pairs and use the inner product

between embeddings to make identification predictions. They train the model on a

small subset of the Free Music Archive (FMA) dataset [66] and demonstrate good

and robust predictions for audio identification, although using the representations

for downstream tasks yielded mediocre results.

Inspired by the Bidirectional Encoder Representations from Transformers (BERT)

architecture [67], Zhao and Guo [68] use a multi-layer bidirectional self-attention

transformer encoder [69] with a combination of downsampled features such as a mel

spectrogram and MFCCs as the input. They train the model with two objectives: 1.

Contiguous Frames Masking, where multiple, non-overlapping groups of consecutive

frames are masked, and, similarly, 2. Contiguous Channels Masking. A dataset con-

taining Music4all, FMA-large, and MTG-Jamendo is used for training. The learned

embeddings are evaluated in genre classification and auto-tagging, outperforming

existing learned representations. More recently, Li et al. [70] introduce a family of

models entitled MERT that are also based on a BERT-style transformer encoder.

They propose teacher models for creating pseudo-labels for the Masked Language

Modelling training objective, ultimately opting for an acoustic teacher based on a

Residual Vector Quantization Variational AutoEncoder (RVQ-VAE) and a musical

teacher based on the Constant-Q Transform. Multiple variations of the models are

evaluated on a large set of tasks and datasets, with competitive and some state-of-

the-art results.
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Music Generation

Lastly, music generation has been exploited as a proxy for creating music audio

representations. Castellon et al. [36] exploit the representations learned by Jukebox

[71], a generative music model that uses Vector-Quantized Variational Autoencoders

(VQ-VAE) to compress raw audio to tokens, models the tokens using autoregressive

Transformers, and then decodes them to audio. Due to the size of the model and

its representations, the authors decide to use a single layer as the representation

for downstream tasks. They iterate through different layers of the model, and find

that the middle layer is most performant on downstream tasks, considerably beat-

ing other embeddings from representation learning models in auto-tagging, genre

classification, emotion recognition, and, especially, key detection.

1.2.2 Audio Representation Evaluation Frameworks

In the neighboring domain of audio, a few extensive efforts have been made to cre-

ate tools for evaluating audio representations. One of those is the Holistic Audio

Representation Evaluation Suite (HARES) [72, 73]. As described in the accompa-

nying paper, they implement multiple tasks, including auto-tagging on MTAT and

pitch estimation and instrument classification on NSynth, and have a fairly rigid

1-hidden-layer downstream MLP. A more comprehensive package is the Evaluation

package for Audio Representations (EVAR) [74]. The package facilitates the use of

multiple models, including pretrained ones, in a variety of tasks and datasets, includ-

ing music-related ones such as GTZAN, NSynth, and the Pitch Audio Dataset. It

further provides functionality for fine-tuning, controllable through a template yaml

file. The HEAR benchmark [75, 76] consists of 19 tasks, including GTZAN genre

and music vs speech, NSynth Pitch, and Beijing Opera Percussion. It provides data,

code, and an API for researchers to integrate their model. Recently, a representa-

tion evaluation benchmark specifically aimed at MIR tasks was released, called the

Music Audio Representation Benchmark for universaL Evaluation (MARBLE) [77].

MARBLE implements a wide range of MIR tasks and datasets, and, currently, is

primarily submission-based. A fixed downstream setup is enforced, with a one-layer
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512-unit MLP for all tasks apart from source separation, for which a 3-layer 512-unit

LSTM is used.

1.3 Contributions

The primary contribution of this thesis project is the development and release of

an open-source toolkit for music audio representation evaluation. The toolkit’s fo-

cus is the easy configuration of extensive evaluation experiments for representation

learning pipelines aimed at Music Information Retrieval tasks. It is built upon the

principle of reproducibility, meaning all aspects of the pipeline are transparent and

anyone can reproduce experiments simply from their configuration file. At the same

time, it focuses on modularity and extendability, to make it easier for others to con-

tribute their own datasets, tasks, models, and metrics. Lastly, it provides various

functionalities for representation understanding, such as robustness evaluation, dif-

ficulty of information extraction analysis, interactive confusions visualization, and

others.

The secondary contribution is the release of an extensive evaluation of deep repre-

sentations from popular embedding models in a variety of MIR tasks. This includes

an evaluation of performance in each task, of the different downstream model setups

required for reaching good performance, and of the robustness of the representations

to audio deformations relevant to each task.
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Methods

In this section, an overview of the design of the toolkit will be given (see Sec. 2.1),

followed by more details about its core components (see Sec. 2.2) and of additional

experiment analysis functionality that it offers (see Sec. 2.3).

Please note that, as is the case with living open-source software projects, it is im-

portant to always consult the latest documentation, guides, and other material ac-

companying the toolkit’s releases for an up-to-date view of its functionality and

design. This document describes and can only describe our initial software design

aspirations for the toolkit’s first release.

2.1 Toolkit Overview

The principles we laid out in Section 1.1.3 to expand our thinking beyond bench-

marks should be evident in the software design. This is why the toolkit is developed

as an open-source project, inviting external contributions. However, simply having

the source code available is insufficient for achieving reproducible evaluation work.

Challenges like labor-intensive data collection, unclear experiment setups, and com-

plex result visualization must also be addressed.

To overcome these challenges, the toolkit provides a configuration-driven approach

to evaluation. Researchers can craft a single configuration file that encompasses

18



2.2. Core Components 19

parameters for the representation learning pipeline. By utilizing this file, they can

execute evaluation experiments without the need to collect data or code. This

configuration file encapsulates essential experiment details, including tasks, datasets,

embedding models, downstream models, training parameters, metrics, and even

considerations like audio deformations for robustness assessment, all of which will

be explored in Section 2.2. Anyone equipped with this configuration file can reliably

replicate the experiments outlined within it.

Distinguishing itself from traditional benchmarks, where the whole representation

learning pipeline apart from the representation itself is often fixed, this toolkit en-

courages users to assess the impact of various components of the pipeline to the

system’s behavior. For instance, users can investigate the effects of various em-

bedding extraction frequencies, different techniques for embedding aggregation or

dimensionality reduction, diverse audio perturbations, varying downstream models,

and more. This flexibility is achieved through a modular design, aiming to keep

components loosely interconnected. This modularity facilitates easy incorporation

and contribution of new models, metrics, datasets, and other elements by users.

The toolkit format was chosen instead of the package format as we envision this

software as a standalone suite of evaluation tools that are primarily extensible rather

than wrappable. We make use of some excellent software from the MIR and audio

research community, such as mirdata [78], mir_eval [79], Essentia [15] and Essentia

models [80], and audiomentations [81], and we generally encourage contributions to

those directly so that evaluation implementations are not fragmented further. We

wrap these components in a way that your relevant contributions to those packages

would be available for use with this toolkit too.

2.2 Core Components

The core components are the building blocks for every run, and they are set in the

configuration file for each experiment as seen below.

# CONFIG.yml



20 Chapter 2. Methods

experiments

- task: ...

datasets: ...

deformations: ...

embedding_models: ...

downstream_models: ...

metrics: ...

These components and a basic configuration for each, detailed in the sections that

follow, are adequate for building an evaluation experiment, such as the one depicted

in the flowchart in Fig. 2.2. Each experiment contains a single task, for which

every combination of datasets, deformations, embedding and downstream models,

and metrics will be computed. The experiment can be run with a single command

that takes the name of the configuration file as an argument.

python run.py experiment -c CONFIG.yml

The user can optionally run parts of the experiment independently with different

commands, if, for example, they want to run specific parts in different hardware.

python run.py deform -c CONFIG.yml # compute deformations from audio

python run.py generate -c CONFIG.yml # compute embeddings

python run.py train -c CONFIG.yml # train downstream models

python run.py evaluate -c CONFIG.yml # evaluate trained models

Figure 1: Sample flowchart for a basic evaluation experiment.
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Options to resume incomplete or failed runs are provided, along with manual over-

writes to skip computing embeddings for clean or deformed audio, to overwrite parts

of the configuration, or to limit computational resource use.

2.2.1 Tasks

Every experiment revolves around a single task. The task configuration contains in-

formation about the name and type of the task, which helps automatically configure

various parameters in the pipeline such as the type of downstream models, the type

of metrics, and even the relevant labels to retrieve from a dataset. It also contains

information about the embedding-prediction aggregation strategy used.

# TASK CONFIGURATION

task:

name: autotagging

type: multilabel_classification

aggregation: embedding_mean # or ‘prediction’

2.2.2 Datasets

The dataset parent class handles many core functionalities, such as downloading the

audio, collecting relevant metadata for a task, providing the appropriate audio and

embedding directories, and handling label encoding. Implementing a new dataset is

as simple as implementing 4 key methods:

dataset.download()

The download method programmatically downloads the relevant audio and meta-

data for a dataset. In existing datasets, the wget [82] program is used download

entries from Zenodo or download servers, allowing for download progress and re-

sumption of failed downloads. If utilities for downloading a specific dataset are pro-

vided with the dataset, those are preferred. Checksum verification for downloaded

files can also be implemented at this point. A dataset.download_metadata()
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method can optionally also be implemented. If an operation does not require the

full audio, an attempt will be made to simply download the metadata, if that option

is implemented. A decorator wraps these two methods to check if the data exists at

the right place and attempts to load the metadata.

dataset.load_track_ids()

After downloading, this method collects the relevant track IDs. Different IDs can be

returned depending on the dataset.task_type, if, for example, certain IDs should

not be included in a particular task. The method expects a list of strings or integers.

dataset.load_label()

Similarly to track ids, this methods collects the label(s) for each track ID in the

form of a dictionary. Labels can be returned according to the dataset.task_type

and dataset.task_name.

dataset.load_audio_paths()

This method expects a dictionary of filepaths keyed by their respective track ID.

Optionally, one can implement the dataset.get_splits() method, which can re-

turn predetermined splits for a dataset. If this method is not implemented, a ran-

dom stratified split will be returned. The parent dataset class contains many more

methods and decorators to ensure safe loading and handling of datasets. It always

contains functionality like encoding the labels depending on the task type and pro-

viding a label decoder.

Several datasets are implemented as of the submission of this thesis project, includ-

ing TinySOL [83], Beatport EDM [84][85], MagnaTagATune [22], MTG Jamendo

[86], and VocalSet [87]. The first two are implemented using the mirdata package

with a simple wrapper dataset child class. All mirdata datasets are theoretically

supported in this toolkit out of the box, but not many of them have been tested in

relevant tasks yet.
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In the configuration file, the name and desired data directory for the dataset are all

that is needed for the toolkit to download and set up the dataset for an experiment.

# DATASET CONFIGURATION

datasets:

- name: magnatagatune

dir: data/magnatagatune/

split_type: all # ‘all’ to use all available splits, or ‘single’

- name: mtg_jamendo

dir: data/mtg_jamendo/

split_type: single

2.2.3 Audio Deformations

Deformation robustness is a great way to test a production MIR system. Defor-

mation scenarios with one or multiple deformations can be created. The library

audiomentations is used under the hood to generate the deformations, and the

syntax expected by it is retained, meaning the user can simply check its documen-

tation to create deformation scenarios from tens of options.

# DEFORMATION CONFIGURATION

deformations:

- - type: Mp3Compression

params:

min_bitrate: 32

max_bitrate: 32

p: 1

- - type: Gain

params:

min_gain_in_db: -12

max_gain_in_db: -12

p: 1
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- type: AddGaussianSNR

params:

min_snr_in_db: 0

max_snr_in_db: 0

p: 1

2.2.4 Embedding Models

Multiple embedding models are already implemented, including VGGish-AudioSet

[44], MusiCNN-MSD [25], EffNet-Discogs [50], OpenL3 [60, 61], NeuralFP [65],

CLMR [64], MERT-v1-95m [70], and MULE [88]. The first 4 are implemented

with the Essentia models [80], which provides a simple-to-use wrapper for running

inference from pre-trained models. Custom models are currently implemented to

receive an input file path and return the expected embeddings. This functionality

will be developed further in the future so that embedding models can operate con-

sistently and with configurable batch sizes, since embedding inference is usually the

slowest part of a representation learning evaluation pipeline.

# EMBEDDING MODEL CONFIGURATION

embedding_models:

- vggish-audioset

- openl3

- mert-v1-95m

2.2.5 Downstream models

A typical downstream model configuration for a simple classifier is presented below.

# DOWNSTREAM MODEL CONFIGURATION

downstream_models:

- type: classifier

emb_dim_reduction: False # ‘False’ or ‘PCA’
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emb_shape: infer

hidden_units: [infer, infer]

output_activation: softmax

weight_decay: 1.0e-5

# optimizer

optimizer: adam

learning_rate: 1.0e-3

# training

batch_size: 100

epochs: 100

patience: 10

train_sampling: random

In an experiment, we might have multiple embeddings that are of very different

sizes. This could make it harder to compare two embeddings with a fixed-size

downstream model that might be benefiting one of the two embeddings more. Apart

from providing the option to add as many different downstream models as desired, we

also provide two different techniques to deal with this issue. The first is the option

to perform dimensionality reduction of the input embeddings to a desired shape

using Principal Component Analysis (PCA). This could mean larger embeddings

won’t have as unfair of an advantage compared to smaller ones. However, it is

hard to know whether dimensionality reduction with PCA will work well for your

task in particular. Thus, the second option is the ability to create models with

dynamic hidden layer number and sizes based on the size of the input representation.

For example, by configuring hidden_units: [infer, infer], two hidden layers

will be created with sizes determined through a linear interpolation of the input

and output size. If hidden_units: [power_infer] is provided instead, a power

regression for a single layer will be computed instead.

Other configuration options are fairly standard parameters for model training. En-

tering a parameter that might not be appropriate for the dataset and type of task

will raise a helpful warning. Custom models can also be implemented by providing
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the model name in the type option and placing a Keras model in the downstream

model directory.

2.2.6 Metrics

Every task comes with a set of relevant metrics already implemented, some of which

are implemented with the mir_eval [79] package. However, preexisting metrics from

one task can be added to the configuration file for other tasks, and additional custom

metrics can be written in the metrics module and specified in the configuration.

# METRICS CONFIGURATION

metrics:

- AUC-ROC

- weighted_score_key

2.3 Experiment Analysis

For each run, a run_id can be specified, to aid with experiment tracking. If it is not

provided, a run will be created and identified with a timestamp of the experiment

start time. Runs are placed in the logs directory.

2.3.1 Training

During each model training, training and validation logs are produced using the

Tensorboard [89] utility of Tensorflow [89]. Tensorboard allows you to visualize

the training and validation metrics specified (see Fig. 2), which proves extremely

useful when one can be using multiple downstream models in an experiment. In the

default behavior, the weights of the model with the best validation performance will

be saved for use later in the evaluation.
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Figure 2: AUC of downstream models during training, visualized with Tensorboard.

2.3.2 Evaluation

Results Visualization

] Given the number of controllable parameters for an experiment, it is important

to have a method for obtaining and visualizing the data of interest. This is why

we have developed and will continue developing utilities for experiment and results

analysis and visualization.

One of those, called autotable, creates tables out of the evaluation metrics of a

specific run. It expects the run ID as well as a preset. Presets include some ta-

bles focusing on deformations, others focusing on downstream classifiers, and others

trying to fit as much information in a table as possible. In fact, the tables for this

paper were generated with autotable with the preset all_deform_all_models,

which creates a table for a single class and dataset that includes all embedding

models, and all deformations and downstream models.

Given the dimensionality of these evaluations, however, we have been developing an

interactive version of autotable in which, instead of presets, particular variables-

parameters can either be frozen or be made active, and a good table preset for the

given active variables will be inferred and visualized live. This prototype is being

built with streamlit [90], but it is not ready for release at this time.
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Classification Analysis

Evaluation results save metrics per label in addition to the averaged ones, when

applicable. That said, given that most runs might contain multiple experiment

configurations, it might be impossible to manually analyze all results. Because of

this, we have been experimenting with an interactive confusion matrix interface,

which allows the user to select a misclassification between two classes, and a list of

(some) misclassified audio is presented. The user then has the option to play the

audio, or view the mel spectrogram of the audio, giving them an idea of why this

particular sample was misclassified. The prototype is currently based on Weave [91],

although other options are being considered.
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Evaluation

In this section, the experimental setup for each experiment will be given (see Sec.

3.1, followed by the results and an analysis of them (see Sec. 3.2.

3.1 Experimental Setup

To demonstrate the capabilities of the toolkit, we designed an evaluation of seven

representation learning models, including a few different configurations of one model,

in six different downstream tasks, four different datasets, and with five different

downstream models, fitting the computational and temporal resources available for

this thesis project. The configuration file to replicate these experiments is provided

in Appendix A. Abbreviations we use in the results for downstream models and

deformation scenarios are included in parenthesis next to their respective titles in

the overview that follows.

3.1.1 Embedding Models

We choose seven pre-trained models, which were previously described in Sec. 1.2.1.

These models vary in their architecture, size, amount of training data, training

dataset, input representation, and training strategy. Their model architecture is

presented in Table 3.1.1, and their specific pretraining dataset, training paradigm,

29
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and size of the chosen layer for embedding extraction are presented in Table 3.1.1.

For the models VGGish-AudioSet, EffNet-Discogs, MusiCNN, and OpenL3 we note

that we used the pretrained models and implementations from Essentia models [80].

We also computed four different embedding configurations for the MERT-v1-95M.

Specifically, we used a configuration with the mean of layers 0, 1, 2, and 3, denoted

MERT-v1-95M1:4, one with the mean of layers 4, 5, 6, 7, 8, denoted MERT-v1-

95M4:8, one with the mean of layers 9, 10, 11, 12, denoted MERT-v1-95M9:12, and

one with just the middle layer, denoted MERT-v1-95M6.

Table 1: Architecture of chosen embedding models.
Architecture Size Input representation

VGGish [44] CNN ∼100M Mel Spectrogram
EffNet [50] CNN ∼5.3M Mel Spectrogram
MusiCNN [25] CNN ∼8M Mel Spectrogram
OpenL3 [60][61] CNN & RNN ∼4.8M Mel Spectrogram
NeuralFP [65] CNN ∼20M Mel Spectrogram
CLMR [64] CNN ∼2.5M Waveform
MERT-v1-95M [70] CNN & Transformer ∼95M Waveform

Table 2: Training configuration of chosen embedding models.
Dataset Training Paradigm Emb. Size

VGGish [44] AudioSet [62] Tagging 128
EffNet [50] Discogs [92] Supervised Contrastive 1280
MusiCNN [25] MSD [23] Tagging 200
OpenL3 [60, 61] AudioSet [62] Self-Supervised 512
NeuralFP [65] FMA [66] Self-Supervised Contrastive 128
CLMR [64] MTAT [22] Self-Supervised Contrastive 512
MERT-v1-95M [70] Private Masked Language Model 768

Embeddings for each recording are computed and then mean-aggregated into one

embedding per recording. The aggregated embeddings are then used for model

training and prediction. While this is less computationally intensive than using the

original embeddings and aggregating the predictions, it is not clear how system per-

formance is affected. Future work will include an evaluation of the impact different

embedding sampling and aggregation strategies have.
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3.1.2 Datasets and Tasks

MagnaTagATune - Music Autotagging

The MagnaTagATune (MTAT) dataset [22] has been widely used for both training

and evaluating music auto-tagging systems since its release in 2009. It contains

25,877 30-second audio clips, some of which are from the same track, and most

of which have one or more tag annotations that were collected from an annotator

agreement game. We use the provided low-fidelity, mono, MP3 audio which has a

sampling rate of 16,000 Hz and a bit rate of 32 kbps. We use the split used in

[27] and all but the 50 most frequent tags, as is usually done for this dataset. We

note that we also discard audio clips with no associated top 50 tags, a decision that

is not always taken in previous works [37], meaning the dataset size is reduced to

21,108 excerpts. The top 50 tag frequency is presented in Fig. 3. As is the case in

previous work, we use the Area Under the Receiver Operating Characteristic curve

(AUC-ROC) and the Area Under the Precision-Recall curve (AUC-PR), metrics that

measure the area under the True Positive Rate - False Positive Rate plot and the

area under the Precision-Recall (True Positive Rate) plot respectively for different

classification prediction thresholds.

Beatport EDM - Key Estimation

The Beatport EDM dataset [84, 85], released in 2017, is comprised of 1,486 two-

minute music audio clips from the Beatport online music store. The clips are in

various subgenres of the Electronic Dance Music (EDM) genre and have accompa-

nying global key annotations. They are stereo MP3 files, with a sampling rate of

44,100 Hz and a bit rate of 96 kbps. We discard clips that contain multiple or

no key annotations, reducing the dataset size to 1,272 clips, and create an 80-10-

10 train-validation-test split. We report the micro-average and macro-average of a

weighted score which evaluates the quality of the prediction. For this, we use the

implementation of the mir_eval package [79], whose scoring rules are given in Table

3. Key annotation frequencies for the Beatport EDM split used are presented in Fig.

4.
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Figure 3: Counts of the top 50 tags in the MagnaTagATune split used.

TinySOL - Instrument Recognition, Pitch Class Classification

TinySOL [83] is a dataset containing single musical note recordings from 14 in-

struments released in 2020. It strictly contains notes played in "ordinario" style,

meaning no extended playing techniques or other physical instrument modifications

are used. The 2,913 audio clips included are provided in the WAV format in mono

at a sampling rate of 44,100 Hz a bit depth of 16 bits. For each recording, annota-

tions for the instrument, its instrument family, the pitch, the dynamics, and other

Table 3: Scoring rules for key detection
Relationship Example (Truth, Prediction) Score
Same key and mode C minor, B♯ minor 1.0
Prediction perfect fifth above truth C major, G major 0.5
Relative major/minor C major, A minor 0.3
Parallel major/minor C major, C minor 0.2
Other C major, F minor 0.0
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Figure 4: Key annotation counts for the Beatport EDM split used. Enharmonic
keys are assigned to their respective sharp (#) key.

instrument-playing details are included. We use TinySOL in two tasks: instrument

recognition and pitch class classification. We chose these two lower-level tasks to

gain some understanding of whether the deep representations contain lower-level

information that could be relevant to other tasks. For instrument recognition, we

use only the first data split provided by the authors of the dataset. We report the

micro- and macro-average F1-score, the harmonic mean of precision and recall often

preferred to accuracy in tasks using unbalanced datasets. The micro-average refers

to scores for each sample being given the same weights, while the macro-average

gives the same weight to each class. For pitch class classification, no official splits

are provided, so we create an 80-10-10 stratified train-validation-test split. We use

the same metrics as for instrument recognition. The instrument and pitch class

frequencies are displayed in Fig. 5 and 6 respectively.

3.1.3 VocalSet - Singer Identification, Vocal Technique Iden-

tification

The VocalSet dataset [87], released in 2018, contains 3,560 a capella singing record-

ings of twenty professional singers, eleven male and nine female. There are multiple

recordings for each singer capturing a broad range of vowels, singing techniques, and
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Figure 5: Counts of the instrument annotations in the TinySOL dataset.

Figure 6: Count of each pitch class annotation in the TinySOL dataset. Enharmonic
pitch classes are assigned to their respective sharp (#) pitch class.

contexts such as scales, arpeggios, long tones, and excerpts. The audio recordings

are mono and provided in WAV format, with a sampling rate of 44,100 Hz and a bit

depth of 16 bits. We use VocalSet for two experiments: singer identification and vo-

cal technique identification. For singer identification, we create an 80-10-10 stratified

train-validation-test split and report the micro- and macro-average F1-scores. For

vocal technique identification, we modify the original split provided by the dataset

authors by creating a validation set of three singers (female 9, male 9, and male

11) that previously belonged to the training set. We decided to create a validation

set for consistency across all experiments in the criterion used for model selection

for the evaluation. Because of the high imbalance of samples for each singing tech-

nique, we opt to use only ten vocal techniques, the same ones as those used in the

experiment by the dataset’s authors [87], reducing the audio clip number to 1,912.

As before, we report the micro-average and macro-average F1-scores. Annotation

counts for the two tasks that use the VocalSet dataset are presented in Fig. 7 and

Fig. 8 respectively.
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Figure 7: Counts of recordings from each singer in VocalSet, where "f" indicates
female, and "m" indicates male.

Figure 8: Counts for top 10 vocal techniques in VocalSet.

3.1.4 Deformations

We test four deformation scenarios on every task, as presented below. These de-

formations are relevant to systems attempting to solve all tasks in this evaluation,

albeit the difficulty of being robust to a scenario might differ per task. We be-

lieve that these deformations would generally not affect or very mildly affect the

performance of a human with normal hearing in this experiment’s tasks.

1. Gaussian White Noise is added to the audio with a Signal to Noise (SNR) ratio

of 15 dB (D1). While the occurrence of white noise is infrequent in real-world

audio situations, its inclusion serves as a test for assessing the system’s overall

resilience to noise across the entire spectrum. Noise at 15 dB SNR can be
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characterized as moderately quiet, and it’s not an uncommon occurrence in

analog radio or when you are conversing with someone during a light rainfall.

It is fair to assume most humans’ performance in the experiment’s tasks would

not decrease under this scenario.

2. Gaussian White Noise is added to the audio with a Signal to Noise (SNR)

ratio of 0 dB (D2). Noise at this level has the same energy as the signal,

and, although this does not exactly translate to having the same perceived

loudness, it’s a level where humans might need to listen to a sample for a bit

longer in order to interpret its content.

3. MP3 compression to a bit rate of 32 kbps (D3). This is the lowest supported

bit rate in the MPEG-1 audio standard, although MPEG-2 and MPEG-2.5 sup-

port even lower bit rates. Still, at this compression level, instrument timbre

might require more careful listening to be identified, especially when multiple

instruments are present. Since the low-fidelity audio provided in the MTAT

dataset already has a bit rate of 32 kbps, this deformation is ignored for the

task of auto-tagging.

4. Gain reduction of 12 dB (D4). In digitized audio, a gain reduction could be

considered a type of bit depth reduction, since the audio can be normalized

to its original amplitude but would have lost some of its amplitude resolution

or been subjected to quantization errors. Importantly, different versions of

recorded audio can exist at different gain levels, and the hope is that for most

MIR tasks deployed systems would be able to perform consistently across the

different gain levels.

3.1.5 Downstream models

Five different classifiers are used for all tasks.

• Single-Layer Perceptron (SLP); no hidden layers (M1)

• Multi-Layer Perceptron (MLP); one layer; [128] hidden units (M2)
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• Multi-Layer Perceptron (MLP); two layers; [256, 128] hidden units (M3)

• Multi-Layer Perceptron (MLP); one layer; hidden units inferred from linear

interpolation of input and output size (M4)

• Multi-Layer Perceptron (MLP); two layers; hidden units inferred from linear

interpolation of input and output size (M5)

One of the models contains no hidden layers to test whether information from the

embedding is linearly separable. Two of the models have a fixed size, and two of the

models’ hidden units depend on the input and output size. For a given task with

a fixed output size, this means that representations that are larger in size will use

larger downstream models.

For all models, the Adam optimizer is used with a learning rate of 1.0e-3. Hidden

dense layers use ReLU activation, and L2 regularization with a weight decay of 1.0e-

5 is used for kernel and bias regularization. The output activation is sigmoid for

auto-tagging on MTAT, and softmax for all other tasks. Models can train for up to

100 epochs, although training stops if the validation loss has not improved for 10

epochs.

3.1.6 Hardware

Embedding inference and downstream model training and evaluation were primarily

run on an NVIDIA GeForce RTX 2060 Mobile (80 Watt TDP) with 6 GBs of VRAM,

with some inference of the MERT and CLMR models being completed on an AMD

Ryzen 7 4800H CPU and a system with an NVIDIA GeForce RTX 2080Ti (250

Watt TDP) with 11 GBs of VRAM.
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3.2 Results

3.2.1 Music Auto-Tagging, MagnaTagATune

Table 3.2.1 shows the different versions of MERT that we tested outperform other

models both in terms of AUC-ROC and AUC-PR, albeit not always using the same

layer representation. Interestingly, using just the middle layer or the mean of sev-

eral middle layers of MERT seems to work better than representations taken from

the first and last layers. CLMR and OpenL3 come at a close second, with both

performing particularly well in the clean audio scenario, followed by EffNet-Discogs.

NeuralFP, VGGish-AudioSet, and MusiCNN-MSD perform the poorest in terms of

AUC-PR. Moderate differences can be observed between results of the same embed-

ding model using a separate downstream classifier, apart from the case of NeuralFP,

where the difference in AUC-ROC between the SLP (M1) and the larger 2-layer

MLP (M5) is more than 10, although the difference in AUC-PR isn’t as notable.

M5’s first and second hidden layers are double and equal to the NeuralFP embed-

ding size respectively, which, coupled with the poorer performance using a linear

classifier, might point to some information extraction difficulty. As an audio finger-

printing model, NeuralFP’s identifiability objective might not be well-aligned with

the musical aspects we first pay attention to in a track.

Looking at the deformations, we observe that most of the models only have small

performance decreases for the light noise (D1) and MP3 gain reduction deformations.

That’s not the case, however, with MusiCNN-MSD and NeuralFP, whose AUC-ROC

decreases by around 10 in the presence of light noise, with a more moderate drop for

the gain reduction scenario. The MERT models experience almost no AUC-ROC

decrease in these scenarios, particularly in the compression one. However, in the

stronger noise scenario, we observe performance decreases in both AUC-ROC and

AUC-PR ranging from around 5 to around 15 points. MERT is, again, the most

resilient, with all other models experiencing quite significant drops. An encouraging

result from this experiment is the very mild performance drops across the board in

the gain reduction scenario, with the highest observed drops being up to around 5
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points in AUC-ROC and AUC-PR for specific downstream classifiers for MusiCNN

and NeuralFP.

3.2.2 Key Estimation, Beatport EDM

Table 3.2.2 shows significantly lower scores across the board in the task of global

key estimation, although, again, a MERT version utilizing middle layers comes on

top. Key estimation could be an especially challenging task for these representa-

tions, owing to the resolution of the mel spectrogram most use, or to the pitch

invariance objectives they might have been trained with. Models utilizing a mel

spectrogram input, apart from NeuralFP, perform the worst in this task, but so

does CLMR, a waveform-based model, likely because one of the augmentations it

uses during contrastive training is pitch shifting between -5 and +5 semitones. Even

though NeuralFP is a mel-spectrogram-based model, it comes second with a large

performance difference over the rest. Just like CLMR, it is based on self-supervised

contrastive learning, but it does not train for pitch invariance.

Performance differences between the micro average and macro average weighted

score are quite significant. All models exhibit worse macro average scores, pointing

to the class imbalance of the dataset, but also to the fact that more preprocessing

and training optimizations could have a significant impact in a key estimation system

utilizing these representations. When it comes to audio deformations, there is a lot

more variance between systems. Models like VGGish-AudioSet and OpenL3 seem

almost unaffected by all deformations. Others like EffNet-Discogs, NeuralFP, and

CLMR underperform significantly during the loud noise scenario (D2) and using the

SLP classifier (M1), however, they manage to recover some performance with the

larger classifiers.

3.2.3 Instrument Recognition, TinySOL

Table 3.2.3 shows good overall performance on instrument recognition from single

note and instrument recordings for most models. VGGish-AudioSet and MusiCNN-

MSD show poor performance using the SLP, particularly when it comes to their
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macro average F1-score, but have big or moderate performance increases, respec-

tively, with the larger downstream classifiers. NeuralFP yields the lowest, by far,

performance on the linear classifier, and the sizeable performance boost larger down-

stream classifiers give it is still not enough to make it useable for instrument recog-

nition. As was the case in previous experiments, MERT performs extremely well,

but this time OpenL3, paired with the larger two-hidden-layer model, outperforms

it. In spite of the instrument class imbalances in the dataset, the differences between

micro and macro average F1-scores are a lot less striking.

Perhaps the most interesting aspect of this table is the behavior of the represen-

tations under different deformations. Unlike previous experiments, all models are

significantly affected by the quiet noise deformation, with OpenL3 and CLMR per-

formance plummeting by around 50 and 60 points respectively in some cases. All

models become unusable in the louder noise scenario, although different MERT lay-

ers exhibit different behaviors, with the middle layer managing to reach an F1-score

of around half. Milder but still noticeable drops can be seen for the compression

scenarios, and only OpenL3 and MERT manage to perform well under gain reduc-

tion. Given the instruments are discernible by humans for each of these deformation

scenarios, these deformation behaviors are worrying, particularly in how they might

affect behavior of the representation in a higher-level task.

3.2.4 Pitch Class Classification, TinySOL

Low performance can be observed in Table 3.2.4 showing results for pitch class

classification. Being such a low-level task, it was chosen to investigate if pitch

information is present and easily accessible. All models but MERT and NeuralFP

are unable to discern pitch class, at least at the resolution of a 12 equal-tempered

tone scale, a pattern similar to that of the global key detection experiment (see

Table 3.2.2). MERT is the clear winner, with near-perfect performance using the M5

classifier, and while NeuralFP struggles with the SLP, it does perform well with M5,

suggesting that pitch information is there but is possibly harder to extract. Unlike

previous experiments, the last layers of MERT are the ones performing better in this
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task. Mild to moderate performance drops are observed for MERT and NeuralFP

in the deformation scenarios.

3.2.5 Singer Identification, VocalSet

Table 3.2.5 shows the singer identification performance. Again, MERT performs

the best, with the middle layers getting close-to-perfect scores. CLMR and OpenL3

follow, although at some distance. VGGish-AudioSet, EffNet-Discogs, MusiCNN-

MSD, and NeuralFP all struggle with this task especially using the SLP, although

larger downstream models increase their performance significantly. Given the classes

for this task are relatively balanced, the macro average F1-score expectedly does not

differ much from the micro average one.

We do, however, observe another case of significant performance reduction in the

presence of deformations. Even the quiet noise scenario plummets performance

in all models and reduces the F1-score of MERT to around half, with the louder

noise scenario resulting in a near-complete inability to predict. MP3 compression

has a significant but less pronounced impact, while gain reduction equally affects all

models negatively apart from MERT and OpenL3. Coupled with the findings from

the instrument recognition experiment (see Table 3.2.3), it seems that the models’

representation of timbre-related characteristics is much more susceptible to these

deformations than chroma-related ones.

3.2.6 Vocal Technique Identification, VocalSet

Finally, table 3.2.6 contains results for another musical concept more closely related

to timbre than chroma: vocal technique. Performance is lower across the board

compared to previous tasks, although the later layers of MERT achieve the highest

micro average F1-score, and its middle layers achieve the highest macro average

F1-score. Unlike the rest of the models, results for VGGish-AudioSet and NeuralFP

have significant micro to macro average performance differences. These two models

also exhibit the highest performance difference between the M1 and M5 classifiers

of around 25 points, with MERT and MusiCNN-MSD exhibiting closer to 10 points
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difference. Significant performance drops are, again, observed in the presence of

quiet and louder noise, while compression and gain reduction only marginally affect

predictions.
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Table 4: Music Auto-Tagging results for each embedding model, downstream model,
and deformation scenario on the MagnaTagATune dataset.

AUC-ROC AUC-PR
C D1 D2 D4 C D1 D2 D4

VGGish-AudioSet

M1 83.7 77.4 61.7 81.8 31.2 24.3 11.6 29.5
M2 87.6 79.4 67.1 85.5 37.1 25.9 14.0 33.4
M3 88.1 78.0 66.7 86.2 38.0 24.6 14.5 34.4
M4 87.8 79.5 65.9 85.5 37.5 26.8 13.5 33.6
M5 88.6 78.4 67.1 86.6 39.2 25.9 13.9 35.3

EffNet-Discogs

M1 87.9 82.0 68.8 85.5 39.0 30.6 15.9 34.5
M2 88.9 82.6 67.0 86.7 41.2 31.0 14.8 37.0
M3 89.4 82.4 66.0 87.3 41.3 29.5 13.9 37.1
M4 88.8 82.1 65.1 86.5 40.8 30.5 14.5 36.5
M5 89.5 82.3 66.5 87.4 41.9 30.5 15.1 38.3

MusiCNN-MSD

M1 84.9 78.1 64.9 81.9 33.2 25.0 12.7 28.4
M2 87.0 78.0 61.2 83.6 36.1 24.3 11.5 30.6
M3 87.6 79.3 64.8 83.8 37.5 25.4 12.7 31.4
M4 86.9 79.4 59.7 83.0 36.2 25.4 11.0 30.5
M5 87.8 79.9 66.8 83.8 37.7 26.3 13.6 31.9

OpenL3

M1 89.2 87.1 78.8 89.0 40.9 36.4 25.2 40.6
M2 89.6 87.4 78.2 89.5 41.3 36.7 23.1 41.2
M3 90.4 87.8 77.8 90.2 42.3 36.6 22.3 42.0
M4 90.1 87.6 77.7 89.9 41.7 36.7 22.6 41.4
M5 90.4 87.0 75.8 90.1 42.7 36.7 21.2 42.3

NeuralFP

M1 73.0 70.2 60.9 71.8 19.6 17.7 11.5 18.2
M2 80.9 73.1 61.7 76.9 26.8 19.6 12.3 23.0
M3 83.4 73.0 58.3 78.8 29.7 19.0 11.1 24.7
M4 81.4 73.0 60.1 77.4 27.2 19.7 11.9 23.3
M5 84.5 73.6 59.7 79.7 31.5 19.9 11.5 26.0

CLMR

M1 89.1 85.3 75.6 88.7 41.7 33.8 21.3 40.9
M2 89.9 85.8 76.2 89.5 43.0 35.0 21.6 42.0
M3 89.9 86.0 76.4 89.4 42.6 34.5 21.4 41.8
M4 89.7 85.9 76.7 89.4 42.3 34.3 21.8 41.5
M5 89.8 85.9 76.4 89.4 42.5 34.5 21.4 41.7

MERT-v1-95m0:3

M1 86.9 83.3 78.0 86.7 37.5 30.7 24.3 37.2
M2 89.4 86.2 79.1 89.3 41.7 34.5 25.4 41.5
M3 90.5 86.4 77.7 90.2 43.7 34.8 23.6 43.4
M4 89.5 86.0 78.6 89.3 42.0 34.4 24.7 41.7
M5 90.6 86.1 77.0 90.3 44.2 34.8 22.1 43.7

MERT-v1-95m4:8

M1 89.3 87.0 82.4 89.3 41.2 36.1 29.9 41.1
M2 91.0 89.0 82.5 91.0 45.4 40.0 29.4 45.3
M3 91.2 89.2 82.8 91.2 45.6 40.5 28.5 45.6
M4 90.9 89.0 82.8 90.9 45.1 39.8 29.3 45.0
M5 91.3 89.2 81.7 91.3 46.1 40.6 27.5 46.0

MERT-v1-95m9:12

M1 88.1 85.5 80.8 88.0 39.0 33.6 27.3 38.8
M2 90.3 87.8 81.6 90.3 43.6 37.5 27.2 43.3
M3 90.8 87.7 80.0 90.7 44.9 38.0 24.9 44.8
M4 90.3 87.8 81.8 90.2 43.5 37.4 27.3 43.3
M5 90.7 87.6 79.7 90.6 44.2 37.6 24.7 44.1

MERT-v1-95m6

M1 89.6 87.4 82.2 89.5 41.6 36.7 29.6 41.5
M2 91.2 89.1 82.4 91.1 45.7 40.5 28.9 45.8
M3 91.4 89.4 81.6 91.3 46.3 41.0 28.1 46.2
M4 91.0 88.9 81.8 91.0 44.8 39.9 29.1 44.7
M5 91.1 89.0 81.3 91.0 44.8 40.2 27.4 44.7
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Table 5: Global Key Estimation results for each embedding model, downstream
model, and deformation scenario on the Beatport EDM dataset.

micro avg weighted score macro avg weighted score
C D1 D2 D3 D4 C D1 D2 D3 D4

VGGish-AudioSet

M1 11.6 13.3 12.6 11.6 13.1 7.1 8.2 8.3 7.4 7.7
M2 15.6 15.6 15.4 15.6 14.8 8.3 8.3 8.0 8.3 8.0
M3 14.5 14.8 16.0 14.8 14.7 8.8 7.2 8.6 9.1 8.7
M4 13.8 15.4 16.2 14.8 13.4 7.3 7.7 8.3 8.0 8.0
M5 13.6 15.6 13.2 11.8 12.3 9.3 8.5 7.3 8.3 8.3

EffNet-Discogs

M1 13.8 12.3 5.9 12.0 14.0 12.1 12.4 5.3 10.6 11.4
M2 17.2 15.5 12.5 15.0 15.9 9.4 9.0 8.3 8.3 8.8
M3 14.4 16.0 13.3 15.3 12.7 9.2 10.6 9.1 10.1 8.9
M4 14.5 14.3 9.5 10.4 17.4 9.7 10.5 7.8 8.2 10.1
M5 14.4 11.4 9.5 11.9 11.3 8.1 7.4 7.1 7.6 7.0

MusiCNN-MSD

M1 13.4 12.0 14.9 7.8 15.2 9.8 8.5 10.0 6.6 10.3
M2 13.1 13.4 12.6 13.6 9.6 8.5 9.7 8.3 8.4 6.2
M3 13.5 12.3 9.5 9.5 9.8 7.3 7.8 6.3 6.0 6.5
M4 15.5 13.8 9.0 9.1 14.5 10.1 9.6 6.6 5.3 8.8
M5 11.6 9.7 9.2 11.4 10.2 8.5 7.2 7.3 7.6 6.9

OpenL3

M1 15.6 15.6 15.6 15.6 15.6 8.3 8.3 8.3 8.3 8.3
M2 15.6 15.6 15.6 16.6 15.6 8.3 8.3 8.3 9.8 8.3
M3 13.3 15.2 12.8 14.8 13.7 6.8 7.6 7.2 7.4 6.9
M4 15.6 15.6 15.6 15.6 15.6 8.3 8.3 8.3 8.3 8.3
M5 14.5 15.2 13.5 14.8 14.5 7.3 7.6 7.6 7.4 7.3

NeuralFP

M1 32.7 29.4 15.2 37.8 30.8 24.3 22.1 8.7 31.1 24.2
M2 35.5 30.5 19.4 38.4 28.6 28.1 23.3 12.6 31.8 23.7
M3 35.5 31.4 20.2 36.7 34.8 29.1 25.3 13.3 31.2 28.3
M4 33.8 29.3 24.5 32.0 30.0 26.8 23.1 17.9 29.1 25.0
M5 33.2 33.5 20.5 35.0 28.0 26.1 27.6 15.2 28.2 27.1

CLMR

M1 15.9 15.5 9.0 15.7 14.5 10.9 7.9 8.2 10.3 9.9
M2 16.4 16.0 17.6 16.4 16.8 9.0 8.9 10.1 9.0 9.3
M3 13.9 15.9 15.4 11.3 13.1 7.8 8.1 8.6 6.4 7.8
M4 13.5 14.6 17.0 9.2 12.5 8.5 8.5 9.0 6.9 8.4
M5 14.6 17.4 13.2 21.8 11.9 11.1 11.7 12.5 15.0 9.1

MERT-v1-95m0:3

M1 52.6 45.0 37.5 41.2 53.6 46.1 36.8 31.3 37.0 46.9
M2 51.0 44.5 39.5 54.1 52.6 43.2 36.2 30.0 46.9 44.2
M3 45.1 41.3 34.6 48.6 44.5 39.1 34.4 27.9 43.6 38.7
M4 52.7 44.8 41.3 52.3 53.9 47.2 37.1 32.4 48.0 47.2
M5 50.2 41.3 31.3 49.4 51.2 46.2 36.7 26.2 49.2 48.3

MERT-v1-95m4:8

M1 53.6 55.0 49.5 44.1 54.0 46.8 47.1 42.5 36.3 46.7
M2 55.1 56.7 50.8 41.4 56.1 48.2 47.9 42.7 31.8 48.8
M3 59.3 53.4 50.2 46.6 59.6 55.1 47.6 41.2 41.8 53.7
M4 58.5 55.5 45.5 41.3 58.3 50.2 48.1 35.6 33.1 50.1
M5 54.0 55.9 50.2 45.8 54.8 47.1 51.3 42.2 37.3 48.4

MERT-v1-95m9:12

M1 52.2 52.9 43.3 46.6 51.4 45.1 46.8 36.1 39.0 44.4
M2 56.3 52.7 46.7 50.6 56.3 52.1 48.4 40.8 44.1 52.1
M3 50.7 51.0 45.0 44.8 49.6 44.3 44.7 39.5 38.5 43.3
M4 56.8 53.3 43.1 52.7 55.6 48.6 44.5 36.6 45.3 47.6
M5 57.7 50.9 38.9 53.0 55.0 52.7 44.7 31.1 45.6 50.8

MERT-v1-95m6

M1 50.1 51.1 44.5 43.9 50.1 41.6 43.4 38.4 36.3 41.6
M2 54.7 53.3 45.5 42.5 53.4 48.0 46.7 40.9 34.0 45.8
M3 52.7 46.6 37.1 41.0 52.1 46.0 38.8 31.3 31.2 45.3
M4 56.1 54.6 44.3 40.1 56.3 48.7 46.4 37.2 31.1 49.0
M5 55.2 53.7 48.4 45.7 54.5 49.3 47.4 40.3 39.8 47.7
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Table 6: Instrument recognition results for each embedding model, downstream
model, and deformation scenario on the TinySOL dataset.

micro avg F1-score macro avg F1-score
C D1 D2 D3 D4 C D1 D2 D3 D4

VGGish-AudioSet

M1 62.0 28.5 19.2 52.9 48.3 51.2 15.5 10.2 35.7 35.6
M2 77.1 24.2 12.5 61.3 63.6 68.9 16.5 8.7 49.3 54.8
M3 80.9 27.7 17.9 59.3 64.8 71.8 19.1 11.3 47.5 55.6
M4 80.4 22.7 11.2 61.9 62.9 72.8 15.6 6.7 49.8 53.5
M5 84.9 29.4 14.3 60.8 64.6 78.4 17.6 7.8 50.7 55.6

EffNet-Discogs

M1 74.4 32.3 13.7 62.4 53.1 62.8 22.8 8.0 46.9 41.3
M2 81.8 33.0 13.2 68.9 57.0 72.9 23.7 10.9 56.5 49.3
M3 80.6 36.8 14.8 67.4 52.6 71.9 28.5 12.5 54.6 43.3
M4 84.7 30.8 12.9 73.7 56.0 77.5 24.4 11.6 63.1 46.1
M5 83.7 35.6 12.4 70.6 59.8 75.4 28.1 10.8 60.3 52.0

MusiCNN-MSD

M1 60.8 45.2 19.8 57.0 44.8 52.2 33.5 10.2 46.8 34.0
M2 67.5 49.3 21.8 61.3 51.5 58.7 38.2 14.9 51.7 39.4
M3 68.2 50.5 21.5 63.2 51.7 60.8 37.9 12.0 53.8 41.3
M4 67.0 49.5 20.3 62.0 50.7 57.8 36.3 13.3 50.5 39.3
M5 70.4 52.4 23.2 64.6 54.0 60.7 38.6 13.9 53.0 42.2

OpenL3

M1 96.0 45.0 24.2 65.1 93.5 93.9 22.1 3.4 51.1 91.3
M2 95.5 46.7 27.8 67.9 92.3 93.2 24.2 5.6 59.3 89.6
M3 96.6 44.7 28.5 60.7 93.3 94.7 22.3 7.4 46.3 91.5
M4 96.9 50.5 24.7 66.3 96.0 95.2 27.3 4.1 56.7 93.8
M5 97.8 51.5 28.7 65.5 96.4 96.8 28.5 6.3 55.0 95.8

NeuralFP

M1 28.7 28.4 27.0 28.5 24.6 9.5 11.1 10.4 9.5 4.7
M2 53.6 23.9 15.5 53.4 43.3 34.4 18.6 11.5 35.1 22.5
M3 60.3 23.4 7.6 57.9 52.7 42.4 20.0 7.7 40.6 35.3
M4 56.7 25.9 12.7 55.7 46.9 40.3 21.4 10.5 39.4 26.5
M5 60.0 21.1 6.0 58.8 50.9 43.0 19.1 6.4 42.0 34.0

CLMR

M1 90.0 30.8 15.3 79.0 70.3 85.5 20.8 6.3 73.3 65.1
M2 94.0 30.4 16.3 84.0 74.2 90.5 19.9 9.8 80.8 69.7
M3 93.5 28.2 16.3 82.5 71.8 89.7 19.5 9.1 80.0 66.6
M4 94.2 35.6 14.6 84.4 73.2 90.9 25.8 8.4 80.7 68.6
M5 94.5 30.6 16.0 85.4 74.9 91.6 21.3 7.4 81.9 71.2

MERT-v1-95m0:3

M1 95.9 62.4 24.6 82.5 93.8 93.6 48.9 11.8 75.7 91.6
M2 96.6 60.3 21.8 83.0 95.9 94.5 49.9 11.0 78.2 93.9
M3 96.7 57.6 21.3 80.9 94.8 94.9 52.5 13.4 74.4 92.4
M4 96.2 65.5 24.7 84.2 95.2 94.3 53.3 11.8 78.9 92.4
M5 95.7 57.7 26.6 81.8 95.0 92.7 51.4 14.1 75.3 92.1

MERT-v1-95m4:8

M1 94.2 81.8 27.5 86.8 93.1 92.2 70.1 25.1 80.1 90.6
M2 96.4 80.1 27.7 87.8 95.9 95.3 70.0 28.0 80.4 94.8
M3 96.6 77.7 21.0 86.6 95.5 94.9 67.7 20.2 80.2 93.7
M4 96.4 80.6 29.7 89.0 95.7 94.9 70.3 31.7 82.3 94.1
M5 96.2 81.3 39.5 89.5 96.2 95.0 73.5 37.6 85.0 95.0

MERT-v1-95m9:12

M1 91.9 67.7 17.5 83.3 91.8 88.5 59.7 12.4 73.4 88.6
M2 95.7 69.8 15.6 84.4 94.3 93.8 63.4 13.4 75.2 92.6
M3 97.1 69.4 13.7 86.9 95.9 95.8 63.8 10.3 81.7 94.3
M4 95.2 67.9 15.5 82.6 93.8 93.1 63.0 13.8 71.9 91.9
M5 96.2 67.9 14.8 86.4 94.7 94.4 62.5 13.0 78.8 93.1

MERT-v1-95m6

M1 94.3 80.6 46.6 88.3 93.6 91.9 70.0 39.1 82.3 91.1
M2 96.0 81.4 51.0 88.7 95.0 94.7 71.4 44.8 82.6 93.8
M3 96.2 80.6 51.5 90.2 95.9 95.1 71.3 46.4 84.4 94.3
M4 96.7 81.4 45.0 90.0 95.7 95.2 72.8 39.6 84.5 94.1
M5 95.9 82.1 47.3 89.7 94.7 93.7 72.9 45.1 83.9 92.4
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Table 7: Pitch Class classification results for each embedding model, downstream
model, and deformation scenario on the TinySOL dataset.

micro avg F1-score macro avg F1-score
C D1 D2 D3 D4 C D1 D2 D3 D4

VGGish-AudioSet

M1 6.5 9.5 8.9 6.5 5.8 4.8 4.7 3.3 4.2 4.7
M2 8.2 7.6 9.6 8.6 7.9 5.5 5.0 5.3 4.7 4.3
M3 10.3 8.4 7.7 8.9 8.8 5.8 3.4 2.8 5.3 4.2
M4 7.6 5.8 8.2 9.1 8.9 5.1 2.8 3.0 5.2 5.7
M5 12.2 6.9 8.1 10.3 12.7 10.2 2.9 3.1 8.4 10.1

EffNet-Discogs

M1 18.6 14.6 11.9 17.2 16.7 17.9 10.7 4.6 15.6 15.3
M2 23.0 14.8 11.9 18.6 18.4 22.5 10.6 4.4 17.0 16.9
M3 19.6 13.1 10.5 16.0 16.7 18.5 9.6 4.1 13.7 14.8
M4 22.5 14.8 11.9 19.1 19.8 21.9 10.4 5.5 17.5 19.0
M5 25.3 15.5 12.9 20.8 20.8 24.4 11.5 8.2 19.1 20.6

MusiCNN-MSD

M1 8.1 8.6 9.6 7.9 7.0 7.7 7.2 4.3 7.2 5.9
M2 14.9 13.9 9.1 13.7 11.5 13.7 11.9 5.4 12.5 10.3

M M3 17.2 14.4 8.4 17.0 15.5 15.7 12.9 4.3 15.7 13.8
M4 16.2 16.2 11.0 16.3 12.4 15.9 14.1 6.4 15.7 11.7
M5 19.6 15.1 9.5 19.1 15.8 18.9 14.7 5.8 18.4 15.2

OpenL3

M1 13.1 8.9 6.5 12.0 13.2 13.0 5.8 2.2 8.4 13.3
M2 10.7 14.8 10.5 11.9 10.5 9.1 10.4 3.1 10.6 8.6
M3 12.5 8.2 9.1 8.2 11.9 11.0 2.6 2.7 5.9 10.0
M4 23.0 12.9 9.8 14.4 22.0 20.5 8.1 3.0 11.8 19.1
M5 24.1 19.8 12.2 19.1 24.1 18.8 14.2 5.6 15.1 19.5

NeuralFP

M1 49.0 48.3 45.0 48.3 35.9 50.4 49.0 44.9 49.6 35.6
M2 70.3 68.9 58.8 69.4 60.1 71.6 70.2 60.3 70.8 62.9
M3 76.8 73.0 60.3 76.1 66.0 77.7 73.8 62.4 77.0 67.8
M4 74.6 71.0 60.3 72.9 64.1 75.6 72.2 61.7 74.1 66.6
M5 80.2 76.5 63.1 79.6 74.4 80.6 78.0 64.5 80.1 74.9

CLMR

M1 8.9 6.2 7.6 9.3 11.0 8.2 2.0 2.5 8.3 10.0
M2 10.3 9.1 8.1 10.1 10.1 9.6 5.5 3.8 8.1 8.7
M3 16.8 9.1 7.9 16.3 14.4 16.2 6.2 3.6 15.7 13.7
M4 15.3 8.9 7.6 15.1 16.2 15.0 5.9 3.6 14.4 15.6
M5 23.7 8.2 7.7 20.4 20.6 23.5 5.0 4.7 19.6 20.7

MERT-v1-95m0:3

M1 77.7 77.0 68.6 78.5 78.4 77.9 77.6 69.5 78.8 78.7
M2 86.6 84.0 75.1 85.9 86.1 86.7 84.9 75.6 85.8 86.3
M3 90.5 86.1 77.8 90.0 89.7 90.5 86.7 78.1 89.9 89.7
M4 88.5 81.8 73.2 88.8 88.3 88.5 82.9 73.4 88.6 88.3
M5 91.9 79.9 66.2 91.8 90.4 91.9 81.6 67.9 91.7 90.4

MERT-v1-95m4:8

M1 85.4 82.6 77.8 84.9 84.0 85.5 83.1 79.6 84.9 84.0
M2 93.6 90.5 83.8 92.8 93.6 93.6 90.6 84.2 92.7 93.6
M3 94.7 93.5 87.5 94.8 94.8 94.6 93.6 87.8 94.8 94.8
M4 94.0 91.6 86.4 94.0 94.3 93.9 91.6 86.4 93.9 94.2
M5 95.4 91.4 83.5 96.4 95.0 95.3 91.3 82.7 96.3 94.9

MERT-v1-95m9:12

M1 93.3 92.4 90.5 93.3 93.1 93.3 92.5 90.8 93.3 93.2
M2 97.8 97.6 97.3 98.3 97.4 97.8 97.6 97.3 98.3 97.4
M3 98.3 98.1 96.6 98.1 97.9 98.3 98.1 96.5 98.1 97.9
M4 97.9 98.3 96.4 98.5 98.1 98.0 98.3 96.5 98.4 98.1
M5 98.5 97.9 96.6 98.5 97.9 98.4 98.0 96.7 98.4 97.9

MERT-v1-95m6

M1 83.7 79.7 72.5 83.5 83.7 83.9 80.1 74.3 83.5 83.7
M2 93.3 90.0 82.0 93.3 93.1 93.2 90.1 82.2 93.2 93.1
M3 95.4 91.4 83.2 94.8 95.2 95.4 91.5 83.7 94.8 95.2
M4 94.7 91.2 83.2 94.3 93.6 94.6 91.3 83.4 94.3 93.6
M5 95.0 92.3 80.8 94.7 94.3 95.0 92.4 81.3 94.6 94.3
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Table 8: Singer Identification results for each embedding model, downstream model,
and deformation scenario on the VocalSet dataset.

micro avg F1-score macro avg F1-score
C D1 D2 D3 D4 C D1 D2 D3 D4

VGGish-AudioSet

M1 47.9 14.4 10.8 21.1 34.1 45.7 10.2 3.2 15.2 29.2
M2 70.1 7.8 10.2 18.6 36.8 70.5 5.1 4.2 15.1 34.3
M3 68.4 7.5 9.7 22.2 36.8 68.5 4.5 3.7 20.0 36.4
M4 71.2 8.0 12.2 21.3 40.2 71.6 5.3 4.6 19.0 39.1
M5 77.0 7.2 13.6 21.9 33.2 77.0 5.0 5.2 21.2 32.1

EffNet-Discogs

M1 68.1 17.5 10.0 46.8 35.7 67.8 15.0 6.0 42.9 36.8
M2 71.7 16.6 10.8 46.8 32.1 70.8 12.8 5.0 42.3 31.1
M3 73.4 13.3 7.2 46.8 31.9 72.7 9.4 2.3 42.3 31.6
M4 75.3 15.5 7.8 49.9 32.4 74.5 14.1 3.4 45.1 31.8
M5 76.7 12.7 6.6 48.5 37.1 76.0 9.4 1.8 44.8 35.5

MusiCNN-MSD

M1 45.7 20.2 9.1 42.7 17.7 43.1 17.8 5.4 39.3 14.2
M2 54.6 23.3 5.5 48.8 23.0 52.2 22.9 2.4 46.0 17.8
M3 58.2 22.7 6.6 51.8 23.8 56.8 19.8 3.3 49.2 22.2
M4 57.3 22.2 7.5 49.9 19.9 56.5 21.2 2.3 47.4 18.3
M5 64.8 28.3 6.1 54.8 25.2 63.6 24.8 1.8 52.7 21.6

OpenL3

M1 84.8 16.3 9.1 44.3 82.0 85.1 10.7 4.2 35.7 82.2
M2 80.3 16.3 6.9 43.2 77.6 80.8 11.3 2.7 36.4 77.2
M3 84.8 12.5 5.5 37.1 81.4 85.0 6.2 1.4 35.1 81.1
M4 90.0 15.0 5.8 35.7 84.5 89.9 10.4 1.8 34.3 84.2
M5 89.8 15.0 6.6 31.9 89.5 89.8 9.9 3.3 28.6 89.2

NeuralFP

M1 38.8 36.3 17.7 38.0 25.8 33.0 29.0 12.1 32.4 17.5
M2 59.0 38.5 9.4 57.1 39.1 57.1 37.1 4.4 55.4 37.7
M3 62.9 25.8 6.6 61.8 43.5 61.9 24.5 2.0 60.3 42.8
M4 62.3 36.6 7.8 60.4 41.0 61.0 34.4 3.7 58.4 39.2
M5 69.8 22.4 5.8 66.5 50.7 68.3 21.1 1.5 64.3 48.1

CLMR

M1 79.8 13.3 5.8 40.4 48.5 79.5 10.1 2.6 30.5 43.4
M2 85.3 13.6 6.4 41.0 48.8 85.0 9.6 2.2 33.7 44.2
M3 82.8 16.6 7.2 44.6 42.4 82.6 11.9 3.5 38.2 38.5
M4 83.7 14.1 6.4 43.2 49.0 83.4 10.4 2.6 36.0 45.0
M5 86.1 15.8 5.5 45.7 47.4 86.1 13.1 1.8 38.7 43.8

MERT-v1-95m0:3

M1 92.2 32.7 5.0 64.5 92.8 92.5 22.9 0.5 62.9 93.2
M2 94.7 31.0 6.1 64.3 93.9 95.0 20.0 1.9 61.0 94.0
M3 94.5 26.0 8.6 63.2 94.2 94.7 16.1 2.3 59.3 94.5
M4 94.2 28.0 6.6 64.0 93.6 94.5 19.2 2.2 60.5 93.9
M5 91.4 23.8 6.1 59.3 92.2 91.6 14.9 1.9 55.6 92.4

MERT-v1-95m4:8

M1 92.8 49.0 16.6 73.1 92.5 92.7 46.2 13.2 71.0 92.4
M2 95.6 39.3 8.3 76.2 95.3 95.4 37.4 2.6 74.5 95.2
M3 95.0 40.2 10.2 70.9 95.3 94.8 37.3 5.7 68.6 95.2
M4 97.0 43.2 8.0 72.0 96.7 96.9 41.1 3.5 71.3 96.8
M5 95.0 41.6 14.4 69.5 94.7 94.7 36.9 10.1 68.9 94.4

MERT-v1-95m9:12

M1 93.6 52.6 19.9 77.0 93.6 93.8 51.7 15.2 77.1 93.7
M2 96.7 50.4 19.7 73.7 96.4 96.5 48.4 14.7 72.8 96.4
M3 96.4 46.5 18.8 71.2 95.8 96.4 44.4 12.2 70.0 95.8
M4 95.6 49.6 20.2 72.9 95.3 95.8 47.4 15.2 71.5 95.4
M5 95.3 42.7 14.1 68.7 95.0 95.2 41.4 9.9 68.0 95.1

MERT-v1-95m6

M1 94.2 46.5 12.2 75.1 94.5 94.1 45.4 9.6 73.7 94.3
M2 96.1 40.7 8.6 70.9 95.8 96.0 39.1 2.3 70.8 95.7
M3 95.3 38.8 6.4 72.0 94.2 95.1 37.1 2.7 71.4 93.9
M4 94.5 39.3 10.0 77.0 94.2 94.2 37.5 3.6 75.6 93.8
M5 94.5 36.3 9.1 72.0 94.2 94.0 32.7 2.3 71.2 93.7
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Table 9: Vocal Technique Identification results for each embedding model, down-
stream model, and deformation scenario on the VocalSet dataset.

micro avg F1-score macro avg F1-score
C D1 D2 D3 D4 C D1 D2 D3 D4

VGGish-AudioSet

M1 42.6 18.5 17.6 36.4 37.2 24.8 4.5 3.4 17.7 19.3
M2 62.5 17.3 15.6 50.0 56.8 53.0 7.7 4.0 35.3 40.0
M3 62.8 22.4 12.8 49.4 51.7 53.6 14.1 7.4 33.3 37.3
M4 64.2 22.2 14.5 49.4 56.5 55.5 11.4 7.1 35.7 41.1
M5 70.2 19.9 16.8 47.2 54.8 66.9 9.5 4.5 35.6 45.5

EffNet-Discogs

M1 63.9 26.7 18.2 58.8 56.0 61.6 19.1 4.4 55.9 53.8
M2 69.0 29.8 19.0 53.1 63.1 69.9 23.6 5.5 52.8 63.8
M3 69.9 30.1 20.2 52.0 64.5 70.7 25.9 6.5 54.0 63.5
M4 67.9 31.3 19.6 52.8 59.9 69.5 23.9 6.2 52.7 58.9
M5 69.0 29.3 20.2 50.3 63.4 69.7 24.3 6.8 49.5 63.1

MusiCNN-MSD

M1 62.5 49.4 29.8 62.5 46.9 55.1 40.1 15.5 54.9 44.9
M2 68.5 36.4 21.9 68.2 50.3 63.9 31.8 9.0 63.8 49.4
M3 66.8 31.8 25.6 65.1 51.7 64.3 32.3 15.4 63.1 53.2
M4 71.3 31.5 24.7 68.8 51.7 69.2 29.9 10.4 67.1 50.7
M5 71.3 33.2 23.0 71.3 53.7 67.5 33.3 14.6 68.3 52.2

OpenL3

M1 61.6 37.5 24.7 49.7 61.9 60.9 35.0 14.1 43.5 61.7
M2 63.9 32.1 21.9 48.6 64.2 64.6 30.2 13.4 40.8 63.9
M3 67.9 30.1 23.9 44.3 68.2 64.0 23.9 14.6 34.4 64.2
M4 65.6 31.8 24.4 46.6 64.5 63.2 20.5 16.0 39.2 57.3
M5 69.3 34.7 27.3 41.8 71.0 63.2 21.7 17.2 31.9 64.6

NeuralFP

M1 31.3 27.3 17.3 31.3 29.8 12.0 9.1 3.3 11.9 11.6
M2 51.1 35.2 17.9 50.6 34.1 35.2 22.5 3.6 34.7 22.1
M3 55.7 30.7 17.6 53.7 36.6 41.6 18.3 3.3 38.8 29.3
M4 50.9 32.7 17.6 50.6 34.4 34.8 20.7 3.3 34.6 22.4
M5 53.7 31.0 17.6 52.8 35.8 40.2 18.8 3.3 39.2 28.7

CLMR

M1 67.9 35.2 21.6 56.3 64.5 68.7 24.9 11.6 49.8 64.6
M2 73.6 36.1 23.6 59.4 71.9 75.6 25.6 17.7 59.8 72.6
M3 75.0 35.2 24.1 57.1 70.7 76.6 26.2 16.6 56.9 70.1
M4 73.3 35.5 23.0 58.0 69.6 76.0 26.3 16.6 55.8 70.4
M5 75.0 34.4 22.7 57.4 70.7 76.7 24.7 16.2 55.3 72.5

MERT-v1-95m0:3

M1 60.8 24.4 12.5 57.1 61.1 54.4 15.8 4.2 46.6 54.6
M2 68.8 18.8 12.5 50.0 69.0 71.1 7.2 3.9 42.7 73.3
M3 71.6 19.9 12.5 51.7 71.3 76.0 8.1 3.8 47.3 75.7
M4 68.5 17.6 13.1 50.3 68.8 73.1 7.3 5.0 42.1 73.1
M5 71.0 20.2 11.6 49.4 70.7 72.6 7.9 2.3 42.6 71.9

MERT-v1-95m4:8

M1 68.8 43.5 29.8 65.3 68.8 63.2 32.8 20.7 60.5 63.2
M2 76.4 44.0 29.0 70.7 76.7 79.4 37.3 22.5 71.4 79.7
M3 78.1 44.9 24.1 69.9 77.8 83.1 34.9 18.9 70.5 82.9
M4 76.5 44.2 27.1 70.7 76.6 81.1 38.1 22.3 71.5 82.0
M5 78.0 45.1 28.9 70.9 78.0 83.2 35.6 18.9 70.7 83.2

MERT-v1-95m9:12

M1 68.5 45.7 22.7 68.5 69.0 62.7 34.1 10.8 61.9 63.5
M2 80.1 49.4 23.6 72.4 80.7 83.1 41.0 11.6 75.7 83.4
M3 79.0 48.6 27.0 69.3 78.4 81.2 43.6 19.0 72.4 80.7
M4 80.1 48.6 23.3 75.9 80.1 82.6 41.0 11.0 79.9 82.6
M5 80.4 52.0 23.9 69.3 80.7 82.9 45.8 13.4 72.0 83.1

MERT-v1-95m6

M1 69.9 45.7 27.8 65.1 69.9 73.3 34.9 19.5 62.9 73.3
M2 79.8 47.4 24.4 73.9 79.3 82.8 45.1 19.5 76.2 82.3
M3 77.0 46.3 20.7 69.9 77.6 80.4 38.3 15.8 71.5 80.8
M4 77.0 46.6 24.7 73.0 76.7 80.7 42.4 19.7 74.2 80.6
M5 78.1 48.6 23.9 71.6 78.1 81.4 42.3 16.6 74.5 81.4
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Conclusions

4.1 Discussion

The results of the experiments that were conducted show that design factors of

the representation learning pipeline aside from the deep representation itself can

contribute substantially to the overall performance and suitability of a representation

learning system. These systems are not necessarily as robust to audio perturbations

as we might need them to be; in some cases, mild noise in the audio was able

to nullify the prediction capability of systems that were otherwise performing well

with clean audio (see Tables 3.2.3, 3.2.5, 3.2.6). Additionally, significant differences

in performance across different downstream models were sometimes observed for

the same representation. A particularly frequent case of this was with embeddings

that were performing poorly with the linear SLP classifier but performing well with

the 2-layer MLP classifiers, potentially hinting that the information needed for the

task was not linearly separable in the embedding (see Tables 3.2.5, 3.2.6). Another

interesting insight was the inability of most models to detect the pitch class in a

single-note recording (see Table 3.2.4), probably hinting at limitations of their input

representation or training paradigm.

More generally, this evaluation shows that there are still multiple components of the

representation learning pipeline that we need to investigate and understand better,

49



50 Chapter 4. Conclusions

including the representations themselves. As the interest in universal audio represen-

tations grows, it’s more relevant than ever before to understand and evaluate deep

representations more holistically. This thesis project attempted to make a step in

that direction through the development of an open-source toolkit for representation

learning evaluation, and the release of a reproducible set of experiments utilizing

deep representations.

4.2 Future work

As mentioned previously, the toolkit presented is aimed to be a living, open-source,

collaborative project. Out of the list of features that we will look into implementing

in the next months, a few related to the accompanying analysis tools feel like the

most crucial. The interactive table utility mentioned in Sec. 2.1 as an extension

to the existing autotable tool will likely become more of an indispensable require-

ment rather than just a discretionary feature as the evaluation experiments become

more extensive. At the same, our usage of this toolkit as an aid for representation

development is likely to increase. In this context, the interactive confusion matrix

would offer substantial assistance, and so would the implementation of handcrafted

features as baselines for comparison.

That said, given that the toolkit is now in a working and useful state, our focus

will be on discussing with the community how software like this can help us think

beyond benchmarks. Accordingly, we want to discuss how the toolkit can be helpful

to others, what are other potential use cases, how we can improve the design, what

we’ve gotten wrong so far, and what features we are missing.
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Appendix A

Experiment Configuration File

The configuration file in YAML format [93] for the replication of this thesis project’s

evaluation experiments is present below. As future versions of the toolkit might

contain breaking changes, it is recommended to use the original release version and

the stated versions of the toolkit’s dependencies. For the evaluation experiments of

this thesis, we decided to use the same deformation scenarios, embedding models,

and downstream models for each task and dataset. Therefore, for brevity, those

three components will be presented in separate code blocks, and a reference to them

will be made from the main code block of the configuration file.

1 # CONFIGURATION.yml

2 experiments:

3 - task:

4 name: autotagging

5 type: multilabel_classification

6 embedding_aggregation: mean

7 datasets:

8 - name: magnatagatune

9 type: custom

10 dir: data/magnatagatune/

11 split_type: single

12 deformations:

64
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13 DEFORMATIONS

14 embedding_models:

15 EMBEDDING_MODELS

16 downstream_models:

17 DOWNSTREAM_MODELS

18 - task:

19 name: key_estimation

20 type: multiclass_classification

21 embedding_aggregation: mean

22 datasets:

23 - name: beatport_key

24 type: mirdata

25 dir: data/beatport_key/

26 split_type: single

27 deformations:

28 DEFORMATIONS

29 embedding_models:

30 EMBEDDING_MODELS

31 downstream_models:

32 DOWNSTREAM_MODELS

33 - task:

34 name: instrument_classification

35 type: multiclass_classification

36 embedding_aggregation: mean

37 datasets:

38 - name: tinysol

39 type: mirdata

40 dir: data/tinysol/

41 split_type: single

42 deformations:

43 DEFORMATIONS

44 embedding_models:

45 EMBEDDING_MODELS
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46 downstream_models:

47 DOWNSTREAM_MODELS

48 - task:

49 name: pitch_class_classification

50 type: multiclass_classification

51 embedding_aggregation: mean

52 datasets:

53 - name: tinysol

54 type: mirdata

55 dir: data/tinysol/

56 split_type: single

57 deformations:

58 DEFORMATIONS

59 embedding_models:

60 EMBEDDING_MODELS

61 downstream_models:

62 DOWNSTREAM_MODELS

63 - task:

64 name: singer_identification

65 type: multiclass_classification

66 embedding_aggregation: mean

67 datasets:

68 - name: vocalset

69 type: custom

70 dir: data/vocalset/

71 split_type: single

72 deformations:

73 DEFORMATIONS

74 embedding_models:

75 EMBEDDING_MODELS

76 downstream_models:

77 DOWNSTREAM_MODELS

78 - task:



67

79 name: technique_identification

80 type: multiclass_classification

81 embedding_aggregation: mean

82 datasets:

83 - name: vocalset

84 type: custom

85 dir: data/vocalset/

86 split_type: single

87 deformations:

88 DEFORMATIONS

89 embedding_models:

90 EMBEDDING_MODELS

91 downstream_models:

92 DOWNSTREAM_MODELS

1 # DEFORMATIONS.yml

2 - - type: AddGaussianSNR

3 params:

4 min_snr_in_db: 15

5 max_snr_in_db: 15

6 p: 1

7 - - type: AddGaussianSNR

8 params:

9 min_snr_in_db: 0

10 max_snr_in_db: 0

11 p: 1

12 - - type: Mp3Compression

13 params:

14 min_bitrate: 32

15 max_bitrate: 32

16 p: 1

17 - - type: Gain
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18 params:

19 min_gain_in_db: -12

20 max_gain_in_db: -12

21 p: 1

1 # EMBEDDING_MODELS.yml

2 - vggish -audioset

3 - effnet -discogs

4 - msd -musicnn

5 - openl3

6 - neuralfp

7 - clmr -v2

8 - mert -v1 -95m-0-1-2-3

9 - mert -v1 -95m-4-5-6-7-8

10 - mert -v1 -95m-9-10-11-12

11 - mert -v1 -95m-6

1 # DOWNSTREAM_MODELS.yml

2 - type: classifier

3 emb_dim_reduction: False

4 emb_shape: infer

5 hidden_units: []

6 # depending on task

7 output_activation: softmax / sigmoid

8 weight_decay: 1.0e-5

9 optimizer: adam

10 learning_rate: 1.0e-3

11 batch_size: 100

12 epochs: 100

13 patience: 10

14 train_sampling: random

15 # depending on task
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16 save_criterion: val_categorical_accuracy / val_auc

17 - type: classifier

18 emb_dim_reduction: False

19 emb_shape: infer

20 hidden_units: [infer]

21 # depending on task

22 output_activation: softmax / sigmoid

23 weight_decay: 1.0e-5

24 optimizer: adam

25 learning_rate: 1.0e-3

26 batch_size: 100

27 epochs: 100

28 patience: 10

29 train_sampling: random

30 # depending on task

31 save_criterion: val_categorical_accuracy / val_auc

32 - type: classifier

33 emb_dim_reduction: False

34 emb_shape: infer

35 hidden_units: [infer , infer

36 # depending on task

37 output_activation: softmax / sigmoid

38 weight_decay: 1.0e-5

39 optimizer: adam

40 learning_rate: 1.0e-3

41 batch_size: 100

42 epochs: 100

43 patience: 10

44 train_sampling: random

45 # depending on task

46 save_criterion: val_categorical_accuracy / val_auc

47 - type: classifier

48 emb_dim_reduction: False



70 Appendix A. Experiment Configuration File

49 emb_shape: infer

50 hidden_units: [128

51 # depending on task

52 output_activation: softmax / sigmoid

53 weight_decay: 1.0e-5

54 optimizer: adam

55 learning_rate: 1.0e-3

56 batch_size: 277

57 epochs: 100

58 patience: 10

59 train_sampling: random

60 # depending on task

61 save_criterion: val_categorical_accuracy / val_auc

62 - type: classifier

63 emb_dim_reduction: False

64 emb_shape: infer

65 hidden_units: [256, 128]

66 # depending on task

67 output_activation: softmax / sigmoid

68 weight_decay: 1.0e-5

69 optimizer: adam

70 learning_rate: 1.0e-3

71 batch_size: 100

72 epochs: 100

73 patience: 10

74 train_sampling: random

75 # depending on task

76 save_criterion: val_categorical_accuracy / val_auc
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