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1 Executive summary 

Current West-Life portals use different architectures for backend management (grid, cloud, job 

dispatch and submission…). In order to increase sustainability and interoperability of those 

portals, one of West-Life core objectives is to standardize the backend. 

The expected benefits are: 

1. Greater maintainability (same technology used everywhere) 

2. Greater interoperability 

3. Greater interactions with EGI infrastructure, EUDAT services 

One of the difficulties is that West-Life portals have different requirements in terms of file sizes, 

compute time etc. Neither grid nor cloud computing alone meets the needs of this Many-Task 

Computing. This document identifies common features in the portal architectures, and it defines 

principal functional requirements on the components of the common architecture. 

 Additionally, various candidate technologies are available, and each of them comes with 

different underlying trade-offs. The main objective of this deliverable is to expose those trade-

offs and make the right choice, given the constraints extracted from West-Life portals 

requirements. The chosen solutions will be deployed on the project testbed, and existing portals 

will be migrated gradually. 

  



6 | 39 

 

 

West-Life Deliverable D4.1 

2 Project objectives 

With this deliverable, the project has reached or the deliverable has contributed to the following 

objectives: 

No. Objective Yes No 

1 Provide analysis solutions for the different Structural Biology 

approaches 

 X 

2 Provide automated pipelines to handle multi-technique datasets 

in an integrative manner 

 X 

3 Provide integrated data management for single and multi-

technique projects, based on existing e-infrastructure 

X  

4 Foster best practices, collaboration and training of end users  X 
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3 Current Status and Goals 

This document is a report on activities done towards achieving the work package objective 

“O4.2: Define, implement, and deploy consolidated architecture for job submission and data 

access.” Specifically, the designed architecture aims at the following goals: 

1. There is a uniform "West-Life" recipe to deploy portal on the cloud + grid infrastructure. 

2. Multiple instances of the same portal may coexist (for better load balancing, isolation of 

user groups, ...), and their deployment is straightforward. 

3. The approach is homogeneous for different portals. 

4. Maintenance, including migration due to e.g. hardware of software upgrade becomes 

easier. 

A survey was carried out with West-Life portals to gather requirements and infer constraints. 

Based on portal operators’ answers [1], we could draw a common architecture target defined in 

detail in Sect. 4. Several high-level conclusions were drawn from the surveys: 

1. All portal operators can be mapped to the target architecture without too much effort 

2. Local resources and grid/cloud do not tackle the same job scales and should be treated 

separately 

3. It is probably “overkill” to try to standardize local resources management since they are 

heavily dependent on each portal workflow. This deliverable should thus focus on 

grid/cloud dispatcher. 

4. The target architecture must enable cloud bursts without abandoning the grid legacy that 

has worked well so far. 

The survey is complemented with a set of use cases, described in detail, with discussion of the 

applicability of the common architecture in Appendix A. Available technical solutions were 

reviewed thoroughly as recorded in Appendix B. 
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4 Target Architecture 

Despite the existing portal solutions being run by the project partners use rather different 

technology, there is a common design pattern captured in the diagram bellow: 

 

All the inputs required for the application run are gathered from the user via a WWW front end 

interface. The request is processed as a workflow of varying complexity (it may consist of quite 

many distinct steps). Typically, there is a preprocessing stage, which may require moderate 

computing resources but it does not take long time, therefore it is not feasible to send the 

computation to remote resources; local computer clusters are used instead. The main payload 

of the request, once its inputs are ready from the preprocessing stage, is delegated to the 

remote computing resources. The standard way uses grid interfaces (most of resources are 

available in this way nowadays), however, there have been successful pilots to use cloud IaaS 

as well. 

The work of West-Life aims at general consolidation of the heterogeneous implementations of 

the multiple application portals. This is going to be done at two levels: 
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 Portal virtualization: each portal will be described as a set of mutually interacting nodes 

(e.g. the web front end, auxiliary database server, local batch system server and several 

local worker nodes) that can be, as a whole, deployed in the cloud environment in 

multiple instances (for different purposes, e.g. isolate user groups, run multiple versions 

simultaneously, balance load etc.). 

 Common access to resources: the project will choose technical means and it will define 

recipes to use remote computing resources (both grid and cloud) in a uniform way. 

The existing portals will be migrated gradually to this target architecture at both levels. 

4.1 Virtual Cluster Management 

The first requirement to achieve the portal virtualization is a standardized description of the 

virtual portal, i.e. listing the nodes (virtual machines) forming the portal, defining their mutual 

dependencies, means of deployment (e.g. VM images, contextualization recipes etc.). The 

emerging industry standard in this field is TOSCA [2]. (which is used by all the candidate 

implementations described in Sect. 6). 

Further, the implementation of this component (commonly referred to as cloud orchestrator) is 

expected to parse the virtual cluster description, to deploy it on the configured IaaS cloud 

infrastructure, and to manage its life-cycle. In particular, failures of the nodes should be handled 

transparently in most cases, and the framework should provide elasticity (e.g. when a batch 

system reports a long queue, new worker nodes should be spawned). The operation must be 

complemented with appropriate monitoring, which generates alerts to the portal maintainers if a 

human action is required (e.g. a failure which is unsafe to recover automatically). 

4.2 Templating System and Software Deployment 

This section is about the technology West-Life shall use to manage computing nodes 

configuration, and dynamically configure them at run time for the case which are not relying on 

the classical grid resources provided by EGI. 

We want to pool partners’ resources so this means each node needs to be used for several 

different jobs. We thus need a configuration templating system (like Puppet, Ansible, or an 

alternative), each node must be reconfigured dynamically each time a job starts, to ease 

maintenance and configurations management. We can use VM Images (ex: Gromacs VM 

Image), or Docker Images (that would run in a generic Docker VM image, or bare metal grid 

resources, in some cases even if Docker engine is not installed on the node). Docker containers 

are more lightweight and easier to use. Moreover, it doesn’t take much to set up Docker on a 
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laptop and prototype with containers, so developers can easily get started. Making VM images 

is much more complicated. 

Many cloud-enabled job dispatcher solutions exist, and even more if we include Docker 

technology in our analysis. In order to find the right technology for West-Life portals, we 

performed analysis on several dimensions which are described below: 

A) Compatibility with existing grid systems 

The path of least resistance would be to use classic bare-metal node configuration 

systems such as Puppet, Chef or Ansible. Some of those systems are able to scale to 

thousands of nodes, but with quickly increasing complexity. Moreover, some of those 

tools are difficult to learn. 

VM Images are a good solution too, but require a cloud framework, or at the very least 

hypervisor, this would require modifying the existing grids, which are bare-metal. 

However, VM images are simpler to understand: you configure a VM and make a frozen 

image. 

Docker containers are a kind of in-between: you can use containers instead of VM, and 

a container is basically a “frozen” configuration, just like a VM image. BUT containers 

frameworks are easy to install on a bare metal grid, much easier than cloud/virtualization 

frameworks. 

B) Compatibility with cloud bursts 

For cloud bursts, one of the key requirements is to be able to spin up new nodes quickly. 

From that point of view, VM images and Docker containers are a good fit since they can 

start up quickly. On the opposite side, if the required software for a compute job is long 

to install, bare-metal tools will be long to run since they will run the install each time, 

unless CVMFS is used. 

C) No lock-in with non-desirable dispatchers 

Bare-metal tools and VM images come with few string attached from the dispatcher point 

of view. For Docker containers however, you have to use existing Docker framework 

dispatchers (Mesos, Kubernetes etc). 

4.3 Job dispatcher 

The principal role of job dispatcher is taking the heavy payload of the job from the workflow logic 

of a specific portal application, finding suitable remote computing resource to execute the 

payload, to submit the job to those resource (using the portal robot credentials typically), and to 

“babysit” the job execution, i.e. to react to monitoring events like job failure or timeout (resubmit 

eventually) or successful completion. 
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The ideal job dispatcher should be able to submit job to both grid and cloud infrastructure. The 

grid infrastructure has to be supported because much more powerful computing resources are 

still available in grids than in EGI Federated Cloud infrastructure [3]. On the other hand, cloud 

offers flexibility, which might be required in several of our use cases.  

Another important criteria is coupling with templating system: we need a dispatcher which works 

with a templating system we accept to work with. 

4.4 Remote VM Pool Management 

Virtual machines enable easy setup of software with complex requirements on any site, making 

them attractive to run the portal payload in a flexible way. However, unlike the grid case, when 

the pool of resources is more or less static, submission to cloud requires a service which 

maintains pool(s) of VMs running, configured with particular software, and ready to accept jobs. 

The component responsible is commonly referred to as infrastructure manager (IM). 

In collaboration with DIRAC developers, in particular Victor Mendez, a VM mounting the 

software partition of the enmr.eu VO via CVMFS has been successfully tested. It is 

automatically launched by the DIRAC machinery on EGI Federated Cloud sites supporting the 

enmr.eu VO, hence using DIRAC to take the IM role. So far molecular dynamics simulations 

with Gromacs have been successfully submitted via DIRAC to those cloud VMs. The jobs were 

run in VMs with up to 8 processors per node. The DIRAC brokering system has been configured 

to send jobs to these EGI Federated Cloud VMs if the submitted job (JDL) contains a tag for 

multiprocessor, e.g. Tags = {"4Processors"}. Jobs not containing this tag (e.g. the ones 

submitted to DIRAC by the HADDOCK portals) will be directed to standard grid resources. 

4.5   Data Storage and Transfer 

Data storage provided by scientific as well as commercial vendors can be integrated in different 

levels.  

 File system integration: Online, files transparently transferred via e.g. WEBDAV protocol.  

 File system integration: Online/Offline, heavy caching mechanism e.g. CernVM-FS. 

 File system integration: Offline, synchronization on background when online, files 

accessible when offline via OwnCloud client or Dropbox client or similar. 

 Programming API level integration: Amazon S3, Google Drive, Dropbox, EUDAT allows 

API (REST based on HTTP)  to access the files and it’s metadata. This introduces 

integration (programming) effort to implement with the existing tools.  
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Current WP6 prototype [4] shows File System online integration via WEBDAV protocol and 

offline using Owncloud client to be manageable. The offline solution needs additional space in 

the local instance of WP6 dedicated to user, thus an intelligent policy is needed on which data 

to integrate with online and which also in offline. The strategy might be introduced to user and 

some default clever can be achieved by a dedicated directory. The aggregated view to the 

mounted storages are additionally available via an instance’s WEBDAV endpoint which can be 

mounted into user’s file system. WP5 prototype integrates some storage providers on API level 

giving direct access to the data and metadata, presenting them in a UI. 

 

5 Hardware Provisioning 

Some project partners contribute hardware resources to West-Life project. What we would like 

is to have one unique pool of resources for the project, a "federation" between project members. 

This pool will be organized as an EGI VO (virtual organization). Resources will be merged in 

“enmr.eu” existing VO if not already integrated.  

In terms of architecture, the web portals will submit jobs to a static grid registered with EGI, and 

the grid would scale elastically with cloud provisioning. --> static grids with elastic scaling 

To sum up: we choose a static grid with elastic scaling as the target architecture, and for grid 

management we use EGI services. 
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6 Proposed Implementation version 1 

We follow the common architecture and requirements on its components defined in Sect. 4. 

Candidate implementations (existing software packages) are described in Appendix B. In this 

section we describe decisions, supported by appropriate reasoning, taken for the first 

generation of the project testbed. 

6.1 Virtual Cluster Management 

The technology choice was restricted to two options -- Cloudify (Sect. B.5.5) and Infrastructure 

Manager (Sect. B.5.1), which will be used and evaluated simultaneously. 

Cloudify is a relatively simple and compact tool, reasonably stable, with good level of 

maintenance and clear mid-term roadmap. It implements the TOSCA standard in the cloud 

definition, therefore, even if we chose other tools later, the migration would not be too difficult. 

In the first stage we use the simpler of two Cloudify modes, the stateless command-line tool 

“cfy”, suitable for quick prototyping. Later we will migrate to the Cloudify Manager, a service for 

complex deployment with monitoring of the deployed virtual clusters. 

We implemented a prototype of OCCI plugin to Cloudify [5], which enables use of EGI 

Federated Cloud sites (lack of OCCI support was a showstopper, on the contrary to other 

welcome features of Cloudify). This prototype will be developed further to meet the needs of the 

project. 

Simultaneously, in collaboration with Indigo project, the early adoption of its solutions (based on 

Infrastructure Manager) will continue. Outcomes will be evaluated in D4.3, when a decision on 

the software to be used in the 2nd generation of testbed will be also taken. 

6.2 Templating system 

This part addresses the cloud vs Docker decision. Basically, cloud solutions (with hardware 

virtualization) and Docker solutions (container-based virtualization) can be seen as 2 different 

templating system = 2 different ways to run predefined image (VM images vs containers). 

From the point of view of compatibility with bare-metal grids and cloud burst, Docker would be 

the best option (see section 4.2) as it plays nice with bare-metal server (required grid updates 

would be minimal), and enables fast start-up for cloud bursts. 

However, Docker can be problematic in 3 cases: 

1. when compute jobs run on multiple nodes (Docker and MPI might not play well together)  
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2. when compute jobs require shared drive mount (Docker does not like that) 

3. on older operating systems still existing on the grid infrastructure 

There is ongoing work to make Docker play well with MPI and shared storage, and the Indigo 

projects builds its solution on those technologies. However, relying completely on the ongoing 

development would present unacceptable risk to West-Life, which is focused on production 

services. Therefore, we stick with conservative solutions for the time being. 

Several West-Life portals rely on MPI and shared storage, so Docker technology and the 

dispatchers that come with it cannot be used for our project. 

Note 1: Docker and cloud frameworks (Openstack etc) ecosystems do not draw boundaries the 

same way. Cloud frameworks typically take care of resources provisioning, network topology 

and storage abstraction, and leave job dispatch to external solution. Docker technology on the 

contrary tends to merge both. For example, in Docker ecosystem, for resources management, 

you can use Mesos and Kubernetes. Both frameworks provision resources AND manage job 

dispatching. But those job dispatchers are thus embedded with Docker technology. 

So, even if West-Life portals did not use MPI nor shared storage, it would have been hard to 

consider Docker ecosystem dispatchers, without throwing to the bin all the EGI grid legacy, 

which we want to keep. 

All this means that we will choose VM images as the primary templating system, which require 

cloud frameworks. Since the required grid updates (install locally everywhere a 

cloud/virtualization framework such as OpenStack) would be significant, it is possible that each 

portal keeps a bare-metal setup, and VM images will be considered only for cloud bursts. Then 

we will have to find a way to make sure VM images are in sync with bare-metal nodes. This part 

is to be discussed later once we have more experience in the convergence implementation. 

6.3 Job Dispatcher 

Drawing from previous considerations, it’s clear we have to use a non-Docker ecosystem 

dispatcher for the time being. This decision might be revised later in the project according to 

new developments done elsewhere, INDIGO project in particular (cf. next section). Since we 

want to keep using existing EGI grids, we have to find a grid dispatcher with elastic cloud 

scaling capabilities (capable of spinning up VM and using VM images in conjunction with bare-

metal nodes). 

Several options have been considered: DIRAC, EC3, Condor… 
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Dirac and HTCondor represent traditional batch queuing system with long history of 

development and usage primarily in academic community. Both has its roots in times of grid 

infrastructures, but both systems are under continuous development and new features have 

been added or can be expected to be developed in the future. 

Mesos together with the frameworks like Aurora, Marathon and Chronos represent quite a new 

approach when comparing to Dirac and HTCondor. Mesos seems like a promising technology 

with great potential in the future. The project is supported by large community of users and 

developers a deployed in many instances both in academic and commercial sector.  

Unfortunately, Mesos do not offer any support for submitting jobs to grid infrastructures. When 

considering the use in context of West-Life project an interface to any job dispatching systems 

widely used in grid (and cloud) infrastructure or substitution for such functionality would be 

required. Creating such layer and API is out of scope of West-Life project.  

For role of West-Life job dispatcher should be chosen one of two candidates: Dirac and 

HTCondor which both offer similar functionality. The DIRAC framework has been already used 

by one of the West-Life portal with good results and it seems like a good candidate for the first 

deployment of consolidated architecture. 

We decided to settle on DIRAC since it seems to be the solution with the biggest community, 

which means support and training material in the foreseeable future. 

6.4 INDIGO solutions 

Section B.6 described a list of key components that will be available in the first release of 

INDIGO. Some of their first concrete applications in real use cases have been however already 

piloted. In particular, UU and CIRMMP partners of West-Life, who are also partners of INDIGO 

project, already experimented a couple of prototypes where a web portal exploits a batch 

system or a Docker container executed within a VM provisioned from a IaaS cloud to run 

applications. The prototypes were tested with the WeNMR/West-Life applications HADDOCK, 

DisVis, PowerFit, and AMPS-NMR [6] [7].  

6.4.1 Haddock: 

The case study for HADDOCK Portal involves the virtualization of the HADDOCK web portal 

and the required computational infrastructure underneath it using INDIGO solutions. The aim is 

to be less dependent on local hardware and to facilitate the deployment of the software at other 

sites (possibly within a company, or usage for teaching purposes). 
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A possible solution can be based on the architecture proposed in INDIGO, as seen in the figure 

below. With the help of INDIGO solutions, HADDOCK Portal can be started as a VM with a web 

portal front end, having a batch system installed and preconfigured with the number of cores per 

node, as number of queue slots per node to run HADDOCK jobs. A typical HADDOCK run on 

100 CPU cores might take between 1 and 10 hours, so a virtual cluster with different 

configuration may need to be up and run for several days or weeks to complete the job. Both 

ssh and web access should be supported. There should be enough storage space for temporary 

files on the compute nodes and enough storage (e.g. 500 GB) on the master node to store the 

end results obtained from HADDOCK. Currently, the results are stored on the server for a 

maximum of two weeks after which they are automatically deleted. So, it is the end user’s 

responsibility to download the data within this period. Models obtained with HADDOCK may be 

deposited in open repositories. 

 

The developers and operators of HADDOCK have the root level access to the portal and back-

end to perform operation maintenance and configuration. They need also provide access for 

HADDOCK Portal VM only to users with specific credentials (e.g. WeNMR Virtual Research 

Community credentials, West-Life credentials, or HADDOCK portal credentials). 

The end user is expected to interact with web portal front end and submits the jobs using his/her 

credentials. The input files for the jobs are mainly text files. The typical way of working for the 

end user is via laptop/desktop. However access from mobile phones/tablets can be a plus (but 

simple since it only requires a web browser). The computational process in the background is 

not of the concern of the end user. He/she is only interested to obtain the results in a 
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reasonable amount of time, and download them via web interface when the job is complete. The 

user is also able to monitor the status of the running jobs. When the job is complete, the user is 

notifying by email (the VM should thus allow emailing) and can access his results via a web 

page presenting various statistics and graphical analysis. Optionally, models can be visualized 

online via plugins such as jmol. 

6.4.2 DisVis and PowerFit: 

DisVis case study involves the deployment of DisVis into a VM with all its dependencies (e.g. 

FFTW3, pyFFT, opencl libraries…). The software is able to run using single/multiple CPUs or 

GPGPU. The scaling performance for an increasing number of CPUs should be similar, as 

when running directly on hardware. Docker containers may be a possible solution for this case. 

The same consideration apply for PowerFit case study. 

A similar INDIGO solution as their R-Studio server example can be applied for both DisVis and 

PowerFit, as seen in figure below. There should be enough space for storage of temporary and 

end results. The end user can start a VM that provides a web-interface to run DisVis (or 

PowerFit) and presents the results, which still has to be developed. Simple ssh access should 

also be offered. The end user can upload input files and download the output. A typical way of 

working for the end user is via laptop/desktop. However, access from mobile phones/tablets can 

be a plus. 
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6.4.3 AMPS-NMR: 

The AMPS-NMR portal has been selected to exploit the capabilities of the INDIGO 

FutureGateway component. Running e.g. a restrained MD calculation in AMBER through 

AMPS‑NMR is a process logically split in four macro steps: 

1. input data preparation 

2. set MD parameters, by selecting a redefined protocol 

3. send the calculation to the computational infrastructure 

4. retrieve the output from the computational Infrastructure and store it in the local virtual 

folder of the user. 

To enable the usage of INDIGO FutureGateway by the AMPS-NMR portal, it was enough to 

adjust the actions 3 and 4, leaving the user interface completely unchanged. So, enabling the 

job submission via FutureGateway did not affect the user experience at all, with respect the 

current production portal. The only modification involved adding a radio button in the portal to 

allow the user to select “FutureGateway” as computational infrastructure. This use case made 

use of an existing Docker container which includes the necessary software packages to run 

different MD simulations via AMBER. The MD container is served by an OpenStack IaaS 
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capable to run Docker instances. The IaaS supports OCCI standard to manage containers in 

the same way as done in the EGI Federated Cloud. In this scenario the FutureGateway API 

Server can instantiate an MD Docker container and then execute on it a job, retrieving at the 

end the output via the rOCCI JSAGA adaptor, as described in the architectural scheme below. 

 

In principle, the same functionality can be achieved by using the existing grid infrastructure 

using exactly the same FutureGateway API calls. In this case the figure above will be the 

same, except the for the rOCCI box replaced e.g. by the EMI-WMS, in charge to send the 

MD job to the grid. After successful submission, the user can monitor his job within the 

AMPS-NMR portal. For completed jobs, the output is automatically retrieved and copied to 

the user folder, which is maintained in the local file system. The output can then be 

downloaded by the user on his own storage. At the time of writing the rOCCI adaptor was 
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used to connect with the computational backed. In the first official INDIGO release a 

TOSCA adaptor will be available to connect with the PaaS Orchestrator component. 

However, with the above architecture the end application will not require any code changes.  

This prototype demonstrated that the implementation of the submission mechanism using 

the INDIGO FutureGateway API server did not involve any changes in the way the user 

interacts with the current portal, nor in the way the portal validates and processes the input 

data and the job requests submitted by the user. In particular, the management of the VM 

using the appropriate contained with the AMBER software was entirely taken care by the 

FutureGateway component and did not require any specific change on the portal side. 

Therefore, the prototype can represent a straightforward approach to update or extend the 

computational backend of existing WeNMR/West-Life portals, and also support the 

implementation of new portals in the West-Life perspective. 

7 Conclusion 

The West-Life project started with many legacy portal solutions, while some of them require 

considerable upgrade (e.g. migration to new versions, support for GPU), and new ones are 

taken on board. In this document we identified a common pattern in the portal architecture, 

including functional requirements on its components. In parallel Deliverable 4.2 is being 

submitted, which addresses broad security aspects of the whole architecture. Therefore, 

security is omitted in this document deliberately. 

Simultaneously, available technology – existing candidate implementations for the architecture 

components were reviewed, and design decisions were taken for the first generation of the 

testbed. Two frameworks (Cloudify and Infrastructure Manager) will be evaluated for portal 

virtualization, DIRAC will be used as the common dispatcher for both grid and cloud 

environment, and EUDAT solutions will be leveraged for data handling. 

In the upcoming months candidate portals for migration to this new platform will be selected. 

The experience from this deployment will be reported in Deliverable 4.3, and appropriate 

adjustments to the project plan will be taken. 
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Appendix A: Use cases 

 

A.1 Scipion 

A.1.1 Current status 

Scipion covers the whole workflow of about a dozen of steps of processing raw CryoEM data to 

refined electron density map. Some of the workflow steps are automatic, some require user 

interaction. The individual steps are implemented by various software tools, including third party 

software, and providing alternatives (there is no one-size fits all choice, some approaches work 

better for some inputs and vice versa). Scipion framework integrates those tools to work 

together smoothly. 

In general, a regular Cryo-EM image processing workflow starts with rather huge raw data 

(CryoEM "movies", up to terabytes) on which fairly lightweight calculation (mostly I/O bound) is 

performed. In subsequent workflow steps the amount of data gets reduced while the 

computational complexity increases, ending with many days of CPU time. 

The implementation may use multiple computing nodes to distribute the load but it relies on a 

shared POSIX file system. The file system is organized in projects -- self-contained folders 

where all input data, intermediate results, and status of the workflow processing is stored. 

Computations can be spawned through traditional batch systems (Oracle Grid Engine, Torque, 

Slurm, ...). 

Some computationally demanding steps of the workflow support parallel execution with either 

threading or MPI, some of the tools leverage GPU acceleration. 

A.1.2 Scipion desktop 

Scipion desktop is the main package, offering a desktop interface for user interaction. It is the 

complete solution with more than a 100 of protocols/process from 16 different packages 

available. Typically, Scipion is installed on fat nodes or even clusters ready to make use of as 

much computational power as is available. Under this scenario, Scipion is not installed in the 
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end user machine but on servers, requiring the user to use any of the available remote desktop 

presentation solutions (ssh, x2go, VNC,...). 

A.1.3 Scipion web tools 

Web tools (SWT) represent a set of small workflows a user might want to try over a web 

interface, with the only requirement being a modern web browser, and therefore no need to 

install software at the user's machine. Currently those are: 

My movie alignment 

Corrects for global frame movements, as well as local within-frame movements of your movies. 

Data requirements: upload 1-2TB (resumable upload implemented, for other web tools too) 

Computational requirements: 3-5 minutes with 1 CPU. 

NOTE: one of the methods uses GPU, so a GPU queue is in place in production. 

My first map 

Generates a first volume using particle averages to be use a a latter volume reference for 

refinement. Data requirements: upload 0.5 MB. Computational requirements: 5 hours with 1 

CPU. 

My resolution map 

Computes the local resolution of 3D density map using Resmap. Data requirements: upload 55 

MB Computational requirements: 1 minute with 1 CPU 

So far, the web tools run on a single server. They are integrated with queue managers, so it is 

possible to perform the processing in a cluster. They have been successfully deployed to virtual 

machines in the cloud (the process is highly automated, but there is still room for polishing). 

A.1.4 SWT with proposed architecture 

Storage site 

Main SWT server will run on the storage site being able to resolve http request (maybe behind a 

load balancer). Data from other sources like EUDAT could be mounted on the store site and 

accessible to the SWT as a source of input data and or destination of outcomes. There must be 

a shared file system (nfs), where all the SWT projects will be stored, mounted across all worker 
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nodes within the storage site to be able to access same data from different machines that will 

run SWT processes. Apart from sharing the data, all the software packages responsible for 

running all the CryoEM workflows should be present in all machines enabling them to run any 

POSIX command issue from the main SWT server and distributed by a Scipion compatible 

queue system (Slurm, TORQUE, …). If a certain process requires a large computational node, 

then this process will need to be carried out in the Compute site. 

Compute site 

In case of high computational demand, a certain process within scipion workflow should be 

“forwarded” to a compute site. These compute sites, do not share the data with the storage site, 

therefore required data should be moved/copy across before any processing takes place. 

Compute sites, as is the case for the worker nodes in the storage site, need to have installed all 

the software needed to run any process. Once the process has finished, output of the process 

need to be copied back to the storage site for later use or visualization of the output. 

A.1.5 Impact on Scipion development 

Currently the web tools run as a standard web application run by a single OS account. There is 

no identification or authorization process in place. If resources access (data as well as CPU) is 

granted based on a SSO identity, changes in the way Scipion web tools, and Scipion itself 

access those resources might need to be adapted. Moving data back and forth to the computing 

site should be also implemented. 
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A.2 Grid-enabled web portals hosted by UU  

A.2.1 DisVis 

DisVis is a software tool developed for the visualization and quantification of the accessible 

interaction space of distance restrained binary biomolecular complexes (Figure 4). It is 

implemented as a Python package and a simple command-line program, with the ability of 

harnessing multiple CPUs or running on a GPU. The runtime on a single standard GPU is 

thereby comparable to the runtime on 16 CPUs (Zundert and Bonvin, Bioinformatics, 2015). A 

webserver submitting DisVis jobs to GPU resources of the grid is currently accessible at : 

http://milou.science.uu.nl/enmr/services/DISVIS.  

A.2.2 HADDOCK 

http://milou.science.uu.nl/enmr/services/DISVIS
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HADDOCK2.2 (High Ambiguity Driven protein-protein DOCKing) is an integrative, information-

driven flexible docking approach for the modeling of biomolecular complexes. The HADDOCK 

portal is accessible from: http://haddock.science.uu.nl/enmr/services/HADDOCK2.2 

A.2.3 GROMACS 

GROMACS (www.gromacs.org) is a versatile package to perform molecular dynamics. 

GROMACS is able to work with many biochemical molecules like proteins, lipids and nucleic 

acids. The GROMACS grid-enabled web portal combines the versatility of this molecular 

dynamics package with the calculation power of the grid. The GROMACS portal is accessible 

from: http://haddock.science.uu.nl/enmr/services/GROMACS 

A.2.4 CS-Rosetta 

CS-Rosetta is a protocol which generates 3D models of proteins, using only the 13CA, 13CB, 

13C', 15N, 1HA and 1HN NMR chemical shifts as input. Based on these parameters, CS 

ROSETTA uses a SPARTA-based selection procedure to select a set of fragments from a 

fragment-library (where the chemical shifts and the 3D structure of the fragments are known). 

The fragments are assembled using the Rosetta protocol. The CS-Rosetta portal is accessible 

from: http://haddock.science.uu.nl/enmr/services/CS-ROSETTA3/ 

A.2.5 UNIO 

UNIO program enables users to perform automated NMR data analysis for 3D protein structure 

determination. The UNIO program includes data analysis algorithms for all parts of an NMR 

structure determination process ranging from backbone and side-chain assignment to NOE 

assignment and structure calculation. The UNIO portal is accessible from 

http://haddock.science.uu.nl/enmr/services/UNIO 

A.2.6 General architecture of the UU portals 

The implementation of UU web servers can be generalized as follows. 

http://haddock.science.uu.nl/enmr/services/HADDOCK2.2
http://haddock.science.uu.nl/enmr/services/HADDOCK2.2
http://haddock.science.uu.nl/enmr/services/GROMACS
http://haddock.science.uu.nl/enmr/services/CS-ROSETTA3/
http://haddock.science.uu.nl/enmr/services/CS-ROSETTA3/
http://haddock.science.uu.nl/enmr/services/UNIO
http://haddock.science.uu.nl/enmr/services/UNIO
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Briefly, a web interface collects and validates all necessary input. Upon successful user 

authentication the job is prepared for submission to the grid and added to the job pool. From 

there the job is submitted to the grid via DIRAC or gLite (CPU or GPU resources based on 

requirements). A polling daemon queries for the status of the job and updates the status page of 

the web interface. Upon job completion the results are retrieved, post-processed and returned to 

the user via the web interface. 

We have already investigated and successfully tested the possibility to use DIRAC to submit job 

to cloud VMs. This is a completely transparent process for the current submission machinery of 

the UU portals. Adapting to other solutions will have to be investigated once those are in place, 



27 | 39 

 

 

West-Life Deliverable D4.1 

with the important requirement that these should not disrupt our production portals (like the 

HADDOCK portal currently submitting >8 million jobs a year to the grid).  

A.3 AMPS-NMR  

A key computational technique in Structural Biology is Molecular dynamics (MD), a 

computer simulation of the physical movements of atoms and molecules as a function of time. 

MD simulations capture the behavior of biological macromolecules in full atomic detail using 

statistical thermodynamics laws. Such simulation may serve as a computational microscope, 

revealing biomolecular mechanisms at spatial and temporal scales that are difficult to observe 

experimentally. It has extensive application to biological systems, from protein folding to 

enzymatic catalysis and the comprehension of signaling cascades. MD-derived models allow 

researchers to interpret the experimental data and make testable predictions; the experimental 

data provide a quality assessment for the MD simulations as well as restraints for model 

refinement.  

The AMBER- based Portal Server for NMR structures (AMPS-NMR) has been developed to 

provide an user-friendly entry point mainly designed for the energy refinement of NMR 

structures based on restrained molecular dynamics (rMD), but permitting also free MD 

simulations with the MD package AMBER. Users can select different predefined calculation 

protocols for rMD and free MD, depending also on the type of experimental data available. 

The portal is based on an ad hoc mixture of HTML (http://www.w3.org/), CSS 

(http://www.w3.org/) and Mako (http://www.makotemplates.org/); it enables the users to create 

registered accounts through their own Digital Certificate. AMPS-NMR makes use of specific 

python-based utilities that automatically convert/adapt all input data, in the native format of 

various commonly used programs or databases (DYANA, CYANA, XPLOR, CNS, TALOS, 

PDB), to the AMBER format. This process is completely transparent to the user. Furthermore, 

AMPS-NMR exploits a series of python routines to collect all information about the new 

calculation, build all batch commands necessary to submit it, thereby creating a so-called job, 

and submit the calculation to the Grid Computing Infrastructure using gLite. At present, CPU or 

GPU resources are automatically selected by the portal, depending on the predefined 

calculation protocol chosen by the user. Finally, another relevant feature of AMPS-NMR is its 

persistent user workspace, where users’ data and jobs are maintained and managed across 

multiple work sessions. This functionality has been implemented through the combined use of 

the HTTPS authentication protocol and of the SQLAlchemy (http://www.sqlalchemy.org/) Python 

Database Abstraction Library. A scheme of the AMPS-NMR portal is shown in the Figure below. 

http://www.makotemplates.org/
http://www.sqlalchemy.org/
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Recently, we have demonstrated the use of the Future Gateway, which is being developed 

in the INDIGO-DatCloud project, to submit AMBER jobs both to cloud and grid infrastructures. 

For this, the management of tasks within the web portal is done via ssh connections to the API 

server. The directories containing the data are shared using NFS over a local private network. 

More details are available at https://www.indigo-datacloud.eu/documents/first-toolkits-prototype-

evaluation-report-d62. 
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Appendix B: Available Software Technology 

B.1 gLite  

gLite middleware was developed in the series of FP7 EGEE projects, and covered also by the 

follow-up EMI project. Currently, it is probably the prevailing middleware stack used by EGI 

sites. However, the number of components of original gLite and EMI distributions that are 

actively developed nowadays is reduced. In particular, support for EMI-WMS Workload 

Manager (the job dispatcher role in West-life architecture) is being phasing out, and alternatives 

for the job dispatcher component should be considered seriously when a new architecture is 

being designed. 

On the contrary, CREAM computing element is being developed, therefore it can be relied on as 

the submission mechanism to the grid sites, as performed by e.g. DIRAC. 

Suitability for West-Life: gLite has a wide existing user base, but it is not actively developed 

enough: after the end of EMI project in 2013 some of its components are in fact not supported 

anymore, while others are still supported by the individual development teams. Moreover, there 

are no plans to migrate towards cloud technologies.  

B.2  DIRAC  

Dirac (http://diracgrid.org/) is a software framework for distributed computing. Dirac builds 

software layer which is providing common interface to user for accessing heterogeneous 

resources. Dirac can be used for submitting jobs to both grid and cloud infrastructure. Support 

for cloud infrastructure is implemented in extension VMDIRAC, which supports among others 

OCCI and OpenStack APIs. Dirac is licenced under GNU General Public Licence Version 3. 

Dirac framework has been already used by one of West-Life portals (Haddock portal) for 

submitting its jobs to EGI grid infrastructure.  

DIRAC is based on the pilot job approach [8]. The pilots are empty containers – jobs, which are 

submitted to the traditional grid resources, they pass through batch system queue, and as soon 

as they are executed, the make sanity checks (availability of disk space, memory, network 

connectivity, installed software etc.). If the check is passed, the pilot “calls home” the DIRAC 

server to retrieve actual payload. Certain number of pilots may fail to pass the sanity check, 

however, the failure due to instability of infrastructure etc. does not imply failure the payload. 
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Suitability for West-Life: Dirac is actively maintained and is compatible with hybrid grid/cloud 

setups. One of West-Life portals has experience with it, which makes Dirac one of the lead 

candidates.  

B.3 HTCondor 

HTCondor (https://research.cs.wisc.edu/htcondor/) is a batch queuing system, that has been is 

traditionally deployed in grid computing environments. The HTCondor software has been under 

development since 1988 at the University of Wisconsin-Madison. It is licensed under the 

Apache Licence 2.0. Before 2012 it was known as project Condor.  HTCondor is mature and still 

actively developed software. New features including support for Docker and Cloud 

environments have been added.  

Suitability for West-Life: HTCondor is actively maintained and very stable. From a pure technical 

point of view it is a good candidate, but the decisions related to its development are taken in the 

US, so compatibility with EU cloud infrastructure is not a priority. 

B.4 Apache Cloud Software Family 

B.4.1 Apache Mesos 

Apache Mesos (http://mesos.apache.org/) is a scheduling and orchestration platform for 

managing cluster resources and submitting jobs. Apache Mesos clusters are based on usage of 

containerization technology, such as Docker and Linux Containers (LXC). 

Mesos was presented for the first time in 2009. It is open source project licensed under Apache 

License 2.0. The project is under active development by Apache Software Foundation with large 

community of users and developers.  

Apache Mesos offers functionality that crosses between Infrastructure as s Service (IaaS) and 

Platform as a Service. Application build on Mesos API are called frameworks. Apache Aurora, 

Marathon and Chronos are Mesos frameworks, which provides services of jobs and services 

scheduling.  

Suitability for West-Life: Mesos is a great framework but is totally tied with Docker technology. 

This means that it will not be possible to achieve out of the box compatibility with existing grid 

systems, or even with existing EGI Federated Cloud systems. On the other hand, the Indigo 

services are based on Mesos, and the ambition of the project is to overcome those problems. 

Therefore, Mesos becomes a possible candidate for later stages of West-Life. CIRMMP has 

https://research.cs.wisc.edu/htcondor/
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been testing the use of Chronos and Mesos within the INDIGO-Datacloud project for small-

molecule docking based on free MD. 

B.4.2 Apache Aurora 

Apache Aurora (http://aurora.apache.org/) is a service scheduler, that runs on top of Apache 

Mesos. It is Mesos framework engineered for long running services, cron jobs and other ad-hoc 

jobs, that take advantage of Mesos platform. Aurora component is responsible for running the 

jobs. When any worker node experience failure, Aurora take care of rescheduling those jobs 

onto healthy worker nodes. For description of services is used Domain-Specific Language 

(DSL) which is highly configurable and supports templates. 

Aurora was originally developed by Twitter (since 2010) and open sources in 2013. Currently it 

is project under active development by Apache Software Foundation. It is licensed under 

Apache License 2.0 

B.4.3 Marathon 

Marathon (https://mesosphere.github.io/marathon/) is a service scheduler, that runs on top of 

Apache Mesos. It provides functionality similar to Apache Aurora.  

Marathon is developed by Mesosphere under Apache License 2.0.  

B.4.4 Chronos 

Chronos is another framework for Mesos. It was designed as fully-featured, distributed and fault 

tolerant scheduler, which eases the orchestration of jobs. 

Chronos was originally developed by Airbnb. It is developed under Apache License 2.0 

B.5 Virtual cluster management 

B.5.1 Infrastructure Manager 

Infrastructure Manager(www.grycap.upv.es/im/) has been developed by Polytechnic University 

of Valencia as s tool for virtual clusters deployment and orchestration. Both public (AWS, 

Google Cloud or Microsoft Azure) and on-premises (OpenNebula, OpenStack) IaaS providers 

are supported. OCCI interface and container technologies are also supported.  It is licensed 

http://aurora.apache.org/
https://mesosphere.github.io/marathon/
http://www.grycap.upv.es/im/
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under GNU General Public Licence. Infrastructure definitions are written in proprietary RADL 

files. As part of the INDIGO-Datacloud project support for TOSCA documents is going to be 

added. For software deployments is IM integrated with Ansible.   

B.5.2 Elastic Cloud Computing Cluster (EC3) 

Elastic Cloud Computing Cluster (www.grycap.upv.es/ec3) is a tool developed to create elastic 

virtual clusters.  Both public (AWS, Google Cloud or Microsoft Azure) and on-premises 

(OpenNebula, OpenStack) IaaS providers are supported. OCCI interface is also supported. EC3 

is built on features of Infrastructure Manager for infrastructure deployment and CLUES 

(http://www.grycap.upv.es/clues/eng/index.php) for cluster elasticity.  

B.5.3 Venus-C PMES-COMPSS 

Venus-C platform was developed as a project funded under the European Commission’s 7th 

Framework Programme between 2010 and 2012. It is not evolving since 2013.  

B.5.4 Karamel 

Karamel (http://www.karamel.io) is a set of management tools for provisioning, orchestration, 

monitoring and debugging of cloud systems and experiments. It is developed under Apache 

License 2.0. Public clouds like Amazon EC2 and Google Compute Engine and private clouds 

(Openstack) are supported. Support for OCCI has been recently added.  For definitions are 

used Karmelfiles written in YAML. For orchestration of software packages Chef cookbooks are 

used. The mail aim of Karamel is reproducibility of distributed systems and experiments in 

cloud.  

In contrast, the tool for West-Life use case should be able not only to start defined cloud 

environment, but also managed it during its whole lifecycle.   

B.5.5 Cloudify 

Cloudify (http://getcloudify.org/) is an orchestration developed by GigaSpaces Technologies.  

It is licensed under Apache License 2.0.  

Cloudify templates (called blueprints) are based on TOSCA (Topology and Orchestration 

Specification for Cloud Applications), which is an OASIS standard language for description of 

cloud based services. TOSCA  

B.5.6 Terraform  

http://www.grycap.upv.es/ec3
http://www.grycap.upv.es/clues/eng/index.php
http://www.karamel.io/
http://getcloudify.org/
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Terraform (https://www.terraform.io/) is an orchestration or infrastructure management tool 

developed by HarshiCorp (www.hashicorp.com), the company well known for its widely used 

vagrant tool. Terraform is licenced under Mozilla Public Licence, version 2.0. It can be used to 

create, manage and manipulate resources provided by several IaaS providers. AWS, Google 

Cloud, Azure, Openstack and others are supported. OCCI interface is not currently supported, 

but is expected to be added in a few months by EGI Federated Cloud team.  

B.5.7 Heat 

Heat (https://wiki.openstack.org/wiki/Heat) is part of Openstack project. Heat is licensed under 

Apache License Version 2.0. It is native orchestration tool for cloud environments based on 

OpenStack infrastructure. Main advantage is integration with Openstack environment and 

resources and strong support from OpenStack. Heat templates use proprietary format based on 

YAML. Convertor for TOSCA documents is also available. All infrastructure resources like 

server, floating IPs, volumes, security groups, user and others can be described. Elasticity and 

autoscalling service is also available. Main disadvantage is lack of support for any other IaaS 

provider.  

B.6 INDIGO-DataCloud solutions 

INDIGO-DataCloud: Integrating Distributed Data Infrastructures for Global Exploitation (INDIGO 

from now on), is a HORIZON 2020 European Project aiming at addressing the challenge of 

developing advanced software layers deployable in the form of data/computing platforms 

targeted at scientific communities. In fact, new technological advancements such as 

virtualization and cloud computing pose new important challenges when it comes to exploit 

scientific computing resources. 

B.6.1 Architecture 

INDIGO has designed an architecture [9] that fill some existing gaps in the current solutions and 

provides progresses beyond the state-of-art at the three basic layers that compose a scientific 

computing infrastructure: the Infrastructure (or Resource Provider, or IaaS) layer, the Platform 

layer (PaaS) and the User interface layer.  

The INDIGO approach to the application distribution and execution is based on Docker 

containers, and exploits Mesos [10] to manage cluster resources (cpu, memory) providing 

isolation and sharing across distributed applications. It also exploits Marathon [11] and Chronos 

[12], which are two powerful frameworks that can be deployed on top of a Mesos Cluster. In 

https://www.terraform.io/
http://www.hashicorp.com/
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particular, Marathon is used to deploy, monitor and scale long-running services such as web 

portals, ensuring that they are always up and running. Chronos instead is used to run user 

applications (jobs), taking care of fetching input data, handling dependencies among jobs, and 

rescheduling failed jobs. All the application executions are described exploiting a TOSCA 

Template via simple APIs or Portlets. The input/output are automatically managed by the PaaS 

layer (via OneData and external endpoints), and the geographical data-aware scheduling is 

provided by INDIGO PaaS Orchestrator 

B.6.2 Components and Releases 

The first public release of INDIGO software components is scheduled by the end of July 2016, 

while a second major release is planned by the end of March 2017, six months before the 

official end of the project. 

The first release will provide solutions that can be grouped in the following way: 

1. Site level solutions: 

1.1. New scheduling algorithms for allocation of resources by open source Cloud 

frameworks: both fair-share scheduling and spot instances.  

1.2. Support for dynamic partitioning of resources among “traditional batch systems” and 

Cloud infrastructures. 

1.3. Full and transparent support for containers, with or without Docker, by providing 

extensions to OCCI functionalities 

1.4. Improved QoS capabilities of storage resources and data lifecycle support. 

1.5. Improved automation at IaaS level, based on TOSCA. 

2. Data management solutions: a set of components called Unified Data Access (UDA) layer 

that includes OneData [13], FTS-3 [14] and Dynafed [15]). The UDA layer will provide a 

PaaS level interface for end users, including REST APIs and the CDMI (Cloud Data 

Management Interface) standard protocol, offering the following functionalities: 

2.1. Distributed data federations supporting legacy applications as well as high level 

capabilities for distributed QoS and Data Lifecycle Management. This includes e.g. 

integrated local and remote Posix access for all types of resources (bare metal, virtual 

machines, containers). 
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2.2. Support for distributed data caching mechanisms and integration with existing storage 

infrastructures. INDIGO storage solutions are capable of providing efficient access to 

data and of transparently connecting to Posix file systems already available in data 

centers. 

2.3. Transparent client-side import/export of distributed Cloud data. This supports dropbox-

like mechanisms for importing and exporting data from/to the Cloud. That data can then 

be easily ingested by Cloud applications through the INDIGO UDA tools. 

2.4. Linux, Mac OS, Windows desktop support. 

3. Automated solutions (PaaS Orchestrator):  

3.1. Standard interface to access PaaS services. Currently, each PaaS solution available on 

the market is using a different set of APIs, languages, etc. INDIGO will use the TOSCA 

standard to hide these differences. 

3.2. Selection of resources across multiple Cloud providers (e.g. depending on data location 

or resource requirements), as well as support for application requirements in Cloud 

resource allocations (e.g. for what regards InfiniBand or GPUs). TOSCA templates used 

to specify resource requirements, dependencies, and configuration of the 

services/applications. 

3.3. Support for dynamic and elastic clusters of resources. Resources and applications can 

be clustered through the INDIGO APIs. This includes e.g. batch systems on-demand 

(such as HTCondor or Torque) and extensible application platforms (such as Apache 

Mesos) capable of supporting both application execution and instantiation of long-

running services. 

3.4. Support for custom frameworks for porting arbitrary applications to the Cloud, with 

automated monitoring and scalability. 

3.5. Integrated support for high-performance Big Data analytics. This includes e.g. general 

purpose engines for large-scale data processing such as Spark. 

4. User level solutions (FutureGateway APIs and Portal): 

4.1. Customizable / programmable portal (gateway) engine integrated with the features 

mentioned in the previous solutions. 
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4.2. Sample portals delivered for selected applications ("all-in-one”, “plug and play” 

bundles). 

4.3. Mobile toolkit to access INDIGO features on mobile devices. 

5. AAI advanced interoperable solutions (IAM, Identity and Access Management Service): 

5.1. Support for SAML, OpenID Connect and X509 user authentication. 

5.2. Identity harmonization by linking heterogeneous authentication mechanisms to a single 

VO identity. 

5.3. Management of VO membership (i.e., groups and other attributes), provisioning of VO 

structure and membership information to services. 

5.4. Management, distribution and enforcement of authorization policies. 

5.5. Support for controlled delegation of privileges across services and credential 

translation, through the integration with the INDIGO Token Translation Service (TTS). 

. 

The figure below shows the architecture guiding the use case:  

● The INDIGO TOSCA expert helps the Platform Administrator (PA) to write the TOSCA 

template to automatic deploy and configure the virtual infrastructure on the Cloud suited 

for the portal application 

● The PA create and publish the VM and Docker images needed for the portal and for the 

application execution, and submit the TOSCA template to the INDIGO Gateway API 

component, which in turn calls the PaaS Orchestrator component.  

● When the virtual infrastructure is up and running, the end user access the application 

portal which sits on top of the batch system front-end, and submits his task. The 

scalability of the entire system is ensured by load balancing and elasticity capabilities 

implemented in the Orchestrator PaaS component. E.g. the number of nodes available 

for computing should increase (scale out) and decrease (scale in) according to the 

workload. The system should also be able to do Cloud-bursting to external 

infrastructures when the workload demands it. 
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● Input data can be either supplied by user or extracted from public repositories (Protein 

DataBank, EM DataBank, etc.). Output data (order of GB) can be kept for two weeks for 

user to download it and deleted after that. Moreover, INDIGO data management 

services and tools can be used for allowing remote Posix access to data, or providing 

dropbox-like mechanisms for importing and exporting data from/to the Cloud. 

 

At the time of writing, that is before the first official release, the first prototype of the INDIGO 

architecture is ready for testing at [2]. 

Several components of INDIGO architecture, once demonstrated their maturity, can be suited 

for West-Life:  

● The IAM service, for harmonizing the AAI infrastructure by mapping different digital 

identities (e.g. institutional credentials, social logins, X509 certificates) to the same 

individual so that consistent authorization and accounting can be performed at various 

levels of the infrastructure. 

● The PaaS Orchestrator, to coordinate the deployment process of services and 

applications on a distributed infrastructure. 

● The Data Management services, that provide an abstraction layer for accessing data 

storage in a unified and federated way, also providing capabilities for importing data and 

scheduling transfers of data. 
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● FutureGateway APIs and portlets, for helping West-Life developers to build portals which 

easily integrates with INDIGO IAM, PaaS and Data services. 

B.7 EUDAT services 

EUDAT [16] is the European e-infrastructure aiming to provide data storage, consultancy and 

related services for research communities. It provides a mature B2DROP service - Dropbox like 

service giving access to the virtual storage via Owncloud client (online/offline synchronization), 

over the WEBDAV protocol. The other services B2SHARE can make the data available publicly 

with an integration with annotation and metadata information (B2NOTE in roadmap), they 

heavily utilize existing open source solution for it (Owncloud, Virtuozo, …). B2ACCESS is 

recommended for federated authentication and authorization management. Instruct has worked 

with EUDAT to integrate their Authorization services. 
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