»

research papers

FOUNDATIONS

A ADVANCES

ISSN 2053-2733

Acta Cryst

Received 10 May 2023
Accepted 31 August 2023

Edited by L. Palatinus, Czech Academy of
Sciences, Czech Republic

Keywords: compression; TERSE/PROLIX; TRPX;
lossless; diffraction data; cryo-EM data; lossless
data compression.

Pixel valuo

— ok Doscrtr
S T I@ 0 @3
o [o1] (7ot 000 o1}
38 5

‘Same Block Deseriptor

Difractionframe "+, E

OPEN @& ACCESS

Published under a CC BY 4.0 licence

TERSE/PROLIX (TRPX) — a new algorithm for fast
and lossless compression and decompression of

diffraction and cryo-EM data

Senik Matinyan® and Jan Pieter Abrahams®"*

*Biozentrum, University of Basel, Basel, Switzerland, and bLaboratory of Nanoscale Biology, Paul Scherrer Institute,

Villigen, Switzerland. *Correspondence e-mail: jp.abrahams@unibas.ch

High-throughput data collection in crystallography poses significant challenges
in handling massive amounts of data. Here, TERSE/PROLIX (or TRPX for
short) is presented, a novel lossless compression algorithm specifically designed
for diffraction data. The algorithm is compared with established lossless
compression algorithms implemented in gzip, bzip2, CBF (crystallographic
binary file), Zstandard(zstd), LZ4 and HDFS5 with gzip, LZF and bitshuffle+LZ4
filters, in terms of compression efficiency and speed, using continuous-rotation
electron diffraction data of an inorganic compound and raw cryo-EM data. The
results show that TRPX significantly outperforms all these algorithms in terms
of speed and compression rate. It was 60 times faster than bzip2 (which achieved
a similar compression rate), and more than 3 times faster than L.Z4, which was
the runner-up in terms of speed, but had a much worse compression rate. TRPX
files are byte-order independent and upon compilation the algorithm occupies
very little memory. It can therefore be readily implemented in hardware. By
providing a tailored solution for diffraction and raw cryo-EM data, TRPX
facilitates more efficient data analysis and interpretation while mitigating
storage and transmission concerns. The C++20 compression/decompression
code, custom TIFF library and an ImagelJ/Fiji Java plugin for reading TRPX files
are open-sourced on GitHub under the permissive MIT license.

1. Introduction

Universal access to exponentially growing data has made
efficient data storage and processing crucial for transformative
science (Hill et al., 2016; Tolle et al., 2011). In crystallography,
the emergence of hybrid pixel detector technology has led to a
significant increase in the amount of data generated per data
collection session, producing exponentially growing volumes
of diffraction data (Paton et al, 2021; Tate et al, 2016).
Because these detectors are so fast and have no readout noise,
fine phi-slicing and high frame rates allow more accurate data,
with many pixels having values close to zero. However, the
resulting high acquisition rates of diffraction data are out-
pacing the data transfer capabilities to local storage,
presenting a significant challenge (Kieffer et al., 2018; Stroppa
et al., 2023). Additionally, the size of current data sets poses
challenges for transferring, sharing and collaborating effec-
tively, leading to increased operational costs, reduced experi-
mental throughput, and potentially lost scientific information
due to inefficiencies in data handling.

To address these challenges, there is an urgent need for
robust, more efficient diffraction data compression that is
lossless and fast enough to keep up with the high frame rates
of modern detectors. In this context, we present the TERSE/
PROLIX algorithm (TRPX for short), a novel compression

Acta Cryst. (2023). A79

https://doi.org/10.1107/5205327332300760X

1of 6

https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S205327332300760X&domain=pdf&date_stamp=2023-09-25

research papers

method specifically designed for diffraction data. Initial tests
have shown that it can compress integral data to at least 15%
of the initial size and handle up to 2000 electron diffraction
frames per second (512 x 512 16-bit pixels), using a single
core on a modern laptop (we used Apple’s M1 Max processor
for testing purposes). By providing a tailored solution for
diffraction data, TRPX mitigates storage and transmission
concerns. This algorithm has the potential to significantly
improve the handling and long-term preservation of high-
throughput diffraction data, facilitating scientific discoveries
and accelerating the pace of transformative science.

2. TRPX compression algorithm

Diffraction data frames typically consist of a large number of
grayscale pixels with integral values and a high dynamic range.
At lower resolutions, the pixels tend to have higher values in
Bragg peaks, while between the Bragg peaks and at higher
resolutions, they have lower values. Thus, diffraction data
frames are spatially correlated. By leveraging these inherent
properties, TRPX performs lossless, efficient and fast
compression of integral diffraction data frames and other
integral grayscale data. The algorithm was specifically
designed for speed, but we found it to be also superior in
reducing file sizes.

The algorithm was devised for lossless compression of
diffraction and imaging data of any type (X-ray, electron,
neutron). It accepts grayscale pixel values with a very high
dynamic range (up to 64 bits). Data can be extracted as integer
or floating-point types, but need to be encoded as integers
before compression. It will compress any grayscale data,
including cryo-EM data, quickly and without loss of precision.
The compression rate is determined by the number of bits

[«<— Pixel value

Compression

required to encode the majority of pixel values for images in
which the pixels are locally correlated.

2.1. Compression scheme

The TRPX algorithm uses a run-length encoding approach,
which compresses data by identifying repeated patterns
(Robinson & Cherry, 1967). Unlike most other run-length
encoding algorithms, it requires just a single pass through the
data, analogous to an early algorithm for compressing
diffraction data (Abrahams, 1993). Implemented in C++20, it
can easily be linked into other programs, which may be written
in computer languages other than C++. The code creates a
“Terse’ object that compresses data with a pixel depth of up to
64 bits. The data can be stored in a standard C++ data
container, or can be provided to the ‘Terse’ object as a
memory location or a stream of raw data, together with the
number of pixels. A ‘“Terse’ object may hold a stack of same-
sized images. The algorithm compresses data quickly and
efficiently by identifying patterns in a single pass using
primitive processor operators. The resulting ‘Terse’ object can
be written as a byte-stream, which is independent of the
endianness of the machine, ensuring that both big- and little-
endian machines produce identical files. Because it can also be
appended to existing files, it can be embedded in other data
formats that may have specific header information, by repla-
cing the raw data section. A .trpx file has a small XML header
that contains essential metadata required for unpacking, and
that can easily be extended for specific use cases. By default,
images are assumed to be two-dimensional and square, but
this can be overridden by specifying image dimension para-
meters, which are then included in the small XML header. The
binary Terse data directly follow this XML header. For posi-
tive data, compressing as an unsigned integer yields a tighter
compression. For data with negative integral numbers, TRPX

Block Descriptor

---- ol

e [

00000101 5] [0 3]
00000000 —{0] |o11|]1o1looo|o11}—‘
00000011 ;

‘ : "B'i't\'m-i-seOR @ E’

sl 00000111

L}
15 pixels

Diffraction frame

Figure 1

(011000101

Same Block Descriptor

Encoding

(b)

Compression scheme. (a) Compression of a single 16-bit 512 x 512-pixel diffraction frame. The pixel values of each data block are stripped of their most
significant bits. For a block size of 3 with values 5, 0, 3 shown here, the encoded bits would be: 101 (denoting 5), 000 (denoting 0) and 011 (denoting 3).
This block of data can therefore be encoded as three values of 3 bits each. The encoded 101000011 block would be pushed into the ‘Terse’ object. (b)
Each compressed data block is described by a variable-sized block descriptor, which is preceded by a single bit. If the bit is set, the block descriptor is
identical to the previous one. If the bit is not set, a new block descriptor follows. In this scenario, bits 2 to 4 define how many bits are used per value of the
encoded block. If all three subsequent bits are set, the block descriptor is expanded to allow encoding of pixel values that require up to 64 bits. The black
square embedded in the image represents a 15 x 15-pixel scale for reference.

2 of 6 Matinyan and Abrahams -

Algorithm for diffraction and cryo-EM data compression

Acta Cryst. (2023). A79

research papers

uses two-complement format for encoding, where the negative
number is represented by the two’s complement of its absolute
value.

Files that contain TRPX data can be read directly into a
‘Terse’ object, which can be decompressed by its Terse::prolix
() member function. (A member function of a class is a
function that has its prototype within the class definition.) The
Terse::prolix () member function allows the user to specify the
location where the unpacked data will be stored, by providing
a container of the appropriate size, or an iterator, or memory
location as the argument. If a “Terse’ object contains multiple
images, any of these can be extracted by specifying its frame
number. A “Terse’ object can be unpacked into any type of
arithmetic data, including floats and doubles. However, when
pixel values of the original data require more bits than
available, they are truncated to the highest (or lowest) pixel
value in the unpacked data.

2.1.1. Block compression. TRPX compresses the data in
fixed-size blocks (Fig. 1). The pixel values of each data block
(by default 12 integral values) are stripped of their most
significant bits, provided they are all either zero (for unsigned
values), or all identical (for signed values). In the latter case,
the sign bit is maintained.

Each compressed data block is preceded by a variable-sized
block descriptor indicating the number of bits used for
encoding a single pixel value. This bit depth can vary from 0 to
64. However, lower values (requiring 0 to 6 bits, corresponding
to a dynamic range of 0 to 128) are more common than higher
values (requiring 10 to 64 bits, corresponding to a dynamic
range from 2048 to 1.8 x 10").

To optimize compression, the block descriptor has a length
of either 1, 4, 6 or 12 bits. The structure of the block descriptor
is as follows:

Bit 1. If set, the previous block descriptor is used; if not, the
descriptor is expanded with 3 more bits.

Bits 2 to 4. These indicate how many bits are used per pixel
value in the encoded block. If all three bits are set, then 7 or
more bits per pixel value are required, and the descriptor is
expanded with an additional 2 bits.

Bits 5 and 6. The first 4 header bits must be 0111. The
number encoded by bits 5 and 6 is added to decimal 7 to
determine the number of bits used to encode each value in the
block. Specifically, if bits 5 and 6 are 00, then 7 bits are used; if
they are 01, then 8 bits are used; if they are 10, then 9 bits are
used; and if they are 11, then at least 10 bits are used. If both
bits 5 and 6 are set, the header is expanded by an additional 6
bits.

Bits 7 to 12. The first 6 header bits must be 011111. The
number encoded by bits 7 to 12 is added to decimal 10 to
determine the total number of bits used to encode each value
in the block. Specifically, if bits 7 to 12 are 000000, then 10 bits
are used; if they are 110110, then 64 bits are used (i.e. 10 + 54).

While other encoding schemes are possible, this particular
one was found to be optimal for weak diffraction data and
virtually indistinguishable from others for strong diffraction
data. By using a variable-sized block descriptor and allowing
for identical descriptors to be used for adjacent blocks, the

encoding scheme can efficiently compress the data while
retaining essential information.

3. Comparative analysis of TRPX compression
algorithm with gzip, bzip2, CBF, Zstandard(zstd), LZ4
and HDF5 with gzip, LZF and bitshuffle+LZ4 filters

3.1. Test data set

Continuous-rotation electron diffraction data of an inor-
ganic crystal were collected at PSI (Villigen, Switzerland). The
diffraction experiment was carried out using a Jeol F200
transmission electron microscope with a Schottky field emis-
sion gun (FEG) and a CEOS CEFID energy filter, operated at
200 keV. The detector used was an ASI Cheetah M3 retract-
able hybrid pixel detector, which collected zero-loss data as
16-bit 512 x 512-pixel .tiff stacks. The data were acquired in
continuous, low-gain mode at a rate of 10 frames s~ while the
sample was continuously rotated at 1.4° s~*. The unstacking of
the data was performed using the EMAN?2 package (Tang et
al., 2007), resulting in 450 frames of 16-bit 512 x 512-pixel
data. The data take up 237.8 MB of disk space.

3.2. Results

We evaluated the performance of several compression
algorithms, including TRPX, gzip (compression levels = 6 and
9), crystallographic binary file (CBF), bzip2, Zstandard(zstd),
LZ4 and hierarchical data format, version 5 (HDF5) with gzip,
LZF and (bitshuffle+LZ4) filters. For the CBF file format and
the HDFS5 library, we used the Python Imaging Library
(Pillow) to rewrite the decompressed images into original .tiff
format. Our current implementation of TRPX relies on a
custom developed TIFF library to read and write .tiff files
(Appendix B). The evaluation was based on several metrics,
including compression rate, compression and decompression
speeds, and CPU utilization. Our results, obtained using a
MacBook Pro with an M1 Max processor, using a single core
in the case of TRPX, and averaged over five cycles, are
summarized below.

TRPX. The TRPX algorithm reduced the data size to
38.1 MB after compression, which corresponds to 84.0%
compression efficiency. The compression speed was 0.22 s user
time for 450 frames, with a moderate 46% CPU utilization.
The decompression speed was also fast at 0.17 s user time with
a 50% CPU utilization.

gzip. gzip compressed the data to 48.4 MB, which corre-
sponds to 79.6% compression efficiency. However, the
compression speed was relatively slow at 15.6 s user time, with
a high CPU utilization of 87%. The decompression speed was
1.29 s user time with a CPU utilization of 68%. When using
gzip with the maximum compression level of 9, the resulting
compressed data set size was reduced to 46.2 MB. However,
this increased compression level came at the cost of a signif-
icantly longer processing time.

bzip2. The bzip2 compression yielded a data size of 36 MB,
corresponding to a compression efficiency of 84.8%. The
compression time was slightly better than that of gzip, taking

Acta Cryst. (2023). A79

Matinyan and Abrahams -

3of 6

Algorithm for diffraction and cryo-EM data compression

research papers

Table 1

Compression efficiency is calculated as the percentage reduction in file size compared with the initial size.

CPU utilization refers to the percentage of CPU resources utilized during compression or decompression. Compression and decompression speeds in Gbit s~

1

relative to the original, uncompressed image size refer to ‘user time’, and exclude ‘system time’ for program initialization, memory management and I/O.
(De)compression speed without I/O overhead is the ‘wall clock time’ required for in-memory (de)compression. All tests were performed on the same hardware

and software setup.

Compression Compression Compression
efficiency speed CPU utilization
Algorithm (%) (Gbit s™") (%)
TERSE/PROLIX 84 8.6 46
gzip 79.6 0.12 87
bzip2 84.8 0.15 68
CBF 49.6 0.70 92
zstd 78.1 1.75 60
LZ4 58.8 2.6 31
HDFS5 (LZF) 59.9 0.71 40
HDFS5 (gzip) 78.6 0.46 54
HDFS (bitshuffle+LZ4) 80.6 1.5 175

Compression
speed without
1/O overhead

Decompression
speed without
1/O overhead

Decompression

Decompression CPU utilization

speed (Gbits™") (%) (Gbits™) (Gbits™)
11.1 50 9.9 135

1.46 68 0.14 3.6

0.44 58 0.19 0.62

0.40 52 32 0.83

2.48 50 2.7 7.0

5.90 40 5.6 11.8

143 67 35 5.1

129 66 0.61 2.8

1.52 163 2.8 3.1

12.75 s and requiring 68% CPU load. The decompression
process took 4.31 s and utilized 58% of the CPU load.

CBF. The CBF algorithm reduced the data size to 119.8 MB
after compression, which corresponds to 49.6% compression
efficiency. The compression speed was relatively slow at 2.68 s
user time, with a high CPU utilization of 92%. The decom-
pression speed was 4.72 s user time with a lower CPU utili-
zation of 52%.

HDF5 with LZF compression filter. The HDFS5 format with
LZF compression filter reduced the data size to 95.2 MB,
which corresponds to 59.9% compression efficiency. The
compression speed was 2.64 s user time with a moderate CPU
utilization of 40%, while the decompression speed was 1.32 s
user time, with a CPU utilization of 67%. When paired with
the gzip compression filter, the HDF?S library compressed the
data to 50.9 MB, which corresponds to 78.6% compression
efficiency. The compression speed was 4.1 s user time with a
moderate CPU utilization of 54%, while the decompression
speed was 1.46 s user time, with a CPU utilization of 66%.

zstd. The zstd algorithm with default compression level (3)
reduced the file size to 52.1 MB, which corresponds to 78.1%

90
S ¢ o2 & TRPX
by 80— o gzip & HDF5(gzip) Qr[z)zabltshufﬂeﬂzd)
8
g 70
7}
c
2 60 ® HDFS(LZF) 4 124
o
£ 50 * CBF
o
o

40 T .

0.1 1 10
Compression speed(Gbit s") log scale
(a)

Figure 2

compression efficiency. With a maximum compression level of
19, we could reach a file size of 41.2 MB at the expense of
more than 1 min (>70.0s) user time. The decompression is
faster and requires 0.76 s user time with a moderate CPU
utilization of 50%.

LZ4. The LZ4 compression scheme resulted in a
compression efficiency of 58.8% (97.9 MB). The user time was
0.73 s for 450 frames, requiring 31% CPU load. The decom-
pression was even faster (0.32 s) with a CPU load of 40%.

HDF5 with bitshuffle+ LZ4 compression filter. The bitshuffle
(Masui et al., 2015) algorithm combined with LZ4 compres-
sion implemented in HDF5plugin (Vincent et al., 2023)
resulted in a 46 MB compressed data set (80.6% compression
efficiency), requiring 1.26 s user time. In this scenario, the
HDFS5 library scaled across multiple cores, increasing the CPU
load to 175%, averaged from five trials. The decompression
requires 1.24 s user time and CPU load of 163%.

3.2.1. In-memory compression and decompression
performance. For the evaluation of in-memory compression
and decompression performance, 450 frames were loaded into
memory to eliminate I/O overhead from the calculations. The

"0 15+
3 + TRPX
o
= o Lz4
0
] 10
<
Qo
£ & zstd
3
g 54 & HDF5(LZF)
E ¢ gzip #HDF5(gzip) ¢ HDF5(bitshuffle+LZ4)
£
g # bzip2 ¢ CBF
£ 0 T T 1
0.1 1 10 100
In-memory compression (Gbit s™') log scale

®)

Scatter plots of benchmarked algorithms. (a) This scatter plot displays the compression speed (Gbit s ™) versus the compression efficiency (%), with each
point averaged over five cycles for each algorithm. (b) The second scatter plot represents the in-memory compression (excluding 1/O) and
decompression (excluding I/0) speed, averaged over 20 cycles for each algorithm. The data on the X axis are presented in a log-scale format.

4 of 6 Matinyan and Abrahams + Algorithm for diffraction and cryo-EM data compression

Acta Cryst. (2023). A79

research papers

compression and decompression times were then measured
and averaged over 20 cycles for each algorithm (Table 1).
TRPX had the fastest compression and decompression
speeds, followed by LZ4 and HDF5 (LZF). zstd, CBF and
HDFS5 (bitshuffle+L.Z4) had comparable compression speeds,
although the decompression speed was faster in the case of the
zstd scheme. gzip, HDF5 (gzip) and bzip2 had moderate
performance in both compression and decompression times.
HDF5 (gzip) was fastest among them for the in-memory
compression.

Based on the benchmark results, it is clear that the TRPX
compression algorithm outperforms other compression algo-
rithms such as gzip, bzip2, CBF, zstd, LZ4 and HDF5 with
LZF, gzip and bitshuffle+LZ4 compression filters (Fig. 2).
TRPX, together with bzip2, achieves a significantly higher
data reduction rate, while TRP X maintains faster compression
and decompression speeds. These results demonstrate the
efficiency and effectiveness of the TRPX algorithm for
compressing diffraction data, making it a valuable tool for
handling large data sets in crystallography and other fields.

3.2.2. Compression and decompression of cryo-EM data.
The TRPX algorithm was not specifically designed for cryo-
EM data, but is also very useful for this purpose. Over a test
set of 120 short-exposure frames (the raw data prior to drift
corrections), that was a dose fractionated stack using a
GATAN K3 direct electron detector in counting mode
(5760 x 4092-pixel arrays, 54 ¢ A2, 40 framess™', 4s expo-
sure time) and occupying 5.66 GB disk space, TRPX achieved
a compression rate of 85.4% (828.3 MB), requiring 8.6 s user
time, corresponding to a compression speed of 5.3 Gbit s~ .
Decompressing this data set was faster, and only took 2.8 s of
user time, corresponding to a decompression speed in excess
of 16 Gbit s'. Clearly, TRPX scales well over many data sizes.

4. Discussion

The increasing availability of high-throughput data collection
techniques in structural biology has created challenges in
handling the massive amounts of data (Mokso et al., 2017).
Different compression methods have been developed to
address these challenges, such as compressing signals with
singularities and transient phenomena, exploiting ptycho-
graphic oversampling, or reducing data based on simple
azimuthal regrouping (Ferrer et al., 1998; Loetgering et al.,
2017; Kieffer et al, 2018). The advent of LZ4 (https://
github.com/1z4/1z4), zstd (https://github.com/facebook/zstd),
with and without combination with the bitshuffle algorithm,
has made these tools valuable for compressing grayscale
integral data (Kieffer et al., 2018).

In this paper, we introduced the TRPX algorithm, a
compression method specifically designed for diffraction data.
It outperforms conventional compression techniques in terms
of compression efficiency and speed. Our initial tests show
that TRPX can almost keep up with a data stream of up to
about 2000 frames (512 x 512 pixels) s~' using a single CPU
core on a modern laptop with Apple M1 Max System on Chip.
As expected, we could verify the algorithm to be independent

of the CPU type: when tested on an AMD Ryzen 9 (7900X, 12
cores, base clock of 4.70 GHz) workstation, with WD SN850X
NVMe SSD and having a Linux kernel, TRPX compressed
450 frames in 0.18s, while the decompression speed was
0.099 s. With extra hardware and parallel processing, TRPX
can keep up with the fastest detectors available.

The generated TRPX (.trpx) files are byte-order indepen-
dent, which ensures compatibility across different hardware
architectures. A single .trpx file may hold many frames, in
order to facilitate data management and bookkeeping.
Furthermore, the compiled TRPX algorithm has a very small
footprint and can be readily implemented in hardware, such as
FPGAs (field programmable gate arrays) or ASICs (applica-
tion-specific integrated circuits), allowing for potential inte-
gration with existing data acquisition systems. This integration
can greatly enhance the real-time processing capabilities and
overall efficiency of data collection and storage in structural
biology experiments.

By providing a tailored solution to handle the specific
requirements of diffraction data, the TRPX algorithm not only
mitigates storage and transmission concerns but also facilitates
more efficient data analysis and interpretation. It aims to
improve the efficiency of data storage and transmission, while
retaining the essential information within the diffraction data.

In conclusion, further development and widespread adop-
tion of the TRPX algorithm, and its integration with user-
friendly data processing and analysis tools have the potential
to streamline the workflow for researchers working with high-
throughput diffraction data. This can ultimately accelerate
research.

APPENDIX A
Data and code availability

The TRPX compression algorithm, the associated TIFF
library and the Imagel/Fiji plugin (Appendix B) are available
in our GitHub repository (https:/github.com/Senikm/trpx.git)
under the MIT License. This permissive open-source license
allows for the free use, modification and distribution of the
software, with minimal restrictions, enabling the scientific
community and other interested parties to build upon and
integrate these resources into their own projects or workflows.

APPENDIX B
Supplementary materials

B1. TRPX C++20 code

With the open-source C++ header library, integral data
stored in any memory location can be compressed in memory
and subsequently written to disk. Also, compressed data can
be decompressed and read into any type of C++ container or
memory location, storing any type of numerical values. All
code is implemented in templated headers, with one header
file containing the Terse-object code and two header files for
XML parsing and bit manipulations.

Acta Cryst. (2023). A79

Matinyan and Abrahams -

5o0f 6

Algorithm for diffraction and cryo-EM data compression

research papers

B2. TIFF library

As an example of usage, the distributed package also
contains C++20 code for two standalone command line
executables that compress, respectively decompress, TIFF files
and TIFF stacks that have one grayscale intensity value per
pixel, as produced by Medipix Quad and other detectors.

B3. Fiji/lmageJ plugin for TRPX (.trpx) format data

The TRPX Reader plugin is designed for reading,
unpacking and visualizing image data from .trpx files in
Imagel/Fiji. The plugin reads the image data from a selected
trpx file and displays them as a grayscale image. When
executed, the plugin first prompts the user to select the data
file. Once the file is selected, the plugin reads its XML header
to obtain important parameters required for unpacking the
rpx file. Setting the dimensions is not required and if not
provided, the TRPX Reader calculates the dimensions from
the number of pixels, assuming it is a square image. Once
unpacked, the plugin creates an object with provided or
calculated dimensions, populates the object with the unpacked
data and displays the resulting image.

Acknowledgements

We would like to acknowledge Dmitry Byelov, Rick Watertor
and Ciaran Welsh from Amsterdam Scientific Instruments for
their substantial contributions to the testing and debugging of
the algorithm. Open access funding provided by Universitat
Basel.

Funding information

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Sklodowska Curie grant agreement No. 956099, and

from the Swiss National Science Foundation project grant No.
205320_201012.

References

Abrahams, J. P. (1993). Joint CCP4 and ESF-EACBM Newsletter on
Protein Crystallography, 28, 3-4.

Ferrer, J.-L., Roth, M. & Antoniadis, A. (1998). Acta Cryst. D54, 184—
199.

Hill, J., Mulholland, G., Persson, K., Seshadri, R., Wolverton, C. &
Meredig, B. (2016). MRS Bull. 41, 399-409.

Kieffer, J., Petitdemange, S. & Vincent, T. (2018). J. Synchrotron Rad.
25, 612-617.

Loetgering, L., Rose, M., Treffer, D., Vartanyants, I. A., Rosenhahn,
A. & Wilhein, T. (2017). Adv. Opt. Technol. 6, 475-483.

Masui, K., Amiri, M., Connor, L., Deng, M., Fandino, M., Hofer, C.,
Halpern, M., Hanna, D., Hincks, A. D., Hinshaw, G., Parra, J. M.,
Newburgh, L. B., Shaw, J. R. & Vanderlinde, K. (2015). Astron.
Comput. 12, 181-190.

Mokso, R., Schlepiitz, C. M., Theidel, G., Billich, H., Schmid, E.,
Celcer, T., Mikuljan, G., Sala, L., Marone, F., Schlumpf, N. &
Stampanoni, M. (2017). J. Synchrotron Rad. 24, 1250-1259.

Paton, K. A., Veale, M. C., Mu, X., Allen, C. S., Maneuski, D., Kiibel,
C., O’Shea, V., Kirkland, A. 1. & McGrouther, D. (2021).
Ultramicroscopy, 227, 113298.

Robinson, A. H. & Cherry, C. (1967). Proc. IEEE, 55, 356-364.

Stroppa, D. G., Meffert, M., Hoermann, C., Zambon, P., Bachevskaya,
D., Remigy, H., Schulze-Briese, C. & Piazza, L. (2023). Microscopy
Today, 31, 10-14.

Tang, G., Peng, L., Baldwin, P. R., Mann, D. S, Jiang, W., Rees, I. &
Ludtke, S. J. (2007). J. Struct. Biol. 157, 38-46.

Tate, M. W,, Purohit, P, Chamberlain, D., Nguyen, K. X., Hovden, R.,
Chang, C. S., Deb, P, Turgut, E., Heron, J. T., Schlom, D. G., Ralph,
D. C, Fuchs, G. D., Shanks, K. S., Philipp, H. T., Muller, D. A. &
Gruner, S. M. (2016). Microsc. Microanal. 22, 237-249.

Tolle, K. M., Tansley, D. S. W. & Hey, A. J. G. (2011). Proc. IEEE, 99,
1334-1337.

Vincent, T., Solé, V. A., Kieffer, J., Prims, O. T., Kittisopikul, M.,
Florian-g, Plaswig, F., Valls, V., Klein, J., Gerstel, M., Junyuewang &
payno (2023). silx-kit/hdfSplugin: 4.1.3: 16/06/2023 Zenodo. https://
zenodo.org/record/8047413.

6 of 6 Matinyan and Abrahams -

Algorithm for diffraction and cryo-EM data compression

Acta Cryst. (2023). A79

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5031&bbid=BB14

