
The BrainScaleS-2 Neuromorphic Platform
A Report on the Integration and Operation of an

Open Science Hardware Platform within EBRAINS

Eric Müller∗†, Arne Emmel†, Björn Kindler†, Christian Mauch†,

Elias Arnold†, Jakob Kaiser†, Jan V. Straub†, Johannes Weis†,

Joscha Ilmberger†, Julian Göltz†§, Luca Blessing†, Milena

Czierlinski†, Moritz Althaus†, Philipp Spilger†, Raphael Stock†,

Sebastian Billaudelle†, Tobias Thommes†, Yannik Stradmann†,

Christian Pehle‡†, Mihai A. Petrovici§, Sebastian Schmitt¶,

Johannes Schemmel†

September 27, 2023

1 Introduction

Neuromorphic systems open up opportunities to explore brain-inspired questions that

are inaccessible to software simulations. In addition, the combination of deep learning

and neuromorphic hardware promises efficiency gains in traditional artificial intelligence

(AI) applications. However, neuromorphic hardware has traditionally been difficult to

approach and use, even more so for hybrid systems that couple an accelerated analog

architecture, where analog circuits emulate biological cell dynamics in accelerated con-

tinuous time, with programmability, e.g., for flexibility in implementing plasticity rules.

∗mueller@kip.uni-heidelberg.de
†Kirchhoff-Institute for Physics (European Institute for Neuromorphic Computing),
Heidelberg University, Germany

‡Cold Spring Harbor Laboratories, USA
§Department of Physiology, University of Bern, Switzerland
¶Third Institute of Physics, University of Göttingen, Germany

1

mailto:mueller@kip.uni-heidelberg.de

This report presents the challenges and our solutions gained during Specific Grant Agree-

ment 3 (SGA3), and the overall progress leading to this state at the end of the Human

Brain Project (HBP). In summary, this document is an extension of deliverable D6.3

with details and application examples.

2 Methods

In this section we discuss the methodological results that have transformed BrainScaleS-

2 (BSS-2) from a lab system into a public science platform. First, general platform

operation and parameterization aspects are discussed. Finally, we summarize the work

on BSS-2 integration into the EBRAINS Software Distribution.

2.1 Hardware Platform

Each BSS-2 application-specific integrated circuit (ASIC) is accompanied by a field-

programmable gate array (FPGA) for real-time experiment control and execution, as

well as peripheral circuitry for power delivery and system monitoring. The setups are

connected to conventional compute nodes via 1Gb Ethernet and a transport layer pro-

tocol implemented in software and on the FPGA. We utilize an additional ARM-based

controller per system, which hosts a remote procedure call (RPC)-based service for pow-

ering, configuring and monitoring the FPGAs. This allows remote maintenance and

automated hardware test execution with a freely selectable FPGA configuration for

regression tests and test-driven development. Through continuous monitoring, health

checks and regression tests, this system architecture allows us to operate the BSS-2

platform robustly throughout all phases of its life cycle. Automatic health checks are

performed on idle hardware on a 30-minute time grid, to validate and monitor hardware

function.

2.2 Platform Operation

Transforming the BSS-2 neuromorphic systems from intricate lab setups to more user-

friendly backends for executing spiking neural networks poses several challenges. Access

for multiple users to a limited amount of hardware resources needs to be managed in a

reliable and reproducible fashion, while still allowing low-latency interactive experiment

execution or iterative reconfiguration and thereby fully utilizing the high acceleration

factor of the system.

2

To address these challenges, an experiment micro scheduler, quiggeldy, was devel-

oped, enabling access to hardware while efficiently managing concurrent usage from

different users. The scheduler decouples hardware utilization from surrounding compu-

tations, supporting job execution rates of 10Hz and faster. It tracks and —if needed—

reapplies the configuration state of individual experiments allowing for seamless inter-

leaving of iterative hardware executions. The experiment service is monitored, and in

case of malfunction automatic reset mechanisms restore functionality.

Additionally, a Spack (Gamblin et al., 2015) bundle package is utilized to track soft-

ware dependencies and versions needed for neuromorphic hardware experiments, facili-

tating easier distribution through automatically built containers. This software packag-

ing methodology was contributed to the EBRAINS research infrastructure (EBRAINS

Research Infrastructure 2022), resulting in a Spack-based software deployment — the

EBRAINS Software Distribution — in the Jupyter-based EBRAINS collab environment

and on multiple high-performance computing (HPC) sites. This approach fosters multi-

site workflows involving both neuromorphic hardware and traditional high-performance

computing (HPC) within the EBRAINS platform. The integration of the BSS-2 hard-

ware into this infrastructure ensures a low-threshold entry point for the neuroscience

community, while sustainable software development practices ensure the long-term us-

ability of the accelerated neuromorphic research platform.

2.3 Parameter Transformation & Calibration

All analog circuitry on each BSS-2 chip needs to be set to the operating point desired

for a specific application. Regarding the neurons, 8 voltages and 16 currents need to

be configured for each individual instance, covering a wide range of configurability (Bil-

laudelle et al., 2022). To achieve that, we calibrate one parameter at a time, such that

the observed behavior of the circuit matches a given target. The individual parameter

calibrations are combined into user-facing functions that configure the whole chip for,

e. g., leaky integrate-and-fire (LIF) neuron operation, taking into account dependencies

between the parameters.

Fundamentally, each neuron can have different target operating points, and will then

be given different bias parameters by the calibration. On top of that, calibration needs

to counter device-specific fixed-pattern variations between similar instances, that arise

as a result of manufacturing tolerances. For each parameter, we state a feasible range of

targets, meaning all neurons are able to reach these targets even when they need to com-

pensate for these fixed-pattern variations. Targets are given in hardware domain units.

Translating biologically sensible operating points to the hardware domain fundamentally

3

means finding common scaling factors for voltages and time constants, respectively, such

that they all coincide with the feasible ranges.

The calibration framework calix is included in the EBRAINS software release. It is

possible to use nightly-deployed default calibrations, or perform calibrations for custom

targets as required taking a few minutes. Custom calibration results are cached to avoid

involuntary recalibration.

2.4 EBRAINS Software Distribution

The BrainScaleS (BSS) software development generally follows a rolling release, or ‘sta-

ble HEAD’, development scheme, but for releases of the EBRAINS Software Distribu-

tion, additional release branches have been introduced to ensure a stable user environ-

ment within EBRAINS. The BrainScaleS systems, running in Heidelberg, are accessi-

ble for batch (BrainScaleS-1 (BSS-1) & BSS-2) and for interactive use (BSS-2 only)

from the EBRAINS Research Infrastructure Jupyter Lab. Example Jupyter notebooks

are executed nightly via the system maintained by the Technical Coordination team

(ATHENA), which simulates the operation of the notebooks via a browser, i.e. seeing

the notebooks like a user of the EBRAINS JupyterLab instance, thus testing the full end-

to-end communication flow: User/Browser ↔ Juypter web frontend at CSCS ↔ Jupyter

notebook instance ↔ experiment services in Heidelberg ↔ hardware control systems in

Heidelberg ↔ BrainScaleS-2 neuromorphic systems in Heidelberg. Software changes are

validated using an extensive test suite that is automatically evaluated by the Continuous

Integration (CI) system, and fed back into Code Review as a pass/fail condition, and,

if successful and together with a positive manual review, trigger an automatic deploy-

ment of a new version; thus, the software development follows a rolling release scheme.

Changes to the hardware design are validated against a system simulation. This enables

true co-design of software and hardware components.

3 Results

In this section we demonstrate the capabilities of the BSS-2 platform. We provide doc-

umentation and interactively executable tutorials that can be explored by all EBRAINS

users. In addition to its versatile application in the field of spiking neural networks

(SNNs) shown in the following sections, the BSS-2 system is also capable of performing

vector matrix multiplication in the analog domain. This feature facilitates research on

the application of analog accelerators for classical deep learning models. For details

on this mode of operation, we refer to the corresponding publications from internal as

4

well as external collaborators (Spilger et al., 2020; Weis et al., 2020; Klein et al., 2021;

Stradmann et al., 2022).

3.1 Complex Firing Patterns

The LIF model has become the de facto standard abstraction level in many applications

ranging from computational neuroscience to biology-inspired machine intelligence. It in-

corporates the fundamental principles of somatic integration as well as the central dogma

of spike-based communication. More complex neuronal dynamics, however, typically re-

quire both nonlinear membrane dynamics and a second state variable. The adaptive

exponential leaky integrate-and-fire (AdEx) model (Gerstner and Brette, 2009), extends

the simple LIF equation by an exponential feedback current mimicking the onset of the

action potential and an adaptation term acting on timescales typically much longer than

the membrane dynamics.

BrainScaleS-2 provides an accurate emulation of the AdEx equations (Billaudelle et al.,

2022) which is capable of reproducing all firing patterns originally analyzed by Naud et al.

(2008), including adaptating, bursting, and bistable behavior. Billaudelle et al. (2022)

demonstrated programmatically calibrated silicon AdEx dynamics using the original

parameter sets assembled by Naud et al. (2008). In addition, we provide an interactive

Jupyter notebook for EBRAINS users, see Figure 1.

3.2 Multi-compartmental Neuron Models

Biological neurons receive the majority of inputs at their dendrites. These inputs are not

merely propagated to the somatic spike initiation zone but are transformed by the passive

and active properties of the dendritic tree and can for example elicit dendritic spikes

(Larkum et al., 1999; Schiller et al., 2000). Consequently, the morphology of neurons is

assumed to play an important role in the computational capabilities of neurons (London

and Häusser, 2005; Major et al., 2013; Poirazi and Papoutsi, 2020).

Multi-compartmental neuron models discretize the complex morphology of neurons in

space and allow simulating their behavior (Rall, 1959). On BSS-2, several neuron circuits

can be combined with adjustable resistors to form multi-compartmental neuron models

(Kaiser et al., 2022). Each of the compartments in these neurons supports dendritic

spikes; this includes sodium-like spikes as well as plateau potentials.

The BSS-2 software stack (Müller et al., 2020) supports the definition of multi-

compartmental neuron models in the PyNN (Davison et al., 2009) language, allowing

easy access to the modeling capabilities of the BSS-2 hardware system.

5

Figure 1: Jupyter Notebook to explore the BSS-2 neuron circuit parameter space. All
visible traces have been recorded from the system. The AdEx hardware neu-
rons are configured to a ‘bursting’ state. Users can interactively change hard-
ware parameters and get instantaneous feedback from the system.

Two demo notebooks on EBRAINS demonstrate how multi-compartmental neurons

can be modeled on BSS-2.

3.3 Programmable Plasticity

The on-chip single instruction, multiple data (SIMD) central processing units (CPUs)

allow for implementation of (in principle) arbitrary plasticity algorithms. The cross-

compilation toolchain developed in Müller et al., 2022 is used to compile freestanding

kernel programs written in C++ and includes access to low-level hardware abstraction

data structures.

Using programmable plasticity with high-level network topology and experiment de-

scriptions requires common data formats for the network component location information

6

(e.g., of the placement of synapses on the hardware) and the description of plasticity

execution dynamics. We developed this integration into the data flow graph-based exper-

iment descriptions and execution as well as into the PyNN front-end language in Spilger

et al., 2023b.

There, plasticity is treated as a property of network elements like neurons or synapses.

Figure 2 shows the developed Application Programming Interface (API). At runtime,

the algorithm function is supplied with location information of the network entities

generated by the experiment description layer. Using this location information ensures

no unrelated network parameters are altered by the plasticity program. Therefore, we

integrate programmable plasticity into the high-level user interface while relieving the

user from network entity placement translation to the plasticity algorithm as well as

scheduling of the plasticity execution.

PyNN

class PlasticityRule:

def __init__(

self,

timer,

observables):

...

def generate_kernel(self) -> str:

"""

Generate plasticity rule kernel.

:return: Kernel as string.

"""

...

user code

class MyPlasticityRule(PlasticityRule):

...

PyNN.Projection(

...,

synapse_type=MyPlasticityRule(

...)

)

Figure 2: Plasticity API integrated into PyNN. The user supplies a plasticity algorithm
function written in C++, which is just-in-time compiled by the experiment
execution layer. The plasticity algorithm’s execution is timed and supports
one-shot or periodic execution.

3.3.1 Pursuit Task

We demonstrate plasticity by learning a Pong-inspired game based on reward-modulated

spike-timing-dependent plasticity (STDP), see Figure 3. We use an approach similar to

T. Wunderlich et al. (2019), where the network uses random noise to explore and it

learns by applying STDP weight updates only when the reward increases, i.e., when the

network performs better than before.

The vertical position of the Pong ball is encoded as a spike train to a specific synapse

7

row, and the Pong paddle will move to the position encoded by the most-active neuron.

The network can learn to play a perfect game by simply tracking the ball with the paddle

at all times, using a diagonal matrix, see top plot in Figure 3.

Training the network involves two plasticity functions: One that handles the random

noise required for exploration, where we simply configure a clipped normal distribution

in a row of synapse weights; and one that uses the neurons’ spike counters to compute a

reward, reads out correlation data, and finally computes weight updates for the network.

The two plasticity rules are applied to two separate projections in our PyNN-based

network description, and are configured to run at specific times: before and after the

spikes encoding the ball position are sent, respectively.

Since the whole experiment is defined in PyNN, it is easy to run it on the EBRAINS

platform. We provide a demo notebook on EBRAINS, containing training and an ani-

mation of the chip playing the game as learned so far, see Figure 3 for a visualization.

3.4 Machine Learning-Inspired Modeling

Typical hardware devices used in machine learning (ML) tasks are considered energy

consumptive, in part due to the well-performing but energy-hungry deep learning algo-

rithms (Schwartz et al., 2020). Biologically-inspired hardware and learning algorithms

promise to alleviate this issue by providing means for energy-efficient computing. To this

end, novel neuromorphic hardware has to prove itself competitive in terms of scalability,

performance, and user-friendliness.

In the following sections we showcase gradient-based ML on different tasks with the

backpropagation-through-time (BPTT) and EventProp learning algorithm with BSS-2

in-the-loop (ITL), see Figure 4A. For hardware ITL learning, we use high-level PyTorch-

based or JAX-based software frameworks.

3.4.1 Surrogate Gradient

Time-discretized SNNs are commonly trained with BPTT by utilizing surrogate gradi-

ents (SGs) to account for the non-differentiable spike events (Neftci et al., 2019). Unlike

the EventProp algorithm in Section 3.4.3, this learning approach relies on the obser-

vation of both spikes and membrane potentials of the SNN. On BSS-2, the membrane

potentials of the neurons can be recorded with the CADC, read out by the host com-

puter after the SNN has been emulated on-chip, and used to estimate a hardware-aware

gradient for the computation of weight updates.

SG-based training on BSS-2 has been demonstrated successfully on multiple tasks.

8

Figure 3: Jupyter Notebook demonstrating on-chip learning on BSS-2. We apply
reward-modulated STDP to learn a pursuit task. Users can change network
parameterization, and modify the learning rule.

We classify the Yin-Yang dataset (Kriener et al., 2022) (see Figure 4C) on BSS-2 with

an SNN with 120 hidden LIF neurons (Spilger et al., 2023a) as shown in Figure 4C. The

experiment is implemented in the hxtorch (Spilger et al., 2023a) software framework,

facilitating the definition of SNNs models on BSS-2 while harnessing PyTorch’s auto-

differentation mechanism. Most importantly, the software allows estimating gradients

of the network parameters on BSS-2 based on hardware observations. The experiment

software is available as jupyter notebook on the EBRAINS platform. In Arnold et al.

(2023), we have trained an SNN on BSS-2 for demapping symbols to bits transmitted

in an optical IM/DD link. Further surrogate gradient-based learning on BSS-2 can be

found in (Cramer et al., 2022a), where the MNIST (LeCun and Cortes, 1998) and the

9

A

B

tearly tlate T

x

y

1 − x

1 − y

bias

119

:

0

V
O [a.u.]

C
Input

120 LIF

Output LI

0 1
x

0

1

y

D E

Figure 4: (A) EventProp ITL training scheme. Taken from (Althaus, 2023). (B)
Schematic of the hardware-in-the-loop method: in forward direction, we record
hardware output and state variables; in backward direction, we calculate gra-
dient estimates and update the hardware configuration. Taken from (Pehle
et al., 2023). (C) Example inference of a sample from the Yin-Yang dataset
on BSS-2. Taken from (Pehle et al., 2023). (D) Three-class Yin-Yang dataset.
(E) Partitioning of a large-scale network for sequential execution on BSS-2.
Taken from (Straub, 2023).

Spiking Heidelberg Digits (SHD) (Cramer et al., 2022b) datasets were classified.

3.4.2 Fast and Deep

In contrast to the inherently approximative training method of SGs, we described an

exact training method for networks of LIF neurons based only on spike times (Göltz et

al., 2021). In simulation, this method can train networks to a high accuracy on typical

image classification tasks like MNIST (LeCun and Cortes, 1998) or the Yin-Yang data

set (Kriener et al., 2022). We studied the robustness of the algorithm to substrate effects

like parameter variation or weight discretisation in detail. Despite being derived under

a limiting assumption, the method is not limited to perfect substrates but instead deals

10

well with simulated imperfections of a substrate.

The robustness of the algorithm was confirmed when training networks on the analog

neuromorphic hardware BSS-2. The accuracy achieved on the Yin-Yang and MNIST

datasets is as good as in simulation. In part due to the chosen encoding of information,

the classification decision is reached within a short amount of time, allowing us to deliver

on the promise of fast and energy-efficient computation on neuromorphic hardware: We

reach a high throughput of over 20 000 Images/s while the analog chip consumes about

175mW.

We have started a comparison of the three methods described in Sections 3.4.1 to 3.4.3

and are in the process of pinpointing the conceptual as well as practical differences (Göltz

et al., 2023).

3.4.3 EventProp

The EventProp learning algorithm (T. C. Wunderlich and Pehle, 2021) is a backpropaga-

tion algorithm for neural networks built from spiking LIF neurons. Derived in continuous

time for a general loss function, the algorithm computes exact gradients and only depends

on observations at spike times (see Figure 4A). This makes the algorithm event-based

by design and therefore fundamentally appealing for an energy-efficient implementation

on the BSS-2 hardware.

To enable the integration of EventProp in standard machine learning frameworks such

as PyTorch, a time-discretized version of the algorithm has been implemented within the

hxtorch framework. To assess the effectiveness of the discretized EventProp algorithm,

experiments were conducted on the Yin-Yang dataset (Kriener et al., 2022). Notably,

the achieved results demonstrate performance comparable to previous ITL training ap-

proaches carried out on the BSS-2 hardware platform (Pehle et al., 2023). While the

other approaches either use surrogate gradients or explicit gradient expressions for spe-

cial cases of neuron time constants (see Section 3.4.2), the time-discretized EventProp

approach doesn’t limit the choice of time constants while approximating the exact gra-

dient reasonably well (see Pehle et al. (2023)).

3.4.4 Event-based Optimization

Most software libraries for the simulation of SNNs discretize time into fixed-size bins (see

Section 3.4.3), resulting in a loss of information regarding the precise timing of spikes.

Capturing the temporal dynamics of SNNs more precisely and better representing nu-

merical operations is motivation enough for an event-based software library. In addition,

11

the BSS-2 system is an inherently asynchronous device, that operates with high time

resolution. Therefore, we have been developing the jaxsnn framework. It can simulate

SNNs in a time-continuous manner and is based on JAX (Bradbury et al., 2022), which

is a Python library for ML and composable function transformations. jaxsnn provides

core functionality and data structures for event-based simulation and gradient-based

learning in SNNs, and supports SNN emulation on the BSS-2 system.

A time-continuous version of the EventProp algorithm was implemented on top of

event-based data structures. The correctness of the implementation was verified with

experiments on the Yin-Yang dataset, and the results of previous time-discrete simula-

tions were exceeded. An interface to the BSS-2 system was developed that efficiently

supports sparse observations, e.g. spike events, from the analog neuromorphic hard-

ware for ITL training. The achieved results are comparable to previous results of ITL

training on BSS-2 and demonstrate the feasibility of the event-based approach. As the

event data structures in software closely match the representation of spikes on BSS-2,

expensive data transformations are minimized.

Further, forward and backward compute graphs can be created in jaxsnn and in-

dependently invoked with data. This contrasts to PyTorch, which typically executes

models eagerly when an operation is invoked and therefore builds up the network graph

incrementally. jaxsnn presents one of the first approaches for fully event-based, time-

continuous gradient-learning in SNNs.

3.5 Partitioning of Larger-Scale Networks

The experiments and methods considered in Section 3.4 focus on network topologies

fitting on a single BSS-2 instance. However, real-world applications often require net-

work sizes exceeding the resources on BSS-2. To realize large-scale spiking feed-forward

neural networks (SFNNs) BSS-2, the network needs to be partitioned and the partitions

executed sequentially. This can be realized with hxtorch.snn.

Larger networks typically exceed both, the synaptic and neuronal resources, since the

fan out of one layer constitutes the fan-in of a subsequent layer. Each neuron circuit on

BSS-2 has a fan-in of 256 which limits the size of the previous layer to the same number

in case of dense projections. To alleviate this constraint, multiple neuron circuits can be

connected to a larger logical neuron, thereby increasing the realizable fan-in of a single

logical neuron. Consequently, less logical neurons fit on BSS-2, possibly inducing an

increase in the number of needed partitions.

To demonstrate the means of partitioned network execution on BSS-2, we train a

22×22 MNIST dataset (LeCun and Cortes, 1998) with an SNN consisting of 256 hidden

12

LIF neurons, receiving input from 484 inputs, and projecting their events onto 10 readout

leaky integrator (LI) neurons (see Figure 4E). Each neuron in the hidden layer is realized

by 4 connected neuron circuits on BSS-2, allowing for the (signed) fan-in of 484 and

128 neurons on a single execution. Hence, the given SNN can be partitioned into three

partitions, where the hidden layer is represented by the first two partitions, see Figure 4E.

We achieve similar classification accuracies as in Cramer et al. (2022a).

3.6 Multi-Chip

Section 3.5 has presented methods and experiments addressing the problem of network

models, larger than fitting on a BSS-2 single-chip system. Besides executing partitions

of the network model sequentially on the same chip, the more general approach is to

interconnect multiple BSS-2 chips and communicate spike events directly between the

BSS-2 ASICs. Thereby, the whole network model can be executed in parallel on multiple

chips. As demonstrated in Thommes et al. (2022), this can be achieved on the existing

hardware platform using the FPGAs and the EXTOLL high performance interconnection

network technology, offering high message rates at very low latencies and high bandwidth

(Nüssle et al., 2009b; Nüssle et al., 2009a).

Generally, the main challenge about communicating spike events between accelerated

neuromorphic chips is to do so with transmission latency and jitter (i.e. latency variation)

as low as possible. Thereby, jitter is the more strict constraint, as it will directly affect

the performance of learning rules depending on precise spike timing. In our BSS-2

implementation, the jitter is minimised by transmitting an arrival deadline timestamp

in units of a globally synchronised system time (systime) counter and delaying events

at their destination FPGA until that timestamp becomes current with respect to the

systime. As single spike events carry only small amounts of information, it is necessary

to aggregate multiple of them into larger network packets towards a common destination.

Thereby the header overhead, i.e. the share of bandwidth only used for network protocol

information, is minimised. Figure 5a shows the course of some spike events through the

communication FPGAs and the EXTOLL network in BSS-2. As a first experiment, we

implemented a synfire chain, see Kremkow et al. (2010) for the original model, jumping

multiple times across the network border between two BSS-2 ASICs (see Figure 5b).

Results of this experiment are shown in Figure 5c and d. For low weights of the inhibitory

projections inside each chain link, the activity (especially in the inhibitory populations)

can be seen to disperse over time with every hop through the chain. The latency in the

activity jumping between chain links across the network border can be seen to be larger,

but still comparable in order of magnitude to the latency between chain links on the

13

same chip.

(a)

(b)

(c) (d)

Figure 5: (a) Packet-based BSS-2 spike event communication. On the left, ASIC 1
produces events for ASIC 2 on the right, where they can excite target neurons
to emit new spikes in turn. Time numbers are given in hardware units with
a speedup factor of 103. (b) Population projection graph of a synfire chain
network spanning two BSS-2 ASICs. The excitatory populations will generally
excite all neurons at the next chain link, while the inhibitory populations will
inhibit the excitatory neurons at their own chain link. This synfire chain is
broken into several parts which are connected back and forth between the two
BSS-2 chips. Activity is started through a stimulus projection at an excitatory
input population on ASIC 1. Resulting activity diagrams of the synfire chain
experiment with low (c) and high (d) weights at the inhibitory projections. The
neuron identifiers are chip-local labels, and the respective spikes are plotted on
the same axis using different colors. The time axis is given in bio units using
a typical scaling factor of 103.

14

4 Discussion

In this document, we have outlined the challenges and solutions we encountered during

the integration of BrainScaleS-2 (BSS-2) into the EBRAINS ecosystem. The goal was

to provide accelerated neuromorphic BSS-2 systems as an open scientific platform, and

to offer easy access to the hardware substrate for potential users. We were able to

benefit from the developments made for the previous BrainScaleS-1 (BSS-1) wafer-scale

system, especially in the operation of a large hardware installation, the methodology for

encapsulating user experiments, ensuring hardware and service stability, and monitoring

system usage.

To enable new users to be able to use the platform productively, and to support

users to make progress, especially in the areas of computational neuroscience and bio-

inspired machine learning, we have developed novel methods and libraries to minimize

system usage complexity. We have demonstrated BSS-2 hardware capabilities targeting

bio-inspired research, such as complex neuronal dynamics, or programmable (online)

plasticity, as well as the use of the system in various machine learning inspired environ-

ments. To make the flexibility and breadth of use of the neuromorphic substrate more

accessible to the user community, we provide executable documentation in the form of

tutorials for this purpose.

Acknowledgments

The presented work has received funding from the EC Horizon 2020 Framework Pro-

gramme under grant agreements 720270, 785907, and 945539 (HBP), the Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excel-

lence Strategy EXC 2181/1-390900948 (Heidelberg STRUCTURES Excellence Cluster),

the German Federal Ministry of Education and Research (BMBF) under grant num-

ber 16ES1127 (Pilotinnovationswettbewerb Energieeffizientes KI-System), the Helmholtz

Association’s Initiative and Networking Fund under project number SO-092 (Advanced

Computing Architectures, ACA), the Manfred Stärk Foundation and the Lautenschläger-

Forschungspreis 2018 for Karlheinz Meier.

15

References

Moritz Althaus (2023). “Efficient Software for Event-based Optimization on Neuromor-

phic Hardware”. Master thesis. Ruprecht-Karls-Universität Heidelberg.

Elias Arnold, Georg Böcherer, Florian Strasser, Eric Müller, Philipp Spilger, Sebas-

tian Billaudelle, Johannes Weis, Johannes Schemmel, Stefano Calabrò, and Maxim

Kuschnerov (2023). “Spiking Neural Network Nonlinear Demapping on Neuromorphic

Hardware for IM/DD Optical Communication”. In: Journal of Lightwave Technology,

pp. 1–8. doi: 10.1109/JLT.2023.3252819.

Sebastian Billaudelle, Johannes Weis, Philipp Dauer, and Johannes Schemmel (2022).

“An accurate and flexible analog emulation of AdEx neuron dynamics in silicon”.

In: 2022 29th IEEE International Conference on Electronics, Circuits and Systems

(ICECS), pp. 1–4. doi: 10.1109/ICECS202256217.2022.9971058.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,

Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-

Milne, and Qiao Zhang (2022). JAX: composable transformations of Python+NumPy

programs. Version 0.3.25. url: http://github.com/google/jax.

Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Grübl,

Vitali Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes

Weis, et al. (2022a). “Surrogate gradients for analog neuromorphic computing”. In:

Proceedings of the National Academy of Sciences 119.4. doi: 10.1073/pnas.2109194119.

Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke

(2022b). “The Heidelberg Spiking Data Sets for the Systematic Evaluation of Spiking

Neural Networks”. In: IEEE Transactions on Neural Networks and Learning Systems

33.7, pp. 2744–2757. doi: 10.1109/TNNLS.2020.3044364.

Andrew P. Davison, Daniel Brüderle, Jochen Eppler, Jens Kremkow, Eilif Muller, Dejan

Pecevski, Laurent Perrinet, and Pierre Yger (2009). “PyNN: a common interface for

neuronal network simulators”. In: Front. Neuroinform. 2.11. doi: 10.3389/neuro.

11.011.2008.

EBRAINS Research Infrastructure (2022). url: https://ebrains.eu.

Todd Gamblin, Matthew LeGendre, Michael R. Collette, Gregory L. Lee, Adam Moody,

Bronis R. de Supinski, and Scott Futral (2015). “The Spack Package Manager: Bring-

ing Order to HPC Software Chaos”. In: Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis. SC ’15. Austin,

Texas: ACM, 40:1–40:12. isbn: 978-1-4503-3723-6. doi: 10.1145/2807591.2807623.

16

https://doi.org/10.1109/JLT.2023.3252819
https://doi.org/10.1109/ICECS202256217.2022.9971058
http://github.com/google/jax
https://doi.org/10.1073/pnas.2109194119
https://doi.org/10.1109/TNNLS.2020.3044364
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/neuro.11.011.2008
https://ebrains.eu
https://doi.org/10.1145/2807591.2807623

Wulfram Gerstner and Romain Brette (2009). “Adaptive exponential integrate-and-fire

model”. In: Scholarpedia 4.6, p. 8427. doi: 10.4249/scholarpedia.8427.

Julian Göltz, Sebastian Billaudelle, Laura Kriener, Luca Blessing, Christian Pehle, Eric

Müller, Johannes Schemmel, and Mihai A. Petrovici (2023). “Gradient-based methods

for spiking physical systems”. In: International conference on neuromorphic, natural

and physical computing (NNPC). arXiv: 2309.10823 [q-bio.NC].

Julian Göltz, Laura Kriener, Andreas Baumbach, Sebastian Billaudelle, Oliver Bre-

itwieser, Benjamin Cramer, Dominik Dold, Ákos Ferenc Kungl, Walter Senn, Johannes

Schemmel, Karlheinz Meier, and Mihai A. Petrovici (2021). “Fast and energy-efficient

neuromorphic deep learning with first-spike times”. In: Nature Machine Intelligence

3.9, pp. 823–835. doi: 10.1038/s42256-021-00388-x.

Jakob Kaiser, Sebastian Billaudelle, Eric Müller, Christian Tetzlaff, Johannes Schemmel,

and Sebastian Schmitt (2022). “Emulating dendritic computing paradigms on analog

neuromorphic hardware”. In: Neuroscience 489, pp. 290–300. issn: 0306-4522. doi:

10.1016/j.neuroscience.2021.08.013. url: https://www.sciencedirect.com/

science/article/pii/S0306452221004218.

Bernhard Klein, Lisa Kuhn, Johannes Weis, Arne Emmel, Yannik Stradmann, Johannes

Schemmel, and Holger Fröning (2021). “Towards Addressing Noise and Static Varia-

tions of Analog Computations Using Efficient Retraining”. In: Machine Learning and

Principles and Practice of Knowledge Discovery in Databases. Cham: Springer Inter-

national Publishing, pp. 409–420. isbn: 978-3-030-93736-2. doi: 10.1007/978- 3-

030-93736-2_32.

J. Kremkow, L.U. Perrinet, G.S. Masson, and A. Aertsen (2010). “Functional conse-

quences of correlated excitatory and inhibitory conductances in cortical networks.”

In: J Comput Neurosci 28, pp. 579–594.

Laura Kriener, Julian Göltz, and Mihai A. Petrovici (2022). “The Yin-Yang Dataset”.

In: Neuro-Inspired Computational Elements Conference. NICE 2022. Virtual Event,

USA: Association for Computing Machinery, pp. 107–111. isbn: 9781450395595. doi:

10.1145/3517343.3517380.

M. E. Larkum, J. J. Zhu, and B. Sakmann (Mar. 1999). “A new cellular mechanism

for coupling inputs arriving at different cortical layers”. In: Nature 398, pp. 338–341.

issn: 0028-0836. doi: 10.1038/18686.

Yann LeCun and Corinna Cortes (1998). The MNIST database of handwritten digits.

M. London and M. Häusser (2005). “Dendritic computation”. In: Annu. Rev. Neurosci.

28, pp. 503–532. doi: 10.1146/annurev.neuro.28.061604.135703.

17

https://doi.org/10.4249/scholarpedia.8427
https://arxiv.org/abs/2309.10823
https://doi.org/10.1038/s42256-021-00388-x
https://doi.org/10.1016/j.neuroscience.2021.08.013
https://www.sciencedirect.com/science/article/pii/S0306452221004218
https://www.sciencedirect.com/science/article/pii/S0306452221004218
https://doi.org/10.1007/978-3-030-93736-2_32
https://doi.org/10.1007/978-3-030-93736-2_32
https://doi.org/10.1145/3517343.3517380
https://doi.org/10.1038/18686
https://doi.org/10.1146/annurev.neuro.28.061604.135703

Guy Major, Matthew E. Larkum, and Jackie Schiller (July 2013). “Active properties

of neocortical pyramidal neuron dendrites”. In: Annual Review of Neuroscience 36,

pp. 1–24. issn: 1545-4126. doi: 10.1146/annurev-neuro-062111-150343.

Eric Müller, Elias Arnold, Oliver Breitwieser, Milena Czierlinski, Arne Emmel, Jakob

Kaiser, Christian Mauch, Sebastian Schmitt, Philipp Spilger, Raphael Stock, Yan-

nik Stradmann, Johannes Weis, Andreas Baumbach, Sebastian Billaudelle, Benjamin

Cramer, Falk Ebert, Julian Göltz, Joscha Ilmberger, Vitali Karasenko, Mitja Klei-

der, Aron Leibfried, Christian Pehle, and Johannes Schemmel (2022). “A Scalable

Approach to Modeling on Accelerated Neuromorphic Hardware”. In: Front. Neurosci.

16. issn: 1662-453X. doi: 10.3389/fnins.2022.884128. arXiv: 2203.11102 [cs.NE].

Eric Müller, Christian Mauch, Philipp Spilger, Oliver Julien Breitwieser, Johann Klähn,

David Stöckel, Timo Wunderlich, and Johannes Schemmel (Mar. 2020). Extending

BrainScaleS OS for BrainScaleS-2. Tech. rep. Heidelberg, Germany: Electronic Vi-

sion(s), Kirchhoff Institute for Physics, Heidelberg University, Germany. doi: 2003.

13750.

Richard Naud, Nicolas Marcille, Claudia Clopath, and Wulfram Gerstner (Nov. 2008).

“Firing patterns in the adaptive exponential integrate-and-fire model”. In: Biological

Cybernetics 99.4, pp. 335–347. doi: 10.1007/s00422- 008- 0264- 7. url: http:

//dx.doi.org/10.1007/s00422-008-0264-7.

Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke (2019). “Surrogate gradient

learning in spiking neural networks: Bringing the power of gradient-based optimization

to spiking neural networks”. In: IEEE Signal Processing Magazine 36.6, pp. 51–63.

doi: 10.1109/MSP.2019.2931595.

Mondrian Nüssle, Benjamin Geib, Holger Fröning, and Ulrich Brüning (Dec. 2009a).

“An FPGA-based custom high performance interconnection network”. In: 2009 Inter-

national Conference on Reconfigurable Computing and FPGAs. IEEE, pp. 113–118.

doi: 10.1109/ReConFig.2009.23.

Mondrian Nüssle, Martin Scherer, and Ulrich Brüning (Sept. 2009b). “A resource opti-

mized remote-memory-access architecture for low-latency communication”. In: 2009

International Conference on Parallel Processing. IEEE, pp. 220–227. doi: 10.1109/

ICPP.2009.62.

Christian Pehle, Luca Blessing, Elias Arnold, Eric Müller, and Johannes Schemmel

(2023). Event-based Backpropagation for Analog Neuromorphic Hardware. arXiv: 2302.

07141 [q-bio.NC].

18

https://doi.org/10.1146/annurev-neuro-062111-150343
https://doi.org/10.3389/fnins.2022.884128
https://arxiv.org/abs/2203.11102
https://doi.org/2003.13750
https://doi.org/2003.13750
https://doi.org/10.1007/s00422-008-0264-7
http://dx.doi.org/10.1007/s00422-008-0264-7
http://dx.doi.org/10.1007/s00422-008-0264-7
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/ReConFig.2009.23
https://doi.org/10.1109/ICPP.2009.62
https://doi.org/10.1109/ICPP.2009.62
https://arxiv.org/abs/2302.07141
https://arxiv.org/abs/2302.07141

Panayiota Poirazi and Athanasia Papoutsi (June 2020). “Illuminating dendritic function

with computational models”. In: Nature reviews. Neuroscience 21, pp. 303–321. issn:

1471-0048. doi: 10.1038/s41583-020-0301-7.

W. Rall (1959). “Branching dendritic trees and motoneuron membrane resistivity”. In:

Experimental neurology 1.5, pp. 491–527.

Jackie Schiller, Guy Major, Helmut J Koester, and Yitzhak Schiller (2000). “NMDA

spikes in basal dendrites of cortical pyramidal neurons”. In: Nature 404.6775, pp. 285–

289.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni (2020). “Green AI”. In:

Communications of the ACM 63.12, pp. 54–63.

Philipp Spilger, Elias Arnold, Luca Blessing, Christian Mauch, Christian Pehle, Eric

Müller, and Johannes Schemmel (Apr. 2023a). “hxtorch.snn: Machine-learning-inspired

Spiking Neural Network Modeling on BrainScaleS-2”. In: Neuro-inspired Computa-

tional Elements Workshop (NICE 2023). University of Texas, San Antonio, USA:

Association for Computing Machinery, pp. 57–62. doi: 10.1145/3584954.3584993.

arXiv: 2212.12210 [cs.NE].

Philipp Spilger, Henrik D. Mettler, Andreas Baumbach, Jakob Jordan, Mihai A. Petro-

vici, Eric Müller, and Johannes Schemmel (Mar. 2023b). “Towards Meta-Learning on

BrainScaleS-2”. In: 7th HBP Student Conference on Interdisciplinary Brain Research.

Frontiers Media SA, pp. 251–257.

Philipp Spilger, Eric Müller, Arne Emmel, Aron Leibfried, Christian Mauch, Christian

Pehle, Johannes Weis, Oliver Breitwieser, Sebastian Billaudelle, Sebastian Schmitt,

Timo C. Wunderlich, Yannik Stradmann, and Johannes Schemmel (2020). “hxtorch:

PyTorch for BrainScaleS-2 — Perceptrons on Analog Neuromorphic Hardware”. In:

IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for

Embedded Machine Learning. Cham: Springer International Publishing, pp. 189–200.

isbn: 978-3-030-66770-2. doi: 10.1007/978-3-030-66770-2_14.

Yannik Stradmann, Sebastian Billaudelle, Oliver Breitwieser, Falk Leonard Ebert, Arne

Emmel, Dan Husmann, Joscha Ilmberger, Eric Müller, Philipp Spilger, Johannes Weis,

and Johannes Schemmel (2022). “Demonstrating Analog Inference on the BrainScaleS-

2 Mobile System”. In: IEEE Open Journal of Circuits and Systems 3, pp. 252–262.

doi: 10.1109/OJCAS.2022.3208413.

Jan Valentin Straub (July 2023). “Multi-Single-Chip Training of Spiking Neural Net-

works with BrainScaleS-2”. HD-KIP 23-53. Bachelor thesis. Ruprecht-Karls-Universität

Heidelberg.

19

https://doi.org/10.1038/s41583-020-0301-7
https://doi.org/10.1145/3584954.3584993
https://arxiv.org/abs/2212.12210
https://doi.org/10.1007/978-3-030-66770-2_14
https://doi.org/10.1109/OJCAS.2022.3208413

Tobias Thommes, Sven Bordukat, Andreas Grübl, Vitali Karasenko, Eric Müller, and

Johannes Schemmel (2022). “Demonstrating BrainScaleS-2 Inter-Chip Pulse Com-

munication using EXTOLL”. In: Neuro-inspired Computational Elements Workshop

(NICE ’22), March 29 – April 1, 2022. Virtual Event, USA: Association for Comput-

ing Machinery, pp. 98–100. isbn: 9781450395595. doi: 10.1145/3517343.3517376.

arXiv: 2202.12122 [cs.AR].

Johannes Weis, Philipp Spilger, Sebastian Billaudelle, Yannik Stradmann, Arne Emmel,

Eric Müller, Oliver Breitwieser, Andreas Grübl, Joscha Ilmberger, Vitali Karasenko,

Mitja Kleider, Christian Mauch, Korbinian Schreiber, and Johannes Schemmel (2020).

“Inference with Artificial Neural Networks on Analog Neuromorphic Hardware”. In:

IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for

Embedded Machine Learning. Cham: Springer International Publishing, pp. 201–212.

isbn: 978-3-030-66770-2. doi: 10.1007/978-3-030-66770-2_15.

Timo Wunderlich, Akos F. Kungl, Eric Müller, Andreas Hartel, Yannik Stradmann,

Syed Ahmed Aamir, Andreas Grübl, Arthur Heimbrecht, Korbinian Schreiber, David

Stöckel, Christian Pehle, Sebastian Billaudelle, Gerd Kiene, Christian Mauch, Jo-

hannes Schemmel, Karlheinz Meier, and Mihai A. Petrovici (2019). “Demonstrating

Advantages of Neuromorphic Computation: A Pilot Study”. In: Frontiers in Neuro-

science 13, p. 260. issn: 1662-453X. doi: 10.3389/fnins.2019.00260. url: https:

//www.frontiersin.org/article/10.3389/fnins.2019.00260.

Timo CWunderlich and Christian Pehle (2021). “Event-based backpropagation can com-

pute exact gradients for spiking neural networks”. In: Scientific Reports 11.1, pp. 1–

17. doi: 10.1038/s41598-021-91786-z.

20

https://doi.org/10.1145/3517343.3517376
https://arxiv.org/abs/2202.12122
https://doi.org/10.1007/978-3-030-66770-2_15
https://doi.org/10.3389/fnins.2019.00260
https://www.frontiersin.org/article/10.3389/fnins.2019.00260
https://www.frontiersin.org/article/10.3389/fnins.2019.00260
https://doi.org/10.1038/s41598-021-91786-z

	Introduction
	Methods
	Hardware Platform
	Platform Operation
	Parameter Transformation & Calibration
	EBRAINS Software Distribution

	Results
	Complex Firing Patterns
	Multi-compartmental Neuron Models
	Programmable Plasticity
	Pursuit Task

	Machine Learning-Inspired Modeling
	Surrogate Gradient
	Fast and Deep
	EventProp
	Event-based Optimization

	Partitioning of Larger-Scale Networks
	Multi-Chip

	Discussion

