

Workshop on ion chemistry and plasmas Bratislay-2022

Fast and Sensitive Detection of Plant Hormones by Ion Mobility Spectrometry

Comenius university

Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics

Vahideh Ilbeigi Postdoc researcher

Supervisor: Prof. Stefan Matejcik

Plant Hormones

- The plant hormones (PHs), are signal molecules produced within plants that are at extremely low concentration.
- PHs influence the plant growth, seed germination, fruit maturation and fruit ripening.
- PHs play important roles in plant response to a wide range of biotic and abiotic stress.

Aim of the project: Detection and quantification of PH by coupling MCC and SPME techniques with IMS-MS to achieve high sensitivity, selectivity and fast analysis

IMS & IMS-MS in our Lab

IMS-MS

IMS

Project 1: Auxins

- Auxins are an important class of Plant Hormones
- Effects in plants: cell enlargement and stem growth, cell division, response to light, fruit ripening

Structures of three auxins studied in this work:

Chemical structures of indole-3-acetic acid (IAA), indole-3-propionic acid (IPA), and indole-3-butyric acid (IBA)

Experimental set up for injection of Auxin samples and dopants

Schematic representation of the experimental setup and the gas flow paths. The flow rates of drift, carrier and dopant gases are 700, 50, and 5 mL min⁻¹, respectively

<u>Positive mode</u>: (a) IMS and (b) MS spectra of IAA, IBA, and IPA

Compound	PA (kJ mol ⁻¹)	GB (kJ mol ⁻¹)	
H ₂ O	687.8	659.5	
NH_3	852.8	824.5	
IAA	850.6	816.3	
IPA	867.8	828.4	
IBA	865.0	828.5	

B3LYP-calculated proton affinities (PA) and gas phase basicities (GB) of the auxins

- Auxins are ionized by protonation
- Protonation of Auxins by H_3O^+ is thermodynamically possible

<u>Positive mode</u>: (a) IMS and (b) MS spectra with <u>NH₃ dopant</u>

B3LYP-calculated ΔH and ΔG for protonation of the auxins by NH_4^+ and their NH_4^+ attachment. The energies are in kJ mol⁻¹

9/25/2023

Negative mode: (a) **IMS and** (b) **MS spectra of IAA, IBA, and IPA**

	Reaction	ΔH	∆G
Deprotonation	$IAA + O_2^- \rightarrow [IAA-H]^- + HO_2$	-42.1	-50.7
	$IPA + O_2^- \rightarrow [IPA-H]^- + HO_2$	-40.9	-44.2
	$IBA + O_2^- \rightarrow [IBA-H]^- + HO_2$	-40.5	-42.5
Anion Attachment	$IAA + O_2^- \to [IAA + O_2]^-$	-159.9	-130.5
	$IPA + O_2^- \rightarrow [IPA + O_2]^-$	-165.2	-125.4
	$IBA + O_2^- \rightarrow [IBA+O_2]^-$	-162.0	-121.6
Dimer formation	$IAA + [IAA-H]^+ \rightarrow [2IAA-H]^+$	-114.0	-66.3
	$IPA + [IPA-H]^+ \rightarrow [2IPA-H]^+$	-119.7	-72.4
	$IBA + [IBA-H]^+ \rightarrow [2IBA-H]^+$	-123.8	-74.9

B3LYP-calculated ΔH and ΔG for ionization of auxins by O_2^ 9/25/2023

- IAA is ionized mainly by deprotonation
- <u>IPA</u> is ionized by O_2^- attachment and deprotonation
- <u>IBA</u> is ionized mainly by O₂⁻ attachment
- Dimer formation is possible for all auxins

Negative mode: (a), (b) IMS and (c), (d) MS spectra with CCl₄ and CHBr₃ dopants

10

Auxin Mixture in Positive mode: IMS spectra (a) without and (b) with NH₃ dopant

IMS spectra for a mixture of IAA, IPA, and IBA in positive mode with and without NH_3 dopant 9/25/2023

Auxin Mixture in Negative mode: IMS spectra (a) without and (b) with CCl₄ dopant

IMS spectra for a mixture of IAA, IPA, and IBA in negative mode with and without CCl₄ dopant

The LODs and linear ranges (in ng) for IAA, IPA, and IBA in the positive and negative polarities with different dopants

	IAA		IPA		IBA	
Polarity/dopant	Linear range	LOD	Linear range	LOD	Linear range	LOD
positive	15-60	5	10-60	4	15-60	6
Positive + NH ₃	10-60	4	15-60	6	12-50	4
Negative	25-80	12	8-50	3	25-70	10
Negative + CCl ₄	8-80	3	10-100	4	10-100	4
Negative + $CHBr_3$	15-60	5	15-90	5	12-100	4

<u>IMS</u> showed high sensitivity toward auxins in ng

• The LODs are comparable with those reported for HPLC-FL

Dobrev PI, Havlicek L, Vanger M, Malbeck J, Kaminek M. J. Chromatogr. A. 2005, 1075,159-166.

Analytical and Bioanalytical Chemistry

Analytical and Bioanalytical Chemistry (2022) 414:6259–6269 https://doi.org/10.1007/s00216-022-04198-x

RESEARCH PAPER

Effect of ion source polarity and dopants on the detection of auxin plant hormones by ion mobility-mass spectrometry

Vahideh Ilbeigi¹ · Younes Valadbeigi² · Ladislav Moravsky¹ · Štefan Matejčík¹

Received: 25 April 2022 / Revised: 20 June 2022 / Accepted: 23 June 2022 / Published online: 7 July 2022 © Springer-Verlag GmbH Germany, part of Springer Nature 2022

Project 2: Salicylates (SAs)

Standard MeSA: (a) IMS and (b) MS spectra in positive and Negative Polarities

- <u>Positive Mode:</u> Ionization by protonation
- <u>Negative mode</u>: Ionization by deprotonation and O_2^- attachment

Selection and Optimization of SPME

SPME Arrow	Diameter	material
~ *	1.1 mm	100 μm Polydimethylsiloxane (PDMS)
2	1.1 mm	120 µm Divinylbenzene (DVB)/PDMS
2	1.1 mm	120 μm Carbon Wide Range (WR)/PDMS
*	1.1 mm	120 µm DVB/Carbon WR/PDMS

<u>PDMS fiber</u> was selected for SPME

Optimum Extraction time was 20 min

<u>Real Sample Analysis by SPME-IMS</u>: Detection of MeSA in Tomato Leaves

Positive mode

Multicapillary column (MCC): Four commercial types

Cross-section of a MCC

ary Phase Des	cription
---------------	----------

OV-1	100% - polydimethylsiloxane, non-polar	
------	--	--

- **OV-5** 5% diphenyl, 95% dimethylpolysiloxane, non-polar
- **OV-17** 50% diphenyl, 50% dimethylpolysiloxane, weak polar
- **OV-20** 20% diphenyl, 80% dimethylpolysiloxane, weak polar

Multichrom Ltd. Russia

Experimental setup for Real Sample Analysis: SPME-MCC-IMS

Schematic presentation of the method and instrumentation

9/25/2023

<u>2D MCC-IMS plots</u>: SPME-MCC-IMS analysis of tomato leaves in Positive mode

21

<u>2D MCC-IMS plots</u>: SPME-MCC-IMS analysis of tomato leaves in Negative mode</u>

22

Quantitative Analysis by head space SPME-MCC-IMS

<u>Application of SPME-MCC-IMS</u>: Monitoring MeSA in tomato leaves with time

The ToRSV inoculated, lower and upper leaves in a typical tomato plant. (b) The MCC-separated IMS spectra obtained 48 h after inoculation by ToRSV. (c) The measured MeSA content of upper and lower leaves 24 to 96 hours after inoculation.

9/25/2023

<u>Application of SPME-MCC-IMS</u>: Comparison of MeSA content of different leaves

<u>Conclusion</u>: Advantages of the SPME-MCC-IMS method

- In this work, a new Ion Mobility Spectrometry (IMS) based method of MeSA detection in tomato leaves is presented. The method couples the Solid Phase Micro Extraction (SPME) sampling method, Multi Column Capillary Gas Chromatography (MCC GC) pre-separation and Ion Mobility Spectrometry (IMS) detection of MeSa from complex matrices.
- The developed method provides 2D-separation of the real sample ingredients resulting in fast analysis (<100s) and high sensitivity (0.1 µg g⁻¹) of MeSA detection in different parts of tomato leaves.
- The fast analysis of real samples allows time dependent measurements of MeSa after inoculation of plants by pathogens.

Project 2 Paper: Under review

Journal of Agricultural and Food Chemistry

Solid Phase Microextraction-Multi Capillary Column-Ion Mobility Spectrometry (SPME-MCC-IMS) for Detection of Methyl Salicylate in Tomato Leaves

Manuscript ID: jf-2022-05570p Status: Under Review Submitted on 12 August 2022

Contact Author: Štefan Matejčík (stefan.matejcik@fmph.uniba.sk)

INTRODUCING TWO NEW JOURNALS IN THE Journal of Agricultural and Food Chemistry family

SUBMIT YOUR ARTICLE TODAY!

