Source code for pyjams.functions.sa_test_functions

#!/usr/bin/env python
"""
Test functions for parameter sensitivity analysis.

They were taken from

    Ishigami and Homma (1990)
        An importance qualification technique in uncertainty analysis for
        computer models, Proceedings of the isuma '90, First International
        Symposium on Uncertainty Modelling and Analysis, University of
        Maryland, Dec. 03 - Dec 05 1990, 398-403

    Oakley and O'Hagan (2004)
        Probabilistic sensitivity analysis of complex models: a Bayesian
        approach J. R. Statist. Soc. B 66, Part 3, 751-769.

    Morris (1991)
        Factorial sampling plans for preliminary computational experiments,
        Technometrics 33, 161-174.

    Saltelli et al. (2008)
        Global Sensitivity Analysis. The Primer, John Wiley & Sons, pp. 292

    Saltelli et al. (2010)
        Variance based sensitivity analysis of model output, Design and
        estimator for the total sensitivity index, Comp. Phys. Comm. 181,
        259-270.

    Sobol' (1990)
        Sensitivity estimates for nonlinear mathematical models,
        Matematicheskoe Modelirovanie 2, 112-118 (in Russian),
        translated in English in Sobol' (1993).

    Sobol' (1993)
        Sensitivity analysis for non-linear mathematical models,
        Mathematical Modelling and Computational Experiment 1, 407-414,
        English translation of Russian original paper Sobol' (1990).

Current functions are:

.. list-table::
   :widths: 15 50
   :header-rows: 1

   * - Function
     - Description
   * - B
     - B of Saltelli et al. (2010)
   * - G / g
     - G-function attributed to Sobol' (1990, 1993), given by Saltelli et al.
       (2008, 2010)
   * - Gstar
     - G* of Saltelli et al. (2010)
   * - ishigami_homma
     - Ishigami and Homma (1990), given by Saltelli et al. (2008, page 179)
   * - K / bratley
     - K of Saltelli et al. (2010)
   * - fmorris / morris
     - After Morris (1991)
   * - oakley_ohagan
     - Oakley and O'Hagan (2004), parameters given in Saltelli et al. (2008) or
       on http://www.jeremy-oakley.staff.shef.ac.uk/psa_example.txt
   * - linear
     - Linear test function :math:`Y = a*X + b`
   * - product
     - Product test function :math:`Y = X[0] * X[1]`
   * - ratio
     - Ration test function :math:`Y = X[0] / X[1]`
   * - ishigami_homma_easy
     - Simplified Ishigami and Homma function :math:`Y = sin(X[0]) + X[1]`

This module was written by Matthias Cuntz & Juliane Mai while at
Department of Computational Hydrosystems, Helmholtz Centre for
Environmental Research - UFZ, Leipzig, Germany, and continued by
Matthias Cuntz while at Institut National de Recherche pour l'Agriculture,
l'Alimentation et l'Environnement (INRAE), Nancy, France.

:copyright: Copyright 2015-2022 Matthias Cuntz, Juliane Mai, see AUTHORS.rst
            for details.
:license: MIT License, see LICENSE for details.

.. moduleauthor:: Matthias Cuntz

Functions:

.. autosummary::
   B
   g
   G
   Gstar
   K
   bratley
   fmorris
   morris
   oakley_ohagan
   ishigami_homma
   linear
   product
   ratio
   ishigami_homma_easy

History
    * Written Mar 2015 by Matthias Cuntz (mc (at) macu (dot) de) & Juliane Mai
    * Added functions to test PAWN method properly: linear, product, ratio, and
      ishigami_homma_easy, Dec 2017, Juliane Mai
    * Provide morris function under the name fmorris and the K function under
      the name bratley, Nov 2019, Matthias Cuntz
    * Changed to Sphinx docstring and numpydoc, Dec 2019, Matthias Cuntz
    * Distinguish iterable and array_like parameter types,
      Jan 2020, Matthias Cuntz
    * More consistent docstrings, Jan 2022, Matthias Cuntz

"""
import numpy as np


__all__ = ['B', 'g', 'G', 'Gstar', 'K', 'bratley', 'fmorris', 'morris',
           'oakley_ohagan', 'ishigami_homma',
           'linear', 'product', 'ratio', 'ishigami_homma_easy']


# -----------------------------------------------------------

[docs]def B(X): """ B function Saltelli et al. (2010) Comp. Phys. Comm. 181, p. 259-270 Parameters ---------- X : array_like (nX,) or (nX,npoints) array of floats Returns ------- B : float or ndarray float or (npoints,) floats of B function values at *X* """ # Parameter sets are assumed to be in following ordering: # (x_1, x_2, ..., X_m, w_1, w_2, ..., w_m) X = np.array(X) if X.ndim == 1: isone = True iX = X[:, np.newaxis] else: isone = False iX = X assert iX.shape[0] % 2 == 0, 'X.shape[0] must be even.' m = iX.shape[0] // 2 y = np.sum(iX[:m, :] * iX[m:, :], axis=0) if isone: return y[0] else: return y
# -----------------------------------------------------------
[docs]def g(X, a): """ G-function Sobol' (1990) Matematicheskoe Modelirovanie 2, 112-118 (in Russian) Sobol' (1993) Mathematical Modelling and Computational Experiment 1, 407-414 (English translation) Parameters ---------- X : array_like (nX,) or (nX,npoints) array of floats a : array_like (nX,) array of floats Returns ------- G : float or ndarray float or (npoints,) floats of G function values at *X* with parameters *a* """ return Gstar(X, np.ones(len(a)), np.zeros(len(a)), a)
# -----------------------------------------------------------
[docs]def G(X, a): """ G-function Sobol' (1990) Matematicheskoe Modelirovanie 2, 112-118 (in Russian) Sobol' (1993) Mathematical Modelling and Computational Experiment 1, 407-414 (English translation) Parameters ---------- X : array_like (nX,) or (nX,npoints) array of floats a : array_like (nX,) array of floats Returns ------- g : float or ndarray float or (npoints,) floats of G function values at *X* with parameters *a* """ return Gstar(X, np.ones(len(a)), np.zeros(len(a)), a)
# -----------------------------------------------------------
[docs]def Gstar(X, alpha, delta, a): """ G* example Saltelli et al. (2010) Comp. Phys. Comm., 181, p. 259-270 Parameters ---------- X : array_like (nX,) or (nX,npoints) array of floats alpha : array_like (nX,) array of floats delta : array_like (nX,) array of floats a : array_like (nX,) array of floats Returns ------- G* : float or ndarray float or (npoints,) floats of G* function values at *X* with parameters *alpha*, *delta* and *a* """ # Model output for given parameter set(s) is returned # X: dim1 = # of parameters = 10 # dim2 = # of parameter sets X = np.array(X) if X.ndim == 1: isone = True iX = X[:, np.newaxis] else: isone = False iX = X if isinstance(alpha, (list, tuple)): nalpha = len(alpha) else: nalpha = alpha.size assert iX.shape[0] == nalpha, 'X.shape[0] must len(alpha).' ialpha = np.array(alpha).reshape((nalpha, 1)) idelta = np.array(delta).reshape((nalpha, 1)) ia = np.array(a).reshape((nalpha, 1)) yi = ( ( (1. + ialpha) * np.abs(2. * (iX + idelta - np.trunc(iX + idelta)) - 1.)**ialpha + ia ) / (1. + ia) ) y = np.prod(yi, axis=0) if isone: return y[0] else: return y
# -----------------------------------------------------------
[docs]def linear(X, a, b): """ Linear test function .. math:: Y = a*X + b Parameters ---------- X : array_like (1,) or (1,npoints) array of floats a : array_like float or (npoints,) array of floats b : array_like float or (npoints,) array of floats Returns ------- linear : float or ndarray float or (npoints,) floats of linear function values at *X* with parameters *a* and *b* """ # Model output for given parameter set(s) is returned # X: dim1 = # of parameters = 1 # dim2 = # of parameter sets X = np.array(X) if X.ndim == 1: isone = True iX = X[:, np.newaxis] else: isone = False iX = X assert iX.shape[0] == 1, 'X.shape[0] must 1.' y = a * iX[0, :] + b if isone: return y[0] else: return y
# -----------------------------------------------------------
[docs]def product(X): """ Product test function .. math:: Y = X[0] * X[1] Parameters ---------- X : array_like (2,) or (2,npoints) array of floats Returns ------- product : float or ndarray float or (npoints,) floats of product function values at *X* """ # Model output for given parameter set(s) is returned # X: dim1 = # of parameters = 2 # dim2 = # of parameter sets X = np.array(X) if X.ndim == 1: isone = True iX = X[:, np.newaxis] else: isone = False iX = X assert iX.shape[0] == 2, 'X.shape[0] must 2.' y = iX[0, :] * iX[1, :] if isone: return y[0] else: return y
# -----------------------------------------------------------
[docs]def ratio(X): """ Ratio test function .. math:: Y = X[0] / X[1] Simple nonlinear model proposed by Liu et al. (2006): Liu, H., Sudjianto, A., Chen, W., 2006. Relative entropy based method for probabilistic sensitivity analysis in engineering design. J. Mech. Des. 128, 326-336. Used by Pianosi & Wagener, Environmental Modelling & Software (2015) Pianosi, F. & Wagener T., 2015 A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environmental Modelling & Software 67, 1-11. Parameters ---------- X : array_like (2,) or (2,npoints) array of floats Returns ------- ratio : float or ndarray float or (npoints,) floats of ratio function values at *X* """ # Model output for given parameter set(s) is returned # X: dim1 = # of parameters = 2 # dim2 = # of parameter sets X = np.array(X) if X.ndim == 1: isone = True iX = X[:, np.newaxis] else: isone = False iX = X assert iX.shape[0] == 2, 'X.shape[0] must 2.' y = iX[0, :] / iX[1, :] if isone: return y[0] else: return y
# -----------------------------------------------------------
[docs]def ishigami_homma_easy(X): """ Simplified Ishigami and Homma function .. math:: Y = sin(X[0]) + X[1] with `X[0], X[1]` ~ `Uniform[-Pi, Pi]` Parameters ---------- X : array_like (2,) or (2,npoints) array of floats Returns ------- ishigami_homma_easy : float or ndarray float or (npoints,) floats of simplified Ishigami and Homma function values at *X* """ # Model output for given parameter set(s) is returned # X: dim1 = # of parameters = 2 # dim2 = # of parameter sets X = np.array(X) if X.ndim == 1: isone = True iX = X[:, np.newaxis] else: isone = False iX = X assert iX.shape[0] == 2, 'X.shape[0] must 2.' y = np.sin(iX[0, :]) + iX[1, :] if isone: return y[0] else: return y
# -----------------------------------------------------------
[docs]def ishigami_homma(X, a, b): """ Ishigami and Homma (1990) given by Saltelli et al. (2008, page 179) Parameters ---------- X : array_like (3,) or (3,npoints) array of floats a : array_like float or (npoints,) array of floats b : array_like float or (npoints,) array of floats Returns ------- ishigami_homma : float or ndarray float or (npoints,) floats of Ishigami and Homma function values at *X* with parameters *a* and *b* """ # Model output for given parameter set(s) is returned # X: dim1 = # of parameters = 3 # dim2 = # of parameter sets X = np.array(X) if X.ndim == 1: isone = True iX = X[:, np.newaxis] else: isone = False iX = X assert iX.shape[0] == 3, 'X.shape[0] must be 3.' y = (np.sin(iX[0, :]) + a * (np.sin(iX[1, :]))**2 + b * iX[2, :]**4 * np.sin(iX[0, :])) if isone: return y[0] else: return y
# -----------------------------------------------------------
[docs]def K(X): """ K example Saltelli et al. (2010) Comp. Phys. Comm., 181, p. 259-270 Parameters ---------- X : array_like (nX,) or (nX,npoints) array of floats Returns ------- K : float or ndarray float or (npoints,) floats of K function values at *X* """ # Model output for given parameter set(s) is returned # X: dim1 = # of parameters = 10 # dim2 = # of parameter sets X = np.array(X) if X.ndim == 1: isone = True iX = X[:, np.newaxis] else: isone = False iX = X assert iX.shape[0] > 1, 'X.shape[0] must be > 1.' nX = iX.shape[0] for ii in range(1, nX): iX[ii, :] = iX[ii - 1, :] * iX[ii, :] for ii in range(nX): iX[ii, :] = (-1)**(ii + 1) * iX[ii, :] y = iX.sum(axis=0) if isone: return y[0] else: return y
[docs]def bratley(*args): """ K example Saltelli et al. (2010) Comp. Phys. Comm., 181, p. 259-270 Parameters ---------- X : array_like (nX,) or (nX,npoints) array of floats Returns ------- bratley : float or ndarray float or (npoints,) floats of K function values at *X* """ return K(*args)
# -----------------------------------------------------------
[docs]def fmorris(X, beta0, beta1, beta2, beta3, beta4): """ Morris-function Morris (1991) Technometrics 33, 161-174 Parameters ---------- X : array_like (20,) or (20,npoints) array of floats beta0 : float float beta1 : array_like (20,) array of floats beta2 : array_like (20,20) array of floats beta3 : array_like (20,20,20) array of floats beta4 : array_like (20,20,20,20) array of floats Returns ------- fmorris : float or ndarray float or (npoints,) floats of Morris function values at *X* with parameters *beta0-beta4* """ X = np.array(X) if X.ndim == 1: isone = True iX = X[:, np.newaxis] else: isone = False iX = X om = 2. * (iX - 0.5) ii = np.array((2, 4, 6)) om[ii, :] = 2. * (1.1 * iX[ii, :] / (iX[ii, :] + 0.1) - 0.5) nn = 20 assert iX.shape[0] == nn, 'X.shape[0] must ' + str(nn) + '.' assert np.all(np.array(beta1.shape) == nn), ( 'beta1.shape must be all ' + str(nn) + '.') assert np.all(np.array(beta2.shape) == nn), ( 'beta2.shape must be all ' + str(nn) + '.') assert np.all(np.array(beta3.shape) == nn), ( 'beta3.shape must be all ' + str(nn) + '.') assert np.all(np.array(beta4.shape) == nn), ( 'beta4.shape must be all ' + str(nn) + '.') y = np.empty(iX.shape[1]) y[:] = beta0 for i in range(0, nn): y[:] += beta1[i] * om[i, :] for j in range(i + 1, nn): y[:] += beta2[i, j] * om[i, :] * om[j, :] for k in range(j + 1, nn): y[:] += beta3[i, j, k] * om[i, :] * om[j, :] * om[k, :] for s in range(k + 1, nn): y[:] += (beta4[i, j, k, s] * om[i, :] * om[j, :] * om[k, :] * om[s, :]) if isone: return y[0] else: return y
[docs]def morris(*args): """ Morris-function Morris (1991) Technometrics 33, 161-174 Parameters ---------- X : array_like (20,) or (20, npoints) array of floats beta0 : float float beta1 : array_like (20,) array of floats beta2 : array_like (20, 20) array of floats beta3 : array_like (20, 20, 20) array of floats beta4 : array_like (20, 20, 20, 20) array of floats Returns ------- morris : float or ndarray float or (npoints,) floats of Morris function values at *X* with parameters *beta0-beta4* """ return fmorris(*args)
# -----------------------------------------------------------
[docs]def oakley_ohagan(X): """ Oakley and O'Hagan (2004) J. R. Statist. Soc. B 66, Part 3, 751-769 Parameters ---------- X : array_like (15,) or (15, npoints) array of floats Returns ------- oakley_ohagan : float or ndarray float or (npoints,) floats of Oakley and O'Hagan function values at *X* """ X = np.array(X) if X.ndim == 1: isone = True iX = X[:, np.newaxis] else: isone = False iX = X nn = 15 assert iX.shape[0] == nn, 'X.shape[0] must ' + str(nn) + '.' a1 = np.array([0.01, 0.05, 0.23, 0.04, 0.12, 0.39, 0.39, 0.61, 0.62, 0.40, 1.07, 1.15, 0.79, 1.12, 1.20]) a2 = np.array([0.43, 0.09, 0.05, 0.32, 0.15, 1.04, 0.99, 0.97, 0.90, 0.81, 1.84, 2.47, 2.39, 2.00, 2.26]) a3 = np.array([0.10, 0.21, 0.08, 0.27, 0.13, 0.75, 0.86, 1.03, 0.84, 0.80, 2.21, 2.04, 2.40, 2.05, 1.98]) M = np.array([ [-0.02, -0.19, 0.13, 0.37, 0.17, 0.14, -0.44, -0.08, 0.71, -0.44, 0.5, -0.02, -0.05, 0.22, 0.06], [ 0.26, 0.05, 0.26, 0.24, -0.59, -0.08, -0.29, 0.42, 0.5, 0.08, -0.11, 0.03, -0.14, -0.03, -0.22], [-0.06, 0.2, 0.1, -0.29, -0.14, 0.22, 0.15, 0.29, 0.23, -0.32, -0.29, -0.21, 0.43, 0.02, 0.04], [ 0.66, 0.43, 0.3, -0.16, -0.31, -0.39, 0.18, 0.06, 0.17, 0.13, -0.35, 0.25, -0.02, 0.36, -0.33], [-0.12, 0.12, 0.11, 0.05, -0.22, 0.19, -0.07, 0.02, -0.1, 0.19, 0.33, 0.31, -0.08, -0.25, 0.37], [-0.28, -0.33, -0.1, -0.22, -0.14, -0.14, -0.12, 0.22, -0.03, -0.52, 0.02, 0.04, 0.36, 0.31, 0.05], [-0.08, 0.004, 0.89, -0.27, -0.08, -0.04, -0.19, -0.36, -0.17, 0.09, 0.4, -0.06, 0.14, 0.21, -0.01], [-0.09, 0.59, 0.03, -0.03, -0.24, -0.1, 0.03, 0.1, -0.34, 0.01, -0.61, 0.08, 0.89, 0.14, 0.15], [-0.13, 0.53, 0.13, 0.05, 0.58, 0.37, 0.11, -0.29, -0.57, 0.46, -0.09, 0.14, -0.39, -0.45, -0.15], [ 0.06, -0.32, 0.09, 0.07, -0.57, 0.53, 0.24, -0.01, 0.07, 0.08, -0.13, 0.23, 0.14, -0.45, -0.56], [ 0.66, 0.35, 0.14, 0.52, -0.28, -0.16, -0.07, -0.2, 0.07, 0.23, -0.04, -0.16, 0.22, 0, -0.09], [ 0.32, -0.03, 0.13, 0.13, 0.05, -0.17, 0.18, 0.06, -0.18, -0.31, -0.25, 0.03, -0.43, -0.62, -0.03], [-0.29, 0.03, 0.03, -0.12, 0.03, -0.34, -0.41, 0.05, -0.27, -0.03, 0.41, 0.27, 0.16, -0.19, 0.02], [-0.24, -0.44, 0.01, 0.25, 0.07, 0.25, 0.17, 0.01, 0.25, -0.15, -0.08, 0.37, -0.3, 0.11, -0.76], [ 0.04, -0.26, 0.46, -0.36, -0.95, -0.17, 0.003, 0.05, 0.23, 0.38, 0.46, -0.19, 0.01, 0.17, 0.16] ]) y = np.dot(a1, iX) + np.dot(a2, np.sin(iX)) + np.dot(a3, np.cos(iX)) for i in range(iX.shape[1]): y[i] += np.dot(iX[:, i].T, np.dot(M, iX[:, i])) if isone: return y[0] else: return y.squeeze()
# ----------------------------------------------------------- if __name__ == '__main__': import doctest doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE) # ishigami_homma([np.pi/2.,np.pi/2.,1.], 1., 1.) # # 3.0 # B(np.arange(10)) # # 80 # B(np.arange(12).reshape(6,2)) # # array([56, 89]) # linear(np.ones(1), 1., 1.) # # 2.0 # product(np.arange(2)+1.) # # 2.0 # ratio(np.arange(2)+1.) # # 0.5 # ishigami_homma_easy([np.pi/2.,1.]) # # 2.0 # bratley(np.arange(5)+1.) # K(np.arange(5)+1.) # # -101.0 # K(np.arange(8).reshape((4,2))+1.) # # [ 92., 342.] # oakley_ohagan(np.zeros(15)) # # 15.75 # Gstar(np.ones(5), np.zeros(5), np.ones(5), np.zeros(5)) # # 1.0 # g(np.ones(5), np.zeros(5)) # G(np.ones(5), np.zeros(5)) # # 32.0 # # Morris function # seed = 1234 # np.random.seed(seed=seed) # npars = 20 # x0 = np.ones(npars)*0.5 # lb = np.zeros(npars) # ub = np.ones(npars) # beta0 = 0. # beta1 = np.random.standard_normal(npars) # beta1[:10] = 20. # beta2 = np.random.standard_normal((npars,npars)) # beta2[:6,:6] = -15. # beta3 = np.zeros((npars,npars,npars)) # beta3[:5,:5,:5] = -10. # beta4 = np.zeros((npars,npars,npars,npars)) # beta4[:4,:4,:4,:4] = 5. # mm = fmorris(np.linspace(0,2*(npars-1),npars)/float(2*npars-1), # beta0, beta1, beta2, beta3, beta4) # print(np.around(mm,3)) # # -82.711 # mm = fmorris(np.arange(2*npars,dtype=np.float).reshape((npars,2)) / # float(2*npars-1), # beta0, beta1, beta2, beta3, beta4) # print(np.around(mm,3)) # # [-82.711 -60.589]