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Abstract :

In this paper we have develop a new class of matrices giving conservative
transformations is sequence to series, together with its regular sub-class in
pseudo-algebra of y-matrices by introducing the new-mean and the term product

of existence and convergence of Gamma Matrices and their application to infinite
series.

[16]
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1.1. Introduction & Preliminaries :

In the beginning of 19'" century, it was found that there were several series
in which the concept of ordinary convergence was clearly failed so it becomes
necessary to consider generalized convergence methods see (Aasma,1994), Boos,
2000) with the appearance of Cauchy’s monumental work course ‘d’Analysis
Algebrique in 1821 and Abel’s (see Nigam, 2013) researches on the binomial
series in 1826, the old hazy notion of convergence of infinite series was put on
sound foundation. It was, however, observed that there were certain non-conver-
gent series, which particularly in Dynamical Astronomy furnished nearly correct
results. A theory of divergent series was formulated explicitly for the first time in
1890 when Cesaro (see Bataineh, 1999) published a paper on multiplication of
series. Since then the theory of series whose sequences of partial sums oscillate,
has been the centre of creative activity for most of leading mathematicians. It was
only towards the closing decade of 19" and in early years of the 20" century that
satisfactory methods were devised, so as to associate with Cauchy’s concepts of
convergence, certain values which may be called their sums in a less direct way
(see [Bataineh, 2017], [Sarigél, 2011], [Jarrah, 2003 ], [Malkowsky, 2017]). Such
processes of summation of series, which were formally tabooed as divergent, have
given rise to modern rigorous theory of summability. Summability itself has
became an independent branch of mathematics. The concept of convergence having
seen generalized, it was but natural to enquire if the notion of absolute conver-
gence was capable of similar generalization. The answer to this has been found in
affirmative and infact, just as the notion of convergence was instrumental to be the
development of various summability methods, so also, big analogy, the idea of
absolute summability (Kransniqi, 2012), (Yildiz, 2019), (Aasma, 2011). In the same
manner, by analogy, the idea of uniform summability can be formulated as a gener-
alization of notion of uniform convergence (see [Sahani, 2020, 2021]).

In this paper, we use the following German abbreviation.
FF  for  sequence to sequence {1.1.1)
RF  for series to sequence (1.1.2)

RR  for  series to series (1.1.3)
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Let P=(p,), (a,b=1,2,...) be a given matrix and consider the transformation

u,=§ DV, (1.1.4)
o =il

then the matrix P provided FF, RF or RR transformation according as it transform a
sequence Z= {v,} into the sequence » = {4,}, the series 2. v, into the series X u,,
provided that each of the series (1.1.4) is convergent. A corresponding to FF-trans-
formations each be made applicable with obvious changes to RF and RR transfor-
mation.

Summability transformations help us to generalize the concept of limit of a
sequence or series. It provide us a method to assign limits even to sequences which
are divergent. These transformations or methods can be calculated or classified
into two ways:

(1) Sequence-to-sequence transformations.
(11) Sequence to function transformations.

Sequence to sequence transformations is accomplished using infinite
matrices. We consider an infinite matrix C'=(¢;.) and a sequence {S,},/=0,1,2,...
we form a new sequence {/,} defined by

H=2 CleS,-
g=0
We shall assume that the series converges for every /.

If {1,} converges to 7, then 7 is called the c-limit of {S}. A transformation C
is called a regular summability transformation if it preserves limit in the case of
convergent sequences. Silverman-Toeplitz theorem gives necessary and sufficient
conditions for a matrix to represents a regular method and thus help us to construct
regular transformations. This theorem can be stated as the necessary and sufficient
conditions that the matrix ' = (¢;,) represents a regular transformation are (see
[Verma’s, 1946]).

(1) Olc;g] <N forsome Nand/=0, 1, 2,...

g=
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(i)  lim¢,=0foreachg=0,1,2,..
>

i lim X ¢,=1
( ) Iogen g lg

1.2 Main results :

In this research note, we prove some specific theorems relating to the prod-
uct of matrices which define either convergence preserving or limit preserving trans-
formation of series or a sequence into either a series or a sequence. The actual nature
of sequence to sequence, series to sequence and series to series transformation have
been studied by several researchers such as Dienes, Cooke, Hill (see (Verma’s,1946)).
The products, taken two by two, of sequence to sequence series to sequence and
series to series matrices have been studied by Verma’s [ 1946]. In this research note,
we extend Verma’s (1946) works:

Theorem 1: If fi, =m,+my,+ ... +my,, (1,g>1) (1.2.1)

then /= (fj,) is a v, -matrix iff M= (M,,) is o -matrix.

Theorem 2 : The product /M of a y,-matrix I and o, -matrix M exists isay,-
matrix.

Theorem 3 : The product M} and o -matrix M and y,-matrix /' may not exists.
Theorem 4 : The product y,-matrix /"and an o -matrix M is not commutative.

Theorem 5 : The product matrix L= FM exists and is a y,-matrix for every 7, -
matrix Fiff Mis an o 4 -matrix MF'is an o 4 -matrix.

Theorem 6 : The product of two o -matrices is an o, -matrix.
Theorem 7 : The product of two y,-matrices may not be a y,-matrix.
For the proof of our theorems, we need the following arbitrary definitions:

Definition 1 : An infinite matrix /"= (f; ) is a y-matrix if it satisfies the following
conditions (see [Vermas, 1947])
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ggl ]ﬁg 'ﬁ,g+l|§KVfZ 1.

Jrg—olasl—eoVg
Note (1) : The elements of a y-matrix are bounded
Proof : From definition 1,
figl=1frg-fi1 1l

§|ﬁsg-ﬁ,ll +Ij:':,l|
Sk+|fil€D

Note (2) : If I are y-matrices and a = Z g;# 0, then the matrix B =

j—(]'
a y-matrix.
Proof : From definition 1, we may easily write
J

g; |IU) 1’m+1|—D

consequently,

==

| o
b, -b, _|<—=2I¢;
géll g™ Prgl |a|j§0| i

Z 20801 |a| Z &1 D;

Thus, B satlsﬁes all the conditions of definition 1

Definition 2 : The matrix B is as o-mean (i.e. A-mean) of matrices /)
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an—-

q
ZSF“)is

Note (3) : The oi-mean (i.e. A-mean) an infinity of y-matrices is a y-provided that

@ |f21£DVjlandg;

P -0 kil &
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(b) X |a;|=Eexists and is finite,
J=0

oo

and 2¢g =a#0.
j=0
Proof : From definition 2,

al-Ib, <3l |-/ 1 <D.E

and a| 215, .- ;aﬂl-Zlel Zlf(” fiol
g1

< E K (using above COI’ldlthHS).

Again, the new series

Z & f7, ) , converges uniformly by definition 2.

Thus, lim b,g= — hm Z g f(;)
[—e0 7F

=—Z£ llmf(f)—l
Jr{J f—)m

21

Defimtlon 3:LetP=(p;,) and R=(7; ) are two matrix. Then the new matrix

=(8,¢) =(P1 o7 o) 1s known as term product of 4and B.
Note (4) : The term product of y-matrix is a y-matrix.
Proof : We may write
8167 S1er1 TP g™ T gr) g1 (PrgmPignt)
= 318,,-Sn| <KDy + K;.D. (by def®)

g=1
Also, S; ,—>1as/—co.
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Proof of theorem 1 : If /'is a y,-matrix then using the result of Sahani and Jha
[2021],

Also,
|myg| = fig = fi1.¢]
S| figl * 1 Sia gl
Sk (F) + ki (F)
<k (F) (1.2.3)

"+ | figl <k;(F) is independent of

and 3 ml =1 fyl + £ e o ol <D (124)

Equations (1.2.2), (1.2.3) and (1.2.4) are precise the condition for the matrix M to
be an o -matrix.

Conversely, if the matrix M= (m,,) is an o ,-matrix then by definition
My = fig- fi.1,¢(1,g>1) and
my,= fig,(€21) (1.2.5)
We have to show that
F=(fy) is a7y ~matrix.
It is easy to see from equation (1.2.4) that if

S |myy| < D(M) then
=1
;il | fig~ fi, ol <DF)

Also, using [Sahani, 2021], we may write
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]f]g| - |m1g + mZg ot m!g|
<K, (F) (1.2.6)

Also, by definition,

/
§ Mig = Mig +_Z Mig
J= J=2
/
=Jig +].=22 (&g~ 8j-1,¢)

=_ ‘rg

Therefore,

DO

l1m Ji = mJ =1 (1.2.7)

It is clear that equations (1.2.4), (1.2.5) and (1.2.6) show that the matrix
F=(fjg) in(1.2.4)is ay,-matrix.

This completes the proof of the theorems 1.
Proof of theorem 2 :
v = (fyp) 1s @y -matrix.
If the series XV} is convergent then /” transform of 2V, namelyj:ZG]F WV

exists forall / and is a sequence by bounded variation (by above notes and [Sahani,
2021]).

Also, lim Z fiVi= Z V;, we choose v;=m;,, where m;, are the elements of
[—ee j=1 Jj=1
o -matrix M.

Hence, by [Sahani, 2021],

oo

2 V=2 m,=1,forallg.
=1 =l

8
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Also, for an o ,-matrix M,

DZQ, |m,-g| <D(M).
j=1

Thus, by definition 3,
If S= FMthen

|ng| -

'Zl fh’ mig
I:

<2 | fillmyg|
J=1

<K;(F)D(M)
<K;(S) (1.2.8)
Thus, the product matrix § = (s, ) exists for all / and g.

lim $),=1 (1.2.9)

[—oo

 50-S1161=E| £ i
% TR et TR

<3 S-S gl
=2 i=1

<D(H) (1.2.10)
The equations (1.2.8), (1.2.9) and (1.2.10) show that S = F'"M is a y,-matrix.

Proof of theorem 3 :

Wedeﬁnem,azlfor/: 1,g=1}
"=0forl>1

and
fie=1 Lg>1 (1.2.11)
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These matrices M and /" defined in (1.2.10) and (1.2.11) o, and y,-matrices
respectively.

Thus, (FM),, = (F),, exists and is the y,-matrix /" of equation (1.2.11).

fe]

But (MF);;[ lmﬁf:-g]

i:
=X (1+1+...);, does not exist.
i=1

This completes the proof of the theorem.

Theorem 4 and sufficiency of the condition in theorem (5) follow by combi-
ning theorem 2 and theorem 3.

To prove theorem 5, we consider a y,-matrix /which is defined as

=1 for g <1
e (1.2.12)
=0 forg>/
Then the product matrix S = (FM) is
Sig™ il jx':.-'m:'g
i=l1
:"imig (1.2.13)
i=1

hence, by theorem 1, the matrix S=(s;,) in equation (1.2.13) is y,-matrix, only if /*
is an o, ,~-matrix.

Proof of theorem 6 :
Let Pand Q are two o ,-matrices.
We define a new matrix

F'=(fj,) which is defined in the following way :
Jig=PigtPrg .t p (1, g21) (1.2.14)
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By our theorem 1, (f;,) is ay,-matrix and by definition 3, the product (5),,= (#Q),,
is a Y,-matrix.
If we define
Bl =Sy~ 851,e (U>1,821) (1.2.13)

= e;g = ng

Then = (¢;,) is an y,-matrix and ¢;, =r‘§l Ji4ig :E] Jii

=_El(fn- ~Je1.095 =}_Z]p;;--qu
= . {—

v (E) = (PQ)yg
By the our assumption (1.2.15) of the matrix F.
This completes the proof of the theorem 6.

Proof of the theorem 7 :

We consider the y,-matrix /= (I';,) defined in equation (1.2.15) and another
Y-matrix §=(s,) in the following way :

Se=1V1, g>1 (1.2.16)

The product matrix 7'= IS of the two y,-matrices is given by

t!g =‘§l ﬁisig

L8

Jii Gig = !

i

j’lim 1, = <o which doesnot equal to a multiplicative identity ¥ g and
—c0

for each /.
= T'isnotay,-matrix.

This completes the proof of the theorem 7.
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Conclusion :

The means of Cesaro, Riesz, Borel, Lindelof, Mittag-Leffler are particular
cases of transformation of a sequence. The three methods sequence to sequence,
series to sequence, series to series of defining generalized limits by infinite matri-
ces. The Silverman-Treplitz theorem giving sufficient and necessary conditions for
the matrix /= ( f},) to sum every convergent series to, its correct sum. The theo-
rem similar to Silverman-Treplitz has been established by Carmichael, Perron and
Bosanquet (see [Vermas, 1946]). In this note we have proved that the matrices
defining convergence preserving sequence to series transformations form a
Banach algebra under suitable norm. The means of Cesaro, Riesz, Borel, Lindel6f,
Mittag-Leffler are particular cases of transformation of a sequence. The three
methods sequence to sequence, series to sequence, series to series of defining
generalized limits by infinite matrices. In this note, we study a new class of matri-
ces giving conservative transformations is sequence to series, together with its
regular sub-class in pseuto-algebra of y-matrices by mtroducing the new-mean and
the term product .
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