

Amjad Ali
Muhammad Ali Ismail

Tayyaba Saeed
Hamayun Farooq

Uzair Abid

Laboratory Manual of Simplified Numerical Analysis (Python Version)

4th Edition

Numerical Recipes in Python ISBN: 978-969-7821-11-2

Laboratory Manual of Simplified Numerical Analysis (Python Version)

A Companion book of the principal book:

Simplified Numerical Analysis (Fourth Edition)

©2023, Amjad Ali, Ph.D. (The Principal Author)

ISBN: 978-969-7821-14-3

Accessible through: www.timerenders.com.pk

For availability of the codes, please visit:

GitHub - DrAmjadAli11/SimplifiedNumericalAnalysis

https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

Principal Book

Simplified Numerical Analysis
Fourth Edition

www.TimeRenders.com.pk

Companion Books

Laboratory Manual of Simplified Numerical Analysis (C++ Version)

Laboratory Manual of Simplified Numerical Analysis (MATLAB® Version)

Laboratory Manual of Simplified Numerical Analysis (Python Version)

https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis
http://www.timerenders.com.pk/

Laboratory Manual of Simplified Numerical Analysis

(Python Version)

Numerical Recipes in Python

Fourth Edition

Amjad Ali, Ph.D.
Bahauddin Zakariya University (BZU), Multan

Muhammad Ali Ismail, Ph.D.
Exascale Open Data Analytics Lab

National Centre for Big Data and Cloud Computing (NCBC)
NED University of Engineering and Technology, Karachi

Tayyaba Saeed, M.Phil.
Bahauddin Zakariya University (BZU), Multan

Hamayun Farooq, Ph.D.
Government Degree College, Muzaffar Garh

Uzair Abid, M.S.
Exascale Open Data Analytics Lab

NCBC, NED University of Engineering and Technology, Karachi

Esteemed Panel of the Supporters

Ms. Syeda Zahra Kazmi, Bahauddin Zakariya University, Multan

Ms. Anam Zahra, Bahauddin Zakariya University, Multan

Ms. Noreen Ilyas, Bahauddin Zakariya University, Multan

ii

Numerical Recipes in Python ISBN: 978-969-7821-11-2

Laboratory Manual of Simplified Numerical Analysis (Python version)

A Companion book of the principal book:

Simplified Numerical Analysis (Fourth Edition)

©2023, Amjad Ali, Ph.D. (The Principal Author)

ISBN: 978-969-7821-14-3

Please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

For codes, please visit: https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

Typeset: Mostly personally by Dr. Amjad Ali (The Principal Author), also contributed by the supporters.

Title Design: Mr. Muhammad Rizwan Qadeer (mrizwanqadeer@gmail.com)

The proofreading is powered by various AI-driven proprietary software.

 Publishers www.timerender.com.pk

Distribution Point:
238-B (PRIDE), Near Girls Comprehensive School, Gulgasht Colony, Multan, Pakistan.
Cell Phone: +923486981925, timerenderpublishers@gmail.com

http://www.timerenders.com.pk/
https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

iii

Table of Contents

Chapter 1: Preliminary Concepts in Numerical Analysis (1)

1.1 Introduction
1.2 Number Systems and Representations
1.3 The Round-off Error
1.4 The Truncation Error

Computing Resources ... 1
Chapter Summary ... 6
Chapter Excercises .. 8

Chapter 2: Solution of a Nonlinear Equation in One Variable (9)

Corridor I: BASICS

2.1 Introduction
2.2 Bracketing Methods

 2.2.1 The Bisection Method (or Bolzano Method)
 2.2.2 The False-Position Method (or Regula-Falsi Method)

2.3 Open Methods
 2.3.1 The Fixed-Point Iteration Method
 2.3.2 The Newton-Raphson Method
 2.3.3 The Secant Method

Corridor II: ANALYSIS

2.4 Convergence Analysis
 The Bisection Method
 The Regula-Falsi Method
 The Secant Method
 The Newton-Raphson Method
 The Fixed-Point Iteration Method

2.5 Further Discussions

Corridor III: PROGRAMMING ARCADE

2.6 Algorithms and Implementations ... 11
 The Newton-Raphson Method ... 11
 The Fixed-Point Iteration Method .. 16
 The Secant Method ... 18
 The Bisection Method ... 21
 The Regula-Falsi Method ... 24

Chapter Summary ... 28
Chapter Excercises .. 32

iv

Chapter 3: Polynomial Interpolation (37)

Corridor I: BASICS

3.1 Introduction
3.2 The Newton’s Divided Difference Interpolation
3.3 The Lagrange Interpolation
3.4 Deriving the Lagrange Interpolation Formula from the Newton’s Divided-Difference Formula
3.5 Interpolation Formulas for Equally Spaced Nodes
3.6 Hermite Interpolation
3.7 Spline Interpolation

 3.7.1 Linear Spline
 3.7.2 Quadratic Spline
 3.7.3 Cubic Spline

Corridor II: ANALYSIS

3.8 Error of Interpolation

Corridor III: PROGRAMMING ARCADE

3.9 Algorithms and Implementations ... 39
The Newton's Divided Difference Interpolation Formula .. 40

Chapter Summary ... 42
Chapter Excercises .. 45

Chapter 4: Numerical Integration (49)

Corridor I: BASICS

4.1 Introduction
4.2 The Trapezoidal Rule
4.3 The Simpson’s 1/3 Rule
4.4 Generalized Closed Newton-Cotes Quadrature

Corridor II: ANALYSIS

4.5 Truncation Error of the Trapezoidal Rule
4.6 Truncation Error of the Simpson’s 1/3 Rule
4.7 Further Discussions
4.8 The Gaussian Quadrature

Corridor III: PROGRAMMING ARCADE

4.9 Algorithms and Implementations ... 53
The Composite Trapezoidal Rule .. 53
The Composite Simpson’s 1/3 Rule .. 55
The Composite Simpson’s 3/8 Rule .. 57

Chapter Summary ... 59
Chapter Excercises .. 62

v

Chapter 5: Numerical Differentiation (67)

5.1 Introduction
5.2 Finite Difference Approximations of Derivatives using the Taylor Series

 5.2.1 First Order Derivatives
 5.2.2 Second Order Derivatives

5.3 Listing of the Derivative Formulas

Chapter 6: Direct Linear Solvers (69)

Corridor I: BASICS

6.1 Introduction to Linear Systems
6.2 Solving Linear Systems using the Gaussian Elimination Method
6.3 Pivoting Strategies

 Partial Pivoting
 Scaled Partial Pivoting
 Complete Pivoting

6.4 The Gauss-Jordan Method
6.5 Solving Linear Systems using the LU Factorization Method

 6.5.1 The Doolittle’s Method
 6.5.2 The Crout’s Method
 6.5.3 The Cholesky’s Method

Corridor II: ANALYSIS

6.6 Operation Count Analysi
6.7 Matrix Inversion

Corridor III: PROGRAMMING ARCADE

6.8 Algorithms and Implementations ... 71
The Guassian Elimination Method with Partial Pivoting .. 72
Solving AX = B using the Doolittle's Method .. 74
Solving AX = B using the Crout's Method .. 78
Solving AX = B using the Cholesky's Method ... 81
Performing Operation Count Analysis ... 84

Chapter Summary ... 95
Chapter Excercises .. 97

Chapter 7: Iterative Linear Solvers (101)

Corridor I: BASICS

7.1 Vector Norms and Distances
7.2 Convergence Criteria for Linear Solvers
7.3 Basic Methods

 7.3.1 The Jacobi Method
 7.3.2 The Gauss-Seidel Method

vi

 7.3.3 The SOR Method

Corridor II: ANALYSIS

7.4 Matrix Norms and Conditioning
7.5 Iteration Matrix and Matrix Form of a Solver

Corridor III: PROGRAMMING ARCADE

7.6 Algorithms and Implementations ... 102
The Jacobi Method .. 103
Modification in the Jacobi Method's algorithm for the Gauss-Seidel Method 104
Modification in the Jacobi Method's algorithm for the SOR Method 104

Chapter Summary ... 109
Chapter Excercises .. 112

Chapter 8: Eigenvalues and Eigenvectors (113)

Corridor I: BASICS

8.1 Basic Definitions and Concepts
8.2 General Approach of Finding Eigenvalues and Eigenvectors
8.3 Some Numerical Methods for Eigenvalues

The Power Method
The Householder Method
The QR Factorization Method
The Sturm Method

Corridor II: ANALYSIS

8.4 Further Discussions
The Power Theorem
The Gerschgorin Circle Theorems
The Singular Value Decomposition (SVD)

Corridor III: PROGRAMMING ARCADE

8.5 Algorithms and Implementations ... 114
The Power Method .. 114

Chapter Summary ... 118
Chapter Excercises .. 119

Chapter 9: Numerical Solution of Ordinary Differential Equations (ODEs)

(121)

Corridor I: BASICS

9.1 Introduction
9.2 Solving IVPs using Single Step Methods and Multistep Methods

The Euler Method

vii

The Mid-point Method (an RK2 method of Order 2)
The Modified/Improved Euler Method (an RK2 method of Order 2)
The RK Method of order 4 (RK4)

9.3 Solving IVPs using Predictor-Corrector Methods
The Adams-Bashforth-Moulton Method of Order 4

9.4 Solving Systems of ODEs and Higher Order ODEs
Using the Classical RK4 Method

9.5 Solving Linear BVPs using the Finite Difference Method

Corridor II: ANALYSIS

9.6 Some Theoretical Concepts and Error Analysis

Corridor III: PROGRAMMING ARCADE

9.7 Algorithms and Implementations ... 123
Euler method .. 124
Mid-point method .. 127
Modified/Improved Euler method ... 129
RK method of order 4 (RK4) .. 131
Adams-Bashforth method of order 4 ... 134
Adams-Bashforth-Moulton method of order 4 ... 137
RK4 method for a system of two ODEs .. 140
RK4 method for a system of three ODEs ... 142
RK4 method for Second Order ODE ... 144
RK4 method for Third Order ODE .. 146
Linear FDM for BVP .. 148

Chapter Summary .. 153
Chapter Excercises .. 154

Chapter 10: Introduction to SciPy (157)

Bibliography .. 165
The End ... 166

viii

Numerical

Analysis

is

 the

 mathematics

 of

 Scientific

Computing

1

Chapter 1

Preliminary Concepts

in Numerical Analysis

1.1 Introduction

1.2 Number Systems and Representations

1.3 The Round-off Error

1.4 The Truncation Error

To unleash the topics of this chapter, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

∎∎∎

Computing Resources

The numerical methods are devised just to be used on computers. It makes no sense to study a
numerical method without considering its practicality using some computing tools. A variety of
numerical computing tools, both freeware and proprietary, are available. The students are advised to
understand the algorithmic (step-by-step) style of the numerical methods they learn. This book suggests
the following resources for beginners.

(1) C++: The numerical methods can be programmed in any programming language, especially
C++, FORTRAN, and Python. The book discusses a wide variety of C++ programs of the
numerical methods in this book. One can modify the as per need. Several C++ IDEs (Integrated
Development Environments) are available, such as Dev-C++, and Code::Blocks for Windows
and GNU-C++ for Linux operating system. One can even find C++ Apps (apps is an acronym for
computer application software) for Android or iOS devices. Some online C++ IDEs are also
available, which can be used for executing C++ programs without installing them.

http://www.timerenders.com.pk/

Preliminary Concepts in Numerical Analysis 2

(2) Python: There are several free Python IDEs available for the Desktop use (such as Spyder,
Jupyter, and PyCharm) or On-line use (such as Google Colab). It is quite a pertinent skill of the
day that the students of computational sciences are familiar with programming in Python. The
companion website of this book (www.timerender.com.pk) shares a Python Library having a
variety of codes for the numerical methods discussed in this book.

(3) MATLAB®: It is a proprietary software, by The MathWorks, Inc., available in both Desktop and
Online versions. MATLAB® offers a wide variety of built-in functions and programming
capabilities for mathematical computations (both symbolic and numeric, although more
suitable and expert for numeric computations), for all modern areas of science and
engineering. The book discusses a wide variety of MATLAB® programs and MATLAB® built-in
functions for the numerical methods in this book.

(4) GNU-Octave: It is an open-source (and freeware) version of MATLAB®, available in both
Desktop and Online versions. Most of the MATLAB® codes and built-in functions discussed in
this book can be executed in GNU-Octave and Octave-online.

(5) MATHEMATICA®: It is a proprietary software by Wolfram Research. It is one of the best
Computer Algebra Systems (CAS) available. It offers an extensive variety of built-in functions
and programming capabilities for mathematical computations (both symbolic and numeric),
for all modern areas of science and engineering.

(6) MAPLE®: It is a proprietary software by Maplesoft for mathematical computations (both
symbolic and numeric), for all modern areas of science and engineering. It is also one of the
best Computer Algebra Systems (CAS).

(7) Spread-Sheet: A spread-sheet software (such as Excel by Microsoft®) can be used for
computations involved in simple numerical methods. The companion website of this book
(www.timerender.com.pk) may shares a spread-sheet workbook having a variety of sheets for
most of the numerical methods discussed in this book.

(8) Various Math Solver Tools: Wolfram|Alpha, Symbolab, and Microsoft® Math Solver are three
of the advanced tools for math education to be used as calculators. These are extensive,
feature-rich, online tools, accessible both through the web browser and the relevant
android/iOS apps. These tools provide automated step by step solutions to algebra and
calculus problems covering from middle school through college. The premier versions of these
tools are freely available, whereas professional (pro) versions are not free.

(9) Various Other Online Tools/Websites: There are various other online tools and websites that
offer basic computing facilities for numerical and symbolic computations. Examples include:

• AtoZmath.com [https://atozmath.com/]

• CalculatorSoup® [https://www.calculatorsoup.com/].

• Keisan - CASIO® [https://keisan.casio.com/]

∎∎∎

3 Numerical Recipes in Python

Question 06: What are the significant figures (or significant digits) of an approximate number?

Significant figures of a number (that approximates a true value) are the digits that are used to

express the number meaningfully. The significant figures are counted for a number that

approximates some other number to express the degree of precision in the approximate number.

The significant figures begin with the leftmost nonzero digit and end with the rightmost correct

digit. The rightmost zeros, which are exact, are also significant. That is,

• All the nonzero digits (i. e. , 1, 2, 3, ⋯ ,9) are significant.

• Zeroes appearing anywhere between two nonzero digits are significant (e.g., in

3005.00102 there are nine significant digits).

• Leading zeros (i.e., left to the first nonzero digit) are not significant (e.g., the number

0.000081 has only two significant digits, namely 8 and 1). The leading zeros are used to fix

the decimal place.

• Trailing zeroes are significant if they are exact with regard to some true value. Trailing

zeros may or may not be significant. It depends on the context; how the number is

approximated or obtained by rounding-off some other number.

∎

Remark: The significant figures of a number can easily be identified by using its normalized

scientific notation. The digits in the fractional part (or mantissa) are regarded as significant figures.

For example, each of the numbers 42.134, 6.0013, and 0.0015784 has five significant figures, which

can be identified easily by converting these numbers into their normalized scientific notation as:

42.134 = 0.42134 × 102

6.0013 = 0.60013 × 10
0.0015784 = 0.15784 × 10−2

∎

Remarks: For the following, set the rounding rule (like MS Excel and Python) that “to round a

number to 𝑘 decimal places, if the (𝑘 + 1)th digit is 5 or greater than 5, then add 1 to the 𝑘th digit.”

• 6500 has 2 significant figures (i.e., the digits 6 and 5) if it has been obtained by rounding-off a

number to the nearest 100 (e.g., by rounding-off the numbers 6497 or 6543.88 to the nearest

hundred). In fact, any number in the interval [6450, 6550) gives 6500, when rounded to the

nearest 100.

• 6500 has 3 significant figures (i.e., the digits 6, 5, and the following 0) if it has been obtained

by rounding-off a number to the nearest 10 (e.g., by rounding-off the numbers 6497 or 6504.99

to the nearest ten). In fact, any number in the interval [6495, 6505) gives 6500, when rounded

to the nearest 10.

Preliminary Concepts in Numerical Analysis 4

• 6500 has 4 significant figures if it has been obtained by rounding-off a number to the nearest

whole number (e.g., by rounding-off the numbers 6499.8 or 6500.47 to the nearest whole

number). In fact, any number in the interval [6499.5, 6500.5) gives 6500, when rounded to the

nearest whole number.

• 70500 has at least 3 significant figures (i.e., the digits 7, 5, and the 0 in between 7 and 5).

Depending upon the context, as just explained, it may have 3 to 5 significant figures.

• 0.00364300 has 4 significant figures (i.e., the digits 3, 6, 4, and 3) if it has been obtained by

rounding-off a number to 4 significant figures (e.g., by rounding-off the numbers 0.003642859

or 0.0036432099 to 4 significant figures). Usually, in that case, the approximate number is

written as 0.003643, without any non-significant trailing zero. In fact, any number in the

interval [0.0036425,0.0036435) gives 0.003643, when rounded to 4 significant figures.

• 0.00364300 has 5 significant figures (i.e., the digits 3, 6, 4, 3, and the following 0) if it has been

obtained by rounding-off a number to 5 significant figures (e.g., by rounding-off the numbers

0.003642978001 or 0.003643049 to 5 significant figures). Usually, in that case, the

approximate number is written as 0.0036430, without any non-significant trailing zero. In fact,

any number in the interval [0.00364295,0.00364305) gives 0.0036430, when rounded to 5 s.f.

• 0.00364300 has 6 significant figures (i.e., the digits 3, 6, 4, 3, and the following two 0s) if it has

been obtained by rounding-off a number to 6 significant figures (e.g., by rounding-off the

numbers 0.003642998001 or 0.003643001 to 6 significant figures). In fact, any number in the

interval [0.003642995,0.003643005) gives 0.00364300, when rounded to 6 significant

figures.

∎

Remark:

An approximation 𝑥∗ to a number 𝑥 is called accurate to 𝑡 significant figures if there are exactly 𝑡

digits in the mantissa of 𝑥∗ that agree with the first 𝑡 digits of the mantissa of 𝑥, where 𝑥 has the

same exponent as 𝑥∗. Suppose that the number 𝑥 is represented in the following form

 𝑥 = ±0. 𝑑1𝑑2𝑑3 ⋯ 𝑑𝑡𝑑𝑡+1 ⋯ × 10𝑒

Then, the number 𝑥∗ is accurate to 𝑡 significant figures to the number 𝑥 if it can be written in the

following form

𝑥∗ = ±0. 𝑑1𝑑2𝑑3 ⋯ 𝑑𝑡𝑑𝑡+1
′ ⋯ × 10𝑒

∎

5 Numerical Recipes in Python

Fig. (1.3): According to the IEEE 754 standard, single-precision floating point representation of a
binary real number 𝑥 = ±1. b2b3b4 ⋯ × 2e is (1 − 2s) × 2c−127 × (1 + f).

Fig. (1.4): According to the IEEE 754 standard, double-precision floating point representation of a
binary real number x = ±1. b2b3b4 ⋯ × 2e is (1 − 2s) × 2c−1023 × (1 + f).

Here, 𝑠 is used for the sign of the number (0 means positive, 1 means negative). 𝑐 in the exponent

is called the biased exponent. 𝑓 is the mantissa minus 1 (the hidden bit).

Fig. (1.5): Overflow/Underflow for single-precision floating-point representation

Fig. (1.6): Overflow/Underflow for double-precision floating-point representation
∎∎∎

Preliminary Concepts in Numerical Analysis 6

Chapter Summary

• The numerical methods obtain some approximate solution of the problems, usually in the numeric form,

in contrast to the analytic or exact methods, which obtain the exact solution of the problem.

• Numerical Analysis is the field of deriving, analyzing, and implementing the numerical methods.

• The most common approach followed by the numerical methods is the iterative approach. According to

this, choose an initial approximation or guess to the solution and apply a set of simple computational

steps to obtain a better approximation. Repeatedly apply the same set of steps to the better

approximations, ultimately obtaining a sufficiently accurate solution and then stop the repetition. Each

course of repetition of the set of computational steps is called iteration. Geometrically, a root of an

equation 𝑓(𝑥) = 0 is the point where the graph of 𝑓(𝑥) intersects the 𝑥-axis.

• For selecting a numerical method from several choices, the characteristics of accuracy,

efficiency, and robustness are taken into consideration.

• The numerical analysis may be regarded as the “mathematics of scientific computing”.

• Errors can be quantified as:

o Absolute Error = |True value − Approximate value|

o Relative Error =
absolute error

|True value|
=

|True value−Approximate value|

|True value|

o Percentage Relative Error =
absolute error

|True value|
× 100 %

• The errors can be categorized in three major categories in regard to their sources: Data Error or

Inherent Error (quite unrelated to the numerical methods; occur as blunders, mistakes, model

simplification, or data uncertainty), Round-off Error (occurs due to number approximation by humans

and computers), Truncation Error (occurs due to approximation of a mathematical procedure to avoid

insignificance), and Discretization error (occurs due to approximation of a continuous function by a set

of discrete data points).

• Significant figures of a real number (which is an approximation of the true value) are the digits that are

used to express the number meaningfully. The significant digits begin with the leftmost nonzero digit and

end with the rightmost correct digit. The rightmost zeros, which are exact are also significant.

• An approximation 𝑥∗ to a number 𝑥 is called accurate to 𝑡 significant figures if there are exactly 𝑡 digits in

the mantissa of 𝑥∗ that agreed with the first 𝑡 digits of the mantissa of 𝑥 having the same exponent or

characteristics.

• Accuracy of an approximate value is a measure of how much the approximate value agrees with the true

value. Precision, on the other hand, has nothing to do with how much the approximate value agrees with

the true value. Precision is only concerned about the size of the number.

• The following four are the commonly used number systems, even supported by the computer

architectures.

Decimal number system (base 10) Binary number system (base 2)

7 Numerical Recipes in Python

Octal number system (base 8) Hexadecimal number system (base 16)

• Any nonzero real decimal number 𝑥 can be represented in floating-point form: 𝑥 = ±0. 𝑑1𝑑2𝑑3 ⋯ × 10𝑒.

Here 𝑑𝑖 , 𝑖 = 1, 2, ⋯ are digits from 0 to 9 with 𝑑1 ≠ 0, called most significant digit and 𝑒 is an integer that

might be positive, negative or zero, called an exponent or characteristic. The number 0. 𝑑1𝑑2𝑑3 ⋯, may

be denoted by 𝑚, is called the finite normalized mantissa. For numbers in the decimal system with base

10,
1

10
 ≤ 𝑚 < 1. That is, 𝑚 ∈ [

1

10
, 1).

• For numbers in the binary system, the floating-point representation of a number 𝑥 can be given by,

𝑥 = ±0. 𝑏1𝑏2𝑏3 ⋯ × 2𝑒 = ±𝑚 × 2𝑒 , were each of 𝑏𝑖 is a bit, either 0 or 1, with 𝑏1 ≠ 0, and
1

2
 ≤ 𝑚 < 1.

• The numbers that are representable precisely in a computer are called machine numbers. The real

numbers with a non-terminating fractional part (such as 1/3) cannot be represented, precisely. So many

other numbers (for example, 0.01) also has not a precise representation in computer (i.e., a machine

number).

• If the number lies within the allowable range of the possible numbers according to the precision level of

the computer, then it is rounded to a nearby machine number (incurring the round-off error) for storing

it. The rounding options involve correct rounding (round to nearest machine number), rounding up,

rounding down or towards zero, etc.

• There are commonly two ways to terminate the mantissa of a number to obtain its nearest machine

number, namely, correct chopping and correct rounding. The chopping or rounding of the number to the

nearest machine number (representable in a computer) for representation in computers (for storage or

for using in computations) causes the error in a number called the round-off error.

• The floating-point form of a number 𝑥 representable in a computer can be regarded as consisting of the

three parts: 𝑥 = ±𝑚 × 𝛽𝑒 = 𝒔𝒊𝒈𝒏 × 𝒎𝒂𝒏𝒕𝒊𝒔𝒔𝒂 × (𝑏𝑎𝑠𝑒)𝒆𝒙𝒑𝒐𝒏𝒆𝒏𝒕

The sign is either positive (+) or negative (−), the finite normalized mantissa is from the interval [
1

𝛽
, 1),

and the integer exponent either positive, negative, or zero as a power of the base.

• An account on the IEEE Binary Floating-Point Arithmetic Standard 754-1985 for representing the real

numbers in computers can be found under Question 13 in this chapter.

• If a number 𝒙∗ is accurate to 𝒕 significant figures in approximating a number 𝒙 then the relative error is

bounded above by 5 × 10−𝑡. That is,
|𝑥−𝑥∗|

|𝑥|
≤ 5 × 10−𝑡

• If an iterative process is to be stopped when the successive approximations become accurate to 𝑡

significant figures, the relative error bound might be set as 5 × 10−𝑡. Thus, the relative error is computed

after every iteration using the result of the current iteration and that of the previous iteration. If the

relative error is smaller than the bound of 5 × 10−𝑡, then it ensures that the approximation the accurate

to 𝑡 significant digits.

• Whenever two nearly equal numbers are subtracted, some loss of significance might occur. The risk of

loss of significance can be eliminated by avoiding the subtraction through some mathematical

manipulation.

Preliminary Concepts in Numerical Analysis 8

Chapter Exercises

Exercise 01: Compute the absolute error 𝐸𝑎 and relative error 𝐸𝑟 in an approximation of 𝑥 by 𝑥∗

(𝑖) 𝑥 = log10 2 , 𝑥∗ = 0.301 (𝑖𝑖) 𝑥 = 17 6⁄ , 𝑥∗ = 2.8333

(𝑖𝑖𝑖) 𝑥 = √𝜋, 𝑥∗ = 1.77245 (𝑖𝑣) 𝑥 = 𝑒−1, 𝑥∗ = 0.36787

Exercise 02: Write the following numbers in floating-point form and identify their mantissa and exponent:

(𝑖) 𝑥 = −23.500128 (𝑖𝑖) 𝑥 = 658.000012 (𝑖𝑖𝑖) 𝑥 = 0.010023

(𝑖𝑣) 𝑥 = −0.0000782 (𝑣) 𝑥 =
1

234.24
(𝑣𝑖) 𝑥 = 541000

Exercise 03: Simplify the following expression by performing the computations

(a) Exactly

(b) Using four-digit chopping arithmetic

(c) Using four-digit rounding arithmetic

(d) Compute the relative errors

(𝑖)
7

4
−

5

3
(𝑖𝑖)

5

4
(

2

3
+ 4) (𝑖𝑖𝑖)

𝜋 − 1

4
3

(𝑖𝑣) 10𝜋 − 2𝑒 + 1 (𝑣) (
432 − 0.0012

101
) (𝑣𝑖) (

2

9
) . (

9

7
)

Consider 𝜋 and 𝑒 expressed with fifteen significant digits as the exact numbers.

Exercise 04: Calculate the roundoff error if chopping and rounding is used to write the following numbers

accurate to four decimal digits:

(𝑖) 355/113 (𝑖𝑖) √3/142 (𝑖𝑖𝑖) √ln 2
3

Exercise 05: We want to round-off each the following numbers to three decimal places. For which number,

the result of “round-off by chopping” and “round-off by rounding-rule” will be the same:

(A) 5.5555 (B) 3.3575 (C) 5.5565 (D) 4.4555

Exercise 06: Find the absolute and relative errors involved in rounding 4.9997 to 5.000.

Exercise 07: Suppose a real number 𝑥 is represented approximately by 0.6032 with the relative error is at

most 0.1%. What is 𝑥?

Exercise 08: Suppose that a number is accurate to 𝑛 significant figures and 𝑎1 is the first significant figure

than show that the relative error is bounded above by
1

𝑎1
× 101−𝑛.

Exercise 09: Show that if a number is rounded off to 𝑛 digits than the relative error is bounded by
1

2
× 101−𝑛 .

∎∎∎

9

Chapter 2

Solution of a Nonlinear Equation

 in One Variable

Corridor I: BASICS

 Let’s plan it

2.1 Introduction

2.2 Bracketing Methods

 2.2.1 The Bisection Method (or Bolzano Method)

 2.2.2 The False-Position Method (or Regula-Falsi Method)

2.3 Open Methods

 2.3.1 The Fixed-Point Iteration Method

 2.3.2 The Newton-Raphson Method

 2.3.3 The Secant Method

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

∎∎∎

http://www.timerenders.com.pk/

10 Numerical Recipes in Python

Corridor II: ANALYSIS

Let’s think deep

2.4 Convergence Analysis

 The Bisection Method

 The Regula-Falsi Method

 The Secant Method

 The Newton-Raphson Method

 The Fixed-Point Iteration Method

2.5 Further Discussions

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

∎∎∎

Corridor III: PROGRAMMING ARCADE

Let’s do it

2.6 Algorithms and Implementations

 The Newton-Raphson Method

 The Fixed-Point Iteration Method

 The Secant Method

 The Bisection Method

 The Regula-Falsi Method

To see more examples for practicing, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

For codes, please visit: https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

∎∎∎

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/
https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

Solution of a Nonlinear Equation in One Variable 11

2.6 Algorithms and Implementations

Question 36: Write down the algorithm (pseudo code) of the Newton’s method to solve 𝑓(𝑥) = 0. The

algorithm should perform a fixed number of iterations.

To find a root of a non-linear equation 𝑓(𝑥) = 0 the Newton-Raphson method requires an initial solution 𝑥0

and considers the 𝑥-intercept of the tangent line to the function 𝑓(𝑥) at 𝑥 = 𝑥0 as the new approximation.

Then, the 𝑥-intercept of the tangent line to the function at the new approximation is considered as the next

approximation. This way, the process is repeated with the successive approximations until sufficient

convergence is achieved. The formula to generate the sequence of successive approximations based on the

said approach is given by

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
, for 𝑘 = 1, 2, 3,⋯

Algorithm: To solve 𝑓(𝑥) = 0 using the following iterative formula (given an initial approximation 𝑥0):

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
, for 𝑘 = 1, 2, 3,⋯

𝐈𝐍𝐏𝐔𝐓𝐒: {
𝒙𝟎: a real value as the initial approximation 𝑥0 sufficiently close to the root
𝑵: an integer as the maximum number of iterations

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(on completing 𝑵 iterations)

Step 1 Receive the inputs as stated above

Step 2 Set 𝒙𝒏 = 𝒙𝟎 (initialize 𝒙𝒏 with the initial approximation)

Step 3 for 𝒌 = 𝟏, 𝟐, 𝟑,⋯ ,𝑵 perform Steps 4-6

Step 4 Set 𝒙𝒑 = 𝒙𝒏 {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.

Step 5 Set 𝒇𝒙𝒑 as the value of 𝑓(𝒙𝒑)

Set 𝒅𝒇𝒙𝒑 as the value of 𝑓′(𝒙𝒑)

Step 6

𝒙𝒏 = 𝒙𝒑 −
𝒇𝒙𝒑

𝒅𝒇𝒙𝒑
{
Computing a new
approximation to the root

end for (Go to Step 4 for the next iteration)

Step 7 Print the output: 𝒙𝒏

 [Additionally, the initial approximation (𝒙𝟎), number of iterations (𝒌), and 𝑓(𝒙𝒏) can be printed]

STOP.

Remark: In the algorithm, it is assumed that neither any pitfall of the method will occur, nor 𝑓(𝑥) will be equal

to zero (or the machine-epsilon) in any iteration for the given problem and initial approximation.

12 Numerical Recipes in Python

Question 37: Write a Python program to find a real root of 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 using the Newton-

Raphson method. Take initial approximation as 𝑥0 = 0. Here 𝑓′(𝑥) = 4 + cos 𝑥 − 𝑒𝑥. The program should

perform a fixed number of iterations.

script_2.1: newton1.ipynb

1 from numpy import *

2 N = 12 # setting the maximum number of iterations

3

4 x0 = float(input("Enter the initial approximation: "))

5 print("iter. xk f(xk)")

6

7 xk = x0

8 fxk = 4*xk + sin(xk) – exp(xk)

9 for k in range(1,N+1):

10 xp = xk

11 fxp = fxk

12 dfxp = 4 + cos(xp) – exp(xp)

13 xk = xp – (fxp/dfxp)

14 fxk = 4*xk + sin(xk) – exp(xk)

15

16 #print(k, xk, fxk, sep="\t")

17 print(f"{k}\t {xk:.16f}\t{fxk:.16f}")

18

18 print(N , "iterations completed.")

Output Console:

Enter the initial approximation: 0

iter. xk f(xk)

1 0.2500000000000000 -0.0366214574332184

2 0.2599382850500705 -0.0000759982664056

3 0.2599589955313102 -0.0000000003332497

4 0.2599589956221257 0.0000000000000000

5 0.2599589956221257 0.0000000000000000

6 0.2599589956221257 0.0000000000000000

7 0.2599589956221257 0.0000000000000000

8 0.2599589956221257 0.0000000000000000

9 0.2599589956221257 0.0000000000000000

10 0.2599589956221257 0.0000000000000000

11 0.2599589956221257 0.0000000000000000

12 0.2599589956221257 0.0000000000000000

12 iterations completed.

Remark: In the program, it is assumed that neither any pitfall of the method will occur, nor 𝑓(𝑥) will be equal
to zero (or the machine-epsilon) in any iteration for the given problem and initial approximation.

Remark: In the program, it is assumed that neither any pitfall of the method will occur, nor 𝑓(𝑥) will be equal

to zero (or the machine-epsilon) in any iteration.

Solution of a Nonlinear Equation in One Variable 13

Remark: The algorithm in Question 36 (likewise 18) has a shortcoming that on completion of the given fixed

number of 𝑁 iterations the solutions might not have been converged (the desired accuracy might not have

been achieved). Moreover, the algorithm has a shortcoming if the convergence has been achieved (or

divergence has occurred) in few iterations, even then the iterations would not stop immediately; the algorithm

will complete the fixed number of iterations. These shortcomings in the algorithm can be addressed by

incorporating the two convergence criteria such that if the convergence is achieved (i. e., error < tolerence),

then no more iterations will be performed, however, the number of iterations would not exceed the maximum

limit on the number of iterations. Such an indispensable modification regarding the stopping criteria is

adopted throughout the subsequent part of the book.

Remark: The Numpy library has functions sin(x), cos(x), and exp(x). In the script newton1.ipynb the

Numpy library is imported completely using the wildcard *. Therefore, it is sufficient to write sin(x), cos(x),

and exp(x) in the script to use these functions. If the Numpy library is imported as:

import numpy as np

Then, it is required to write np.sin(x), np.cos(x), and np.exp(x) for using these functions.

Interestingly, these functions are also available in the math module of the Standard Python Library.

Question 38: Write down the algorithm (pseudo code) of the Newton’s method to solve 𝑓(𝑥) = 0.

Algorithm: To solve 𝑓(𝑥) = 0 using the following iterative formula (given an initial approximation 𝑥0):

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
, for 𝑘 = 1, 2, 3,⋯

𝐈𝐍𝐏𝐔𝐓𝐒: {

𝒙𝟎: a real value as the initial approximation 𝑥0 sufficiently close to the root
𝑻𝑶𝑳: a real value as the tolerance (permissible error)
𝑵: an integer as the maximum number of iterations

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(either on convergence or on completing 𝑵 iterations − whichever happens first)

Step 1 Receive the inputs as stated above

Step 2 Set 𝒙𝒏 = 𝒙𝟎 (initialize 𝒙𝒏 with the initial approximation)

Step 3 for 𝒌 = 𝟏, 𝟐, 𝟑,⋯ ,𝑵 perform Steps 4-8

Step 4 Set 𝒙𝒑 = 𝒙𝒏 {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.

Step 5 Set 𝒇𝒙𝒑 as the value of 𝑓(𝒙𝒑)

Set 𝒅𝒇𝒙𝒑 as the value of 𝑓′(𝒙𝒑)

Step 6

𝒙𝒏 = 𝒙𝒑 −
𝒇𝒙𝒑

𝒅𝒇𝒙𝒑
{
Computing a new
approximation to the root

14 Numerical Recipes in Python

Step 7 Set 𝒆𝒓𝒓 = |𝒙𝒏 − 𝒙𝒑| (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|/|𝑥𝑝|)

Step 8

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳) then

Exit/Break the loop
}

This means that the consecutive
approximations are nearly the same
Therefore, stop iterations.

.

end for (Go to Step 4 for the next iteration)

Step 9 Print the output: 𝒙𝒏

 [Additionally, the initial approximation (𝒙𝟎), number of iterations (𝒌), 𝑓(𝒙𝒏), and error (𝒆𝒓𝒓) can be printed]

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳) OUTPUT (‘The desired accuracy achieved; Solution converged.’)

else OUTPUT (‘The number of iterations exceeded the maximum limit.’) because 𝒌 > 𝑵

STOP.

Remark: In the algorithm, it is assumed that neither any pitfall of the method will occur, nor 𝑓(𝑥) will be equal

to zero (or the machine-epsilon) in any iteration for the given problem and initial approximation.

Question 39: Write a Python program to find a real root of 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 using the Newton-

Raphson method. Take initial approximation as 𝑥0 = 0. Here 𝑓′(𝑥) = 4 + cos 𝑥 − 𝑒𝑥. The iterations of the

method should stop when either the approximation is accurate within 10−5, or the number of iterations exceed

100, whichever happens first.

script_2.2: newton2.ipynb

1 from numpy import *

2

3 TOL = 0.000001 # setting the tolerance

4 N = 50 # setting the maximum number of iterations

5

6 x0 = float(input("Enter the initial approximation: "))

7 print("iter. xk f(xk) Error")

8

9 xk = x0 ; fxk = 4*xk + sin(xk) – exp(xk)

10 for k in range(1,N+1):

11 xp = xk

12 fxp = fxk

13 dfxp = 4 + cos(xp) – exp(xp)

14 xk = xp - (fxp/dfxp)

15

16 fxk = 4*xk + sin(xk) – exp(xk)

17

18 err = abs(xk – xp)/abs(xk)

19

20 #print(k, xk, fxk, err, sep="\t")

21 print(f"{k}\t {xk:.16f}\t{fxk:.16f}\t{err:.12f}")

22 if err < TOL:

Solution of a Nonlinear Equation in One Variable 15

23 break

24

25 if err < TOL:

26 print("Required accuracy achieved; Solution is convergent.")

27 else:

28 print("The Number of iterations exceeded the maximum limit.")

Output Console:

Enter the initial approximation: 0

iter. xk f(xk) Error

1 0.2500000000000000 -0.0366214574332184 1.000000000000

2 0.2599382850500705 -0.0000759982664056 0.038233248511

3 0.2599589955313102 -0.0000000003332497 0.000079668261

4 0.2599589956221257 0.0000000000000000 0.000000000349

Required accuracy achieved; Solution is convergent.

Remark: This program is based on the assumption that neither any pitfall of the method will occur, nor 𝑓(𝑥)

will be equal to zero (or machine-epsilon) in any iteration for the given problem and data.

Question 40: Write a Python program to find a real root of the equation 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 using the

Newton-Raphson method. Take initial approximation as 𝑥0 = 0. Here 𝑓′(𝑥) = 4 + cos 𝑥 − 𝑒𝑥. Use #define

directive to evaluate 𝑓(𝑥) and 𝑓′(𝑥) wherever required. The iterations of the method should stop when either

the approximation is accurate within 10−5, or the number of iterations exceed 100, whichever happens first.

script_2.3: newton3.ipynb

1 from numpy import *

2 N = 500 # setting the maximum number of iterations

3 TOL = 0.000001 # setting the tolerance

4

5 def fval(x):

6 y = 4 * x + sin(x) – exp(x)

7 return (y)

8

9 def dfval(x):

10 dy = 4 + cos(x) – exp(x)

11 return (dy)

12

13 x0 = float(input("Enter the initial approximation: "))

14 print("iter. xk f(xk) Error")

15

16 xk = x0 ; fxk = fval(xk)

17 for k in range(1,N+1):

18 xp = xk

19 fxp = fxk

20 dfxp = dfval(xp)

21 xk = xp – (fxp/dfxp)

16 Numerical Recipes in Python

22

23 fxk = fval(xk)

24

25 err = abs(xk – xp)/abs(xk)

26

27 #print(k, xk, fxk, err, sep="\t")

28 print(f"{k}\t {xk:.16f}\t{fxk:.16f}\t{err:.12f}")

29 if err < TOL:

30 break

31

32 if err < TOL:

33 print("Required accuracy achieved; Solution is convergent.")

34 else:

35 print("The Number of iterations exceeded the maximum limit.")

Output Console:

Enter the initial approximation: 0

iter. xk f(xk) Error

1 0.2500000000000000 -0.0366214574332184 1.000000000000

2 0.2599382850500705 -0.0000759982664056 0.038233248511

3 0.2599589955313102 -0.0000000003332497 0.000079668261

4 0.2599589956221257 0.0000000000000000 0.000000000349

Required accuracy achieved; Solution is convergent.

Question 41: Write down the algorithm (pseudo code) of the Fixed-Point Iteration method to solve 𝑓(𝑥) = 0.

The Fixed-Point Iteration method is an open method that approximates a root of the equation 𝑓(𝑥) = 0 by

rearranging the equation 𝑓(𝑥) = 0 to get an appropriate form 𝑥 = 𝑔(𝑥) and generating a sequence of

successive approximations {𝑥𝑘}𝑘=1
∞ by the iterative formula 𝑥𝑘 = 𝑔(𝑥𝑘−1), for 𝑘 = 1, 2, 3,⋯ . The said

sequence may

o converge but could be different for different forms of 𝑥 = 𝑔(𝑥),

o converge but could be different for different choices of the initial approximation 𝑥0 for a particular

form of 𝑥 = 𝑔(𝑥), or

o diverge for some unsuitable form of 𝑥 = 𝑔(𝑥) or an initial approximation 𝑥0.

Algorithm: To solve 𝑓(𝑥) = 0 ⟺ 𝑥 = 𝑔(𝑥), using the following iterative formula (given an initial

approximation 𝑥0)

𝑥𝑘 = 𝑔(𝑥𝑘−1), for 𝑘 = 1, 2, 3,⋯

𝐈𝐍𝐏𝐔𝐓𝐒: {

𝒙𝟎: a real value as the initial approximation 𝑥0 sufficiently close to the root
𝑻𝑶𝑳: a real value as the tolerance (permissible error)
𝑵: an integer as the maximum number of iterations

Solution of a Nonlinear Equation in One Variable 17

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(either on convergence or on completing 𝑵 iterations − whichever happens first)

Step 1 Receive the inputs as stated above

Step 2 Set 𝒙𝒏 = 𝒙𝟎 (initialize 𝒙𝒏 with the initial approximation)

Step 3 for 𝒌 = 𝟏, 𝟐, 𝟑,⋯ ,𝑵 perform Steps 4-7

Step 4 Set 𝒙𝒑 = 𝒙𝒏 {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.

Step 5

Set 𝒙𝒏 as the value of 𝑔(𝒙𝒑) {
Computing a new
approximation to the root

Step 6 Set 𝒆𝒓𝒓 = |𝒙𝒏 − 𝒙𝒑| (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|/|𝑥𝑝|)

Step 7

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳) then

Exit/Break the loop
}

This means that the consecutive
approximations are nearly the same
Therefore, stop iterations.

.

end for (Go to Step 4 for the next iteration)

Step 8 Print the output: 𝒙𝒏

 [Additionally, the initial approximation (𝒙𝟎), number of iterations (𝒌), 𝑓(𝒙𝒏), and error (𝒆𝒓𝒓) can be printed]

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳) OUTPUT (‘The desired accuracy achieved; Solution converged.’)

else OUTPUT (‘The number of iterations exceeded the maximum limit.’)

STOP.

Question 42: Write a Python program to find a real root of the equation 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 using the

Fixed-Point Iteration method. Take 𝑥 = 𝑔(𝑥) =
1

4
(𝑒𝑥 − sin 𝑥) and 𝑥0 = 0 as an initial approximation. The

iterations of the method should stop when either the approximation is accurate within 10−5, or the number of

iterations exceeds 100, whichever happens first.

script_2.4: fixed_point.ipynb

1 from numpy import *

2 N = 500 # setting the maximum number of iterations

3 TOL = 0.000001 # setting the tolerance

4

5 def fval(x):

6 y = 4 * x + sin(x) – exp(x)

7 return (y)

8

9 def gval(x):

18 Numerical Recipes in Python

10 g = 0.25 * (exp(x) – sin(x))

11 return (g)

12

13 x0 = float(input("Enter the initial approximation: "))

14 print("iter. xk f(xk) Error")

15

16 xk = x0

17 for k in range(1,N+1):

18 xp = xk

19 xk = gval(xp)

20

21 fxk = fval(xk)

22

23 err = abs(xk – xp)/abs(xk)

24

 #print(k, xk, fxk, err, sep="\t")

26 print(f"{k}\t {xk:.16f}\t{fxk:.16f}\t{err:.12f}")

27 if err < TOL:

28 break

29

30 if err < TOL:

25 print("Required accuracy achieved; Solution is convergent.")

32 else:

33 print("The Number of iterations exceeded the maximum limit.")

Output Console:

Enter the initial approximation: 0

iter. xk f(xk) Error

1 0.2500000000000000 -0.0366214574332184 1.000000000000

2 0.2591553643583046 -0.0029494454793164 0.035327705375

3 0.2598927257281337 -0.0002431823527489 0.002837175868

4 0.2599535213163210 -0.0000200881176871 0.000233870993

5 0.2599585433457428 -0.0000016596390247 0.000019318578

6 0.2599589582554989 -0.0000001371177203 0.000001596059

7 0.2599589925349290 -0.0000000113285412 0.000000131865

Required accuracy achieved; Solution is convergent.

Question 43: Write down the algorithm (pseudo code) of the Secant method to solve 𝑓(𝑥) = 0.

The iterative formula of the Secant method for solving 𝑓(𝑥) = 0 (with 𝑥 = 𝑥0 and 𝑥 = 𝑥1 as the initial

approximations) is given by

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)(𝑥𝑘−1 − 𝑥𝑘−2)

𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)
, for 𝑘 = 2, 3, 4,⋯

Solution of a Nonlinear Equation in One Variable 19

Algorithm: To solve 𝑓(𝑥) = 0 using the iterative formula (given the root containing interval):

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)(𝑥𝑘−1 − 𝑥𝑘−2)

𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)
, for 𝑘 = 2, 3, 4,⋯

𝐈𝐍𝐏𝐔𝐓𝐒: {

𝒂 and 𝒃: two real values as the initial approximations sufficiently close to the root
𝑻𝑶𝑳: a real value as the tolerance (permissible error)
𝑵: an integer as the maximum number of iterations

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(either on convergence or on completing 𝑵 iterations − whichever happens first)

Step 1 Receive the inputs as stated above

Step 2 Set 𝒙𝒏 = 𝒃 (initialize 𝒙𝒏 with any of the two endpoints)

Step 3 Set 𝒙𝟎 = 𝒂

 Set 𝒙𝟏 = 𝒃

Set 𝒇𝒙𝟎 as the value of 𝑓(𝒙𝟎)

Set 𝒇𝒙𝟏 as the value of 𝑓(𝒙𝟏)

Step 4 for 𝒌 = 𝟐, 𝟑,⋯ ,𝑵 + 𝟏 perform Steps 5-10

Step 5 Set 𝒙𝒑 = 𝒙𝒏 {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.

Step 6

𝒙𝒏 = 𝒙𝟏 −
𝒇𝒙𝟏(𝒙𝟏 − 𝒙𝟎)

𝒇𝒙𝟏 − 𝒇𝒙𝟎
{
Computing a new
approximation to the root

Step 7 Set 𝒇𝒙𝒏 as the value of 𝑓(𝒙𝒏)

Step 8 Set 𝒆𝒓𝒓 = |𝒙𝒏 − 𝒙𝒑|/|𝒙𝒑| (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|)

Step 9

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳) then

Exit/Break the loop
}

This means that the consecutive
approximations are nearly the same
Therefore, stop iterations.

.

else
Set 𝒙𝟎 = 𝒙𝟏
Set 𝒇𝒙𝟎 = 𝒇𝒙𝟏

Set 𝒙𝟏 = 𝒙𝒏
Set 𝒇𝒙𝟏 = 𝒇𝒙𝒏

}

preparing two approximations
for the next iteration

end for (Go to Step 5 for the next iteration)

Step 10 Print the output: 𝒙𝒏

[Additionally, the initial approx. (𝒙𝟎 and 𝒙𝟏), number of iterations (𝒌 − 𝟏), 𝑓(𝒙𝒏), and error (𝒆𝒓𝒓) can be printed]

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳) OUTPUT (‘The desired accuracy achieved; Solution converged.’)

else OUTPUT (‘The number of iterations exceeded the maximum limit.’)

STOP.

20 Numerical Recipes in Python

Question 44: Write a Python program to find a real root of the equation 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 using the

Secant method. Take initial approximation as 𝑥0 = 0 and 𝑥1 = 1. The iterations of the method should stop

when either the approximation is accurate within 10−5, or the number of iterations exceeds 100, whichever

happens first.

script_2.5: secant.ipynb

1 from numpy import *
2 N = 500 # setting the maximum number of iterations
3 TOL = 0.000001 # setting the tolerance
4
5 def fval(x):
6 y = 4 * x + sin(x) – exp(x)
7 return (y)
8
9 a = float(input("Enter the first initial approximation: "))

10 b = float(input("Enter the second initial approximation: "))
11 xk = b
12 x0 = a
13 x1 = b
14 fx0 = fval(x0)
15 fx1 = fval(x1)
16 print("k xk–2 xk–1 xk f(xk) Error")
17
18 for k in range(2,N+2):
19 xp = xk
20 xk = x1 – (fx1 * (x1 – x0)) / (fx1 – fx0)
21
22 fxk = fval(xk)
23
24 err = abs(xk – xp)/abs(xk)
25
26 #print(k, xk, fxk, err, sep=" ")
27 print(f"{k}\t {xk:.16f}\t{fxk:.16f}\t{err:.12f}")
28
29 if err < TOL:
30 break
31 else:
32 x0 = x1
33 fx0 = fx1
34 x1 = xk
35 fx1 = fxk
36
37 if err < TOL:
38 print("Required accuracy achieved; Solution is convergent.")
39 else:
40 print("The Number of iterations exceeded the maximum limit.")

Solution of a Nonlinear Equation in One Variable 21

Output Console:

Enter the first initial approximation: 0

Enter the second initial approximation: 1

k xk f(xk) Error

2 0.3201855379035207 0.2181015285252024 2.123189156349

3 0.2423578458166424 -0.0648264842999824 0.321127182100

4 0.2601902817383949 0.0008486682977629 0.068536133643

5 0.2599598472066112 0.0000031249088128 0.000886423554

6 0.2599589955804161 -0.0000000001530542 0.000003276002

7 0.2599589956221257 0.0000000000000000 0.000000000160

Required accuracy achieved; Solution is convergent.

Question 45: Write down the algorithm (pseudo code) of the Bisection method to solve 𝑓(𝑥) = 0.

The Bisection method selects 𝑐 ∈ (𝑎 + 𝑏), as the midpoint of the interval [𝑎, 𝑏], using the formula

𝑐 = 𝑎 +
(𝑏 − 𝑎)

2

Algorithm: To solve 𝑓(𝑥) = 0 using the iterative formula (given the root containing interval):

𝑥𝑘 = 𝑥𝑘−2 +
𝑥𝑘−1 − 𝑥𝑘−2

2
, for 𝑘 = 2, 3, 4,⋯

𝐈𝐍𝐏𝐔𝐓𝐒: {

𝒂 and 𝒃: two real values as the initial approximations bracketing the root

𝑻𝑶𝑳: a real value as the tolerance (permissible error)
𝑵: an integer as the maximum number of iterations

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(either on convergence or on completing 𝑵 iterations − whichever happens first)

Step 1 Receive the inputs as stated above

Step 2 Set 𝒙𝒏 = 𝒃 (initialize 𝒙𝒏 with any of the two endpoints)

Step 3 Set 𝒙𝟎 = 𝒂

Set 𝒙𝟏 = 𝒃

Set 𝒇𝒙𝟎 as the value of 𝑓(𝒙𝟎)

Set 𝒇𝒙𝟏 as the value of 𝑓(𝒙𝟏)

Step 4 for 𝒌 = 𝟐, 𝟑,⋯ ,𝑵 + 𝟏 perform Steps 5-10

Step 5 Set 𝒙𝒑 = 𝒙𝒏 {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.

Step 6

𝒙𝒏 = 𝒙𝟎 +
𝒙𝟏 − 𝒙𝟎

𝟐
{
Computing a new
approximation to the root

Step 7 Set 𝒇𝒙𝒏 as the value of 𝑓(𝒙𝒏)

22 Numerical Recipes in Python

Step 8 Set 𝒆𝒓𝒓𝟏 = |𝒙𝒏 − 𝒙𝒑|/|𝒙𝒏| (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|)

 Set 𝒆𝒓𝒓𝟐 = |𝒇𝒙𝒏|

 Set 𝒆𝒓𝒓 = 𝒎𝒊𝒏(𝒆𝒓𝒓𝟏, 𝒆𝒓𝒓𝟐)

Step 9

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)then

Exit/Break the loop
}

This means that either 𝒇(𝒙𝒏) is the close to
zero, or the consecutive approximations are
nearly the same. Therefore, stop iterations.

else if (𝒇(𝒙𝟎)𝒇(𝒙𝒏) < 0) then

Set 𝒙𝟏 = 𝒙𝒏
Set 𝒇𝒙𝟏 = 𝒇𝒙𝒏

else
Set 𝒙𝟎 = 𝒙𝒏
Set 𝒇𝒙𝟎 = 𝒇𝒙𝒏

}

Adjusting one endpoint
of the interval such that
half of the interval will be
used in the next iteration

 end for (Go to Step 5 for the next iteration)

Step 10 Print the output: 𝒙𝒏

[Additionally, the starting interval [𝑎, 𝑏], number of iterations (𝒌 − 𝟏), 𝑓(𝒙𝒏), and error (𝒆𝒓𝒓) can be printed]

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳) OUTPUT (‘The desired accuracy achieved; Solution converged.’)

else OUTPUT (‘The number of iterations exceeded the maximum limit.’)

STOP.
∎

Remark: While using a bracketing method, there might arise a situation in which the two consecutive

approximations to the roots are not sufficiently close to each other (i.e., the sequence of successive

approximations has not converged), but the function values at the approximations are sufficiently close to

zero (i.e., |𝑓(𝑥𝑘)| < tolerence). Therefore, there is no point to proceed the iterations further. The iterations

should be stopped. Therefore, the algorithm of a bracketing method (the Bisection, or Regula-Falsi method)

should include both of the convergence criteria of testing the convergence of the roots, and closeness of the

function values to zero. The iterations should be terminated on whichever criterion is met first, ensuring the

convergence. To accommodate this in the algorithm, the two kinds of errors are computed and the minimum

of the two errors is found to compare with the tolerance:

Set 𝑒𝑟𝑟1 = |𝑥𝑛 − 𝑥𝑝|/|𝑥𝑛| (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|)

Set 𝑒𝑟𝑟2 = |𝑓𝑥𝑛|

Set 𝑒𝑟𝑟 = 𝑚𝑖𝑛(𝑒𝑟𝑟1, 𝑒𝑟𝑟2)
∎

Question 46: Write a Python program to find a real root of the equation 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 in [0, 1]

using the Bisection method. The two function values at the endpoints of the interval have opposite signs. The

iterations of the method should stop when either the approximation is accurate within 10−5, or the number of

iterations exceeds 100, whichever happens first.

Solution of a Nonlinear Equation in One Variable 23

script_2.6: bisection.ipynb

1 from numpy import *
2 N = 500 # setting the maximum number of iterations
3 TOL = 0.000001 # setting the tolerance
4
5 def fval(x):
6 y = 4*x + sin(x) – exp(x)
7 return (y)
8
9 a = float(input("Enter the first initial approximation: "))

10 b = float(input("Enter the second initial approximation: "))
11 xk = b
12 x0 = a
13 x1 = b
14 fx0 = fval(x0)
15 fx1 = fval(x1)
16 print("k a b ck f(c) Error")
17
18 for k in range(2,N+2):
19 xp = xk
20 xk = x0 + (x1 – x0)/2
21
22 fxk = fval(xk)
23
24 err1 = abs(xk – xp)/abs(xk)
25 err2 = abs(fxk)
26 err = min(err1,err2)
27
28 #print(k, x0, xp, xk, fxk, err, sep="\t")
29 print(f"{k}\t{x0:.7f}\t{xp:.7f}\t {xk:.10f}\t{fxk:.10f}\t{err:.8f}")
30 if err < TOL:
31 break
32 elif fx0 * fxk < 0:
33 x1 = xk
34 fx1 = fxk
35 else:
36 x0 = xk
37 fx0 = fxk
38
39 if err < TOL:
40 print("Required accuracy achieved; Solution is convergent.")
41 else:
42 print("The Number of iterations exceeded the maximum limit.")

Output Console:

24 Numerical Recipes in Python

Enter the first initial approximation: 0

Enter the second initial approximation: 1

k a b ck f(c) Error

2 0.0000000 1.0000000 0.5000000000 0.8307042679 0.83070427

3 0.0000000 0.5000000 0.2500000000 -0.0366214574 0.03662146

4 0.2500000 0.2500000 0.3750000000 0.4112811145 0.33333333

5 0.2500000 0.3750000 0.3125000000 0.1906005734 0.19060057

6 0.2500000 0.3125000 0.2812500000 0.0777719929 0.07777199

7 0.2500000 0.2812500 0.2656250000 0.0207665250 0.02076653

8 0.2500000 0.26562500 0.2578125000 -0.0078801924 0.00788019

9 0.2578125 0.25781250 0.2617187500 0.0064550521 0.00645505

10 0.2578125 0.2617188 0.2597656250 -0.0007096071 0.00070961

11 0.2597656 0.2597656 0.2607421875 0.0028734643 0.00287346

12 0.2597656 0.2607422 0.2602539062 0.0010821139 0.00108211

13 0.2597656 0.2602539 0.2600097656 0.0001862997 0.00018630

14 0.2597656 0.2600098 0.2598876953 -0.0002616421 0.00026164

15 0.2598877 0.2598877 0.2599487305 -0.0000376683 0.00003767

16 0.2599487 0.2599487 0.2599792480 0.0000743164 0.00007432

17 0.2599487 0.2599792 0.2599639893 0.0000183242 0.00001832

18 0.2599487 0.2599640 0.2599563599 -0.0000096720 0.00000967

19 0.2599564 0.2599564 0.2599601746 0.0000043261 0.00000433

20 0.2599564 0.2599602 0.2599582672 -0.0000026729 0.00000267

21 0.2599583 0.2599583 0.2599592209 0.0000008266 0.00000083

Required accuracy achieved; Solution is convergent.

∎

Question 47: Write down the algorithm (pseudo code) of the Regula-Falsi method to solve 𝑓(𝑥) = 0.

The Regula-Falsi method selects 𝑐 ∈ (𝑎 + 𝑏), as the point where the line segment joining 𝑓(𝑎) and 𝑓(𝑏)

intersects the 𝑥-axis, using the formula

𝑐 = 𝑏 −
𝑓(𝑏)(𝑏 − 𝑎)

𝑓(𝑏) − 𝑓(𝑎)

Algorithm: To solve 𝑓(𝑥) = 0 using the iterative formula (given the root containing interval):

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)(𝑥𝑘−1 − 𝑥𝑘−2)

𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)
, for 𝑘 = 2, 3, 4,⋯

Solution of a Nonlinear Equation in One Variable 25

𝐈𝐍𝐏𝐔𝐓𝐒: {

𝒂 and 𝒃: two real values as the initial approximations bracketing the root
𝑻𝑶𝑳: a real value as the absolute error tolerance
𝑵: an integer as the maximum number of iterations

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(either on convergence or on completing 𝑵 iterations − whichever happens first)

Step 1 Receive the inputs as stated above

Step 2 Set 𝒙𝒏 = 𝒃 (initialize 𝒙𝒏 with any of the two endpoints)

Step 3 Set 𝒙𝟎 = 𝒂

Set 𝒙𝟏 = 𝒃

Set 𝒇𝒙𝟎 as the value of 𝑓(𝒙𝟎)

Set 𝒇𝒙𝟏 as the value of 𝑓(𝒙𝟏)

Step 4 for 𝒌 = 𝟐, 𝟑,⋯ ,𝑵 + 𝟏 perform Steps 5-10

Step 5 Set 𝒙𝒑 = 𝒙𝒏 {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.

Step 6

𝒙𝒏 = 𝒙𝟏 −
𝒇𝒙𝟏(𝒙𝟏 − 𝒙𝟎)

𝒇𝒙𝟏 − 𝒇𝒙𝟎
{
Computing a new
approximation to the root

Step 7 Set 𝒇𝒙𝒏 as the value of 𝑓(𝒙𝒏)

Step 8 Set 𝒆𝒓𝒓𝟏 = |𝒙𝒏 − 𝒙𝒑|/|𝒙𝒏| (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|)

 Set 𝒆𝒓𝒓𝟐 = |𝒇𝒙𝒏|

 Set 𝒆𝒓𝒓 = 𝒎𝒊𝒏(𝒆𝒓𝒓𝟏, 𝒆𝒓𝒓𝟐)

Step 9

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)then

Exit/Break the loop
}

This means that either 𝒇(𝒙𝒏) is the close to
zero, or the consecutive approximations are
nearly the same. Therefore, stop iterations.

else if (𝒇(𝒙𝟎)𝒇(𝒙𝒏) < 0) then

Set 𝒙𝟏 = 𝒙𝒏
Set 𝒇𝒙𝟏 = 𝒇𝒙𝒏

else
Set 𝒙𝟎 = 𝒙𝒏
Set 𝒇𝒙𝟎 = 𝒇𝒙𝒏

}

Adjusting one endpoint
of the interval such that
a shorter interval will be
used in the next iteration

 end for (Go to Step 5 for the next iteration)

Step 10 Print the output: 𝒙𝒏

[Additionally, the starting interval [𝑎, 𝑏], number of iterations (𝒌 − 𝟏), 𝑓(𝒙𝒏), and error (𝒆𝒓𝒓) can be printed]

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳) OUTPUT (‘The desired accuracy achieved; Solution converged.’)

else OUTPUT (‘The number of iterations exceeded the maximum limit.’)

STOP.

26 Numerical Recipes in Python

Question 48: Write a Python program to find a real root of the equation 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 in [0, 1]

using the Regula-Falsi method. The two function values at the endpoints of the interval have opposite signs.

Use #define directive to evaluate 𝑓(𝑥) wherever required. The iterations of the method should stop when

either the approximation is accurate within 10−5, or the number of iterations exceeds 100, whichever happens

first.

script_2.7: regula_falsi.ipynb

1 import numpy as np
2 N = 500 # setting the maximum number of iterations
3 TOL = 0.000001 # setting the tolerance
4
5 def fval(x):
6 y = 4*x + sin(x) – exp(x)
7 return (y)
8
9 a = float(input("Enter the left endpoint of the interval: "))

10 b = float(input("Enter the right endpoint of the interval: "))
11 xk = b
12 x0 = a
13 x1 = b
14 fx0 = fval(x0)
15 fx1 = fval(x1)
16 print("k a b ck f(c) Error")
17
18 for k in range(2,N+2):
19 xp = xk
20 xk = x1 - (fx1 * (x1 – x0))/(fx1 – fx0)
21
22 fxk = fval(xk)
23
24 err1 = abs(xk – xp) / abs(xk)
25 err2 = abs(fxk)
26 err = min(err1,err2)
27
28 #print(k, x0, xp, xk, fxk, err, sep="\t")
29 print(f"{k}\t{x0:.7f}\t{xp:.7f}\t {xk:.10f}\t{fxk:.10f}\t{err:.8f}")
30 if (fxk < TOL):
31 break
32 elif err < TOL:
33 break
34 elif fx0 * fxk < 0:
35 x1 = xk
36 fx1 = fxk
37 else:
38 x0 = xk
39 fx0 = fxk
40

Solution of a Nonlinear Equation in One Variable 27

41 if err < TOL:
42 print("Required accuracy achieved; Solution is convergent")
43 else:
44 print("The Number of iterations exceeded the maximum limit.")

Output Console:

Enter the left endpoint of the interval: 0

Enter the right endpoint of the interval: 1

k a b ck f(c) Error

2 0.0000000 1.0000000 0.3201855379 0.2181015285 0.21810153

3 0.0000000 0.3201855 0.2628561991 0.0106248258 0.01062483

4 0.0000000 0.2628562 0.2600927589 0.0004908334 0.00049083

5 0.0000000 0.2600928 0.2599651593 0.0000226176 0.00002262

6 0.0000000 0.2599652 0.2599592796 0.0000010421 0.00000104

7 0.0000000 0.2599593 0.2599590087 0.0000000480 0.00000005

Required accuracy achieved; Solution is convergent

∎

Remark: An interesting online calculator by CASIO® at https://keisan.casio.com has the

following webpage to approximate the root of a non-linear equation using different methods.

https://keisan.casio.com/menu/system/000000001000

∎∎∎

28 Numerical Recipes in Python

Chapter Summary

• The root-finding problem refers to find some appropriate value 𝑥 = 𝛼 in the domain of a function 𝑓 such

that 𝑓(𝛼) = 0. Every such possible value 𝛼 is called a root of the equation 𝑓(𝑥) = 0.

• Geometrically, a root of an equation 𝑓(𝑥) = 0 is the point where the graph of 𝑓 intersects the 𝑥-axis.

• An iterative numerical method to approximate the root starts with some appropriate or reasonable

estimation (also called initial approximation or guess) of the exact root and attempts to refine the

approximation, iteratively. The iterations are repeated until a desired level of accuracy is achieved.

• Let 𝑥0 denotes the initial approximation and 𝑥1, 𝑥2, 𝑥3, ⋯ denote the successive iterative solutions to an

exact root 𝛼 of the equation 𝑓(𝑥) = 0. The sequence {𝑥𝑘}𝑘=0
∞ of the successive approximations is said to

converge to the exact root 𝛼, if the successive approximations approach 𝛼. In such a case, the iterative

method is also said to converge. In other words, the iterative method is said to be convergent for a given

initial approximation if the corresponding sequence of successive approximations is convergent to the

exact solution. Under certain conditions, it is possible for an iterative method that the sequence of

successive approximations might diverge from a desired exact root 𝛼.

• Stopping Criteria: The most common convergence criterion to stop the iterative process is based on the

comparison of the estimated error with the error tolerance. For this purpose, the current approximation

is considered as the true solution and the previous approximation is considered as the approximate

solution for estimating the error and any appropriate one of the following criteria is used,

(1) |𝑥𝑘 − 𝑥𝑘−1| ≤ 𝜏

(2) |
𝑥𝑘 − 𝑥𝑘−1

𝑥𝑘
| ≤ 𝜏

(3) |
𝑥𝑘 − 𝑥𝑘−1

𝑥𝑘
| × 100 ≤ 𝜏

Here 𝑥𝑘 and 𝑥𝑘−1 denote the current and previous approximations, respectively, and 𝜏 denotes the

tolerance.

• Another Stopping Criterion: Note that the values of the function 𝑓 tend to zero with the progress of the

iterative process. Thus, falling of the difference between the function values and zero beyond a certain

level might also indicate convergence.

• The numerical methods of finding a root of 𝑓(𝑥) = 0 can be categorized as bracketing methods and open

methods.

• Bracketing methods start with an interval containing a root and squeeze down the interval, iteratively.

Two well-known root bracketing methods are the Bisection method and the Regula-Falsi (False-Position)

method.

Solution of a Nonlinear Equation in One Variable 29

• Open Methods are those who obtain successive single approximations irrespective of their location at

any side of the root. Some of the well-known open methods are the Fixed-Point Iteration method, the

Newton-Raphson method (Newton’s method), and the Secant method.

• A bracketing method for finding a root/zero of a continuous function 𝑓 starts with an interval [𝑎, 𝑏]

containing a root. The opposite signs of 𝑓(𝑎) and 𝑓(𝑏) ensure (due to the Intermediate value theorem)

that there exists a root 𝛼 of 𝑓(𝑥) = 0 in (𝑎, 𝑏). To get closer to the root 𝛼, first a point 𝑐 ∈ (𝑎 + 𝑏) is chosen.

If 𝑓(𝑐) = 0, then 𝑐 is the exact root. Otherwise, either of the intervals [𝑎, 𝑐] or [𝑐, 𝑏] is chosen as the

squeezed interval containing the root. The root lies in [𝑎, 𝑐] if 𝑓(𝑎)𝑓(𝑐) < 0, or in [𝑐, 𝑏] if 𝑓(𝑐)𝑓(𝑏) < 0.

The selected interval is relabeled as [𝑎, 𝑏] and the process is repeated. This way, a sequence of points

𝑐1, 𝑐2, 𝑐3 , ⋯, is formed. The iterations are performed until the approximations of the root of 𝑓(𝑥) in two

consecutive iterations are sufficiently close to each other.

• The Bisection method selects 𝑐 ∈ (𝑎 + 𝑏), as the midpoint of the interval [𝑎, 𝑏], using the formula

𝑐 =
(𝑎 + 𝑏)

2

• The Regula-Falsi method selects 𝑐 ∈ (𝑎 + 𝑏), as the point where the line segment joining 𝑓(𝑎) and 𝑓(𝑏)

intersects the 𝑥-axis, using the formula

𝑐 = 𝑏 −
𝑓(𝑏)(𝑏 − 𝑎)

𝑓(𝑏) − 𝑓(𝑎)

• For the Bisection method, the error-bound is given by,

|𝛼 − 𝑐𝑘| ≤
𝑏 − 𝑎

2𝑘
, for 𝑘 = 1, 2, 3,⋯,

Here 𝛼 is the exact root of the equation 𝑓(𝑥) = 0 in (𝑎, 𝑏) and 𝑐𝑘 =
 𝑎𝑘−1+𝑏𝑘−1

2
 is the midpoint of the interval

in 𝑘th iteration.

• The formula to determine the maximum number of iterations 𝑁 of the Bisection method after which the

error associated with any point in the squeezed interval is not greater than a given permissible absolute

error 𝜏𝑎 is as below:

𝑁 ≥
log(𝑏 − 𝑎) − log(𝜏𝑎)

log(2)

This formula tells that, for an interval of unit length, it is sure that after 10, 14, 17, and 20 iterations the

length of the squeezed interval (or the absolute error) is not greater than 10−3, 10−4 , 10−5, and 10−6,

respectively.

• The Fixed-Point Iteration method is an open method that approximates a root of the equation 𝑓(𝑥) =

0 by rearranging the equation 𝑓(𝑥) = 0 to get an appropriate form 𝑥 = 𝑔(𝑥) and generating a sequence

of successive approximations {𝑥𝑘}𝑘=1
∞ by the iterative formula 𝑥𝑘 = 𝑔(𝑥𝑘−1), for 𝑘 = 1, 2, 3,⋯ . The said

sequence may

o converge but could be different for different forms of 𝑥 = 𝑔(𝑥),

30 Numerical Recipes in Python

o converge but could be different for different choices of the initial approximation 𝑥0 for a

particular form of 𝑥 = 𝑔(𝑥), or

o diverge for some unsuitable form of 𝑥 = 𝑔(𝑥) or an initial approximation 𝑥0.

• Suppose that 𝑓 is a continuous function and the equation 𝑓(𝑥) = 0 has a real root 𝛼. Suppose that the

equation 𝑓(𝑥) = 0 can be rearranged in the form 𝑥 = 𝑔(𝑥) such that 𝛼 is a fixed-point of the function 𝑔,

and 𝑔 and 𝑔’ are continuous in some neighbourhood 𝐼 around 𝛼. If

 |𝑔′(𝑥)| ≤ 𝐾 < 1, for all 𝑥 ∈ 𝐼,

then for any initial approximation 𝑥0 ∈ 𝐼, the sequence {𝑥𝑘}𝑘=1
∞ of successive approximations, generated

by the iterative formula 𝑥𝑘 = 𝑔(𝑥𝑘−1), for 𝑘 = 1, 2, 3,⋯, converges to the solution 𝛼.

• To find a root of a non-linear equation 𝑓(𝑥) = 0 the Newton-Raphson method requires an initial

solution 𝑥0 and considers the 𝑥-intercept of the tangent line to the function 𝑓(𝑥) at 𝑥 = 𝑥0 as the new

approximation. Then, the 𝑥-intercept of the tangent line to the function at the new approximation is

considered as the next approximation. This way, the process is repeated with the successive

approximations until sufficient convergence is achieved. The formula to generate the sequence of

successive approximations based on the said approach is given by

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
, for 𝑘 = 1, 2, 3,⋯

• A sufficient condition of convergence for the Newton-Raphson method: Suppose that 𝛼 is a root of the

equation 𝑓(𝑥) = 0. Suppose that 𝐼 is a neighbourhood of 𝛼 such that 𝑓(𝑥), 𝑓′(𝑥) and 𝑓′′(𝑥) are continuous

on 𝐼. If |𝑓(𝑥)𝑓′′(𝑥)| ≤ |𝑓′(𝑥)|2, for all 𝑥 ∈ 𝐼, then for an initial approximation 𝑥0 ∈ 𝐼, the sequence {𝑥𝑘}𝑘=1
∞

of successive approximations, generated by the Newton’s formula, converges to the solution 𝛼.

• The iterative formula of the Secant method for solving 𝑓(𝑥) = 0 (with 𝑥 = 𝑥0 and 𝑥 = 𝑥1 as the initial

approximations) is given by

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)(𝑥𝑘−1 − 𝑥𝑘−2)

𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)
, for 𝑘 = 2, 3, 4,⋯

• Comparison of the False-Position method and the Secant method:

o The False-Position method is a bracketing method, whereas the Secant method is an open method.

o The False-Position method keeps the root bracketed by selects out the root bracketing subintervals

out the two subintervals obtains in each of the iterations. On the other hand, the Secant method

selects the two most recent approximations out of the three available approximations in any

iteration to proceed to the next iteration.

o The False-Position method always converges, whereas the Secant method may not converge for

certain situations.

o If the Secant method is convergent, it converges faster than the False-Position method. That is, it has

a higher convergence rate than that of the False-Position method.

Solution of a Nonlinear Equation in One Variable 31

• The order/rate of convergence of the Bisection method is 1 (i.e., linear) and the asymptotic error constant

is (1 2⁄)

• The order/rate of convergence of the False-Position or Regula-Falsi method is 1 (i.e., linear) and the

asymptotic error constant is −
1

2

𝑓′′(𝛼)

𝑓′(𝛼)
𝜀0

• The order/rate of convergence of the Fixed-Point Iteration method is 1 (i.e., linear) and the asymptotic

error constant is the maximum value of the function 𝑔′(𝑥) in some neighbourhood around the solution 𝛼.

• The order/rate of convergence of the Newton-Raphson method is 2 (i.e., quadratic) and the asymptotic

error constant is −
1

2

𝑓′′(𝛼)

𝑓′(𝛼)

• The order/rate of convergence of the Secant method is 1.62 (i.e., superlinear).

• The Newton-Raphson method may fail to converge to a root in different situations including where 𝑓′(𝑥)

or 𝑓′′(𝑥) becomes zero at any approximation.

• The Newton-Raphson method converges to a multiple root very slowly (instead of exhibiting quadratic

convergence).

• The Aitken’s ∆𝟐 method offers a technique for accelerating the convergence of any sequence that is

linearly convergent. From the given sequence {𝑥𝑘}𝑘=1
∞ that linearly converges to 𝛼, another sequence

{𝑥̿𝑘}𝑘=1
∞ that also converges to 𝛼 with possibly improved convergence rate is constructed by using the

Aitken’s acceleration formula given as

𝑥̿𝑘 ≅ 𝑥𝑘 −
 (∆𝑥𝑘)

2

∆2𝑥𝑘

∎∎∎

32 Numerical Recipes in Python

Chapter Exercises

Exercise 01: Find a real root of the following equations using the Bisection method accurate to four

decimal places.

(i) log(𝑥) − cos 𝑥 = 0

(ii) 𝑒−𝑥 − 10𝑥 = 0

(iii) 𝑥3 + 𝑥2 − 1 = 0

Exercise 02: Find a real root of the following equations using the Bisection method accurate to

three decimal places.

(i) 𝑥6 − 𝑥4 − 𝑥3 − 1 = 0

(ii) 𝑥3 − sin 𝑥 + 1 = 0

(iii) 𝑥 log10 𝑥 = 4.77

Exercise 03: Approximate the solution of the following equations using the Regula-Falsi method

accurate to three decimal places.

(i) 3𝑥 + sin 𝑥 − 𝑒𝑥 = 0

(ii) 4𝑥3 − 1 − 𝑒(𝑥
2/2)

(iii) 𝑥2 = (𝑒−2𝑥 − 2)/𝑥

Exercise 04: Find the approximation to a real root of the equation 2 sin 𝑥 −
𝑒𝑥

4
− 1 = 0 starting

with [−5, −3] using the Regula-Falsi method.

Exercise: Find a real root of each of the following equations using (𝑎) the Bisection method, (𝑏)

the Regula-Falsi method, (𝑐) the Newton’s method, (𝑑) the Secant method. Choose the initial

approximation/s in the given interval. Assume that the tolerance for the approximate root is 0.001.

The numeric values should not be rounded to less than 5 decimal places. (𝑥 is in radians, wherever

applicable).

(𝑖) cos 𝑥 − 𝑥𝑒𝑥 = 0, in [0, 1]

(𝑖𝑖) cos 𝑥 − 𝑥 + 2 = 0, in [1, 2]

(𝑖𝑖𝑖) 𝑒𝑥 − 𝑥 − 3 = 0, in [1, 2]

(𝑖𝑣) ln(𝑥) + 𝑥 − 4 = 0, in [2, 3]

(𝑣) 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0, in [0, 1].

Exercise 06: Find a real root of the Chebyshev polynomial of degree four, 𝑇4(𝑥) = 8𝑥4 − 8𝑥2 + 1

using the Newton’s method accurate to four decimal places.

Solution of a Nonlinear Equation in One Variable 33

Exercise 07: Find a root of the Laguerre polynomial of degree four, 𝐿4(𝑥) = 𝑥
4 − 16𝑥3 + 72𝑥2 −

96𝑥 + 24 using the Newton’s method accurate to four decimal places.

Exercise 08: Find a root of the following equations using the Newton’s method accurate to 4

decimal places.

(i) 2𝑥 + 3 cos 𝑥 − 𝑒𝑥 = 0,

(ii) 𝑥2 − 4𝑥 + 4 − ln 𝑥 = 0

(iii) tan 𝑥 − 6 = 0

Exercise 09: Find the roots accurate to within 10−3 of the Legendre polynomial 𝑃4(𝑥) = 𝑥
4 −

6

7
𝑥2 +

3

35
 on each interval, using the Secant method.

(i) [−1,−0.5]

(ii) [−0.5, 0]

(iii) [0, 0.5]

(iv) [0.5, 1]

Exercise 10: Approximate the value of √4
3

 using the Secant method accurate to 10−4.

Exercise 11: Find a real root of the following equations using the Secant method accurate to 10−3

.

(i) 𝑥3 − 2𝑥 + 2 = 0

(ii) 10 − 2𝑥 + sin 𝑥 = 0

(iii) 2𝑒−3𝑥 + 1 − 3𝑒−3𝑥 = 0

Exercise 12: Use the Fixed-Point method to find a root of the following, accurate to 3 decimal

places.

(i) 𝑒𝑥 − 2𝑥2 for 0 ≤ 𝑥 ≤ 2

(ii) 𝑥𝑒𝑥 = 0 for 1 ≤ 𝑥 ≤ 2

(iii) 𝑥2 − sin 𝑥 − 𝑥 = 0

Exercise 13: Find the solutions of the following equations using the fixed-point method accurate

to 10−3 .

(i) 𝑥 = tan 𝑥

(ii) 𝑥 = cos 𝑥

(iii) 𝑥 = sin(𝑥 + 2)

Exercise 14: Find the solution of the equation (relevant to the vibrating beam),

cos 𝑥 cosh 𝑥 = 1

34 Numerical Recipes in Python

near 𝑥 = −
3

2
𝜋 using the Newton-Raphson method.

Exercise 15: The velocity 𝑉, in meters per second (𝑚/𝑠), of a free falling sky diver is expressed as:

𝑉 =
𝑔𝑚

𝐷𝑐
(1 − 𝑒𝑥𝑝 (

−𝐷𝑐𝑡

𝑚
))

Here 𝑚 is the mass of the falling body in kilograms (𝑘𝑔), 𝐷𝑐 is the drag coefficient in kilogram per
second (𝑘𝑔/𝑠), 𝑡 is the time in seconds (𝑠), and 𝑔 = 9.8𝑚/𝑠2 is the gravitation acceleration. If the
velocity of a body of mass 85𝑘𝑔 is 40𝑚/𝑠 after 5 seconds of free fall, then calculate the drag
coefficient.

Hint for the Solution:

Given 𝑚 = 80𝑘𝑔, 𝑉 = 40𝑚/𝑠, 𝑔 = 9.8𝑚/𝑠2, and 𝑡 = 5𝑠, the equation takes the form:

40 =
(9.8)(85)

𝐷𝑐
(1 − 𝑒𝑥𝑝 (

−5𝐷𝑐
85

))

or

𝑓(𝐷𝑐) = 𝐷𝑐 + 17 ln(1 − 0.04802𝐷𝑐) = 0

Solve this equation for 𝐷𝑐 , using any appropriate iterative method. To obtain an initial guess of 𝐷𝑐 ,
a trick is to calculate 𝑉 for different assumed values of 𝐷𝑐 . The values of the 𝐷𝑐 , which produce
values of 𝑉 close to 40, can offer reasonable initial guess of 𝐷𝑐 . While using an iterative method,
approximate error should be calculated at each iteration. [𝑒𝑥𝑝(𝑥) = 𝑒𝑥]

Exercise 16: The velocity 𝑉, in meters per second (𝑚/𝑠), of a free falling sky diver is expressed as:

𝑉 =
𝑔𝑚

𝐷𝑐
(1 − 𝑒𝑥𝑝 (

−𝐷𝑐𝑡

𝑚
))

Here 𝑚 is the mass of the falling body in kilograms (𝑘𝑔), 𝐷𝑐 is the drag coefficient in kilogram per
second (𝑘𝑔/𝑠), 𝑡 is the time in seconds (𝑠), and 𝑔 = 9.8𝑚/𝑠2 is the gravitation acceleration. If the
velocity of a falling body with drag coefficient of 18 𝑘𝑔/𝑠 is 50𝑚/𝑠 after 7 seconds of free fall, then
calculate the mass 𝑚 of the body, accurate to 0.0001. [𝑒𝑥𝑝(𝑥) = 𝑒𝑥]

Hint for the Solution:

Given 𝐷𝑐 = 18𝑘𝑔/𝑠, 𝑉 = 50𝑚/𝑠, 𝑔 = 9.8𝑚/𝑠2, and 𝑡 = 7𝑠, the equation takes the form:

50 =
(9.8)𝑚

18
(1 − 𝑒𝑥𝑝 (

−126

𝑚
))

or

𝑓(𝑚) = 𝑚 ln (1 −
91.83673

𝑚
) + 126 = 0

Solution of a Nonlinear Equation in One Variable 35

Solve this equation for 𝑚, using any appropriate iterative method. To obtain an initial guess of 𝑚, a
trick is to calculate 𝑉 for different assumed values of 𝑚. The values of the 𝑚, which produce values
of 𝑉 close to 50, can offer reasonable initial guess of 𝑚. While using an iterative method,
approximate the error at each iteration.

Exercise 17: The volume 𝑉 of spherical water-tank in cubic meters can be calculated as:

𝑉 =
𝜋𝐻2(3𝑅 − 𝐻)

3

where 𝐻 denotes the height of water level in meters from the base of the tank, and 𝑅 denotes the
radius of the spherical tank in meters. If the radius 𝑅 of a tank is 2.5 meters, then how much water
level must be raised in the tank to hold 27 cubic meters of water.

Hint for the Solution:

Given 𝑅 = 2.5 and 𝑉 = 27, and taking 𝜋 = 3.14159 the equation takes the form

27 =
𝜋𝐻2(7.5 − 𝐻)

3

or

𝑓(𝐻) = 3.14159𝐻3 − 23.56193𝐻2 + 81 = 0

Solve this equation for H, using any appropriate iterative method. Intuitively, appropriate initial
guesses for 𝐻 can be taken from [0,2𝑅]. While using an iterative method, approximate error should
be calculated at each iteration.

Exercise 18: Numerically, compare the convergence of the method:

𝑥𝑘 = 𝑥𝑘−1 − 2
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
, for 𝑘 = 1, 2, 3,⋯

with the Newton-Raphson method on a function with a known double root.

Exercise 19: The ideal gas equation relates the volume (𝑉 in 𝐿), temperature (𝑇 in 𝐾), pressure (𝑃

in 𝑎𝑡𝑚), and the amount of gas (number of moles 𝑛) by:

𝑃 =
𝑛𝑅𝑇

𝑉

where 𝑅 = 0.08206 (𝐿 𝑎𝑡𝑚)/(mol 𝐾) is the gas constant.

The van der Waals equation gives the relationship between these quantities for a real gas by

(𝑃 +
𝑛2𝑎

𝑉2
) (𝑉 − 𝑛𝑏) = 𝑛𝑅𝑇

where 𝑎 and 𝑏 are constants that are specific for each gas.

36 Numerical Recipes in Python

Calculate the volume of 2 mol 𝐶𝑂2 at temperature of 50°C, and pressure of 6 𝑎𝑡𝑚. For 𝐶𝑂2, 𝑎 =

 3.59 (𝐿2 𝑎𝑡𝑚)/𝑚𝑜𝑙2, and b = 0.0427 L/ mol. Because 𝐶𝑂2 is a real gas, so we need to use the second

equation for the solution. But for solving the second equation for the volume, obtain an appropriate

guess of the volume from the first equation: ideal gas equation.

Exercise 20: Golden-ratio corresponds to the order of which method:

(A) Secant (B) Regula-Falsi (C) Fixed-Point Iteration (D) Newton-Raphson

Exercise 21: Which of the following methods, has an explicit formula that can be used to determine

the required number of iterations in advance for achieving a given accuracy:

(A) Bisection (B) Regula-Falsi (C) Fixed-Point Iteration (D) Newton-Raphson (E) Secant

Exercise 22: The convergence rate of which of the following methods is highest:

(A) Bisection (B) Regula-Falsi (C) Fixed-Point Iteration (D) Newton-Raphson (E) Secant

∎∎∎

37

Chapter 3

Polynomial Interpolation

Corridor I: BASICS

 Let’s plan it

3.1 Introduction

3.2 The Newton’s Divided Difference Interpolation

3.3 The Lagrange Interpolation

3.4 Deriving the Lagrange Interpolation Formula from the Newton’s Divided-Difference

3.5 Interpolation Formulas for Equally Spaced Nodes

3.6 Hermite Interpolation

3.7 Spline Interpolation

 3.7.1 Linear Spline

 3.7.2 Quadratic Spline

 3.7.3 Cubic Spline

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

∎∎∎

http://www.timerenders.com.pk/

38 Numerical Recipes in Python

Corridor II: ANALYSIS

 Let’s think deep

3.8 Error of Interpolation

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

∎∎∎

Corridor III: PROGRAMMING ARCADE

 Let’s do it

3.9 Algorithms and Implementations

The Newton's Divided Difference Interpolation Formula

To see more examples for practicing, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

For codes, please visit: https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

∎∎∎

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/
https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

Polynomial Interpolation 39

3.9 Algorithms and Implementations

Question 21: Write down an algorithm (pseudo code) to interpolate or extrapolate the function at a point

using the 𝑛th-degree Newton’s Divided difference interpolating polynomial.

Algorithm: Given 𝒏 + 1 data points, approximate 𝑓(𝑥) at 𝑥 = 𝒙𝒑 with 𝑃𝒏(𝒙𝒑) .

𝐈𝐍𝐏𝐔𝐓𝐒: {

𝒏: an integer as the degree of interpolating polynomial
𝒙𝒊, 0 ≤ 𝑖 ≤ 𝒏: real values as the aribrary nodes
𝒇𝒊, 0 ≤ 𝑖 ≤ 𝒏: real values as the function values corresponding to 𝒙𝒊 nodes
𝒙𝒑: real values as the entries

𝐎𝐔𝐓𝐏𝐔𝐓: 𝒇𝒙𝒑: a real number as an interpolated value at 𝒙 = 𝒙𝒑

Step 1 Receive the inputs as stated above

Step 2 for 𝑖 = 0, 1,⋯ , 𝒏
𝑑𝑑𝑓𝑖,0 = 𝒇𝒊 (Computing zeroth divided differences, 𝑓[𝒙𝒊] = 𝒇𝒊)

Step 3 (Computing the divided differences of order 1 to 𝒏)

for 𝑗 = 1, 2,⋯ ,𝒏

for 𝑖 = 0, 1,⋯ , 𝒏 − 𝑗

𝑑𝑑𝑓𝑖,𝑗 =
[𝑑𝑑𝑓𝑖+1,𝑗−1 − 𝑑𝑑𝑓𝑖,𝑗−1]

[𝑥𝑖+𝑗 − 𝑥𝑖]

} (

𝑓[𝑥𝑖 , ⋯ , 𝑥𝑖+𝑗] =

𝑓[𝑥𝑖+1, ⋯ , 𝑥𝑖+𝑗] − 𝑓[𝑥𝑖 , ⋯ , 𝑥𝑖+𝑗−1]

𝑥𝑖+𝑗 − 𝑥𝑖

)

Step 4 (Evaluating the interpolation polynomial at 𝒙𝒑)

Set 𝑝𝑟𝑜 = 1

Set 𝒇𝒙𝒑 = 𝑑𝑑𝑓0,0

for 𝑘 = 1, 2,⋯ , 𝒏
𝑝𝑟𝑜 = 𝑝𝑟𝑜 × (𝑥𝑝 − 𝒙𝑘−1)

𝒇𝒙𝒑 = 𝒇𝒙𝒑 + 𝑝𝑟𝑜 × 𝑑𝑑𝑓0,𝑘}

 (𝑃𝑛 = 𝑓[𝑥0] +∑ [𝑓[𝑥0, ⋯ , 𝑥𝑘]∏(𝑥𝑝 − 𝑥𝑡)

𝑘−1

𝑡=0

]

𝑛

𝑘=1

)

Step 5 Print the output: 𝒇𝒙𝒑

STOP.

40 Numerical Recipes in Python

Question 22: Write a Python program for the second order Newton’s Divided Difference Interpolation.

script_3.1: divided_difference2.ipynb

1 from numpy import *
2
3 n = 2 # degree of interpolating polynomial

4 f = [3,13, –23]

5 x = [1, –4,0]

6 ddf= zeros([3,3])

7

8 xp = float(input("Enter a value which the interpolate is to be obtained: "))
9

10 #computing zeroth divided difference

11 for i in range(n+1):

12 ddf[i][0] = f[i]

13

14 #computing the divided difference of Order 1 to n

15 for j in range(1,n+1):

16 for i in range(n–j+1):

17 ddf[i][j] = (ddf[i+1][j–1] – ddf[i][j–1]) / (x[i+j] – x[i])
18

19 pro = 1 #evaluting the interpolating polynomial at xp
20 fxp = ddf[0][0]
21 for k in range(1,n+1):
22 pro = pro *(xp – x[k–1])
23 fxp = fxp + pro * ddf[0][k]
24

25 print("The interpolate or extrapolate value of function at x = xp:", fxp)

Output Console:

Enter a value which the interpolate is to be obtained: 0.5

The interpolate or extrapolate value of function at x = xp: -11.75

Question 23: Write a Python program for the Newton’s Divided Difference Interpolation.

script_3.2: divided_differenceN.ipynb

1 from numpy import *
2
3 n = 3 # degree of interpolating polynomial
4 f = zeros([n+1])
5 x = zeros([n+1])
6 ddf= zeros([n+1,n+1])

Polynomial Interpolation 41

7
8 print("The Divided Difference Interpolation.")
9 print("Enter real values as the arbitrary nodes")

10 for i in range(n+1):
11 x[i] = float(input(" ")) # x[i] = float(x[i])
12
13 print("Enter real values as the function values corresponding to x_i nodes ")
14 for i in range(n+1):
15 f[i] = float(input(" "))
16
17 xp = float(input("Enter a value which the interpolate is to be obtained: "))
18
19 #computing zeroth divided difference
20 for i in range(n+1):
21 ddf[i][0] = f[i]
22
23 #computing the divided difference of Order 1 to n
24 for j in range(1,n+1):
25 for i in range(n-j+1):
26 ddf[i][j] = (ddf[i+1][j–1] – ddf[i][j–1]) / (x[i+j] – x[i])
27
28 pro = 1 #Evaluting the interpolation polynomial at xp
29 fxp = ddf[0][0]
30 for k in range(1,n+1):
31 pro = pro *(xp – x[k–1])
32 fxp = fxp + pro * ddf[0][k]
33
34 print("The interpolate or extrapolate value of function at x = xp is",fxp)

Output Console:

The Divided Difference Interpolation.

Enter real values as the arbitrary nodes

 -1

 2

 3

 6

Enter real values as the function values corresponding to x_i nodes

 -3

 5

 17

 21

Enter a value which the interpolate is to be obtained: 2

The interpolate or extrapolate value of function at x = xp is 5.0

∎∎∎

42 Numerical Recipes in Python

Chapter Summary

• Curve fitting refers to the process of constructing a curve (a mathematical function) that reasonably fits

the given discrete data points along a continuum. The obtained curve offers a simpler alternative to the

original function (whose values at discrete points were given) that might be used to estimate the data

values at points between the given points (and sometimes beyond the given data points, as well).

• Regression and Interpolation are the two basic approaches for curve fitting. Regression is the process

of deriving a single curve that provides for the general trend of the data (and that curve is not required

to pass through any of the data points). Interpolation is the process of fitting a curve (a single function or

a piecewise function) that interpolates (passes through) each of the given data points.

• Suppose that the values of a function 𝑓 at different points 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 are given. The points 𝑥𝑖 are

referred to as nodes or arguments and the 𝑛 + 1 ordered pairs (𝑥𝑖 , 𝑓(𝑥𝑖)), 𝑖 = 0, 1, 2,⋯ , 𝑛, are referred

to as data points of 𝑓. Interpolation (or, more precisely, polynomial interpolation) refers to the process

of approximating the value of 𝑓 at any intermediate point to the given data points.

• The interpolation process consists of determining the unique polynomial 𝑃𝑛(𝑥) of degree at most 𝑛 that

interpolates (passes through) the given data points, i.e.,

𝑃𝑛(𝑥𝑖) = 𝑓(𝑥𝑖)

And then, the polynomial 𝑃𝑛(𝑥) serves as the formula to approximate the function values at intermediate

points to the given data points and, thus, is referred to as interpolating polynomial. If the polynomial

𝑃𝑛(𝑥) is used approximate the function values at beyond the given data points, then the process is called

extrapolation.

• Newton’s Divided Difference Interpolation: For 𝑛 + 1 arbitrarily spaced data points, (𝑥0, 𝑓0), (𝑥1, 𝑓1),

⋯ , (𝑥𝑛 , 𝑓𝑛), of a function 𝑓, the Newton’s Divided Difference interpolation formula for the interpolating

polynomial 𝑃𝑛(𝑥) of degree at most 𝑛 is given by

𝑃𝑛(𝑥) = 𝑓[𝑥0] + 𝑓[𝑥0, 𝑥1](𝑥 − 𝑥0) + 𝑓[𝑥0, 𝑥1, 𝑥2](𝑥 − 𝑥0)(𝑥 − 𝑥1)

+⋯+ 𝑓[𝑥0, 𝑥1, 𝑥2,⋯ , 𝑥𝑛](𝑥 − 𝑥0)(𝑥 − 𝑥1)⋯ (𝑥 − 𝑥𝑛−1)

or

𝑃𝑛(𝑥) = 𝑓[𝑥0] +∑𝑓[𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑘](𝑥 − 𝑥0)(𝑥 − 𝑥1)⋯(𝑥 − 𝑥𝑘−1)

𝑛

𝑘=1

Here the 𝒌th divided difference of the function 𝑓 with respect to the nodes 𝑥𝑖 , 𝑥𝑖+1, ⋯ , 𝑥𝑖+𝑘 is denoted

by 𝑓[𝑥𝑖 , 𝑥𝑖+1, ⋯ , 𝑥𝑖+𝑘] and is recursively defined by

𝑓[𝑥𝑖 , 𝑥𝑖+1,⋯ , 𝑥𝑖+𝑘] =
𝑓[𝑥𝑖+1, 𝑥𝑖+2, ⋯ , 𝑥𝑖+𝑘] − 𝑓[𝑥𝑖 , 𝑥𝑖+1, ⋯ , 𝑥𝑖+(𝑘−1)]

𝑥𝑖+𝑘 − 𝑥𝑖

with 𝑓[𝑥𝑖] = 𝑓(𝑥𝑖) = 𝑓𝑖 as the zeroth divided difference.

Polynomial Interpolation 43

• Lagrange Interpolation: For 𝑛 + 1 arbitrarily spaced data points, (𝑥0, 𝑓0), (𝑥1, 𝑓1),⋯ , (𝑥𝑛, 𝑓𝑛), of a

function 𝑓, the Lagrange interpolation formula for the interpolating polynomial 𝑃𝑛(𝑥) of degree at most

𝑛 is given by

𝑃𝑛(𝑥) = 𝐿0(𝑥)𝑓(𝑥0) + 𝐿1(𝑥)𝑓(𝑥1) + ⋯+ 𝐿𝑛(𝑥)𝑓(𝑥𝑛)

= ∑𝐿𝑘(𝑥)

𝑛

𝑘=0

𝑓(𝑥𝑘)

Here 𝐿𝑘(𝑥) denotes the 𝒌th Lagrange coefficient (also called cardinal polynomial) and is defined by

𝐿𝑘(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥1)⋯ (𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘+1)⋯ (𝑥 − 𝑥𝑛)

(𝑥𝑘 − 𝑥0)(𝑥𝑘 − 𝑥1)⋯ (𝑥𝑘 − 𝑥𝑘−1)(𝑥𝑘 − 𝑥𝑘+1)⋯ (𝑥𝑘 − 𝑥𝑛)
= ∏

𝑥 − 𝑥𝑗

𝑥𝑘 − 𝑥𝑗

𝑛

𝑗=0
𝑗≠𝑘

and satisfies the Kronecker delta equation:

𝐿𝑘(𝑥) = {
1 for 𝑥 = 𝑥𝑘

0 for all 𝑥, except 𝑥 = 𝑥𝑘

• First Theorem on Interpolation Error: If 𝑃𝑛(𝑥) is the polynomial of degree at most 𝑛 that interpolates

a function 𝑓 at 𝑛 + 1 arbitrary nodes 𝑥0, 𝑥1 ,⋯ , 𝑥𝑛 in an interval [𝑎, 𝑏] and if 𝑓 ∈ 𝐶(𝑛+1)[𝑎, 𝑏], then for each

𝑥 in [𝑎, 𝑏], there exists an 𝜉 in (𝑎, 𝑏) for which

𝐸(𝑥) = 𝑓(𝑥) − 𝑃𝑛(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥1)⋯(𝑥 − 𝑥𝑛)
𝑓(𝑛+1)(𝜉)

(𝑛 + 1)!

Here 𝐸(𝑥) is the truncation error of the polynomial interpolation.

• A Lagrange interpolation formula can be obtained from the relevant Newton’s Divided Difference

interpolation formula, after some rearrangements.

• Suppose that 𝑛 + 1 data points, (𝑥0, 𝑓0), (𝑥1, 𝑓1),⋯ , (𝑥𝑛 , 𝑓𝑛), of a function 𝑓 are given on the interval [𝑎, 𝑏]

for consecutively arranged and equispaced nodes 𝑥0, 𝑥1, 𝑥2,⋯ , 𝑥𝑛 , such that

𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏

with astep size of length ℎ = 𝑥𝑖 − 𝑥𝑖−1, for 𝑖 = 1, 2, 3,⋯ , 𝑛

and 𝑓(𝑥𝑖) = 𝑓𝑖

The Newton Forward-Difference Interpolation formula for the interpolating polynomial 𝑃𝑛(𝑥) of

degree at most 𝑛 is given by

𝑃𝑛(𝑥) = 𝑓0 + 𝛼∆𝑓0 +
𝛼(𝛼 − 1)

2!
∆2𝑓0 +⋯+

𝛼(𝛼 − 1)(𝛼 − 2)⋯(𝛼 − (𝑛 − 1))

𝑛!
∆𝑛𝑓0

where

44 Numerical Recipes in Python

𝛼 =
𝑥 − 𝑥0
ℎ

Here the 𝒌th forward-difference of 𝑓 at 𝑥𝑖 is denoted by ∆𝑘𝑓𝑖 and is recursively defined by

∆𝑘𝑓𝑖 = ∆(∆𝑘−1𝑓𝑖) = ∆𝑘−1𝑓𝑖+1 − ∆
𝑘−1𝑓𝑖 for 𝑘 = 2, 3,⋯ , 𝑛

with ∆𝑓𝑖 = 𝑓𝑖+1 − 𝑓𝑖

The Newton Backward-Difference Interpolation formula for the interpolating polynomial 𝑃𝑛(𝑥) of

degree at most 𝑛 is given by

𝑃𝑛(𝑥) = 𝑓𝑛 + 𝛽∇𝑓𝑛 +
𝛽(𝛽 + 1)

2!
∇2𝑓𝑛 +⋯+

𝛽(𝛽 + 1)(𝛽 + 2)⋯ (𝛽 + (𝑛 − 1))

𝑛!
∇𝑛𝑓𝑛

where

𝛽 =
𝑥 − 𝑥𝑛
ℎ

Here the 𝒌th backward-difference of 𝑓 at 𝑥𝑖 is denoted by ∇𝑘𝑓𝑖 and is recursively defined by

∇𝑘𝑓𝑖 = ∇(∇𝑘−1𝑓𝑖) = ∇𝑘−1𝑓𝑖 − ∇
𝑘−1𝑓𝑖−1 for 𝑘 = 2, 3,⋯ , 𝑛

with ∇𝑓𝑖 = 𝑓𝑖 − 𝑓𝑖−1

• There are central difference interpolation formulas also available in the literature, which are more suited

for approximation of a function value around mid of the interval of interpolation. Following are the

examples of some well-known central difference interpolation formulas:

o Gauss Forward Difference Interpolation Formula

o Gauss Backward Difference Interpolation Formula

o Stirling’s Central Difference Interpolation Formula

o Bessel’s Central Difference Interpolation Formula

o Everrett’s Central Difference Interpolation Formula

∎∎∎

Polynomial Interpolation 45

Chapter Exercises

Exercise 01: Find the linear interpolating polynomial passing through the following set of pairs of the points.

(i) {(0.1, sin(0.1)), (0.2, sin(0.2))}

(ii) {(1.2,
1

(1.2)2
) , (1.4,

1

(1.4)2
)}

(iii) {(1, 7), (2, 4)}

(iv) {(1, 𝑒−1), (1.5, 𝑒−
1

1.5)}

Exercise 02: Construct the interpolating polynomial to approximate the following functions at 𝑥 = 0.25. Use

the arguments 𝑥0 = −0.3, 𝑥1 = 0, 𝑥2 = 0.4.

(i) 𝑓(𝑥) = ln(1 + 𝑥)

(ii) 𝑓(𝑥) = 𝑒−𝑥
2

(iii) 𝑓(𝑥) = tan 𝑥2

(iv) 𝑓(𝑥) =
1

√𝑥2−1

Exercise 03: Use the Lagrange Interpolating Polynomial and the Newton’s Divided Difference Interpolating

polynomial of the appropriate degree to interpolate the following:

(i) Compute 𝑓(1.5), given that, 𝑓(0.5) = 0.479, 𝑓(1.0) = 0.841, 𝑓(2.0) = 0.909

(ii) Compute 𝑓(3.6), given that 𝑓(3.0) = 0.1506, 𝑓(4.0) = 0.3001, 𝑓(4.5) = 0.2663, 𝑓(4.7) = 0.2346

(iii) Compute 𝑓(2/3), given that,

𝑓(1.1) = −0.071812, 𝑓(1.3) = −0.024750, 𝑓(1.7) = 0.334937, 𝑓(2.0) = 1.101000

Exercise 04: Find the missing value in the following table using the Newton’s Divided Difference Interpolating

polynomial.

𝑥 −1 1 2 3

𝑓(𝑥) −21 15 ? 3

Exercise 05: Find the missing value in the following table using Lagrange Interpolating Polynomial

𝑥 −2 0 2 4 6

𝑓(𝑥) 33 5 9 ? 113

46 Numerical Recipes in Python

Exercise 06: Find, for what values of 𝑥, 𝑦 attained extreme values using the data given below

𝑥 3 4 5 6 7 8

𝑦 0.205 0.240 0.259 0.262 0.250 0.224

Exercise 07: Use Lagrange Interpolating Polynomial of the appropriate degree to complete the record of the

export of a certain commodity during six years

Year: 𝑥 1981 1982 1983 1984 1985 1986

Export: 𝑦 43 84 93 ? 105 157

Exercise 08: Use the Newton’s Divided Difference Interpolating Polynomial to obtain an interpolation that

passing through the following points

𝑥 0 0.1 0.3 0.4 0.7 0.8

𝑦 −1.5 −1.27 −0.98 −0.63 −0.22 0.25

Exercise 09: Find a bound for the error associated with linear polynomial interpolation for the following

function. Use the arguments 𝑥0 = 0, 𝑥1 = 0.4.

(i) 𝑓(𝑥) = ln(1 + 𝑥)

(ii) 𝑓(𝑥) = 𝑒−𝑥
2

(iii) 𝑓(𝑥) = tan 𝑥2

(iv) 𝑓(𝑥) =
1

√𝑥2−1

Exercise 10: Find a bound for the error associated with quadratic polynomial interpolation for the following

function. Use the arguments 𝑥0 = 0, 𝑥1 = 0.1, 𝑥2 = 0.4. 𝑓(𝑥) = sin 𝑥 + cos 𝑥

(i) 𝑓(𝑥) = 𝑥 ln 𝑥

(ii) 𝑓(𝑥) = 𝑥 sin 𝑥 − 𝑥3 + 2𝑥 − 1

(iii) 𝑓(𝑥) = √𝑥 − 𝑥2

Exercise 11: Find a bound for the error associated with cubic polynomial interpolation for the following

function. Use the arguments 𝑥0 = 1, 𝑥1 = 1.3, 𝑥2 = 1.6, 𝑥3 = 2.0

(i) 𝑓(𝑥) = sin(𝑒−𝑥 − 1)

(ii) 𝑓(𝑥) = ln 𝑥 − 𝑥4 + 𝑥2 − 1

(iii) 𝑓(𝑥) = 𝑥2𝑒−𝑥
2

(iv) 𝑓(𝑥) =
1

√1+𝑥

Polynomial Interpolation 47

Exercise 12: Construct the Newton’s Forward and Backward Difference Interpolating polynomials passes

through the points (0.2, 0.9980), (0.4, 0.9686), (0.6, 0.8443), and (0.8, 0.5358).

Exercise 13: Construct the Newton’s Forward and Backward Difference Interpolating polynomials to

approximate the following functions at 𝑥 = 1.2 and 2.0. Use the arguments 𝑥0 = 1.1, 𝑥1 = 1.3, 𝑥2 = 1.5, 𝑥3 =

1.7, 𝑥4 = 1.9

(i) 𝑓(𝑥) = ln(1 + 𝑥)

(ii) 𝑓(𝑥) = 𝑒−𝑥
2

(iii) 𝑓(𝑥) = tan 𝑥2

(iv) 𝑓(𝑥) =
1

√𝑥2−1

Exercise 14: Some data of the speed (𝑉) versus drag coefficient (𝐶𝑑) of a cricket ball is given in the following

table: Estimate 𝐶𝑑 at 𝑉 = 150 𝑘𝑚/ℎ.

𝑉 in 𝑘𝑚/ℎ 𝐶𝑑

0 0.5

80 0.48

120 0.39

160 0.32

Exercise 15: The mileages covered by a car per liter of fuel at different speeds are shown is the table below:

Speed in 𝑘𝑚/ℎ Mileage covered in 𝑘𝑚/𝑙

60 14.2

75 16.1

90 14.8

105 13.7

120 11.5

Using interpolation, approximate the fuel efficiency of the car at the speed of 100 𝑘𝑚/ℎ.

Hint for the Solution: Use any interpolation formula, preferable the Newton’s Backward Difference

Interpolation formula.

Exercise 16: Some recorded data of number of deaths due to Novel Coronavirus (2019-nCoV) is given in the

table below. Use interpolation to determine number of deaths on January 29 and 31, 2020.

48 Numerical Recipes in Python

Date Number of Deaths

Jan. 24 16

Jan. 26 24

Jan. 28 26

Jan. 30 43

Feb. 1 45

Hint for the Solution: The given data spans over 9 days. The function values are given for 𝑥 = 1, 3, 5, 7, 9. Find

an interpolating polynomial and use it to calculate value at 𝑥 = 6 and 𝑥 = 8 for the desired solutions.

Exercise 17: The census data of Pakistan is given in the following table (source: Pakistan Bureau of Statistics):

Census Year Population in thousands

1951 33740

1961 42880

1972 65309

1981 84254

1998 132352

2017 207774

Use interpolation to determine the population for the year 2010.

Hint for the Solution: The given data spans over 67 years. The function values are given for 𝑥 =

1, 11, 22, 31, 48, 67. Find an interpolating polynomial and use it to calculate value at 𝑥 = 60 for the desired

solution.

Exercise 18: Suppose that a table lists the values of the tangent function for the angles ranging from 0o to 45o

in increments of 5o. What is the largest error that we would introduce by performing linear interpolation

between successive values in this table?

∎∎∎

49

Chapter 4

Numerical Integration

Corridor I: BASICS

 Let’s plan it

4.1 Introduction

4.2 The Trapezoidal Rule

4.3 The Simpson’s 1/3 Rule

4.4 Generalized Closed Newton-Cotes Quadrature

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

∎∎∎

http://www.timerenders.com.pk/

50 Numerical Recipes in Python

Question 12: Tabulate Closed Newton-Cotes Integration formulas with relevant features, for both

the basic and the composite forms, separately.

Suppose that 𝑛 data points, (𝑥𝑗 , 𝑓𝑗), where 𝑓(𝑥𝑗) = 𝑓𝑗, of the integrand 𝑓(𝑥) are given on the interval

[𝑎, 𝑏] = [𝑥0, 𝑥1] for consecutively arranged and equispaced nodes 𝑥𝑗 such that ℎ = (𝑏 − 𝑎)/𝑛. The

Closed Newton Cotes quadrature formulas for the definite integral = ∫ 𝑓(𝑥)
𝑥𝑛

𝑥0
𝑑𝑥 are tabulated

below.

Numerical
Integration

Method

Formula

Required
number of
function
values at

equidistant
points

Interpolating
polynomial used for
integral evaluation
(to derive the formula)

Rectangular

Rule

I = ℎ(𝑓0) (starting-point rule) or

I = ℎ(𝑓1) (end-point rule) or

I = ℎ(𝑓∗) (mid-point rule)

where 𝑓∗ = 𝑓 (
𝑥0+𝑥1

2
)

one
Polynomial of degree 0

(constant function)

Trapezoidal

Rule
I =

ℎ

2
[𝑓0 + 𝑓1] two

Polynomial of degree 1

(linear polynomial)

Simpson’s 1/3

Rule
I =

ℎ

3
[𝑓0 + 4𝑓1 + 𝑓2] three

Polynomial of degree 2

(quadratic polynomial)

Simpson’s 3/8

Rule
I =

3ℎ

8
[𝑓0 + 3(𝑓1 + 𝑓2) + 𝑓3] four

Polynomial of degree 3

(cubic polynomial)

Boole’s Rule

(Milne’s Rule)
I =

2ℎ

45
[7𝑓0 + 32𝑓1 + 12𝑓2 + 32𝑓3 + 7𝑓4] five Polynomial of degree 4

Six-Point Rule
I =

5ℎ

288
[19𝑓0 + 75𝑓1 + 50𝑓2 + 50𝑓3

 +75𝑓4 + 19𝑓5]
 six Polynomial of degree 5

Weddle’s Rule
I =

ℎ

140
[41𝑓0 + 216𝑓1 + 27𝑓2 + 272𝑓3

 +27𝑓4 + 216𝑓5 + 41𝑓6]
 seven Polynomial of degree 6

Numerical Integration 51

Numerical
Integration

Method

Formula

(for 𝑛 + 1 data points, (𝑥𝑗 , 𝑓𝑗), 𝑗 = 0,1,2, ⋯ , 𝑛,

and 𝑛 subintervals of equal length ℎ = (𝑥𝑛 − 𝑥0) 𝑛⁄)

Possible
values of 𝒏

(K represents
the number of

multiple
applications of

the formula)

Interpolating
polynomial

used for
integral

evaluation

(to derive the
formula)

Composite
Rectangular

Rule

I = ℎ[𝑓0 + 𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1] (starting-point rule) or

I = ℎ[𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1 + 𝑓𝑛] (end-point rule) or

I = ℎ[𝑓1
∗ + 𝑓2

∗ + ⋯ + 𝑓𝑛−1
∗ + 𝑓𝑛

∗] (mid-point rule)

where 𝑓𝑗
∗ = 𝑓 (

𝑥𝑗−1+𝑥𝑗

2
) , for 𝑗 = 1,2,3, … , 𝑛

n = 1, 2, 3, ...
(i.e., n = K

could be any
positive
integer)

Piecewise
polynomial of

degree 0
(piecewise-

constant
function)

Composite
Trapezoidal

Rule
I =

ℎ

2
[𝑓0 + 2(𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1) + 𝑓𝑛]

𝑛 = 1, 2, 3, ⋯
(i.e., n = K

could be any
positive
integer)

Piecewise
polynomial of

degree 1
(piecewise-

linear)

Composite
Simpson’s
1/3 Rule

I =
ℎ

3
[𝑓0 + 4(𝑓1 + 𝑓3 + ⋯ + 𝑓𝑛−1)

+ 2(𝑓2 + 𝑓4 + ⋯ + 𝑓𝑛−2) + 𝑓𝑛]

n = 2, 4, 6, ...
(i.e., n = 2K,

where
K = 1, 2, 3, ...)

Piecewise
polynomial of

degree 2
(piecewise-
quadratic)

Composite
Simpson’s
3/8 Rule

I =
3ℎ

8
[𝑓0 + 3(𝑓1 + 𝑓2) + 2(𝑓3) + 3(𝑓4 + 𝑓5) + 2(𝑓6)

 + ⋯ + 3(𝑓𝑛−2 + 𝑓𝑛−1) + 𝑓𝑛]

n = 3, 6, 9, ...
(i.e., n = 3K,

where
K = 1, 2, 3, ...)

Piecewise
polynomial of

degree 3
(piecewise-

cubic)

Composite
Boole’s Rule
(Composite

Milne’s
Rule)

I =
2ℎ

45
[7𝑓0 + 32(𝑓1 + 𝑓5 + 𝑓9 + ⋯ + 𝑓𝑛−3)

+ 12(𝑓2 + 𝑓6 + 𝑓10 + ⋯ + 𝑓𝑛−2)

+ 32(𝑓3 + 𝑓7 + 𝑓11 + ⋯ + 𝑓𝑛−1)

+ 14(𝑓4 + 𝑓8 + 𝑓12 + ⋯ + 𝑓𝑛−4) + 7𝑓𝑛]

n = 4, 8, 12, ...
(i.e., n = 4K,

where
K = 1, 2, 3, ...)

Piecewise
polynomial of

degree 4

Composite
Six-Point

Rule

I =
5ℎ

288
[19𝑓0 + 75(𝑓1 + 𝑓6 + 𝑓11 + ⋯ + 𝑓𝑛−4)

+ 50(𝑓2 + 𝑓7 + 𝑓12 + ⋯ + 𝑓𝑛−3)

+ 50(𝑓3 + 𝑓8 + 𝑓13 + ⋯ + 𝑓𝑛−2)

+ 75(𝑓4 + 𝑓9 + 𝑓14 + ⋯ + 𝑓𝑛−1)

+ 38(𝑓5 + 𝑓10 + 𝑓15 + ⋯ + 𝑓𝑛−5) + 19𝑓𝑛]

n = 5, 10, 15, ...
(i.e., n = 5K,

where
K = 1, 2, 3, ...)

Piecewise
polynomial of

degree 5

Composite
Weddle’s

Rule

I =
ℎ

140
[41𝑓0 + 216(𝑓1 + 𝑓7 + 𝑓13 + ⋯ + 𝑓𝑛−5)

+ 27(𝑓2 + 𝑓8 + 𝑓14 + ⋯ + 𝑓𝑛−4)

+ 272(𝑓3 + 𝑓9 + 𝑓15 + ⋯ + 𝑓𝑛−3)

+ 27(𝑓4 + 𝑓10 + 𝑓16 + ⋯ + 𝑓𝑛−2)

+ 216(𝑓5 + 𝑓11 + 𝑓17 + ⋯ + 𝑓𝑛−1)

+ 82(𝑓6 + 𝑓12 + 𝑓18 + ⋯ + 𝑓𝑛−6) + 41𝑓𝑛]

n = 6, 12, 18, ...
(i.e., n = 6K,

where
K = 1, 2, 3, ...)

Piecewise
polynomial of

degree 6

∎∎∎

52 Numerical Recipes in Python

Corridor II: ANALYSIS

 Let’s think deep

4.5 Truncation Error of the Trapezoidal Rule

4.6 Truncation Error of the Simpson’s 1/3 Rule

4.7 Further Discussions

4.8 The Gaussian Quadrature

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

∎∎∎

Corridor III: PROGRAMMING ARCADE

 Let’s do it

4.9 Algorithms and Implementations

The Composite Trapezoidal Rule

The Composite Simpson’s 1/3 Rul

The Composite Simpson’s 3/8 Rule

To see more examples for practicing, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

For codes, please visit: https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

∎∎∎

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/
https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

Numerical Integration 53

4.9 Algorithms and Implementations

Question 13: Write down the algorithm (pseudo-code) of the Composite Trapezoidal rule for numerical

integration of definite integrals.

The Composite Trapezoidal rule to integrate a function 𝑓 over the interval [𝑎, 𝑏] is given by,

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≅
ℎ

2
[𝑓0 + 2(𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1) + 𝑓𝑛]

where ℎ =
𝑏 − 𝑎

𝑛
=

𝑥𝑛 − 𝑥0

𝑛
, 𝑓𝑗 = 𝑓(𝑥𝑗) and 𝑥𝑗 = 𝑥0 + 𝑗ℎ for 𝑗 = 0, 1, 2, ⋯ , 𝑛

Algorithm: To approximate the definite integral 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 using the formula:

𝐼 =
ℎ

2
[𝑓0 + 2(𝑓1 + 𝑓2 + 𝑓3 + ⋯ + 𝑓𝑛−1) + 𝑓𝑛]

𝐈𝐍𝐏𝐔𝐓𝐒: {
𝒂 and 𝒃: two real values as the endpoints of the interval of integration
𝒏: a positive integer as the number of subintervals

𝐎𝐔𝐓𝐏𝐔𝐓: 𝑰: a real number as an approximation to the integral

Step 1 Receive the inputs as stated above

Step 2 Set real number 𝒙𝟎 = 𝒂

Set real number 𝒙𝒏 = 𝒃

Set real number 𝒉 = (𝒙𝒏 − 𝒙𝟎)/𝒏

Set real number 𝒇𝒙𝟎 as the value 𝑓(𝒂)

Set real number 𝒇𝒙𝒏 as the value 𝑓(𝒃)

Step 3 Set 𝑰 = 𝒇𝒙𝟎 + 𝒇𝒙𝒏

Step 4 Set real number 𝒙𝒄 = 𝒙𝟎

Set real number 𝒔𝒖𝒎 = 𝟎

for 𝑗 = 1, 2, ⋯ , 𝒏 − 1

 Set 𝒙𝒄 = 𝒙𝒄 + 𝒉

Set 𝒇𝒙𝒄 as the value 𝑓(𝒙𝒄)

Set 𝒔𝒖𝒎 = 𝒔𝒖𝒎 + 𝒇𝒙𝒄 (Forming 𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1)

 end for

Step 5 Set 𝑰 = (𝒉 𝟐⁄) × (𝑰 + 𝟐 × 𝒔𝒖𝒎)

Step 6 Print the output: 𝑰

STOP.

54 Numerical Recipes in Python

Question 14: Write a Python program to evaluate the integral of 𝑓(𝑥) = √𝑥2 + 1 over [0, 2] with 12
subintervals using the Composite Trapezoidal rule.

script_4.1: trapezoidal.ipynb

1 from numpy import *

2

3 print("The Composite Trapezoidal Rule")

4 x0 = float(input("Enter the lower limit of integral: "))

5 xn = float(input("Enter the upper limit of integral: "))

6 n = int(input("Enter the number of subintervals n: "))

7

8 h = (xn – x0) / n

9 fx0 = sqrt(x0**2 + 1)

10 fxn = sqrt(xn**2 + 1)

11 I = fx0 + fxn

12 xc = x0

13 sum = 0

14

15 for i in range(1,n):

16 xc = xc + h

17 fxc = sqrt(xc**2 + 1)

18 sum = sum + fxc

19 I = (h / 2) * (I + 2 * sum)

20

21 print("The Approximate Integral =", I)

Output Console:

The Composite Trapezoidal Rule

Enter the lower limit of integral: 0

Enter the upper limit of integral: 2

Enter the number of subintervals n: 12

The Approximate Integral = 2.9599562632284453

Question 15: Write a Python program to evaluate the integral of 𝑓(𝑥) = √𝑥2 + 1 over [0, 2] with 12

subintervals using the Composite Trapezoidal rule. Use #define directive for evaluating 𝑓(𝑥) at the different

nodes (i.e., for finding the values of 𝑓 at the different nodes).

script_4.2: trapezoidal2.ipynb

1 from numpy import *

2

3 def fval(x):

4 y = sqrt(x**2 + 1)

5 return(y)

Numerical Integration 55

6

7 print("The Composite Trapezoidal Rule")

8 x0 = float(input("Enter the lower limit of integral: "))

9 xn = float(input("Enter the upper limit of integral: "))

10 n = int(input("Enter the number of subintervals n: "))

11

12 h = (xn – x0) / n

13 fx0 = fval(x0)

14 fxn = fval(xn)

15 I = fx0 + fxn

16 xc = x0

17 sum = 0

18

19 for i in range(1,n):

20 xc = xc + h

21 fxc = fval(xc)

22 sum = sum + fxc

23 I = (h / 2) * (I + 2 * sum)

24

25 print("The Approximate Integral =",I)

Output Console:

The Composite Trapezoidal Rule

Enter the lower limit of integral: 0

Enter the upper limit of integral: 2

Enter the number of subintervals n: 12

The Approximate Integral = 2.9599562632284453

Question 16: Write down the algorithm (pseudo-code) of the Composite Simpson’s 1/3 rule for numerical

integration of definite integrals.

The Composite Simpson’s 1/3 rule to integrate a function 𝑓 over the interval [𝑎, 𝑏] is given by,

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≅
ℎ

3
[𝑓0 + 4(𝑓1 + 𝑓3 + ⋯ + 𝑓𝑛−1) + 2(𝑓2 + 𝑓4 + ⋯ + 𝑓𝑛−2) + 𝑓𝑛]

where ℎ =
𝑏 − 𝑎

𝑛
=

𝑥𝑛 − 𝑥0

𝑛
, 𝑓𝑗 = 𝑓(𝑥𝑗) and 𝑥𝑗 = 𝑥0 + 𝑗ℎ for 𝑗 = 0, 1, 2, ⋯ , 𝑛

Algorithm: To approximate the definite integral 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 using the formula:

𝐼 =
ℎ

3
[𝑓0 + 4(𝑓1 + 𝑓3 + ⋯ + 𝑓𝑛−1) + 2(𝑓2 + 𝑓4 + ⋯ + 𝑓𝑛−2) + 𝑓𝑛]

𝐈𝐍𝐏𝐔𝐓𝐒: {
𝒂 and 𝒃: two real values as the endpoints of the interval of integration
𝒏: a positive even integer as the number of subintervals

𝐎𝐔𝐓𝐏𝐔𝐓: 𝑰: a real number as an approximation to the integral

56 Numerical Recipes in Python

Step 1 Receive the inputs as stated above

Step 2 Set real number 𝒙𝟎 = 𝒂

Set real number 𝒙𝒏 = 𝒃

Set real number 𝒉 = (𝒙𝒏 − 𝒙𝟎)/𝒏

Set real number 𝒇𝒙𝟎 as the value 𝑓(𝒂)

Set real number 𝒇𝒙𝒏 as the value 𝑓(𝒃)

Step 3 Set 𝑰 = 𝒇𝒙𝟎 + 𝒇𝒙𝒏

Step 4 Set real number 𝒙𝒄 = 𝒙𝟎

Set real number 𝒔𝒖𝒎𝟏 = 𝟎

Set real number 𝒔𝒖𝒎𝟐 = 𝟎

for 𝑗 = 1, 2, ⋯ , 𝒏 − 1

 Set 𝒙𝒄 = 𝒙𝒄 + 𝒉

Set 𝒇𝒙𝒄 as the value 𝑓(𝒙𝒄)

 if 𝑗 is odd

Set 𝒔𝒖𝒎𝟏 = 𝒔𝒖𝒎𝟏 + 𝒇𝒙𝒄 (Forming 𝑓1 + 𝑓3 + ⋯ + 𝑓𝑛−1)

 else

Set 𝒔𝒖𝒎𝟐 = 𝒔𝒖𝒎𝟐 + 𝒇𝒙𝒄 (Forming 𝑓2 + 𝑓4 + ⋯ + 𝑓𝑛−2)

 end for

Step 5 Set 𝑰 = (𝒉 𝟑⁄) × (𝑰 + 𝟒 × 𝒔𝒖𝒎𝟏 + 𝟐 × 𝒔𝒖𝒎𝟐)

Step 6 Print the output: 𝑰 ; STOP.

Question 17: Write a Python program to evaluate the integral of 𝑓(𝑥) = √𝑥2 + 1 over [0, 2] with 12

subintervals using the Composite Simpson’s 1/3 rule.

script_4.3: simpsons13.ipynb

1 from numpy import *

2

3 def fval(x):

4 y = sqrt(x**2 + 1)

5 return(y)

6

7 print("The Composite Simpson’s Rule")

8 x0 = float(input("Enter the lower limit of integral: "))

9 xn = float(input("Enter the upper limit of integral: "))

10 n = int(input("Enter the number of subintervals n: "))

11

12 h = (xn – x0) / n

13 fx0 = fval(x0)

14 fxn = fval(xn)

Numerical Integration 57

15 I = fx0 + fxn

16 xc = x0

17 sum1 = 0

18 sum2 = 0

19

20 for i in range(1,n):

21 xc = xc + h

22 fxc = fval(xc)

23 if i%2 != 0:

24 sum1 = sum1 + fxc

25 else:

26 sum2 = sum2 + fxc

27 I = (h / 3) * (I + 4 * sum1 + 2 * sum2)

28

29 print("The Approximate Integral =", I)

Output Console:

The Composite Simpson’s Rule

Enter the lower limit of integral: 0

Enter the upper limit of integral: 2

Enter the number of subintervals n: 12

The Approximate Integral = 2.957885258976941

Question 18: Write down the algorithm (pseudo-code) of the Composite Simpson’s 3/8 rule for numerical

integration of definite integrals.

Algorithm: To approximate the definite integral 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 using the formula:

𝐼 =
3ℎ

8
[𝑓0 + 3(𝑓1 + 𝑓2 + 𝑓4 + 𝑓5 + ⋯ + 𝑓𝑛−2 + 𝑓𝑛−1) + 2(𝑓3 + 𝑓6 + ⋯ + 𝑓𝑛−3) + 𝑓𝑛]

𝐈𝐍𝐏𝐔𝐓𝐒: {
𝒂 and 𝒃: two real values as the endpoints of the interval of integration
𝒏: a positive integer (multiple of 3) as the number of subintervals

𝐎𝐔𝐓𝐏𝐔𝐓: 𝑰: a real number as an approximation to the integral

Step 1 Receive the inputs as stated above

Step 2 Set real number 𝒙𝟎 = 𝒂

Set real number 𝒙𝒏 = 𝒃

Set real number 𝒉 = (𝒙𝒏 − 𝒙𝟎)/𝒏

Set real number 𝒇𝒙𝟎 as the value 𝑓(𝒂)

Set real number 𝒇𝒙𝒏 as the value 𝑓(𝒃)

Step 3 Set 𝑰 = 𝒇𝒙𝟎 + 𝒇𝒙𝒏

Step 4 Set real number 𝒙𝒄 = 𝒙𝟎

Set real number 𝒔𝒖𝒎𝟏 = 𝟎

Set real number 𝒔𝒖𝒎𝟐 = 𝟎

58 Numerical Recipes in Python

for 𝑗 = 1, 2, ⋯ , 𝒏 − 1

Set 𝒙𝒄 = 𝒙𝒄 + 𝒉

Set 𝒇𝒙𝒄 as the value 𝑓(𝒙𝒄)

if 𝑗 is divisible by 3

Set 𝒔𝒖𝒎𝟐 = 𝒔𝒖𝒎𝟐 + 𝒇𝒙𝒄 (Forming 𝑓3 + 𝑓6 + ⋯ + 𝑓𝑛−3)

else

Set 𝒔𝒖𝒎𝟏 = 𝒔𝒖𝒎𝟏 + 𝒇𝒙𝒄 (
Forming 𝑓1 + 𝑓2 + 𝑓4 + 𝑓5

+ ⋯ + 𝑓𝑛−2 + 𝑓𝑛−1
)

end for

Step 5 Set 𝑰 = (𝟑 × 𝒉 𝟖⁄) × (𝑰 + 𝟑 × 𝒔𝒖𝒎𝟏 + 𝟐 × 𝒔𝒖𝒎𝟐)

Step 6 Print the outpu.

STOP.

Question 19: Write a Python program to evaluate the integral of 𝑓(𝑥) = √𝑥2 + 1 over [0, 2] with 12

subintervals using the Composite Simpson’s 3/8 rule.

script_4.3: simpson38.ipynb

1 from numpy import *

2

3 def fval(x):

4 y = sqrt(x**2 + 1)

5 return(y)

6

7 print("The Composite Simpson’s 3/8 Rule")

8 x0 = float(input("Enter the lower limit of integral: "))

9 xn = float(input("Enter the upper limit of integral: "))

10 n = int(input("Enter the number of subintervals n: "))

11

12 h = (xn – x0) / n

13 fx0 = fval(x0)

14 fxn = fval(xn)

15 I = fx0 + fxn

16 xc = x0

17 sum1 = 0

18 sum2 = 0

19

20 for i in range(1,n):

21 xc = xc + h

22 fxc = fval(xc)

23 if i%3 != 0:

24 sum2 = sum2 + fxc

25 else:

26 sum1 = sum1 + fxc

27 I = (3 * h/8) * (I + 3*sum1 + 2*sum2)

28

29 print("The Approximate Integral =",I)

Numerical Integration 59

Output Console:

The Composite Simpson’s 3/8 Rule

Enter the lower limit of integral: 0

Enter the upper limit of integral: 2

Enter the number of subintervals n: 12

The Approximate Integral = 2.490906146724771

Remark: Likewise the programs in the solutions of Problem 19, the programmer can modify the programs in

the solutions of Problems 20 and 22 to evaluate the function values at the desired nodes through the use of

user-defined function and inline function (using #define).

∎∎∎

Chapter Summary

• Numerical integration or quadrature refers to the process of numerically approximating the value of

the integral 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥, by using the values of 𝑓 at a finite number of sample points. The limits of

integration could be finite, semi-finite, or infinite.

• The integral is approximated by a numerical integration rule or quadrature formula, 𝑄𝑓, which is a

linear combination of certain function values:

𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 ≅ 𝑄𝑓 = ∑ 𝜔𝑗 ∙ 𝑓(𝑥𝑗)

𝑛

𝑗=0

Here 𝑥𝑖 are the ordered points, called the quadrature nodes (or simply nodes), taken usually within the

limits of integration at which the function values 𝑓(𝑥𝑗) are known and 𝜔𝑗 are called the weights of the

quadrature formula.

• The quadrature formula satisfies the property that

𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = 𝑄𝑓 + 𝐸𝑓,

where 𝐸𝑓 is the truncation error (also called the error term) associated with the quadrature formula.

• The Newton-Cotes integration formulas are based on the approach that 𝑛 + 1 number of equispaced and

ordered nodes are chosen within the limits of integration and the integrand function is replaced by an

interpolating polynomial of degree at most 𝑛 by using the nodes, and then the analytic integration of the

polynomial is performed to obtain the formula. A Composite Newton-Cotes integration formula is

60 Numerical Recipes in Python

obtained by applying the relevant Newton-Cotes formula in each of the different consecutive segments of

the interval of integration and then summing the integrals over all the segments.

• The examples of Newton-Cotes integration formulas include Trapezoidal rule, Simpson’s 1/3 rule,

Simpson’s 3/8 rule, Boole’s rule, Six-Point rule, and Weddle’s rule.

• The Trapezoidal rule to numerically integrate the function 𝑓 over the interval [𝑎, 𝑏] is

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≅
(𝑏 − 𝑎)

2
[𝑓(𝑎) + 𝑓(𝑏)]

• The Composite Trapezoidal rule to integrate a function 𝑓 over the interval [𝑎, 𝑏] is given by,

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≅
ℎ

2
[𝑓0 + 2(𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1) + 𝑓𝑛]

where ℎ =
𝑏 − 𝑎

𝑛
=

𝑥𝑛 − 𝑥0

𝑛
, 𝑓𝑗 = 𝑓(𝑥𝑗) and 𝑥𝑗 = 𝑥0 + 𝑗ℎ for 𝑗 = 0, 1, 2, ⋯ , 𝑛

• The Simpson’s 1/3 rule to integrate a function 𝑓 over the interval [𝑎, 𝑏] is given by,

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≅
ℎ

3
[𝑓0 + 4𝑓1 + 𝑓2]

where ℎ =
𝑏 − 𝑎

2
=

𝑥2 − 𝑥0

2
, 𝑓𝑗 = 𝑓(𝑥𝑗) and 𝑥𝑗 = 𝑥0 + 𝑗ℎ for 𝑗 = 0, 1, 2

• The Composite Simpson’s 1/3 rule to integrate a function 𝑓 over the interval [𝑎, 𝑏] is given by,

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≅
ℎ

3
[𝑓0 + 4(𝑓1 + 𝑓3 + ⋯ + 𝑓𝑛−1) + 2(𝑓2 + 𝑓4 + ⋯ + 𝑓𝑛−2) + 𝑓𝑛]

where ℎ =
𝑏 − 𝑎

𝑛
=

𝑥𝑛 − 𝑥0

𝑛
, 𝑓𝑗 = 𝑓(𝑥𝑗) and 𝑥𝑗 = 𝑥0 + 𝑗ℎ for 𝑗 = 0, 1, 2, ⋯ , 𝑛

• A comprehensive summary of the Newton-Cotes formulas and the Composite Newton-Cotes formulas can

be found under Question 12 (page 252).

• The error term 𝐸𝑇 of order 𝒪(ℎ3) associated with the Trapezoidal rule in approximating 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥

is given by,

𝐸𝑇 = −
 1

12
ℎ3𝑓′′(𝜉),

for some appropriate point 𝜉 in (𝑎, 𝑏) and ℎ = 𝑏 − 𝑎.

• The error term 𝐸𝐶𝑇 of order 𝒪(ℎ2) associated with the Composite Trapezoidal rule in approximating 𝐼 =

∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 is given by,

𝐸𝐶𝑇 = −
𝑏 − 𝑎

12
ℎ2𝑓′′(𝜂),

Numerical Integration 61

for some appropriate point 𝜂 in (𝑎, 𝑏) and ℎ = (𝑏 − 𝑎)/𝑛, where 𝑛 is the number of subintervals of [𝑎, 𝑏].

• The error term 𝐸𝑆 of order 𝒪(ℎ5) associated with the Simpson’s 1/3 rule in approximating 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥

is given by,

𝐸𝑆 = −
 1

90
ℎ5𝑓(4)(𝜉),

for some appropriate point 𝜉 in (𝑎, 𝑏) and ℎ = (𝑏 − 𝑎)/2.

• The error term 𝐸𝐶𝑆 of order 𝒪(ℎ4) associated with the Composite Simpson’s 1/3 rule in approximating

𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 is given by,

𝐸𝐶𝑆 = −
𝑏 − 𝑎

180
ℎ4𝑓(4)(𝜂)

for some appropriate point 𝜂 in (𝑎, 𝑏) and ℎ = (𝑏 − 𝑎)/𝑛, where 𝑛 is the number of subintervals of [𝑎, 𝑏].

• Suppose 𝐼ℎ denotes the approximate integral using a quadrature formula with step size ℎ, and 𝐸ℎ denotes

the associated error. Then, the exact integral = 𝐼ℎ + 𝐸ℎ

Similarly, suppose 𝐼ℎ 2⁄ denotes the approximate integral using the same quadrature formula with a step

size ℎ 2⁄ , and 𝐸ℎ 2⁄ denotes the associated error. Then, the exact integral = 𝐼ℎ 2⁄ + 𝐸ℎ 2⁄

According to the interval halving method, for a Newton-Cotes integration formula with an error of order

𝒪(ℎ𝑁) an estimate of the error 𝐸ℎ 2⁄ is given by,

𝐸ℎ 2⁄ ≅
1

2𝑁 − 1
(𝐼ℎ 2⁄ − 𝐼ℎ)

This leads to a better approximation of the integral as below:

𝐼 ≅ 𝐼ℎ 2⁄ +
1

2𝑁 − 1
(𝐼ℎ 2⁄ − 𝐼ℎ)

This corresponds to a special process called Richardson Extrapolation, in which two estimates of the

solution are used to obtain a third approximation, which is a more accurate one. This approach for

numerical integration forms an initial stage of a relatively broader way of numerical integration, called

Romberg Integration. Recall that for the Composite Trapezoidal rule 𝑁 = 2, and for the Composite

Simpson’s 1/3 rule 𝑁 = 4.

• There could be several approaches for improving the estimates of the integrals:

o Using smaller step size (or larger number of subintervals)

o Using higher-order formula (e.g., using the Simpson’s rule instead of the Trapezoidal rule)

o Using Richardson’s extrapolation (i.e., using two less accurate estimates to obtain a more

accurate estimate).

• The degree of precision, also referred to as the order of accuracy, of a quadrature formula is 𝑝 if and only

if the associated truncation error is zero for all polynomials of degree less than or equal to 𝑝, and the error

is not zero for some polynomial of degree greater than 𝑝. Note that the Trapezoidal rule is based on the

62 Numerical Recipes in Python

interpolating polynomial of degree 1 (linear polynomial). Therefore, it produces the exact result while

integrating a polynomial of degree 1. Hence it has the degree of precision as 1. The Simpson’s 1/3 rule

might be expected to have a degree of precision as 2 because it is based on interpolating polynomial of

degree 2 (quadratic polynomial). However, it produces the exact result while integrating a polynomial of

degree 2, as well as degree 3. Hence, it has the degree of precision as 3. This fact is also evident while

deriving the error term for the Simpson’s 1/3 rule. This property, together with certain other reasons,

makes the Composite Simpson’s 1/3 rule often the best choice among the Newton-Cotes integration

formulas.

• A concise description of the error terms associated with the Newton-Cotes formulas and relevant degrees

of precision can be found under Question 23 (page 276).

• The Gaussian Quadrature is an advanced numerical integration technique in which the quadrature nodes

are selected in the interval of integration using the roots of some special polynomial to obtain an optimal

approximation of the integral.

∎∎∎

Chapter Exercises

Exercise 01: Approximate the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 for the following functions over the interval [0, 1] using the

Trapezoidal, Simpson’s 1/3 and Simpson’s 3/8 rules.

(𝑖) 𝑓(𝑥) = 𝑥2 + 𝑥 − 1 (𝑖𝑖) 𝑓(𝑥) = ln(1 + 𝑥) (𝑖𝑖𝑖) 𝑓(𝑥) =
1

1 + 𝑥2

(𝑖𝑣) 𝑓(𝑥) = cos (
𝑥

𝜋
) (𝑣) 𝑓(𝑥) =

1

√𝑥2 + 4

Exercise 02: Approximate the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 for the following functions over the interval [0, 1] using the

Composite Trapezoidal, Simpson’s 1/3, and Simpson’s 3/8 rules with ℎ = 0.1.

(𝑖) 𝑓(𝑥) = 𝑥2 + 𝑥 − 1 (𝑖𝑖) 𝑓(𝑥) = ln(1 + 𝑥) (𝑖𝑖𝑖) 𝑓(𝑥) =
1

1 + 𝑥2

(𝑖𝑣) 𝑓(𝑥) = cos (
𝑥

𝜋
) (𝑣) 𝑓(𝑥) =

1

√𝑥2 + 4

Exercise 03: Approximate the integral

∫ sin (
𝜋√𝑥

4
) 𝑑𝑥

16

4

using the Composite Trapezoidal rule with ℎ = 1 and five-digit rounding arithmetic.

Exercise 04: Find an approximate value of the integral ∫ (2 + sin(2√𝑥))𝑑𝑥
2

0
 using the Composite Trapezoidal

rule for 𝑛 = 10 and five-digit rounding arithmetic.

Numerical Integration 63

Exercise 05: Approximate the arc length of the following functions over the interval [0, 𝜋]

(𝑖) 𝑓(𝑥) = sin2 𝑥 (𝑖𝑖) 𝑓(𝑥) = ln (
4 + 𝑥

𝜋
)

using the Composite Simpson’s 1/3 rule for ℎ =
𝜋

6
 and four-digit rounding arithmetic.

Exercise 06: Find the approximate value of the integral ∫ (𝑓(𝑥))
2

𝑑𝑥
8

3
 using the Composite Simpson’s 1/3 rule,

given that

𝑥𝑗 3 4 5 6 7 8 9

𝑓(𝑥𝑗) 0.205 0.240 0.259 0.262 0.250 0.224 0.220

Exercise 07: Approximate the area of a surface of revolution of the following curves:

(𝑖) 𝑥 = 4𝑦, (𝑖𝑖) 𝑥 = tan 𝑦

about the 𝑦 − 𝑎𝑥𝑖𝑠 from 0 ≤ 𝑦 ≤ 1 using the Composite Simpson’s 3/8 rule for 𝑛 = 10 and four-digit rounding

arithmetic.

Exercise 08: Find the approximate value of the integral

𝑓(𝑥) = ∫
𝑥

𝑥2 + 3

3

0

𝑑𝑥

using the Composite Boole’s rule with step size ℎ = 0.25 and five-digit rounding arithmetic.

Exercise 09: Find the approximate value of the integral

𝑓(𝑥) = ∫ ln(𝑥 − 1)

5

2

𝑑𝑥

using the Composite Six-Point rule with step size ℎ = 0.3 and five-digit rounding arithmetic.

Exercise 10: Find the approximate value of the integral

𝑓(𝑥) = ∫ sinh(𝑥2)

4

1

𝑑𝑥

using the Composite Weddle’s rule with step size ℎ = 0.25 and five-digit rounding arithmetic.

Exercise 11: Suppose that 𝑓(0) = 1, 𝑓(0.5) = 2.5, 𝑓(1) = 2 and 𝑓(0.25) = 𝑓(0.75) = 𝛼. Find 𝛼 if the

Composite Trapezoidal rule with 𝑛 = 4 gives the value 1.75 for ∫ 𝑓(𝑥)𝑑𝑥
1

0
.

64 Numerical Recipes in Python

Exercise 12: Suppose that 𝑓(4) = 0.240, 𝑓(6) = 0.262, 𝑓(8) = 0.224, 𝑓(3) = 𝑓(5) = 𝑓(7) = 𝛼, and 𝑓(9) =

0.220 Find 𝛼 if the Composite Simpson’s 1/3 Rule gives the value 1.473 for

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

9

3

Exercise 13: Suppose that 𝑓(0.2) = 1.56, 𝑓(0.4) = 2.00, 𝑓(0.6) = 3.01, 𝑓(0.1) = 𝑓(0.3) = 𝑓(0.5) = 𝛼, and

𝑓(0.7) = 3.32 Find 𝛼 if the Composite Simpson’s 3/8 rule gives the value 1.30312 for

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

0.7

0.1

Exercise 14: To approximate the integral of 𝑓(𝑥) over the interval [0, 1] with an absolute error less than
1

2
× 10−4, how many subintervals are needed, in case of (𝑎) the Composite Trapezoidal rule, (𝑏) the Composite

Simpson’s 1/3 rule, and (𝑐) the Composite Simpson’s 3/8 rule? Given that,

(𝑖) 𝑓(𝑥) = 𝑥2 + 𝑥 − 1 (𝑖𝑖) 𝑓(𝑥) = ln(1 + 𝑥) (𝑖𝑖𝑖) 𝑓(𝑥) =
1

1 + 𝑥2

(𝑖𝑣) 𝑓(𝑥) = cos (
𝑥

𝜋
) (𝑣) 𝑓(𝑥) =

1

√𝑥2 + 4

Exercise 15: Suppose we wish to evaluate the integral

 𝑓(𝑥) = ∫ sin(√𝑥)𝑑𝑥
𝜋

0

numerically, with an error of magnitude less than 10−5. How many subintervals are needed if we wish to use
the Composite Trapezoidal and Composite Simpson 1/3 rules?

Exercise 16: Find the number of subintervals 𝑛 or step length ℎ so that the error 𝐸𝑇𝐶 for the Composite
Trapezoidal rule and error 𝐸𝑆𝐶 for the Composite Simpson’s 1/3 rule is less than 5 × 10−4 for numerically
integrating the Legendre polynomial,

 𝑃4(𝑥) = 𝑥4 −
6

7
𝑥2 +

3

35

over the interval [−1, 1].

Exercise 17: Obtain an upper bound on the absolute error when the Chebyshev polynomial of degree four,

𝑇4(𝑥) = 8𝑥4 − 8𝑥2 + 1

is integrated over the interval [−1, 1] by means of the Composite Simpson’s 3/8 rule.

Exercise 18: Obtain an upper bound on the absolute error when the Laguerre polynomial of degree four

𝐿4(𝑥) = 𝑥4 − 16𝑥3 + 72𝑥2 − 96𝑥 + 24

Numerical Integration 65

is integrated over the interval [−1, 1], by means of the Composite Simpson’s 3/8 rule.

Exercise 19: A car travels the loop of the racing track in 65 seconds. The speed of the car in meter/second is
recorded after every 5 seconds as shown in the following table:

Time 0 5 10 15 20 25 30 35 40 45 50 55 60 65

Speed 0 40 62 70 72 65 71 79 75 72 68 63 75 82

Estimate the length of the loop of the racing track?

Hint for the Solution:

Clearly, the speed say 𝑆 is shown to be a function of time, say 𝑡, and its values 𝑆(𝑡) for different time instants 𝑡

are given. Obtain the estimate of the integral distance = ∫ 𝑆(𝑡)
65

0
𝑑𝑡 using any appropriate numerical

integration rule with the data given in the Table.

Exercise 20: The prime number theorem states that the number of primes in an interval 𝑎 ≤ 𝑥 ≤ 𝑏 is
approximately

∫
1

ln 𝑥

𝑏

𝑎

𝑑𝑥

Estimate the number of primes existing in [50,150].

Hint for the Solution: Numerically evaluate the given integral for 𝑎 = 50 and 𝑏 = 150 using different values of

𝑓(𝑥) =
1

ln 𝑥
 at equispaced nodes in [50,150], separated by step length ℎ = 10 or 20.

Exercise 21: The depths D (in meters) of a 80 meters wide river at different horizontal distances 𝑠 from the
bank is given in the following table.

𝑠 0 10 20 30 40 50 60 70 80

𝐷 0 3.5 6 12 10 15 9 5 0

Estimate the area of the cross-section of the river.

Hint for the Solution: Clearly, 𝐷 is shown to be a function of 𝑠 and its values 𝐷(𝑠) for different points 𝑠 are

given. Obtain the estimate of the integral, 𝑎𝑟𝑒𝑎 = ∫ 𝐷(𝑠)
80

0
𝑑𝑠 using any appropriate numerical integration

rule with the data given in the Table.

Exercise 22: A rectangular swimming pool is 35 feet wide and 60 feet long. At different positions 𝑃 in feet
along the length of the pool, the depths 𝐷 in feet are shown in the following Table. Estimate the volume of the
pool using numerical integration.

66 Numerical Recipes in Python

𝑃 0 6 12 18 24 30 36 42 48 54 60

𝐷 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Hint for the Solution:

Clearly, 𝐷 is shown to be a function of 𝑃 and its values 𝐷(𝑃) for different points 𝑃 are given. Obtain the estimate

of the integral 𝑤 = ∫ 𝐷(𝑃)
60

0
𝑑𝑃 using any appropriate numerical integration rule with the data given in the

Table. Note that 𝑤 is the estimated area of one side-wall of the pool along the length. Multiplying it with the
width of 35 feet will give the volume of the pool.

Exercise 23: We know that

∫
1

1 + 𝑥2

1

0

𝑑𝑥 = tan−1𝑥|0
1 = tan−1 1 =

𝜋

4

This means that the value of 𝜋 can be obtained evaluating the above integral and then multiplying the answer
by 4. Suppose that we want to approximate 𝜋 to four decimal places. This means absolute error must be less

than 5.0 × 10−5. This means that the error in approximating the integral must be less than
1

4
× (5.0 × 10−5) =

1.25 × 10−5. Use the Composite Simpson’s 1/3 rule to approximate the value of 𝜋. For this, first determine that
what should be the minimum number of subintervals that would keep the error less than the tolerance.

Exercise 24: The number of subintervals required to apply the Composite Simpson’s 1/3 rule should be

(A) Multiple of 1 (B) Multiple of 2

(C) Multiple of 3 (D) unconditionally many (E) None of above

Exercise 25: The Simpson’s 1/3 rule is based on the integration of interpolating polynomial of degree 2. The

Simpson’s 1/3 rule can accurately integrate the polynomials of degree

(A) up to 1 (B) up to 2

(C) up to 3 (D) up to any (E) None of above

Exercise 26: The Gaussian quadrature is different from the Newton’s Cotes Integration in regards to

(A) selection of polynomial degree (B) selection of quadrature nodes

(C) problem dependence (D) None of above

∎∎∎

67

Chapter 5

Numerical Differentiation

Corridor I: BASICS

 Let’s plan it

5.1 Introduction

5.2 Finite Difference Approximations of Derivatives using the Taylor Series

 5.2.1 First Order Derivatives

 5.2.2 Second Order Derivatives

5.3 Listing of the Derivative Formulas

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

∎∎∎

http://www.timerenders.com.pk/

68 Numerical Recipes in Python

∎∎∎

69

Chapter 6

Direct Linear Solvers

Corridor I: BASICS

 Let’s plan it

6.1 Introduction to Linear Systems

6.2 Solving Linear Systems using the Gaussian Elimination Method

6.3 Pivoting Strategies

 Partial Pivoting

 Scaled Partial Pivoting

 Complete Pivoting

6.4 The Gauss-Jordan Method

6.5 Solving Linear Systems using the LU Factorization Method

 6.5.1 The Doolittle’s Method

 6.5.2 The Crout’s Method

 6.5.3 The Cholesky’s Method

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

∎∎∎

http://www.timerenders.com.pk/

70 Numerical Recipes in Python

Fig. (6.3): A classification chart of linear solvers.

Corridor II: ANALYSIS

 Let’s think deep

6.6 Operation Count Analysis

6.7 Matrix Inversion

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

∎∎∎

http://www.timerenders.com.pk/

Direct Linear Solvers 71

Corridor III: PROGRAMMING ARCADE

 Let’s do it

Remark: Suggestion: Before this Section, study, Corridor III of Chapter 07 to cope the difficulty level.

6.8 Algorithms and Implementations

The Gaussian Elimination Method with Partial Pivoting

Solving AX = B using the Doolittle's Method

Solving AX = B using the Crout's Method

Solving AX = B using the Cholesky's Method

Performing Operation Count Analysis

To see more examples for practicing, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

For codes, please visit: https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

∎∎∎

6.8 Algorithms and Implementations

People have been communicating and interconnecting since the beginning, but in

this era the communications and interconnections without modern technologies (like

phones, networks, internet, radio, and television) stand nowhere in regards to

possibility or survival. Likewise, people have been doing mathematics since early

ages, but in this modern era the mathematical applicability without making use of

the computers stands nowhere. Let’s modernize “OUR” culture of doing

mathematics so that it can be useful for all the disciplines of science and engineering.

It’s time to lead the frontiers of the knowledge and its applicability, rather than

http://www.timerenders.com.pk/
https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

72 Numerical Recipes in Python

Question 20: Write down an algorithm (pseudo code) to solve a linear system 𝑨𝑿 = 𝑩 using the Gaussian

Elimination method with partial pivoting.

Algorithm: To solve 𝑨𝑿 = 𝑩.

𝐈𝐍𝐏𝐔𝐓𝐒: {

𝒏: an integer as the number of equations and unknowns

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the coefficient matrix

𝑩 = [𝒃𝟏, 𝒃𝟐, ⋯ , 𝒃𝒏]
𝑻: a real valued vector as the vector of right hand side constants

𝐎𝐔𝐓𝐏𝐔𝐓𝐒: {
𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]

𝑻: a real valued vector as the solution vector
or a message that the given system has no unique solution

Step 1 Receive the inputs as stated above

Step 2 (Forward Elimination Phase)

for 𝑖 = 1,2,⋯ , 𝒏 − 𝟏

Set 𝑟 = 𝑖
for 𝑗 = 𝑖 + 1,⋯ , 𝒏

if (|𝒂𝒓𝒊| < |𝒂𝒋𝒊|) 𝑟 = 𝑗
} (

Searching largest absolute coefficient
in 𝑖th column for partial pivoting

)

if (𝒂𝒓𝒊 = 0) OUTPUT (‘The given system has no unique solution’) and STOP

else

if (𝑟 ≠ 𝑖), then interchange the 𝑖𝑡ℎ row with 𝑟𝑡ℎ row, and 𝑏𝑖 with 𝑏𝑟

for 𝑘 = 𝑖 + 1, 𝑖 + 2,⋯ , 𝒏

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 =
𝒂𝒌𝒊
𝒂𝒊𝒊

for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏

𝒂𝒌𝒋 = 𝒂𝒌𝒋 −𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × 𝒂𝒊𝒋

𝒃𝒌 = 𝒃𝒌 −𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × 𝒃𝒊 }

 (

row replacement in the
augmented matrix for
 eliminating the coefficients
 below the pivot

)

Step 3 if (𝒂𝒏𝒏 = 0) OUTPUT (‘The given system has no unique solution’) and STOP

 else go to step 4

Step 4 (Back Substitution Phase)

𝒙𝒏 =
𝒃𝒏
𝒂𝒏𝒏

for 𝑖 = 𝒏 − 1,⋯ ,2, 1
𝑠𝑢𝑚 = 0
for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒂𝒊𝒋 × 𝒙𝒋

𝒙𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒂𝒊𝒊 }

 (𝑥𝑖 =
1

𝑎𝑖𝑖
[𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=𝑖+1

])

Step 5 Print the output: 𝑿 = [𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏]
𝑻 and STOP.

Direct Linear Solvers 73

Question 21: Write a Python program to solve the following linear system using the Gaussian Elimination

method with partial pivoting. For simplification, specify the linear system within the program.

1.7𝑥1 + 2.3𝑥2 − 1.5𝑥3 = 2.35

1.1𝑥1 + 1.6𝑥2 − 1.9𝑥3 = −0.94

2.7𝑥1 − 2.2𝑥2 + 1.5𝑥3 = 2.70

script_6.1: gauss_elimination.ipynb

1 from numpy import *
2
3 a = [[1.7, 2.3, –1.5],[1.1, 1.6, –1.9],[2.7, –2.2, 1.5]]
4 b = [2.35, –0.94, 2.70]
5 n = 3
6 t = zeros(n)
7
8 # Forward Elimination phase
9 for i in range(n):

10 r = i
11 for j in range(i+1,n):
12 if abs(a[r][i]) < abs(a[i][j]):
13 r = j
14 if a[r][i] == 0:
15 print("System has no unique solution")
16 break
17 else:
18 if r != i:
19 for j in range(n):
20 temp = a[i][j]
21 a[i][j] = a[r][j]
22 a[r][j] = temp
23 temp1 = b[i]
24 b[i] = b[r]
25 b[r] = temp1
26
27 for k in range(i+1,n):
28 multiplier = a[k][i]/a[i][i]
29 for j in range(i+1,n):
30 a[k][j] = a[k][j] - multiplier * a[i][j]
31 b[k] = b[k] - multiplier * b[i]
32
33 if a[n–1][n–1] == 0:
34 print("The system has no unique solution")
35 else:
36 t[n–1] = b[n–1] / a[n–1][n–1]
37 for i in reversed(range(n–1)):
38 sum=0
39 for j in range(i+1,n) :

74 Numerical Recipes in Python

40 sum = sum + a[i][j] * t[j]
41 t[i] = (b[i] – sum) / a[i][i]
42
43 print("The solution of given system is", t)

Output Console:

The solution of given system is [-0.61111111 0. 2.9]

Remark: The Python program in Question 21 can be modified to receive the linear system at the execution

time (instead of fixing in the code). For this, lines 3 and 4 in the solution of Question 21should be replaced by

the following code segment:

Input Section

print("\nEnter the coefficient matrix row-wise for", n, "unknowns:")

a = [[0.0] * n for _ in range(n)]

for i in range(n):

 for j in range(n):

 a[i][j] = float(input())

print("Enter the elements of constant vector B:")

b = [0.0] * n

for i in range(n):

 b[i] = float(input())

Question 22: Write down an algorithm (pseudo code) to solve a linear system using the Doolittle’s method.

Algorithm: To solve a linear system 𝑨𝑿 = 𝑩, for which the factorization 𝑨 = 𝑳𝑼 is possible.

𝐈𝐍𝐏𝐔𝐓𝐒: {

𝒏: an integer as the number of equations and unknowns

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the coefficient matrix

𝑩 = [𝒃𝟏, 𝒃𝟐, ⋯ , 𝒃𝒏]
𝑻: a real valued vector as the vector of right hand side constants

𝐎𝐔𝐓𝐏𝐔𝐓𝐒: {

𝑳 = (𝒍𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the lower triangular matrix

𝑼 = (𝒖𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the upper triangular matrix

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻: a real valued vector as the solution vector

Step 1 (Formation of 𝑳 and 𝑼 as factors of 𝑨, i.e., 𝑨 = 𝑳𝑼)

for 𝑖 = 1, 2,⋯ , 𝒏

Set 𝒍𝒊𝒊 = 1

 For 𝑗 = 𝑖, 𝑖 + 1,⋯ , 𝒏

Direct Linear Solvers 75

𝑠𝑢𝑚 = 0
for 𝑠 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒔 × 𝒖𝒔𝒋
𝒖𝒊𝒋 = 𝒂𝒊𝒋 − 𝑠𝑢𝑚

} (𝑢𝑖𝑗 = 𝑎𝑖𝑗 −∑𝑙𝑖𝑠𝑢𝑠𝑗

𝑖−1

𝑠=1

)

for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏
𝑠𝑢𝑚 = 0
for 𝑠 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒋𝒔 × 𝒖𝒔𝒊

𝒍𝒋𝒊 =
[𝒂𝒋𝒊 − 𝑠𝑢𝑚]

𝒖𝒊𝒊 }

 (𝑙𝑗𝑖 =
1

𝑢𝑖𝑖
[𝑎𝑗𝑖 −∑𝑙𝑗𝑠𝑢𝑠𝑖

𝑖−1

𝑠=1

])

Step 2 (Forward substitution phase for solving 𝑳𝒀 = 𝑩)

𝒚𝟏 = 𝒃𝟏

 for 𝑖 = 2, 3,⋯ , 𝒏
𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒋 × 𝒚𝒋
𝒚𝒊 = 𝒃𝒊 − 𝑠𝑢𝑚 }

 (𝑦𝑖 = 𝑏𝑖 −∑𝑙𝑖𝑗𝑦𝑗

𝑖−1

𝑗=1

)

Step 3 (Back Substitution Phase for solving 𝑼𝑿 = 𝒀)

𝒙𝒏 =
𝒚𝒏
𝒖𝒏𝒏

for 𝑖 = 𝒏 − 1,⋯ ,2, 1
𝑠𝑢𝑚 = 0
for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ , 𝒏

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒖𝒊𝒋 × 𝒙𝒋

𝒙𝒊 =
[𝒚𝒊 − 𝑠𝑢𝑚]

𝒖𝒊𝒊 }

 (𝑥𝑖 =
1

𝑢𝑖𝑖
[𝑦𝑖 − ∑ 𝑢𝑖𝑗𝑥𝑗

𝑛

𝑗=𝑖+1

])

STOP.

Question 23: Write a Python program to solve the following linear system using the Doolittle’s method. For
simplification, specify the linear system within the program.

1.7𝑥1 + 2.3𝑥2 − 1.5𝑥3 = 2.35

1.1𝑥1 + 1.6𝑥2 − 1.9𝑥3 = −0.94

2.7𝑥1 − 2.2𝑥2 + 1.5𝑥3 = 2.70

script_6.2: dolittles.ipynb

1 from numpy import *
2
3 n = 3
4 a = [[1.7, 2.3, –1.5], [1.1, 1.6, –1.9], [2.7, –2.2, 1.5]]

5 b = [2.35, –0.94, 2.70]
6 x = zeros(n)

76 Numerical Recipes in Python

7 y = zeros(n)
8 l = diag(ones(n))
9 u = zeros([n,n])

10
11 for j in range(n):
12 u[0][j] = a[0][j]
13 l[j][0] = a[j][0] / u[0][0]
14
15 for i in range(1,n):
16 l[i][i]=1
17 for j in range(i,n):
18 sum = 0
19 for k in range(i):
20 sum = sum + l[i][k] * u[k][j]
21 u[i][j] = a[i][j] – sum
22 for j in range(i+1,n):
23 sum = 0
24 for k in range(i):
25 sum = sum + l[j][k] * u[k][i]
26 l[j][i] = (a[j][i] – sum) / u[i][i]
27
28 #Forward substitution phase for solving LY=B
29 y[0] = b[0]
30 for i in range(n):
31 sum = 0
32 for j in range(i):
33 sum = sum + l[i][j] * y[j]
34 y[i] = b[i] – sum
35
36 #Back substitution phase for solving UX=Y
37 x[n–1] = y[n–1] / u[n–1][n–1]
38 for i in reversed(range(n–1)):
39 sum = 0
40 for j in range(i+1,n):
41 sum = sum + (u[i][j] * x[j])
42 x[i] = (y[i] – sum) / u[i][i]
43
44 print("The L matrix is:")
45 for i in range(n):
46 for j in range(n):
47 print(l[i][j], " ",end=" ")
48 print(" ")
49
50 print("The U matrix is:")
51 for i in range(n):

Direct Linear Solvers 77

52 for j in range(n):
53 print(u[i][j], " ",end=" ")
54 print(" ")
55
56 print("The required solution is:")
57 for i in range(n):
58 print(x[i], " ",end=" ")

Output Console:

The L matrix is:

1.0 0.0 0.0

0.6470588235294118 1.0 0.0

1.5882352941176472 -52.36842105263156 1.0

The U matrix is:

1.7 2.3 -1.5

0.0 0.11176470588235299 -0.9294117647058822

0.0 0.0 -44.7894736842105

The required solution is:

1.1000000000000056 2.0999999999999965 2.90000000000000

∎

Remark: Replace the lines 4 and 5 in the solution of Question 23 with the following code segment to receive

the linear system at the execution time (instead of fixing in the code):

Input Section

print("\nEnter the coefficient matrix row-wise for", n, "unknowns:")

a = []

for i in range(n):

 row = []

 for j in range(n):

 row.append(float(input()))

 a.append(row)

print("Enter the elements of the constant vector B:")

b = []

for i in range(n):

 b.append(float(input()))

∎

78 Numerical Recipes in Python

Question 24: Write down an algorithm (pseudo code) to solve a linear system using the Crout’s method.

Algorithm: To solve a linear system 𝑨𝑿 = 𝑩, for which the factorization 𝑨 = 𝑳𝑼 is possible.

𝐈𝐍𝐏𝐔𝐓𝐒: {

𝒏: an integer as the number of equations and unknowns

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the coefficient matrix

𝑩 = [𝒃𝟏, 𝒃𝟐, ⋯ , 𝒃𝒏]
𝑻: a real valued vector as the vector of right hand side constants

𝐎𝐔𝐓𝐏𝐔𝐓𝐒: {

𝑳 = (𝒍𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the lower triangular matrix

𝑼 = (𝒖𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the upper triangular matrix

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻: a real valued vector as the solution vector

Step 1 (Formation of 𝑳 and 𝑼 as factors of 𝑨, i.e., 𝑨 = 𝑳𝑼)

for 𝑖 = 1, 2,⋯ , 𝒏

Set 𝒖𝒊𝒊 = 1

 for 𝑗 = 𝑖, 𝑖 + 1,⋯ , 𝒏
𝑠𝑢𝑚 = 0
for 𝑠 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒋𝒔 × 𝒖𝒔𝒊
𝒍𝒋𝒊 = 𝒂𝒋𝒊 − 𝑠𝑢𝑚 }

 (𝑙𝑗𝑖 = 𝑎𝑗𝑖 −∑𝑙𝑗𝑠𝑢𝑠𝑖

𝑖−1

𝑠=1

)

for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏
𝑠𝑢𝑚 = 0
for 𝑠 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒔 × 𝒖𝒔𝒋

𝒖𝒊𝒋 =
[𝒂𝒊𝒋 − 𝑠𝑢𝑚]

𝒍𝒊𝒊 }

 (𝑢𝑖𝑗 =
1

𝑙𝑖𝑖
[𝑎𝑖𝑗 −∑𝑙𝑖𝑠𝑢𝑠𝑗

𝑖−1

𝑠=1

])

Step 2 (Forward Substitution Phase for solving 𝑳𝒀 = 𝑩)

𝒚𝟏 =
𝒃𝟏
𝒍𝟏𝟏

 for 𝑖 = 2, 3,⋯ , 𝒏
𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒋 × 𝒚𝒋

𝒚𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒍𝒊𝒊 }

 (𝑦𝑖 =
1

𝑙𝑖𝑖
[𝑏𝑖 −∑𝑙𝑖𝑗𝑦𝑗

𝑖−1

𝑗=1

])

Step 3 (Back Substitution Phase for solving 𝑼𝑿 = 𝒀)

𝒙𝒏 = 𝒚𝒏

for 𝑖 = 𝒏 − 1,⋯ ,2, 1
𝑠𝑢𝑚 = 0
for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ , 𝒏

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒖𝒊𝒋 × 𝒙𝒋
𝒙𝒊 = 𝒚𝒊 − 𝑠𝑢𝑚

} (𝑥𝑖 = 𝑦𝑖 − ∑ 𝑢𝑖𝑗𝑥𝑗

𝑛

𝑗=𝑖+1

)

STOP.

Direct Linear Solvers 79

Question 25: Write a Python program to solve the following linear system using the Crout’s method. For

simplification, specify the linear system within the program.

1.7𝑥1 + 2.3𝑥2 − 1.5𝑥3 = 2.35

1.1𝑥1 + 1.6𝑥2 − 1.9𝑥3 = −0.94

2.7𝑥1 − 2.2𝑥2 + 1.5𝑥3 = 2.70

script_6.3: crouts.ipynb

1 from numpy import *

2

3 n = 3

4 a = [[1.7, 2.3, –1.5], [1.1, 1.6, –1.9], [2.7, –2.2, 1.5]]

5 b = [2.35, –0.94, 2.70]

6 x = zeros(n)

7 y = zeros(n)

8 l = zeros([n,n])

9 u = diag(ones(n))

10

11 for j in range(n): #Crouts Method

12 l[j][0] = a[j][0]

13 u[0][j] = a[0][j] / l[0][0]

14

15 for i in range(1,n):

16 u[i][i] = 1

17 for j in range(i,n):

18 sum = 0

19 for k in range(i):

20 sum = sum + l[i][k] * u[k][j]

21 l[j][i] = a[j][i] – sum

22 for j in range(i+1,n):

23 sum = 0

24 for k in range(i):

25 sum = sum + l[i][k] * u[k][j]

26 u[i][j] = (a[i][j] – sum) / l[i][i]

27

28 #Forward substitution phase for solving LY=B

29 y[0] = b[0] / l[0][0]

30 for i in range(n):

31 sum = 0

32 for j in range(i):

33 sum = sum + l[i][j] * y[j]

34 y[i] = (b[i] – sum) / l[i][i]

35

36 #Back substitution phase for solving UX=Y

37 x[n–1] = y[n–1]

80 Numerical Recipes in Python

38 for i in reversed(range(n–1)):

39 sum = 0

40 for j in range(i+1,n):

41 sum = sum + (u[i][j] * x[j])

42 x[i] = (y[i] – sum)

43

44 print("The L matrix is:")

45 for i in range(n):

46 for j in range(n):

47 print(l[i][j], " ",end=" ")

48 print(" ")

49

50 print("The U matrix is:")

51 for i in range(n):

52 for j in range(n):

53 print(u[i][j], " ",end=" ")

54 print(" ")

55

56 print("The required solution is:")

57 for i in range(n):

58 print(x[i], " ",end=" ")

Output Console:

The L matrix is:

1.7 0.0 0.0

1.1 0.11176470588235299 0.0

2.7 -1.2294117647058824 -6.341176470588229

The U matrix is:

1.0 1.352941176470588 -0.8823529411764706

0.0 1.0 -8.315789473684205

0.0 0.0 1.0

The required solution is:

-14.775803144224206 14.832877648667132 4.4311688311688

35

∎

Remark: Replace the lines 4 and 5 in the solution of Question 25with the following code segment to receive

the linear system at the execution time (instead of fixing in the code):

Input Section

print("\nEnter the coefficient matrix row-wise for", n, "unknowns:")

a = []

for i in range(n):

 row = []

 for j in range(n):

Direct Linear Solvers 81

 row.append(float(input()))

 a.append(row)

print("Enter the elements of the constant vector B:")

b = []

for i in range(n):

 b.append(float(input()))

∎

Question 26: Write down an algorithm (pseudo code) to solve a linear system using the Cholesky’s method.

Algorithm: To solve a linear system 𝑨𝑿 = 𝑩, for which the factorization 𝑨 = 𝑳𝑳𝑻 is possible.

𝐈𝐍𝐏𝐔𝐓𝐒: {

𝒏: an integer as the number of equations and unknowns

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the coefficient matrix

𝑩 = [𝒃𝟏, 𝒃𝟐, ⋯ , 𝒃𝒏]
𝑻: a real valued vector as the vector of right hand side constants

𝐎𝐔𝐓𝐏𝐔𝐓𝐒: {
𝑳 = (𝒍𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the lower triangular matrix

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻: a real valued vector as the solution vector

Step 1 (Formation of 𝑳 as factors of 𝑨, i.e., 𝑨 = 𝑳𝑳𝑻)

for 𝑖 = 1, 2,⋯ , 𝒏

𝑠𝑢𝑚 = 0
for 𝑘 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒌 × 𝒍𝒊𝒌
𝒍𝒊𝒊 = 𝒔𝒒𝒓𝒕(𝒂𝒊𝒊 − 𝑠𝑢𝑚)

}

(

𝑙𝑖𝑖 = [𝑎𝑖𝑖 −∑ 𝑙𝑖𝑘

2
𝑖−1

𝑘=1

]

1
2

)

for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏
𝑠𝑢𝑚 = 0
for 𝑘 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒌 × 𝒍𝒋𝒌

𝒍𝒋𝒊 =
[𝒂𝒋𝒊 − 𝑠𝑢𝑚]

𝒍𝒊𝒊 }

 (𝑙𝑗𝑖 =
1

𝑙𝑖𝑖
[𝑎𝑗𝑖 −∑ 𝑙𝑖𝑘𝑙𝑗𝑘

𝑖−1

𝑘=1

])

Step 2 (Forward Substitution Phase for solving 𝑳𝒀 = 𝑩)

𝒚𝟏 =
𝒃𝟏
𝒍𝟏𝟏

 for 𝑖 = 2, 3,⋯ , 𝒏
𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒋 × 𝒚𝒋

𝒚𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒍𝒊𝒊 }

 (𝑦𝑖 =
1

𝑙𝑖𝑖
[𝑏𝑖 −∑𝑙𝑖𝑗𝑦𝑗

𝑖−1

𝑗=1

])

82 Numerical Recipes in Python

Step 3 (Back Substitution Phase for solving 𝑳𝑻𝑿 = 𝒀)

𝒙𝒏 =
𝒚𝒏
𝒍𝒏𝒏

for 𝑖 = 𝒏 − 1,⋯ ,2, 1
𝑠𝑢𝑚 = 0
for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒋𝒊 × 𝒙𝒋

𝒙𝒊 =
[𝒚𝒊 − 𝑠𝑢𝑚]

𝒍𝒊𝒊 }

 (𝑥𝑖 =
1

𝑙𝑖𝑖
[𝑦𝑖 − ∑ 𝑙𝑗𝑖𝑥𝑗

𝑛

𝑗=𝑖+1

])

STOP.

Question 27: Write a Python program to solve the following positive definite linear system using the

Cholesky’s method. For simplification, specify the linear system within the program.

0.4𝑥1 + 0.12𝑥3 = 1.4

0.64𝑥2 + 0.32𝑥3 = 1.6

−0.12𝑥1 + 0.32𝑥2 + 0.56𝑥3 = 5.4

script_6.4: cholesky.ipynb

1 from numpy import *
2
3 n = 3
4 a = [[0.4, 0.0, 0.12], [0.0, 0.64, 0.32],[–0.12, 0.32, 0.56]]
5 b = [1.4, 1.6, 5.4]
6 x = zeros(n)
7 y = zeros(n)
8 l = zeros([n,n])
9 l[0][0] = sqrt(a[0][0])

10
11 for j in range(n): #Cholesky Method
12 l[j][0] = a[j][0] / l[0][0]
14
15 for i in range(1,n):
16 sum=0
17 for k in range(i):
18 sum = sum + l[i][k] * l[i][k]
19 l[i][i] = a[i][i] – sum
20 l[i][i] = sqrt(l[i][i])
22 for j in range(i+1,n):
23 sum = 0
24 for k in range(i):
25 sum = sum + l[i][k] * l[j][k]
26 l[j][i] = (a[j][i] – sum) / l[i][i]
28

Direct Linear Solvers 83

29 #Forward substitution phase for solving LY=B
30 y[0] = b[0] / l[0][0]
31 for i in range(n):
32 sum = 0
33 for j in range(i):
34 sum = sum + l[i][j] * y[j]
35 y[i] = (b[i] – sum)/l[i][i]
37
38 #Back substitution phase for solving L^t X = Y
39 x[n–1] = y[n–1] / l[n–1][n–1]
41 for i in reversed(range(n–1)):
42 sum = 0
43 for j in range(i+1,n):
44 sum = sum + (l[j][i] * x[j])
45 x[i] = (y[i] – sum)/l[i][i]
47
48 print("The L matrix is:")
49 for i in range(n):
50 for j in range(n):
51 print(l[i][j], " ",end=" ")
52 print(" ")
53
54 print("The required solution is:")
55 for i in range(n):
56 print(x[i], " ",end=" ")

Output Console:

The L matrix is:

0.6324555320336759 0.0 0.0

0.0 0.8 0.0

-0.18973665961010275 0.39999999999999997 0.60332

41251599343

The required solution is:

7.637362637362637 -4.395604395604395 13.79120879120879

2

∎

Remark: Following are some notations and formulas that might be useful in carrying out operation count

analysis of the algorithms.

84 Numerical Recipes in Python

∑ 𝑐𝑓(𝑝)

𝑛

𝑝=1

= 𝑐∑𝑓(𝑝)

𝑛

𝑝=1

∑[𝑓(𝑝) + 𝑔(𝑝)]

𝑛

𝑝=1

= ∑𝑓(𝑝) +∑𝑔(𝑝)

𝑛

𝑝=1

𝑛

𝑝=1

∑1

𝑛

𝑝=1

= 1 + 1 +⋯+ 1 = 𝑛

∑1

𝑛

𝑝=𝑘

= 𝑛 − 𝑘 + 1

∑𝑝

𝑛

𝑝=1

= 1 + 2 + 3 +⋯+ 𝑛 =
𝑛(𝑛 + 1)

2 =
𝑛2

2
+ 𝒪(𝑛)

∑𝑝2
𝑛

𝑝=1

= 12 + 22 +⋯+ 𝑛2 =
𝑛(𝑛 + 1)(2𝑛 + 1)

6
=

𝑛3

3
+ 𝒪(𝑛2)

Question 28: Perform the operation count analysis of the algorithm that involves the following phases to solve

an 𝑛 × 𝑛 linear system:

(1) Forward elimination to obtain the upper triangular form using the Gauss Elimination method.

(2) Back substitution to solve the upper triangular system.

(1) The forward elimination phase occurs just after setting the inputs in the algorithm. This phase contains

three nested loops. The first loop, say 𝑖-loop (which ranges from 𝑖 = 1 to 𝑛 − 1), corresponds to the 𝑛 − 1

elimination stages of the method. For each row 𝑖, the 𝑖th element is considered a pivot element. The second

loop, say 𝑘-loop (which ranges from 𝑘 = 𝑖 + 1 to 𝑛), corresponds to the elements below the pivot element to

make them zero. The third loop, say 𝑗-loop (which ranges from 𝑗 = 𝑖 + 1 to 𝑛) corresponds to the columns

after the pivot element.

Note that, for any loop with index ranging from 𝑖 + 1 to 𝑛 , the number of passes/iterations will be 𝑛 −

(𝑖 + 1) + 1 (or simply (𝑛 − 𝑖) passes). Therefore, each of the 𝑘-loop and 𝑗-loop has (𝑛 − 𝑖) passes.

Each pass of 𝑘-loop will perform one division to obtain the multiplier, and one multiplication and subtraction

to update the right-hand side constant, 𝑏𝑘 . Moreover, in each pass of 𝑘 -loop, (𝑛 − 𝑖) multiplications and

(𝑛 − 𝑖) subtractions will be performed in 𝑗-loop to update the relevant entries of the coefficient matrix, 𝑎𝑘𝑗 .

Thus, in each pass of 𝑘 -loop, the total number of multiplications/divisions will be (1 + 1 + (𝑛 − 𝑖)) or

(𝑛 − 𝑖 + 2) and the total number of additions/subtractions will be (1 + 𝑛 − 𝑖).

As there are (𝑛 − 𝑖) passes of 𝑘 -loop in each pass of 𝑖 -loop, therefore there will be (𝑛 − 𝑖) × (𝑛 − 𝑖 + 2)

multiplications/divisions and (𝑛 − 𝑖) × (𝑛 − 𝑖 + 1) additions/subtractions in each pass of 𝑖-loop.

Direct Linear Solvers 85

Hence, the total number of multiplications/divisions in 𝑛 − 1 passes of 𝑖-loop of the forward elimination phase

will be

∑(𝑛 − 𝑖)(𝑛 − 𝑖 + 2)

𝑛−1

𝑖=1

= ∑(𝑛 − 𝑖)((𝑛 + 2) − 𝑖)

𝑛−1

𝑖=1

= ∑[𝑛(𝑛 + 2) − 𝑛𝑖 − 𝑖(𝑛 + 2) + 𝑖2]

𝑛−1

𝑖=1

 = ∑[𝑛(𝑛 + 2) − 2𝑖(𝑛 + 1) + 𝑖2]

𝑛−1

𝑖=1

= 𝑛(𝑛 + 2)∑1− 2(𝑛 + 1)

𝑛−1

𝑖=1

∑𝑖

𝑛−1

𝑖=1

+∑ 𝑖2
𝑛−1

𝑖=1

= 𝑛(𝑛 + 2)(𝑛 − 1) − 2(𝑛 + 1) [
(𝑛 − 1)𝑛

2
] + [

(𝑛 − 1)𝑛(2𝑛 − 1)

6
]

= 𝑛(𝑛 − 1) [𝑛 + 2 − 𝑛 − 1 +
𝑛

3
−
1

6
]

= (𝑛2 − 𝑛) [
𝑛

3
+
5

6
] =

𝑛3

3
+
𝑛2

2
−
5𝑛

6
=

𝑛3

3
+ 𝒪(𝑛2)

Similarly, the total number of additions/subtractions in 𝑛 − 1 passes of 𝑖-loop of the forward elimination

phase will be

∑(𝑛 − 𝑖)(𝑛 − 𝑖 + 1)

𝑛−1

𝑖=1

= ∑(𝑛 − 𝑖)((𝑛 + 1) − 𝑖)

𝑛−1

𝑖=1

= ∑[𝑛(𝑛 + 1) − 𝑛𝑖 − 𝑖(𝑛 + 1) + 𝑖2]

𝑛−1

𝑖=1

= ∑[𝑛(𝑛 + 1) − 𝑖(2𝑛 + 1) + 𝑖2]

𝑛−1

𝑖=1

= 𝑛(𝑛 + 1)∑1− (2𝑛 + 1)

𝑛−1

𝑖=1

∑𝑖

𝑛−1

𝑖=1

+∑ 𝑖2
𝑛−1

𝑖=1

= 𝑛(𝑛 + 1)(𝑛 − 1) − (2𝑛 + 1) [
(𝑛 − 1)𝑛

2
] + [

(𝑛 − 1)𝑛(2𝑛 − 1)

6
]

= 𝑛(𝑛 − 1) [𝑛 + 1 − 𝑛 −
1

2
+
𝑛

3
−
1

6
]

= (𝑛2 − 𝑛) [
𝑛

3
+
1

3
] =

𝑛3

3
−
𝑛

3
=

𝑛3

3
+ 𝒪(𝑛)

The summary of the operation count of the Gaussian Elimination phase is given as:

86 Numerical Recipes in Python

Operations

Total flops
Multiplications⁄divisions Additions⁄subtractions

Forward Elimination
𝑛3

3
+
𝑛2

2
−
5𝑛

6

𝑛3

3
−
𝑛

3

2𝑛3

3
+ 𝒪(𝑛2)

(2) The back substitution phase occurs after the forward elimination phase. This phase contains two nested

loops. The first loop, say 𝑖-loop (which ranges from 𝑖 = 𝑛 − 1 to 1), corresponds to 𝑛 − 1 of the components

of the solution vector. The second loop, say 𝑗-loop (which ranges from 𝑗 = 𝑖 + 1 to 𝑛), corresponds to the

columns after the diagonal elements.

Each pass of 𝑖-loop will perform one subtraction and one division to obtain the value of 𝑥𝑖 . Moreover, in each

pass of 𝑖-loop, the number of both of the multiplications and additions will be 𝑛 − (𝑖 + 1) + 1 (or simply

(𝑛 − 𝑖)) in 𝑗-loop. Thus, in each pass of 𝑖-loop, the total number of both of the multiplications/divisions and

additions/subtractions will be (𝑛 − 𝑖 + 1).

Hence, the total number of the multiplications/divisions in the back substitution phase will be

1 +∑(𝑛 + 1 − 𝑖)

𝑛−1

𝑖=1

= 1 + (𝑛 + 1)∑1

𝑛−1

𝑖=1

−∑ 𝑖

𝑛−1

𝑖=1

= 1 + (𝑛 + 1)(𝑛 − 1) − [
(𝑛 − 1)𝑛

2
]

= 1 + 𝑛2 − 1 −
𝑛2

2
+
𝑛

2
=

𝑛2

2
+
𝑛

2
=

𝑛2

2
+ 𝒪(𝑛)

Similarly, the total number of the additions/subtractions in the back substation phase will be

∑(𝑛 + 1 − 𝑖)

𝑛−1

𝑖=1

=
𝑛2

2
+
𝑛

2
− 1 =

𝑛2

2
+ 𝒪(𝑛)

Finally, the summary of the operation count of the complete algorithm (including the two phases) is given as:

Operations

Total flops
Multiplications⁄divisions Additions⁄subtractions

Forward elimination
𝑛3

3
+
𝑛2

2
−
5𝑛

6

𝑛3

3
−
𝑛

3

2𝑛3

3
+
𝑛2

2
−
7𝑛

6

Back Substitution
𝑛2

2
+
𝑛

2

𝑛2

2
−
𝑛

2
 𝑛2

Totals
𝑛3

3
+ 𝑛2 −

𝑛

3

𝑛3

3
+
n2

2
−
5𝑛

6

2𝑛3

3
+
3𝑛2

2
−
7𝑛

6

Direct Linear Solvers 87

Question 29: Perform the operation count analysis of the algorithm that involves the following phases to solve

an 𝑛 × 𝑛 linear system:

(1) Factorization of the coefficient matrix using the Doolittle’s method.

(2) Forward substitution to solve the lower triangular system.

(3) Back substitution to solve the upper triangular system.

(1) The factorization of the coefficient matrix 𝐴 into the product of the unit lower triangular 𝐿 and the upper

triangular 𝑈 matrices occurs just after setting the inputs in the algorithm. The formulation of 𝐿 and 𝑈 as the

factors of 𝐴 contains three nested loops. The first loop, say 𝑖-loop (which ranges from 𝑖 = 1 to 𝑛), corresponds

to the 𝑖 th row and column of 𝑈 and 𝐿 respectively. The second loop, say 𝑗-loop (ranges from 𝑗 = 𝑖 to 𝑛),

corresponds to the column 𝑗 of 𝑈 and (ranges from 𝑗 = 𝑖 + 1 to 𝑛), corresponds to the row 𝑗 of 𝐿. The third

loop, say 𝑠-loop (which ranges from 𝑠 = 1 to 𝑖 − 1), corresponds to the multiplication of the rows of 𝐿 and

columns of 𝑈.

Note that, the 𝑗-loop corresponding to column 𝑗 of 𝑈 ranging from 𝑖 to 𝑛, the number of passes/iterations will

be 𝑛 − 𝑖 + 1. Similarly, the number of passes/iterations in 𝑗-loop, corresponds to row 𝑗 of 𝐿 ranging from 𝑖 +

1 to 𝑛, will be 𝑛 − (𝑖 + 1) + 1 (or simply (𝑛 − 𝑖)).

Each pass of 𝑗-loop will perform one subtraction to obtain the entry 𝑢𝑖𝑗 of 𝑈. Moreover, in each pass of 𝑗-loop,

the number of both of the multiplications and additions will be (𝑖 − 1) − 1 + 1 (or simply (𝑖 − 1)) in s-loop.

Thus, in each pass of j-loop, the total number of multiplications/divisions will be (𝑖 − 1) and the total number

of additions/subtractions will be (1 + 𝑖 − 1) or (𝑖). Similarly, in each pass of 𝑗-loop, to obtain the entry 𝑙𝑗𝑖 of 𝐿,

the total number of both of the multiplications and additions will be (𝑖 − 1) + 1 (or simply (𝑖)).

As there are (𝑛 − 𝑖 + 1) passes of 𝑗-loop in each pass of 𝑖-loop, therefore there will be (𝑛 − 𝑖 + 1) × (𝑖 − 1)

multiplications/divisions and (𝑛 − 𝑖 + 1) × (𝑖) additions/subtractions in each pass of 𝑖 -loop for the

formulation of row 𝑖 of 𝑈. Similarly, in each pass of 𝑖-loop, there will be (𝑛 − 𝑖) × (𝑖) multiplications/divisions

and (𝑛 − 𝑖) × (𝑖) additions/subtractions in each pass of 𝑖-loop for the formulation of column 𝑖 of 𝐿.

Hence, the total number of multiplications/divisions in 𝑛 passes of 𝑖 -loop for the formulation of upper

triangular matric 𝑈 will be

∑(𝑛 − 𝑖 + 1)(𝑖 − 1)

𝑛

𝑖=1

= ∑(𝑛 + 1 − 𝑖)(𝑖 − 1)

𝑛

𝑖=1

= ∑[(𝑛 + 1)𝑖 − (𝑛 + 1) − 𝑖2 + 𝑖]

𝑛

𝑖=1

= ∑[(𝑛 + 2)𝑖 − 𝑖2 − (𝑛 + 1)]

𝑛

𝑖=1

88 Numerical Recipes in Python

= (𝑛 + 2)∑𝑖

𝑛

𝑖=1

−∑𝑖2
𝑛

𝑖=1

− (𝑛 + 1)∑1

𝑛

𝑖=1

= (𝑛 + 2) [
𝑛(𝑛 + 1)

2
] − [

𝑛(𝑛 + 1)(2𝑛 + 1)

6
] − (𝑛 + 1)𝑛

= 𝑛(𝑛 + 1) [
𝑛

2
+ 1 −

𝑛

3
−
1

6
− 1] = (𝑛2 + 𝑛) [

𝑛

6
−
1

6
]

=
𝑛3

6
−
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛)

Similarly, the total number of additions/subtractions in 𝑛 passes of 𝑖 -loop for the formulation of upper

triangular matric 𝑈 will be

∑(𝑛 − 𝑖 + 1)(𝑖)

𝑛

𝑖=1

=
𝑛3

6
+
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛)

Moreover, the total number of multiplications/divisions and additions/subtractions in 𝑛 passes of 𝑖-loop for

the formulation of unit lower triangular matric 𝐿 will be

∑(𝑛 − 𝑖)(𝑖)

𝑛

𝑖=1

= ∑(𝑛 − 𝑖)(𝑖)

𝑛

𝑖=1

= ∑(𝑛𝑖 − 𝑖2)

𝑛

𝑖=1

= 𝑛∑𝑖

𝑛

𝑖=1

−∑𝑖2
𝑛

𝑖=1

= 𝑛 [
𝑛(𝑛 + 1)

2
] − [

𝑛(𝑛 + 1)(2𝑛 + 1)

6
]

= 𝑛(𝑛 + 1) [
𝑛

2
−
𝑛

3
−
1

6
] = (𝑛2 + 𝑛) [

𝑛

6
−
1

6
]

=
𝑛3

6
−
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛)

The summary of the operation count of the 𝐿𝑈-factorization is given as:

Operations

Total flops
Multiplication/Division Addition/Subtraction

Upper Triangular
Matrix 𝑈

𝑛3

6
−
𝑛

6

𝑛3

6
+
𝑛

6

𝑛3

3

Lower Triangular
Matrix 𝐿

𝑛3

6
−
𝑛

6

𝑛3

6
−
𝑛

6

𝑛3

3
−
𝑛

3

Direct Linear Solvers 89

𝐿𝑈-factorization
𝑛3

3
−
𝑛

3

𝑛3

3

2𝑛3

3
−
𝑛

3

(2) The forward substitution phase occurs after the formulation of 𝐿 and 𝑈 as factors of the coefficient matrix

for solving the lower triangular system. This phase contains two nested loops. The first loop, say 𝑖-loop (which

ranges from 𝑖 = 2 to 𝑛), corresponds to 𝑛 − 1 of the components of the intermediate vector 𝑌. The second

loop, say 𝑗-loop (which ranges from 𝑗 = 1 to 𝑖 − 1), corresponds to the columns before the diagonal elements.

Each pass of 𝑖-loop will perform one subtraction to obtain the value of 𝑦𝑖. Moreover, in each pass of 𝑖-loop, the

number of both of the multiplications and additions will be (𝑖 − 1) − 1 + 1 (or simply (𝑖 − 1)) in j-loop. Thus,

in each pass of i-loop, the total number of multiplications/divisions will be (𝑖 − 1) and the total number of

additions/subtractions will be (1 + 𝑖 − 1) or (𝑖).

Hence, the total number of the multiplications/divisions in the forward substitution phase will be

∑(𝑖 − 1)

𝑛

𝑖=2

= ∑𝑖

𝑛

𝑖=2

−∑1

𝑛

𝑖=2

= [
𝑛(𝑛 + 1)

2
− 1] − (𝑛 − 2 + 1)

=
𝑛2

2
+
𝑛

2
− 1 − 𝑛 + 1 =

𝑛2

2
−
𝑛

2
=

𝑛2

2
+ 𝒪(𝑛)

Similarly, the total number of the additions/subtractions in the forward substation phase will be

∑(𝑖)

𝑛

𝑖=2

=
𝑛2

2
+
𝑛

2
− 1 =

𝑛2

2
+ 𝒪(𝑛)

The summary of the operation count of the Unit Lower triangular system 𝐿𝑌 = 𝐵 is given as:

Operations

Total flops
Multiplication/Division Addition/Subtraction

Unit Lower
triangular system
𝐿𝑌 = 𝐵

𝑛2

2
−
𝑛

2

𝑛2

2
+
𝑛

2
− 1 𝑛2 − 1

(3) The back substitution phase occurs after the solution of the lower triangular system. This phase contains

two nested loops. The first loop, say 𝑖-loop (which ranges from 𝑖 = 𝑛 − 1 to 1), corresponds to 𝑛 − 1 of the

components of solution vector 𝑋. The second loop, say 𝑗-loop (which ranges from 𝑗 = 𝑖 + 1 to 𝑛), corresponds

to the columns after the diagonal elements.

90 Numerical Recipes in Python

Each pass of 𝑖-loop will perform one subtraction and one division to obtain the value of 𝑥𝑖 . Moreover, in each

pass of 𝑖-loop, the number of both of the multiplications and additions will be 𝑛 − (𝑖 + 1) + 1 (or simply

(𝑛 − 𝑖)) in 𝑗-loop. Thus, in each pass of 𝑖-loop, the total number of both of the multiplications/divisions and

additions/subtractions will be (𝑛 − 𝑖 + 1).

Hence, the total number of the multiplications/divisions in the back substitution phase will be

1 +∑(𝑛 + 1 − 𝑖)

𝑛−1

𝑖=1

= 1 + (𝑛 + 1)∑1

𝑛−1

𝑖=1

−∑ 𝑖

𝑛−1

𝑖=1

= 1 + (𝑛 + 1)(𝑛 − 1) − [
(𝑛 − 1)𝑛

2
]

= 1 + 𝑛2 − 1 −
𝑛2

2
+
𝑛

2
=

𝑛2

2
+
𝑛

2
=

𝑛2

2
+ 𝒪(𝑛)

Similarly, the total number of the additions/subtractions in the back substation phase will be

∑(𝑛 + 1 − 𝑖)

𝑛−1

𝑖=1

=
𝑛2

2
+
𝑛

2
− 1 =

𝑛2

2
+ 𝒪(𝑛)

The summary of the operation count of the Upper triangular system 𝑈𝑋 = 𝑌 is given as:

Operations

Total flops
Multiplications/Divisions Additions/Subtractions

Upper triangular
system 𝑈𝑋 = 𝑌

𝑛2

2
+
𝑛

2

𝑛2

2
+
𝑛

2
− 1 𝑛2 + 𝑛 − 1

Question 30: Perform the operation count analysis of the algorithm that involves the following phases to solve

an 𝑛 × 𝑛 linear system:

(1) Factorization of the coefficient matrix using the Doolittle’s method

(2) Forward substitution to solve the lower triangular system.

(3) Back substitution to solve the upper triangular system.

(1) The factorization of the coefficient matrix 𝐴 into the product of the lower triangular 𝐿 and the unit upper

triangular 𝑈 matrices occur just after setting the inputs in the algorithm. The formulation of 𝐿 and 𝑈 as the

factors of 𝐴 contains three nested loops. The first loop, say 𝑖-loop (which ranges from 𝑖 = 1 to 𝑛), corresponds

to the 𝑖th column of 𝐿 and 𝑖th row of 𝑈 respectively. The second loop, say 𝑗-loop (ranges from 𝑗 = 𝑖 to 𝑛),

corresponds to the 𝑗th row of 𝐿 and (ranges from 𝑗 = 𝑖 + 1 to 𝑛), corresponds to the 𝑗th column of 𝑈. The third

Direct Linear Solvers 91

loop, say 𝑠-loop (which ranges from 𝑠 = 1 to 𝑖 − 1), corresponds to the multiplication of the rows of 𝐿 and

columns of 𝑈.

Note that, the 𝑗-loop corresponding to row 𝑗 of 𝐿 ranging from 𝑖 to 𝑛, the number of passes/iterations will be

𝑛 − 𝑖 + 1. Similarly, the number of passes/iterations in 𝑗-loop, corresponds to column 𝑗 of 𝑈 ranging from 𝑖 +

1 to 𝑛, will be 𝑛 − (𝑖 + 1) + 1 (or simply (𝑛 − 𝑖)).

Each pass of 𝑗-loop will perform one subtraction to obtain the entry 𝑙𝑗𝑖 of 𝐿. Moreover, in each pass of 𝑗-loop,

the number of both of the multiplications and additions will be (𝑖 − 1) − 1 + 1 (or simply (𝑖 − 1)) in s-loop.

Thus, in each pass of j-loop, the total number of multiplications/divisions will be (𝑖 − 1) and the total number

of additions/subtractions will be (1 + 𝑖 − 1) or (𝑖). Similarly, in each pass of 𝑗-loop, to obtain the entry 𝑢𝑖𝑗 of

𝑈, the total number of both of the multiplications and additions will be (𝑖 − 1) + 1 (or simply (𝑖)).

As there are (𝑛 − 𝑖 + 1) passes of 𝑗-loop in each pass of 𝑖-loop, therefore there will be (𝑛 − 𝑖 + 1) × (𝑖 − 1)

multiplications/divisions and (𝑛 − 𝑖 + 1) × (𝑖) additions/subtractions in each pass of 𝑖 -loop for the

formulation of column 𝑖 of 𝐿 . Similarly, in each pass of 𝑖 -loop, there will be (𝑛 − 𝑖) × (𝑖)

multiplications/divisions and (𝑛 − 𝑖) × (𝑖) additions/subtractions in each pass of 𝑖-loop for the formulation

of row 𝑖 of 𝑈.

Hence, the total number of multiplications/divisions in 𝑛 passes of 𝑖-loop for the formulation of the lower

triangular matric 𝐿 will be

∑(𝑛 − 𝑖 + 1)(𝑖 − 1)

𝑛

𝑖=1

= ∑(𝑛 + 1 − 𝑖)(𝑖 − 1)

𝑛

𝑖=1

= ∑[(𝑛 + 1)𝑖 − (𝑛 + 1) − 𝑖2 + 𝑖]

𝑛

𝑖=1

= ∑[(𝑛 + 2)𝑖 − 𝑖2 − (𝑛 + 1)]

𝑛

𝑖=1

= (𝑛 + 2)∑𝑖

𝑛

𝑖=1

−∑𝑖2
𝑛

𝑖=1

− (𝑛 + 1)∑1

𝑛

𝑖=1

= (𝑛 + 2) [
𝑛(𝑛 + 1)

2
] − [

𝑛(𝑛 + 1)(2𝑛 + 1)

6
] − (𝑛 + 1)𝑛

= 𝑛(𝑛 + 1) [
𝑛

2
+ 1 −

𝑛

3
−
1

6
− 1] = (𝑛2 + 𝑛) [

𝑛

6
−
1

6
]

=
𝑛3

6
−
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛)

Similarly, the total number of additions/subtractions in 𝑛 passes of 𝑖-loop for the formulation of the lower

triangular matric 𝐿 will be

92 Numerical Recipes in Python

∑(𝑛 − 𝑖 + 1)(𝑖)

𝑛

𝑖=1

=
𝑛3

6
+
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛)

Moreover, the total number of multiplications/divisions and additions/subtractions in 𝑛 passes of 𝑖-loop for

the formulation of the unit upper triangular matric 𝑈 will be

∑(𝑛 − 𝑖)(𝑖)

𝑛

𝑖=1

= ∑(𝑛 − 𝑖)(𝑖)

𝑛

𝑖=1

= ∑(𝑛𝑖 − 𝑖2)

𝑛

𝑖=1

= 𝑛∑𝑖

𝑛

𝑖=1

−∑𝑖2
𝑛

𝑖=1

= 𝑛 [
𝑛(𝑛 + 1)

2
] − [

𝑛(𝑛 + 1)(2𝑛 + 1)

6
]

= 𝑛(𝑛 + 1) [
𝑛

2
−
𝑛

3
−
1

6
] = (𝑛2 + 𝑛) [

𝑛

6
−
1

6
]

=
𝑛3

6
−
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛)

The summary of the operation count of the 𝐿𝑈-factorization is given as:

Operations

Total flops
Multiplication/Division Addition/Subtraction

Lower Triangular
Matrix 𝐿

𝑛3

6
−
𝑛

6

𝑛3

6
+
𝑛

6

𝑛3

3

Upper Triangular
Matrix 𝑈

𝑛3

6
−
𝑛

6

𝑛3

6
−
𝑛

6

𝑛3

3
−
𝑛

3

𝐿𝑈-factorization
𝑛3

3
−
𝑛

3

𝑛3

3

2𝑛3

3
−
𝑛

3

(2) The forward substitution phase occurs after the formulation of 𝐿 and 𝑈 as factors of the coefficient matrix

for solving the lower triangular system. This phase contains two nested loops. The first loop, say 𝑖-loop (which

ranges from 𝑖 = 2 to 𝑛), corresponds to 𝑛 − 1 of the components of the intermediate vector 𝑌. The second

loop, say 𝑗-loop (which ranges from 𝑗 = 1 to 𝑖 − 1), corresponds to the columns before the diagonal elements.

Each pass of 𝑖-loop will perform one subtraction and one division to obtain the value of 𝑦𝑖. Moreover, in each

pass of 𝑖-loop, the number of both of the multiplications and additions will be (𝑖 − 1) − 1 + 1 (or simply

(𝑖 − 1)) in 𝑗-loop. Thus, in each pass of 𝑖-loop, the total number of both of the multiplications/divisions and

additions/subtractions will be (1 + 𝑖 − 1) or simply (𝑖).

Direct Linear Solvers 93

Hence, the total number of the multiplications/divisions in the forward substitution phase will be

1 +∑(𝑖)

𝑛

𝑖=2

= 1 +∑𝑖

𝑛

𝑖=2

= 1 + [
𝑛(𝑛 + 1)

2
− 1]

=
𝑛2

2
+
𝑛

2
=

𝑛2

2
+
𝑛

2
=

𝑛2

2
+ 𝒪(𝑛)

Similarly, the total number of the additions/subtractions in the forward substation phase will be

∑(𝑖)

𝑛

𝑖=2

=
𝑛2

2
+
𝑛

2
− 1 =

𝑛2

2
+ 𝒪(𝑛)

The summary of the operation count of the Unit Lower triangular system 𝐿𝑌 = 𝐵 is given as:

Operations

Total flops
Multiplication/Division Addition/Subtraction

Lower
triangular system
𝐿𝑌 = 𝐵

𝑛2

2
+
𝑛

2

𝑛2

2
+
𝑛

2
− 1 𝑛2 + 𝑛 − 1

(3) The back substitution phase occurs after the solution of the lower triangular system. This phase contains

two nested loops. The first loop, say 𝑖-loop (which ranges from 𝑖 = 𝑛 − 1 to 1), corresponds to 𝑛 − 1 of the

components of solution vector 𝑋. The second loop, say 𝑗-loop (which ranges from 𝑗 = 𝑖 + 1 to 𝑛), corresponds

to the columns after the diagonal elements.

Each pass of 𝑖-loop will perform one subtraction to obtain the value of 𝑥𝑖 . Moreover, in each pass of 𝑖-loop, the

number of both of the multiplications and additions will be 𝑛 − (𝑖 + 1) + 1 (or simply (𝑛 − 𝑖)) in j-loop. Thus,

in each pass of i-loop, the total number of multiplications/divisions will be (𝑛 − 𝑖) and the total number of

additions/subtractions will be (𝑛 − 𝑖 + 1).

Hence, the total number of the multiplications/divisions in the back substitution phase will be

∑(𝑛 − 𝑖)

𝑛−1

𝑖=1

= 𝑛∑1

𝑛−1

𝑖=1

−∑ 𝑖

𝑛−1

𝑖=1

= 𝑛(𝑛 − 1) − [
(𝑛 − 1)𝑛

2
]

= 𝑛2 − 𝑛 −
𝑛2

2
+
𝑛

2
=

𝑛2

2
−
𝑛

2
=

𝑛2

2
+ 𝒪(𝑛)

94 Numerical Recipes in Python

Similarly, the total number of the additions/subtractions in the back substation phase will be

∑(𝑛 + 1 − 𝑖)

𝑛−1

𝑖=1

=
𝑛2

2
+
𝑛

2
− 1 =

𝑛2

2
+ 𝒪(𝑛)

The summary of the operation count of the Upper triangular system 𝑈𝑋 = 𝑌 is given as:

Operations

Total flops
Multiplications/Divisions Additions/Subtractions

Upper triangular
system 𝑈𝑋 = 𝑌

𝑛2

2
−
𝑛

2

𝑛2

2
+
𝑛

2
− 1 𝑛2 − 1

∎∎∎

Direct Linear Solvers 95

Chapter Summary

• A system of linear equations (simply called as linear system) is a set or collection of two or more linear

equations with the same set of variables whose simultaneous solution satisfies all the equations.

Precisely, a linear system can be referred to as a set of simultaneous linear algebraic equations.

• If 𝑚 > 𝑛, where 𝑚 is the number of equations and 𝑛 is the number of unknowns, then the linear system

is called over-determined. If 𝑚 < 𝑛, then the linear system is called under-determined.

• A linear system 𝐴𝑋 = 𝐵 is called homogenous if 𝐵 is a zero vector (i.e., 𝐵 = 𝟎̅), and non-homogeneous

or inhomogeneous if 𝐵 ≠ 𝟎̅.

• A non-homogeneous linear system 𝐴𝑋 = 𝐵 is called consistent if it has a unique solution or infinitely

many solutions, and it is called inconsistent if it has no solution.

• If 𝐴−1 does not exist, then matrix 𝐴 is called singular or non-invertible. If 𝐴−1exists then 𝐴 is called non-

singular matrix and is invertible.

• If det(𝐴) = 0, then 𝐴−1 does not exist and the system 𝐴𝑋 = 𝐵 does not have a unique solution; the system

either has no solution or infinitely many solutions.

• Although the steps of the algorithms for the solution of a linear system are elementary in nature, there

might be certain pitfalls. This raises the need of skillful selection and use of an appropriate algorithm for

obtaining the solution.

• In general, methods for the solution of linear systems (also called linear solvers) are evaluated based on

their accuracy, speed of convergence, and computer resource requirements (CPU-requirements, memory

requirements).

• A linear equation in two variables, say 𝑥 and 𝑦, represents a line in 𝑥𝑦-plane. If there exists a unique

solution of the system then it is the point where the two lines intersect.

• A linear equation in three variables, say 𝑥, 𝑦, and 𝑧, represents a plane in 𝑥𝑦𝑧-space. If there exists a

unique solution of such a system then it is the point where the three planes intersect.

• There are two broad categories of methods to solve linear systems: the direct (also called exact)

methods and iterative methods. The prominent features of these two categories can be found in Question

5 (Section 6.1).

• An 𝑛 × 𝑛 square matrix 𝑈 = (𝑢𝑖𝑗) is called the upper triangular matrix if 𝑢𝑖𝑗 = 0 whenever 𝑖 > 𝑗 . A

linear system 𝑈𝑋 = 𝑌 is said to be upper triangular system if it's coefficient matrix is an upper triangular

one. It has a unique solution if no diagonal element is zero (i.e., |𝑢𝑖𝑖| ≠ 0, for 𝑖 = 1,2,⋯ , 𝑛), otherwise it

96 Numerical Recipes in Python

has either no solution or infinitely many solutions. If there is a unique solution of an upper triangular

system then the solution can easily be obtained by a so-called back substitution process. In analogy, the

said propositions also hold for a lower triangular matrix 𝐿 = (𝑙𝑖𝑗) for which 𝑙𝑖𝑗 = 0 whenever 𝑖 < 𝑗. The

solution of a lower-triangular system can be obtained by a similar so-called forward substitution

process.

• To solve a linear system 𝐴𝑋 = 𝐵, the Gaussian Elimination method aims at obtaining an upper triangular

system 𝑈𝑋 = 𝑌, equivalent to 𝐴𝑋 = 𝐵. This process may be termed as forward elimination. The upper

triangular system can then be solved by back substitution.

• To guard against the pitfalls of the Gaussian Elimination method, the process of pivoting is performed

while using the method. The pivoting could be any of partial, scaled or complete.

• Pivoting refers to the interchanging of two rows of the augmented matrix so that the diagonal coefficient

(to be used as the pivot element) is of greatest magnitude among the possible ones for the row under

consideration.

• Pivoting must be performed if the main diagonal coefficient is zero (to make the triangular system non-

singular). Pivoting should be performed if the magnitude of the main diagonal element is a smaller one

(to prevent the propagation of the round-off error).

• The Gauss-Jordan method is a variant of the Gaussian Elimination method. It is based on the same

elementary row operations; however, it eliminates all the elements below as well as above the pivot

element (in the same column) . Thus it does not produce an upper-triangular system for back-

substitution; rather it obtains a diagonal matrix in which the solution vector is almost readily available.

• The 𝐿𝑈 Factorization or 𝐿𝑈 Decomposition method is another direct solver. A concise description of this

method (and its variants) can be found in Question 12 (Section 6.5).

• The operation count analysis of an algorithm usually refers to the counting of the arithmetic operations

involved. This is useful in determining the execution time required by the algorithm. For numerical

computations, the operation count analysis is mostly considered as the counting of the floating-point

operations (simply called as flops) involved in the algorithm.

• The additions/subtractions are considered to be requiring less CPU-time (being lighter operations) as

compared to the multiplications/divisions. Therefore, it might be appropriate to count the two types of

operations separately for the operation count analysis.

∎∎∎

Direct Linear Solvers 97

Chapter Exercises

Exercise 01: Solve the following system using the Gaussian Elimination method with back substitution.

2𝑥1 − 3𝑥2 + 𝑥3 = −1
4𝑥1 + 4𝑥2 − 3𝑥3 = 3

−2𝑥1 + 3𝑥2 + 𝑥3 = 7

Exercise 02: Solve the following system using the Gaussian Elimination method with partial pivoting.

𝑥1 + 𝑥2 + 𝑥3 = 6
3𝑥1 + 3𝑥2 + 𝑥3 = 12
2𝑥1 + 𝑥2 + 5𝑥3 = 20

Exercise 03: Solve the following system using the Gaussian Elimination method with partial pivoting and

three-digit rounding arithmetic.

2.5𝑥1 − 3𝑥2 + 4.6𝑥3 = −1.05
−3.5𝑥1 + 2.6𝑥2 + 1.5𝑥3 = −14.46
−6.5𝑥1 + −3.5𝑥2 + 7.3𝑥3 = −17.735

Exercise 04: Solve the following system using the Gaussian Elimination method with scaled partial pivoting.

𝑥1 + 𝑥2 − 2𝑥3 = 3
4𝑥1 − 2𝑥2 + 𝑥3 = 5
3𝑥1 − 𝑥2 + 3𝑥3 = 8

Exercise 05: Solve the following system using the Gaussian Elimination method with scaled partial pivoting

and four-digit rounding arithmetic.

3.03𝑥1 − 12.1𝑥2 + 14𝑥3 = −119
−3.03𝑥1 + 12.1𝑥2 − 7𝑥3 = 120
6.11𝑥1 − 14.2𝑥2 + 21𝑥3 = −139

Exercise 06: Solve the following system using the Gaussian Elimination method with complete pivoting.

𝑥1 + 2𝑥2 + 2𝑥3 = 1
2𝑥1 + 6𝑥2 + 10𝑥3 = −2
3𝑥1 + 14𝑥2 + 28𝑥3 = −11

Exercise 07: Solve the following system using the Gaussian Elimination method with complete pivoting and

three-digit rounding arithmetic.

1.012𝑥1 − 2.132𝑥2 + 3.104𝑥3 = 1.984
−2.132𝑥1 + 4.096𝑥2 − 7.013𝑥3 = −5.049
3.104𝑥1 − 7.013𝑥2 + 0.014𝑥3 = −3.895

98 Numerical Recipes in Python

Exercise 08: Solve the following system using the Gauss-Jordan method

𝑥1 + 2𝑥2 + 𝑥3 = 6
2𝑥1 + 3𝑥2 + 4𝑥3 = 12
4𝑥1 + 3𝑥2 + 2𝑥3 = 12

Exercise 09: Solve the following system using the Gauss-Jordan method and three-digit rounding arithmetic.

0.125𝑥1 + 0.201𝑥2 + 0.401𝑥3 = 2.306
0.375𝑥1 + 0.501𝑥2 + 0.601𝑥3 = 4.806
0.501𝑥1 + 0.301𝑥2 + 0.001𝑥3 = 2.91

Exercise 10: Solve the following linear system 𝐴𝑋 = 𝐵 using the Doolittle’s method.

𝑥1 + 𝑥2 + 𝑥3 = 3

2𝑥1 − 𝑥2 + 2𝑥3 = 16

3𝑥1 + 𝑥2 + 𝑥3 = −3

Exercise 11: Solve the following linear system 𝐴𝑋 = 𝐵 using the Doolittle’s method.

𝑥1 + 𝑥2 + 2𝑥3 + 2𝑥4 = 9
2𝑥1 + 4𝑥2 + 7𝑥3 + 3𝑥4 = 25
−𝑥1 − 5𝑥2 − 6𝑥3 + 2𝑥4 = −17
𝑥1 − 𝑥2 + 3𝑥3 + 8𝑥4 = 15

Exercise 12: Solve the following linear system 𝐴𝑋 = 𝐵 using the Crout’s method.

8𝑥1 + 𝑥2 − 𝑥3 = 8
2𝑥1 + 𝑥2 + 9𝑥3 = 12
𝑥1 − 7𝑥2 + 2𝑥3 = −4

Exercise 13: Solve the following linear system 𝐴𝑋 = 𝐵 using the Crout’s method.

𝑥1 + 𝑥2 + 0𝑥3 + 3𝑥4 = 9
2𝑥1 + 𝑥2 − 𝑥3 + 𝑥4 = 5
3𝑥1 − 𝑥2 + 𝑥3 + 2𝑥4 = 6
−𝑥1 + 2𝑥2 + 3𝑥3 − 𝑥4 = 4

Exercise 14: Solve the following linear system 𝐴𝑋 = 𝐵 using the Cholesky’s method.

2𝑥1 + 3𝑥2 + 4𝑥3 = 1

3𝑥1 + 8𝑥2 + 5𝑥3 = 6

4𝑥1 + 5𝑥2 + 10𝑥3 = −1

Exercise 15: Solve the given linear system 𝐴𝑋 = 𝐵 using the Cholesky’s method

4𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 9
𝑥1 + 3𝑥2 − 𝑥3 + 𝑥4 = 4
𝑥1 − 𝑥2 + 2𝑥3 + 0𝑥3 = 4
𝑥1 + 𝑥2 + 0𝑥3 + 2𝑥4 = 6

Direct Linear Solvers 99

Exercise 16: The upward velocity of a rocket at three different times after its launching are given as follows:

Time, 𝑡 in (𝑠) Velocity, 𝑣 in (𝑚/𝑠)

6 115.7

9 182.5

12 295.6

The velocity data is approximated by a polynomial as

 𝑣(𝑡) = 𝑎1𝑡
2 + 𝑎2𝑡 + 𝑎3, 5 ≤ 𝑡 ≤ 12

Thus, the coefficients 𝑎1, 𝑎2 and 𝑎3 for the above expression are given by

[
36 6 1
81 9 1
144 12 1

] [

𝑎1
𝑎2
𝑎3
] = [

115.7
182.5
295.6

]

Find the values of 𝑎1 ,𝑎2 and 𝑎3 using a linear solver. Then, calculate the velocity at 𝑡 = 7, 8, 10, and 11

seconds.

Exercise 17: A factory produces three products, say Prod1, Prod2, and Prod3, by using three kinds of raw
materials, say Raw1, Raw2, and Raw3. The units of each of the raw materials needed to produce one unit of
each of the products are shown the table below.

Sectors Raw1 Raw2 Raw3

Prod1 5 3 1

Prod2 4 4 3

Prod3 2 1 3

If 335 units of Raw1, 532 units of Raw2, and 440 units of Raw3 are available, then how much each of the three
products can be produced.

Hint for the Solution:

Assume that 𝑥1, 𝑥2 and 𝑥3 represent the quantities of the products: Prod1, Prod2, and Prod3, respectively. The
problem can be represented by a linear system whose solution would provide the required values.

5𝑥1 + 4𝑥2 + 2𝑥3 = 335

3𝑥1 + 4𝑥2 + 𝑥3 = 532

𝑥1 + 3𝑥2 + 3𝑥3 = 440

Exercise 18: Assume that the economy of a country depends on the three sectors: Food, Cloth, and House. The
production of one unit of each of these needs certain units of each of these sectors, as shown in the following
table:

100 Numerical Recipes in Python

Sectors
Food Units

Needed
Cloth Units

Needed
House Units

Needed

Food 0.45 0.18 0.15

Cloth 0.25 0.27 0.07

House 0.30 0.40 0.45

The consumer demand is as in the table below:

Sector worth in billion rupees

Food 220

Cloth 185

House 550

For satisfying the above demands, what total output is required from each of the sectors.

Hint for the Solution in MATLAB: Assume that 𝑥1, 𝑥2 and 𝑥3 represent the total outputs in units from Food,

Cloth and House sectors, respectively. The problem can be represented by a linear system whose solution

would provide the required values.

Exercise 19: A bakery produces three products: Cake, Pastry, and Muffin. It uses three kinds of materials:

Flour, Milk, and Sugar. The units of each of the raw materials needed to produce one unit of each of the bakery

products are shown the table below.

Product -> Cake Pastry Muffin

Flour 6 5 3

Milk 4 5 2

Sugar 2 3 3

If 347 units of Flour, 604 units of Milk, and 502 units of Sugar are available, then how much each of the three

products can be produced.

Exercise 20: Pivoting is necessary with the Gaussian elimination if

(A) the coefficient matrix is singular (B) the linear system is homogenous

(C) the linear system is ill conditioned (D) None of above

Exercise 21: Cholesky decomposition for a linear system is not possible, if

(A) the linear system is ill conditioned (B) the linear system is homogenous

(C) the coefficient matrix is asymmetric (D) None of above

∎∎∎

101

Chapter 7

Iterative Linear Solvers

Corridor I: BASICS

 Let’s plan it

7.1 Vector Norms and Distances

7.2 Convergence Criteria for Linear Solvers

7.3 Basic Methods

 7.3.1 The Jacobi Method

 7.3.2 The Gauss-Seidel Method

 7.3.3 The SOR Method

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

∎∎∎

Fig. (7.4): Explanation of the different types of distances between the two vectors.

http://www.timerenders.com.pk/

102 Numerical Recipes in Python

Corridor II: ANALYSIS

 Let’s think deep

7.4 Matrix Norms and Conditioning

7.5 Iteration Matrix and Matrix Form of a Solver

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

∎∎∎

Corridor III: PROGRAMMING ARCADE

 Let’s do it

7.6 Algorithms and Implementations

`The Jacobi Method

Modification in the Jacobi Method's algorithm for the Gauss-Seidel Method

Modification in the Jacobi Method's algorithm for the SOR Method

To see more examples for practicing, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

For codes, please visit: https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

∎∎∎

7.6 Algorithms and Implementations

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/
https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

Iterative Linear Solvers 103

Question 22: Write down an algorithm (pseudo code) to solve a linear system using the Jacobi method.

The Jacobi method can be written in a compact form as

𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[

𝑏𝑖 −∑𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=1
𝑗≠𝑖]

, for 𝑖 = 1, 2,⋯ , 𝑛

Algorithm: To solve 𝐴𝑋 = 𝐵, given an initial approximation 𝑋(0).

𝐈𝐍𝐏𝐔𝐓𝐒:

{

𝒏: an integer as the number of equations and unknowns

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the coefficient matrix

𝑩 = [𝒃𝟏, 𝒃𝟐, ⋯ , 𝒃𝒏]
𝑻: a real valued vector as the vector of right hand side constants

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻: a real valued vector (having initial approximation, 𝑋(0))

𝑻𝑶𝑳: a real value as the error tolerance
𝑵: an integer as the maximum number of iterations

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]

𝑻: a real valued vector as the approximate solution
(either on convergence, or on completing 𝑵 iterations − which ever happens first)

Step 1 Receive the inputs as stated above

Step 2 for 𝒌 = 𝟏, 𝟐, 𝟑,⋯ ,𝑵 perform steps 3-6

Step 3 for 𝑖 = 1, 2,⋯ , 𝒏 Set 𝒙𝒑𝒊 = 𝒙𝒊 {
𝑿𝑷 = [𝒙𝒑𝟏, 𝒙𝒑𝟐, ⋯ , 𝒙𝒑𝒏]

𝑻 is to keep a copy of present
approximation 𝑿, because 𝑿 is going to be updated

Step 4 for 𝑖 = 1, 2,⋯ ,𝒏 (compute the components of solution vector 𝑿)

𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ , 𝒏

𝑖𝑓 (𝒋 ≠ 𝒊) 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒂𝒊𝒋 × 𝑿𝑷𝒋

𝒙𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒂𝒊𝒊 }

(

𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[

𝑏𝑖 −∑𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=1
𝑗≠𝑖]

)

Step 5 Compute 𝒆𝒓𝒓 = ‖𝑿 − 𝑿𝑷‖ (or 𝒆𝒓𝒓 = ‖𝑿 − 𝑿𝑷‖/‖𝑿‖) Here ‖∙‖ is any suitable norm.

Step 6

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)then

Exit/Break the loop
}

This means that the consecutive
approximations are nearly the same
Therefore, stop iterations.

.

end for loop of Step 2 (Go to Step 3)

Step 7 Print the output: 𝑿 = [𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏]
𝑻

104 Numerical Recipes in Python

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳) OUTPUT (‘The desired accuracy achieved; Solution converged.’)

else OUTPUT (‘The number of iterations exceeded the maximum limit.’)

STOP.

Question 23: What modification a programmer needs to make in the algorithm (pseudo code) of the Jacobi

method (as given in the answer of Question 22) to convert it into the Gauss-Seidel method for solving a linear

system.

The algorithm (pseudo code) of the Jacobi method (as given in the answer of Question 22) can be converted

into the algorithm of the Gauss-Seidel method simply by replacing its Step 4 with the following:

Step 4 for 𝑖 = 1, 2,⋯ , 𝒏 (compute the components of solution vector 𝑿)

𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ ,𝒏

𝑖𝑓 (𝒋 ≠ 𝒊) 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒂𝒊𝒋 × 𝒙𝒋

𝒙𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒂𝒊𝒊 }

(

𝑠𝑢𝑚 =∑𝑎𝑖𝑗𝑥𝑗

(𝑘)

𝑖−1

𝑗=1

+ ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=𝑖+1

𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[𝑏𝑖 − 𝑠𝑢𝑚])

∎

Question 24: What modification a programmer needs to make in the algorithm (pseudo code) of the Jacobi

method (as given in the answer of Question 22) to convert it into the Gauss-Seidel method with over-

relaxation (i.e., the SOR method) for solving a linear system.

The algorithm (pseudo code) of the Jacobi method (as given in the answer of Question 22) can be converted

into the algorithm of the SOR method simply by taking one more input:

𝑾𝑭 = 1.3: a real value as the over − relaxation / weighting factor

And then replacing Step 4 with the following:

Step 4

 for 𝑖 = 1, 2,⋯ ,𝒏 (compute the components of solution vector 𝑿)

𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ ,𝒏

𝑖𝑓 (𝒋 ≠ 𝒊) 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒂𝒊𝒋 × 𝒙𝒋

𝒙𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒂𝒊𝒊 }

(

𝑠𝑢𝑚 =∑𝑎𝑖𝑗𝑥𝑗

(𝑘)

𝑖−1

𝑗=1

+ ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=𝑖+1

𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[𝑏𝑖 − 𝑠𝑢𝑚])

𝒙𝒊 = 𝑾𝑭 × 𝒙𝒊 + (1 −𝑾𝑭)𝑿𝑷𝒊 (apply over − relaxation)

∎

Iterative Linear Solvers 105

Question 24: Write a Python program to solve the following linear system using the Jacobi method. Take

initial approximate solution as: 𝑋(0) = [0, 0, 0]𝑇 . The iterations of the method should stop when either the
approximation is accurate within 10−6, or the number of iterations exceeds 200, whichever happens first.

5𝑥1 + 3𝑥2 + 2𝑥3 = 17, 3𝑥1 + 4𝑥2 − 𝑥3 = 8, −𝑥1 + 𝑥2 − 3𝑥3 = −8

script_7.1: jacobi.ipynb

1 from numpy import *
2
3 N = 200
4 TOL = 0.000001
5 n = 3
6 a = [[5, 3, 2], [3, 4, –1], [–1, 1, –3]]
7 b = [17, 8, –8]
8
9 x = zeros(n)

10 xp = zeros(n)
11 print("iter. x1 x2 x3 Error")
12
13 for k in range(1,N+1):
14 print(k, end=" ")
15 for i in range(n):
16 xp[i] = x[i]
17 for i in range(n):
18 sum = 0
19 for j in range(n):
20 if j!=i:
21 sum = sum + a[i][j] * xp[j]
22 x[i] = (b[i] – sum) / a[i][i]
23 print(" ", round(x[i],8), end=" ")
24
25 sum = 0
26 for i in range(n):
27 sum = sum + ((x[i] – xp[i]) * (x[i] – xp[i]))
28 err = sqrt(sum)
29 print(" ", round(err,8))
30 if err < TOL:
31 break
32
33 print("The latest approximate solution vector is given:")
34 for i in range(n):
35 print(x[i], "\t", end=" ")
36
37 if err < TOL:
38 print("\nThe desire accuracy is achieved; Solution is convergent.")
39 else:
40 print("\nThe number of iterations exceeded the maximum limit.")

Output Console:

106 Numerical Recipes in Python

iter. x1 x2 x3 Error

1 3.4 2.0 2.66666667 4.76141902

2 1.13333333 0.11666667 2.2 2.98370575

3 2.45 1.7 2.32777778 2.06322144

4 1.44888889 0.74444444 2.41666667 1.38679887

5 1.98666667 1.5175 2.43185185 0.94183355

6 1.51675926 1.11796296 2.51027778 0.62176639

7 1.72511111 1.49 2.53373457 0.42705067

8 1.49250617 1.33960031 2.5882963 0.28231562

.

.

.

128 1.00000857 1.99999121 2.99999365 1.34e-06

129 1.00000781 1.99999198 2.99999421 1.22e-06

130 1.00000713 1.9999927 2.99999472 1.11e-06

131 1.00000649 1.99999333 2.99999519 1.01e-06

132 1.00000593 1.99999393 2.99999561 9.3e-07

The latest approximate solution vector is given:

1.00000593 1.99999393 2.99999561

The desire accuracy is achieved; Solution convergent

Remark: Replacing xp[j] by x[j] in line 34 of the Python program in Problem 17 would convert the program

for the Gauss-Seidel method, because it would then correspond to computing

𝑠𝑢𝑚 =∑𝑎𝑖𝑗𝑥𝑗
(𝑘)

𝑖−1

𝑗=1

+ ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=𝑖+1

Remark: In the program of Problem 17, the code segment of lines 45-47 can be placed just before line 45 to

print the latest result on completion of each of the iterations.

∎

Question 25: Write a Python program to solve the following linear system using the Gauss-Seidel method

with over-relaxation (the SOR method). Take initial approximate solution as: 𝑋(0) = [0, 0, 0]𝑇 and over-

relaxation factor as 1.2. The iterations of the method should stop when either the approximation is accurate

within 10−6, or the number of iterations exceeds 200, whichever happens first.

5𝑥1 + 3𝑥2 + 2𝑥3 = 17, 3𝑥1 + 4𝑥2 − 𝑥3 = 8, −𝑥1 + 𝑥2 − 3𝑥3 = −8

script_7.2: gauss_seidel.ipynb

1 from numpy import *
2
3 N = 200
4 TOL = 0.000001

Iterative Linear Solvers 107

5 n = 3
6 wf = 1.2
7 a = [[5, 3, 2], [3, 4, –1],[–1, 1, –3]]
8 b = [17, 8, –8]
9

10 x = zeros(n)
11 xp = zeros(n)
12 print("iter. x1 x2 x3 Error")
13
14 for k in range(1,N+1):
15 print(k, end=" ")
16 for i in range(n):
17 xp[i] = x[i]
18 for i in range(n):
19 sum = 0
20 for j in range(n):
21 if j!=i:
22 sum = sum + a[i][j] * x[j]
23 x[i] = (b[i] – sum) / a[i][i]
24 x[i] = (wf * x[i]) + ((1 – wf) * xp[i])
25 print(" ", round(x[i],8), end=" ")
26
27 sum = 0
28 for i in range(n):
29 sum = sum + ((x[i] – xp[i]) * (x[i] – xp[i]))
30 err = sqrt(sum)
31 print(" ", round(err,8))
32 if err < TOL:
33 break
34
35 print("The latest approximate solution vector is given:")
36 for i in range(n):
37 print(x[i], "\t", end=" ")
38
39 if err < TOL:
40 print("\nThe desire accuracy is achieved; Solution is convergent.")
41 else:
42 print("\nThe number of iterations exceeded the maximum limit.")

Output Console:

iter. x1 x2 x3 Error

1 4.081 -1.2721 1.0592 4.40298633

2 3.6714242 -0.33212162 1.38674176 1.07591327

3 2.919206713 0.255160813 1.85703329 1.06391052

4 2.42106694 0.727117624 2.15101363 0.74653261

5 2.039775395 1.064082715 2.3795202 0.55780278

6 1.763735676 1.313677426 2.54407266 0.40690657

7 1.560250257 1.496261097 2.6655898 0.29918143

8 1.411158868 1.630381758 2.7545712 0.21939527

.

108 Numerical Recipes in Python

.

.

45 1.0000043845 1.9999960645 2.99999738 2.32e-06

46 1.0000032246 1.999997146 2.99999808 1.71e-06

47 1.0000023747 1.9999978747 2.99999858 1.25e-06

48 1.0000017448 1.9999984348 2.99999896 9.2e-07

The latest approximate solution vector is given:

1.00000174 1.99999843 2.99999896

The desire accuracy is achieved; Solution convergent

∎

Remark: The Python programs in Question 23 and 25 can be modified to receive the linear system at the

execution time (instead of fixing in the code). For this, the lines 6-7 in the program of Question 23 and the

lines 7-8 in the program of Question 25 should be replaced by the following code segment:

n = int(input("Enter the number of unknowns: "))

Initialize coefficient matrix 'a' as a list of lists

a = []

print("Enter the coefficient matrix row-wise:")

for i in range(n):

 row = []

 for j in range(n):

 row.append(float(input()))

 a.append(row)

Initialize the constant vector 'b' as a list

b = []

print("Enter the elements of constant vector 'B':")

for i in range(n):

 b.append(float(input()))

Display the coefficient matrix 'a' and vector 'b'

print("Coefficient Matrix 'a':")

for row in a:

 print(row)

print("Constant Vector 'b':")

print(b)

Iterative Linear Solvers 109

Chapter Summary

• The norm of a vector is a real-valued function that provides a measure of “size”, “length”, or

“magnitude” of the vector. Let ℝ denotes the set of real numbers, and ℝ𝑛 denotes the space of

n-dimensional real-valued column vectors. A norm of a vector on ℝ𝑛 is a function, ‖∙‖ ∶ ℝ𝑛 →

ℝ, with the following properties,

1. ‖𝑋‖ ≥ 0, for all 𝑋 ∈ ℝ𝑛

2. ‖𝑋‖ = 0, if and only if 𝑋 = 𝟎 in ℝ𝑛

3. ‖α𝑋‖ = |α|‖𝑋‖, for all α ∈ ℝ and 𝑋 ∈ ℝ𝑛

4. ‖𝑋 + 𝑌‖ ≤ ‖𝑋‖ + ‖𝑌‖, for all 𝑋, 𝑌 ∈ ℝ𝑛

• The vector norm definitions, as well as the concerning illustrations, can be found in Question

01 (Section 7.1).

• The norm of a vector gives a measure for the distance between an arbitrary vector and the zero

vector, just as the absolute value of a real number is its distance from 0.

• The distance between two vectors is defined as the norm of the “difference vector” of the two

vectors, just as the distance between two real numbers is the absolute value of their difference.

The definitions of different vector distances, as well as the concerning illustrations, can be

found in Question 02 (Section 7.1).

• To determine the convergence of an iterative solution, the norm of the difference vector of

every two consecutive approximations is ensured to be smaller than a pre-specified error

tolerance 𝜏, i.e.,

‖𝑋(𝑘) − 𝑋(𝑘−1)‖ < 𝜏

• A square matrix, say 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 , is said to be diagonally dominant if, for 𝑖 = 1, 2,⋯ , 𝑛

|𝑎𝑖𝑖| ≥ ∑|𝑎𝑖𝑗|

𝑛

𝑗=1
𝑗≠𝑖

,

• A linear system is said to be diagonally dominant if its coefficient matrix is diagonally

dominant (i.e., the magnitude of the diagonal entry in a row is greater than or equal to the sum

of the magnitudes of all other entries in that row).

• If “≥” is replaced by “>” in the above equation, then 𝐴 is said to be strictly diagonally

dominant. A strictly diagonally dominant matrix is always non-singular.

110 Numerical Recipes in Python

• If a linear system is not diagonally dominant, then a rearrangement of its rows might make it

diagonally dominant.

• The Gauss-Jacobi, Gauss-Seidel, and SOR methods must converge if the linear system to be

solved is diagonally dominant.

• Suppose that 𝐴𝑋 = 𝐵 is a 𝑛 × 𝑛 linear system to be solved such that 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 is the

coefficient matrix, 𝐵 = (𝑏𝑖)𝑛×1 is the vector of right-hand side constants, and 𝑋 = (𝑥𝑖)𝑛×1 is the

vector of unknowns.

➢ The Jacobi method can be written in a compact form as

𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[

𝑏𝑖 −∑𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=1
𝑗≠𝑖]

, for 𝑖 = 1, 2,⋯ , 𝑛

➢ The Gauss-Seidel method can be written in a compact form as

𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[𝑏𝑖 − (∑𝑎𝑖𝑗𝑥𝑗

(𝑘)

𝑖−1

𝑗=1

+ ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=𝑖+1

)] , for 𝑖 = 1, 2,⋯ , 𝑛

➢ The successive over-relaxation (SOR) method can be written in a compact form as

𝑥̿𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[𝑏𝑖 − (∑𝑎𝑖𝑗𝑥𝑗

(𝑘)

𝑖−1

𝑗=1

+ ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=𝑖+1

)] , for 𝑖 = 1, 2,⋯ , 𝑛

𝑥𝑖
(𝑘)

= 𝜔𝑥̿𝑖
(𝑘)
+ (1 − 𝜔)𝑥𝑖

(𝑘−1) (for 1 ≤ 𝜔 ≤ 2, usually the best is around 1.2)

Here 𝑘 = 1, 2, 3,⋯, represents the iterations and 𝑥𝑖
(𝑘)

 represents the kth approximation of the

ith unknown. The iterative procedure is started with an initial approximation vector 𝑋(0) =

[𝑥1
(0), 𝑥2

(0), 𝑥3
(0), ⋯ , 𝑥𝑛

(0)
]
𝑻

and produces a sequence of successive approximations {𝑋(𝑘)}
𝑘=1

∞
 ,

such that 𝑋(𝑘) = [𝑥1
(𝑘), 𝑥2

(𝑘), 𝑥3
(𝑘), ⋯ , 𝑥𝑛

(𝑘)
]
𝑻

. The sequence is anticipated to refine/improve

the approximate solution gradually and ultimately converge to the exact solution vector

(theoretically). In practice, the iterations of the method are stopped when a sufficient level of

accuracy is achieved.

• The norm of a matrix is a real-valued function that provides a measure of “size”, “length”, or

“magnitude” of the matrix. Let ℝ denotes the set of real numbers, and 𝕄𝑛 denotes the set of

𝑛 × 𝑛 real-valued matrices. The norm of a matrix on 𝕄𝑛 is a function, ‖∙‖ ∶ 𝕄𝑛 → ℝ, with the

following properties,

1. ‖𝐴‖ ≥ 0, for all 𝐴 ∈ 𝕄𝑛

Iterative Linear Solvers 111

2. ‖𝐴‖ = 0, if and only if 𝐴 = 𝟎 in 𝕄𝑛

3. ‖α𝐴‖ = |α|‖𝐴‖, for all α ∈ ℝ and 𝐴 ∈ 𝕄𝑛

4. ‖𝐴 + 𝐵‖ ≤ ‖𝐴‖ + ‖𝐵‖, for all 𝐴, 𝐵 ∈ 𝕄𝑛

5. ‖𝐴𝐵‖ ≤ ‖𝐴‖‖𝐵‖, for all 𝐴, 𝐵 ∈ 𝕄𝑛

• The matrix norm definitions can be found in Question 11 (Section 7.4).

• The distance between two matrices 𝐴 and 𝐵 with respect to a certain norm ‖∙‖ is defined as

the norm of the “difference matrix” of the two matrices, i.e., ‖𝐴 − 𝐵‖.

• The condition number of a non-singular matrix 𝐴 with respect to a matrix norm ‖∙‖ is

defined as

𝒦(𝐴) = ‖𝐴‖‖𝐴−1‖, (and 𝒦(𝐴) ≥ 1)

• The condition number of a linear system is the condition number of its coefficient matrix.

• A computational problem is called ill-conditioned (or ill-posed) if small changes in the data

(the input) cause large changes in the solution (the output). On the other hand, a problem is

called well-conditioned (or well-posed) if small changes in the data cause only small changes

in the solution.

• The main issue while solving an ill-conditioned problem is that the round-off errors can cause

production of wide range worthless solutions (which appear to be original ones because they

approximately satisfy the given problem). Therefore, minimizing the round-off errors becomes

more relevant for the ill-conditioned problems.

• If 𝐴𝑋 = 𝐵 is an ill-conditioned linear system then the solution of its perturbed system (the

one which is obtained by making small changes in the original system, either through small

changes in 𝐴, or in 𝐵) is much different from that of the original linear system. In that case, the

matrix 𝐴 is said to be an ill-conditioned matrix. The determinant of an ill-conditioned matrix 𝐴

is usually close to zero (NOT the zero). Remind that if the determinant is exactly zero then a

relevant linear system 𝐴𝑋 = 𝐵 has either no solution, or an infinite number of solutions.

• There is no strict line between the well-conditioning and ill-conditioning of a system, as these

concepts are qualitative. A linear system whose condition number (i.e., the condition number

of its coefficient matrix) is close to 1 is well-conditioned, whereas a condition number

significantly larger than 1 indicates that the linear system is ill-conditioned. If the condition

number is below 100, it is usually not a reason for concern. However, a condition number of

more than 100 calls for caution. It may be noted that a coefficient matrix, having magnitudes

of diagonal elements larger than that of other elements in each of the rows, indicates well-

conditioning of the linear system.

• In general, an iterative linear solver involves a process that converts an 𝑛 × 𝑛 system 𝐴𝑋 = 𝐵

into an equivalent system of the form 𝑋 = 𝑇𝑋 + 𝐶 for some fixed matrix 𝑇 and vector 𝐶. After

112 Numerical Recipes in Python

the initial vector 𝑋(0) is selected, the sequence of approximate solution vectors, 𝑋(1), 𝑋(2),

𝑋(3), ⋯, is generated by computing

𝑋(𝑘) = 𝑇𝑋(𝑘−1) + 𝐶, for 𝑘 = 1, 2, 3,⋯

The matrix 𝑇 is called the iteration matrix of the iterative method, and the relation is called

the matrix form of the iterative method.

• The iterative linear solvers for which the iteration matrix remains unchanged (or fixed) during

the iterative process are said to be stationary solvers, whereas the iterative linear solvers for

which the iteration matrix changes from iteration to iteration are referred to as non-stationary

solvers.

• Examples of stationary solvers include simple methods like the Jacobi, Gauss-Seidel, and SOR

methods. Examples of the non-stationary solvers include more sophisticated methods like the

Krylov subspace methods: especially, Conjugate Gradient (CG) methods, Minimal Residual

methods (especially GMRES), and many more.

∎∎∎

Chapter Exercises

Exercise 01: Workout first three iterations of (𝑖) the Jacobi method, (𝑖𝑖) the Gauss-Seidel method, and (𝑖𝑖𝑖)

the Gauss-Seidel method with successive over-relaxation factor 𝜔 = 1.2 and 𝜔 = 1.5 for solving the following

systems for any initial approximation. Perform computations with a precision of 4 decimal digits, at least.

Assume the error tolerance as 0.0001.

(a)

𝑥1 − 0.25𝑥2 − 0.25𝑥3 = 9
−0.25𝑥1 + 𝑥2 − 0.25𝑥3 = 4
−0.25𝑥1 − 0.25𝑥2 + 𝑥3 = −1

(b)

4𝑥1 + 𝑥2 − 𝑥3 + 𝑥4 = 2.5
𝑥1 + 4𝑥2 − 𝑥3 − 𝑥4 = 0.5

−𝑥1 − 𝑥2 + 5𝑥3 + 𝑥4 = 5
𝑥1 − 𝑥2 + 𝑥3 + 3𝑥4 = 4

(c)
2𝑥1 − 𝑥2 + 𝑥3 = −3
2𝑥1 + 4𝑥2 + 2𝑥3 = 8
−𝑥1 − 𝑥2 + 2𝑥3 = 1

(d)

𝑥1 − 0.25𝑥2 − 0.25𝑥3 + 0𝑥4 = 11
−0.25𝑥1 + 𝑥2 + 0𝑥3 − 0.25𝑥4 = 7
−0.25𝑥1 + 0𝑥2 + 𝑥3 − 0.25𝑥4 = 3

0𝑥1 − 0.25𝑥2 − 0.25𝑥3 + 𝑥4 = −1

(e)
0.2𝑥1 + 0.3𝑥2 + 0𝑥3 = 0.1
0.3𝑥1 + 0𝑥2 + 0.2𝑥3 = 0.1
0𝑥1 + 0.2𝑥2 + 0.3𝑥3 = 0.8

(f)
8𝑥1 + 4𝑥2 + 0𝑥3 + 0𝑥4 = 10
4𝑥1 + 12𝑥2 + 2𝑥3 + 0𝑥4 = 12
0𝑥1 + 2𝑥2 + 7𝑥3 + 2.5𝑥4 = 9.25
0𝑥1 + 0𝑥2 + 2.5𝑥3 + 4.5𝑥4 = 4.75

∎∎∎

113

Chapter 8

Eigenvalues and Eigenvectors

Corridor I: BASICS

 Let’s plan it

8.1 Basic Definitions and Concepts

8.2 General Approach of Finding Eigenvalues and Eigenvectors

8.3 Some Numerical Methods for Eigenvalues

The Power Method

The Householder Method

The QR Factorization Method

The Sturm Method

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

Corridor II: ANALYSIS

 Let’s think deep

8.4 Further Discussions

The Power Theorem

The Gerschgorin Circle Theorems

The Singular Value Decomposition (SVD)

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/

114 Numerical Recipes in Python

Corridor III: PROGRAMMING ARCADE

 Let’s do it

8.5 Algorithms and Implementations

The Power Method

To see more examples for practicing, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

For codes, please visit: https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

∎∎∎

8.5 Algorithms and Implementations

Question 12: Write down an algorithm (pseudo code) to find dominant eigenvalue and a corresponding

eigenvector of a matrix using the Power method.

Algorithm: To approximate the dominant eigenvalue and associated eigenvector of an 𝑛 × 𝑛 matrix 𝐴, given

a nonzero normalized vector 𝑋 (i.e., having 1 as the largest component) as the initial approximation.

𝐈𝐍𝐏𝐔𝐓𝐒:

{

𝒏: an integer as the length of the vector 𝑋

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻: a real valued vector (as a normalised initial approximation)

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix whose eigenvalue is to be obtained

𝑻𝑶𝑳: 𝑎 real value as the tolerance
𝑵: an integer as the maximum number of iterations

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑩: a real value as the approximate eigenvalue

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻: 𝑎 normalized vector as the eigenvector corresponding to 𝑩

Step 1 Receive the inputs as stated above

Step 2 for 𝒌 = 𝟏, 𝟐, 𝟑,⋯ ,𝑵 perform steps 3-6

Step 3 for 𝑖 = 1, 2,⋯ , 𝒏 Set 𝒙𝒑𝒊 = 𝒙𝒊 {
𝑿𝑷 = [𝒙𝒑𝟏, 𝒙𝒑𝟐, ⋯ , 𝒙𝒑𝒏]

𝑻 is to keep a copy of present
approximation 𝑿, because 𝑿 is going to be updated

http://www.timerenders.com.pk/
https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

Eigenvalues and Eigenvectors 115

Step 4 (Compute the vector such that 𝑋(𝑘) = 𝐴𝑋(𝑘−1))

for 𝑖 = 1, 2,⋯ , 𝒏

sum = 0
for 𝑗 = 1, 2,⋯ ,𝒏

sum = sum + 𝒂𝒊𝒋 × 𝒙𝒑𝒋
𝑥𝑖 = sum }

 (𝑥𝑖

(𝑘)
=∑𝑎𝑖𝑗

𝑛

𝑗=1

𝑥𝑗
(𝑘−1)

)

Step 5 (Approximate the eigenvalue 𝑩 and normalize the vector 𝑿)

set 𝑟 = 1
for 𝑖 = 1, 2,⋯ , 𝒏

if (|𝑥𝑖| > |𝑥𝑟|) 𝑟 = 𝑖
set 𝑩 = 𝑥𝑟

} (

Finding the element of 𝑋 with
the largest absolute value
and then setting it as 𝑩

)

for 𝑖 = 1, 2,⋯ , 𝒏

 𝑥𝑖 = 𝑥𝑖/𝑩 (Normalizing the vector 𝑋)

Step 6

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)then

Exit/Break the loop
}

This means that the consecutive
approximations are nearly the same
Therefore, stop iterations.

.

end for loop of Step 2 (Go to Step 3)

Step 9 Print the output: eigenvalue 𝑩, and eigenvector 𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳) OUTPUT (‘The desired accuracy achieved; Solution converged.’)

else OUTPUT (‘The number of iterations exceeded the maximum limit.’)

STOP.

Question 13: Write a Python program to find the dominant eigenvalue of the following matrix using the Power

method. For simplification, specify the matrix within the program. Take 𝑋(0) = [1, 1, 1]𝑇 as the initial

approximation. The iterations of the method should stop when either the approximation is accurate within

10−5, or the number of iterations exceeds 100, whichever happens first.

𝐴 = [
4 1 0
2 5 0
7 2 1

]

script_8.1: power.ipynb

1 from numpy import *
2
3 N = 100
4 TOL = 0.00001
5 n = 3
6 a = [[4, 1, 0], [2, 5, 0], [7, 2, 1]]
7 x = [1, 1, 1]
8
9 xp = zeros(n)

10 print("iter. x1 x2 x3 Error")
11

116 Numerical Recipes in Python

12 for k in range(1,N+1):
13 print(k, end=" ")
14 for i in range(n):
15 xp[i] = x[i]
16 for i in range(n):
17 sum = 0
18 for j in range(n):
19 sum = sum + a[i][j] * xp[j]
20 x[i] = sum
21
22 r = 0
23 for i in range(n):
24 if abs(x[i]) > abs(x[r]):
25 r = i
26
27 B = x[r]
28 for i in range(n):
29 x[i] = x[i] / B
30 print(" ", round(x[i], 8), end=" ")
31
32 #Computing the error as L2-Norm
33 sum1 = 0
34 for i in range(n):
35 sum1 = sum1 + (x[i] – xp[i]) * (x[i] – xp[i])
36 err = sqrt(sum1)
37 print(" ",round(err,8))
38 if err < TOL:
39 break
40
41 print("The approximate dominant eigenvalue is", B)
42 print("The corresponding eigenvector is:")
43
44 for i in range(n):
45 print(x[i], " ",end=" ")
46
47 if err < TOL:
48 print("\nThe desire accuracy is achieved; Solution convergent")
49 else:
50 print("\nThe number of iteration exceeded the maximum limit")

Output Console:

iter. x1 x2 x3 Error

1 0.51 0.71 1.0 0.58309519

2 0.457627122 0.762711862 1.0 0.07568513

3 0.452662723 0.825443783 1.0 0.06292805

4 0.452974074 0.864768684 1.0 0.03932613

5 0.453644675 0.886351895 1.0 0.02159363

6 0.454074026 0.897588186 1.0 0.01124449

Eigenvalues and Eigenvectors 117

7 0.454305837 0.903308497 1.0 0.00572501

8 0.45442498 0.906192358 1.0 0.00288632

9 0.454485039 0.907639869 1.0 0.00144876

10 0.4545152110 0.9083649610 1.0 0.00072573

11 0.4545303311 0.9087278311 1.0 0.00036318

12 0.4545378912 0.9089093412 1.0 0.00018167

13 0.4545416713 0.9090001213 1.0 9.086e-05

14 0.4545435614 0.9090455114 1.0 4.543e-05

15 0.4545445115 0.9090682115 1.0 2.272e-05

16 0.4545449816 0.9090795616 1.0 1.136e-05

17 0.4545452217 0.9090852417 1.0 5.69e-06

The approximate dominant eigenvalue is 5.99997398

The corresponding eigenvector is:

0.45454522 0.90908524 1.0

The desired accuracy achieved; Solution converged

Remark: The Python program in Question 13 can be modified to receive the square matrix and the

initial approximation of the Eigenvector at the execution time (instead of fixing in the code). For

this, the code segment at lines 6 and 7 in the program of Question 13 should be replaced by the

following code segment:

Initialize the matrix 'a' and initial approximation 'b' as empty lists

a = []

print("Enter the matrix row-wise:")

for i in range(n):

 row = list(map(float, input().split()))

 a.append(row)

Convert the 'a' list into a NumPy array

a = np.array(a)

b = np.empty(n, dtype=float)

print("Enter the initial approximation:")

b = np.array(list(map(float, input().split())))

Now, you can use the 'a' matrix and 'b' vector in your Python code as needed.

∎∎∎

118 Numerical Recipes in Python

Chapter Summary

• An eigenvalue of a square matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛
is a number 𝜆 such that the vector equation

𝐴𝑋 = 𝜆𝑋

• has a non-zero solution vector 𝑋. The solution vector 𝑋 is then called an eigenvector of the matrix 𝐴

corresponding to the eigenvalue 𝜆. The set of all eigenvalues of a matrix is called the spectrum of the

matrix. An eigenvalue is also called a characteristic value or latent root. Likewise, an eigenvector is also

called a characteristic vector or latent vector.

• A concise account of the results and techniques relevant to the eigenvalues and eigenvectors is given in

Section 8.1.

• The theorem of the Power method: Suppose that an 𝑛 × 𝑛 matrix 𝐴 has 𝑛 eigenvalues 𝜆1, 𝜆2,⋯ , 𝜆𝑛and

associated 𝑛 linearly independent eigenvectors, 𝑉1, 𝑉2, ⋯ , 𝑉𝑛 . Further, suppose that 𝑋(0) is a normalized

vector (i.e., a vector having maximum absolute value as 1) in the space of the said eigenvectors. The

sequence of normalized vectors {𝑋(𝑘)}
𝑘=1

∞
and the sequence of scalars {𝛽𝑘}𝑘=1

∞ generated recursively by

𝑋(𝑘) =
1

𝛽𝑘
𝑌(𝑘),

where 𝑌(𝑘) = 𝐴𝑋(𝑘−1), and 𝛽𝑘 = 𝑦𝑟
(𝑘)

such that |𝑦𝑟
(𝑘)
| = ‖𝑌(𝑘)‖

∞
,

will converge to the dominant eigenvector and eigenvalue, respectively.

• In the Power method, both the sequences of the scalars {𝛽𝑘}𝑘=1
∞ and the normalized vectors {𝑋(𝑘)}

𝑘=1

∞

converge linearly to the dominant eigenvalue 𝜆1 and a corresponding eigenvector 𝑉1, respectively. Thus,

the order of convergence of the Power method is linear.

• Aitken’s ∆𝟐 method offers a technique for accelerating the convergence of any sequence that is linearly

convergent. Using a given sequence, say {𝛽𝑘}𝑘=1
∞ , which converges linearly to 𝜆1 , another sequence

{𝛽̂𝑘}𝑘=1
∞

 (that also converges to 𝜆1 with possibly improved convergence rate) is constructed by using the

Aitken’s ∆2 process as:

𝛽̂𝑘 = 𝛽𝑘 −
(𝛽𝑘+1 − 𝛽𝑘)

2

𝛽𝑘+2 − 2𝛽𝑘+1 + 𝛽𝑘
= 𝛽𝑘 −

 (∆𝛽𝑘)
2

∆2𝛽𝑘
, for 𝑘 = 0, 1, 2,⋯

• Suppose that 𝜆 is a non-zero eigenvalue of a square matrix 𝐴 and 𝑋 is an eigenvector corresponding to 𝜆.

Then, 1 𝜆⁄ is an eigenvalue of 𝐴−1 and the same 𝑋 is an eigenvector corresponding to 1 𝜆⁄ . Thus, the

reciprocal of all the non-zero eigenvalues of a square matrix 𝐴 are the eigenvalues of 𝐴−1 (having the

same set of eigenvectors) . Hence, the largest of the absolute eigenvalues of 𝐴 is the smallest of the

Eigenvalues and Eigenvectors 119

eigenvalues of 𝐴−1 (and vice-versa). Thus, the Power method can be used to obtain the largest eigenvalue

of 𝐴−1 and then taking its reciprocal gives the smallest eigenvalue of 𝐴.

∎∎∎

Chapter Exercises

Exercise 01: Find all the eigenvalues and eigenvectors of the following matrices using the characteristic

equations. Also find the spectrum, spectral radius, trace, and determinant of the given matrix.

(i) [
3 2 −1
2 6 4
−1 4 5

] (ii) [
3 −2 0.5
−1 −2 1.5
−4 0 4

] (iii) [
2 0 0
−6 8 −14
0 0 −6

]

(iv) [
−15.5 −10 10
3 4.5 −3
−17 −10 11.5

] (v) [
4.5 0 1.5
−6 9 6
1.5 0 4.5

]

Exercise 02: Apply the Power method to find the dominant eigenvalue and corresponding eigenvector of the

given matrices.

(i) [
3 2 −1
2 6 4
−1 4 5

] (ii) [
3 −2 0.5
−1 −2 1.5
−4 0 4

] (iii) [
2 0 0
−6 8 −14
0 0 −6

]

(iv) [
−15.5 −10 10
3 4.5 −3
−17 −10 11.5

] (v) [
4.5 0 1.5
−6 9 6
1.5 0 4.5

]

Exercise 03: Apply the Power method to find the dominant eigenvalue and corresponding eigenvector of the

given matrices.

(i) [

8 1 0 0
0 7 0 0
−2 1 10 0
−4 −1 4 6

] (ii) [

1 10 6 −6
0 −9 0 0

−0.5 16.5 7.5 0.5
−6.5 10.5 6.5 1.5

]

Exercise 04: Use Householder’s method to place the following matrices in tridiagonal form.

(i) [
1 1 1
1 1 0
1 0 1

] (ii) [
2 −1 −1
−1 2 −1
−1 −1 2

]

120 Numerical Recipes in Python

(iii) [

5 −2 −0.5 1.5
−2 5 1.5 −0.5
−0.5 1.5 5 −2
1.5 −0.5 −2 5

] (iv) [

2 −1 −1 0
−1 3 0 0
−1 0 4 1
0 −2 2 3

]

Exercise 05: Apply two iterations of the QR Factorization method without shifting the following matrices.

(i) [
4 −1 0
−1 3 −1
0 −1 2

] (ii) [
3 1 0
1 4 2
0 2 1

]

(iii) [

4 2 0 0
2 4 2 0
0 2 4 2
0 0 2 4

] (iv) [

0.5 0.25 0 0
0.25 0.8 0.4 0
0 0.4 0.6 0.1
0 0 0.1 1

]

Exercise 06: Determine a singular value decomposition for the following matrices.

(i) [
1 1 0
−1 0 1
0 1 −1

] (ii) [
2 1
−1 1
1 1

]

(iii) [
1 1 0
1 0 1
0 1 1

] (iv) [
2 1
1 0
0 1

]

 ∎∎∎

121

Chapter 9

Numerical Solution of

Ordinary Differential Equations (ODEs)

Corridor I: BASICS

 Let’s plan it

9.1 Introduction

9.2 Solving IVPs using Single Step Methods and Multistep Methods

The Euler Method

The Mid-point Method (an RK2 method of Order 2)

The Modified/Improved Euler Method (an RK2 method of Order 2)

The RK Method of order 4 (RK4)

9.3 Solving IVPs using Predictor-Corrector Methods

The Adams-Bashforth-Moulton Method of Order 4

9.4 Solving Systems of ODEs and Higher Order ODEs

Using the Classical RK4 Method

9.5 Solving Linear BVPs using the Finite Difference Method

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

∎∎∎

http://www.timerenders.com.pk/

122 Numerical Recipes in Python

Corridor II: ANALYSIS

 Let’s think deep

9.6 Some Theoretical Concepts and Error Analysis

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

∎∎∎

Figure: The connection between various terms related to MDE (Model Differential Equation/s -
ODE/PDE) and the related FDE (Finite Difference Equation/s).

http://www.timerenders.com.pk/

Numerical Solution of Ordinary Differential Equations (ODEs) 123

Corridor III: PROGRAMMING ARCADE

 Let’s think deep

9.7 Algorithms and Implementations

Euler method

Mid-point method

Modified/Improved Euler method

RK method of order 4 (RK4)

Adams-Bashforth method of order 4

Adams-Bashforth-Moulton method of order 4

RK4 method for a system of two ODEs

RK4 method for a system of three ODEs

RK4 method for Second Order ODE

RK4 method for Third Order ODE

Linear FDM for BVP

To see more examples for practicing, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

For codes, please visit: https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

∎∎∎

9.7 Algorithms and Implementations

http://www.timerenders.com.pk/
https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

124 Numerical Recipes in Python

Question 16: Write down an algorithm (pseudo code) to solve a first-order ODE using the Explicit Euler’s

method (the Taylor method of order 1).

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑦(𝑎) = 𝛼 by approximating 𝑦 = 𝑦(𝑥) at (𝑚 + 1)

equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚, such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏, ℎ = (𝑏 − 𝑎)/𝑚 and 𝑦(𝑥𝑖) = 𝑦𝑖

using the Explicit Euler’s method (the Taylor method of order 1): For 𝑖 = 1,2,3,⋯ ,𝑚

𝑤𝑖 = 𝑤𝑖−1 + ℎ × 𝑓(𝑥𝑖−1, 𝑦𝑖−1)

𝐈𝐍𝐏𝐔𝐓𝐒:

{

𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑤(𝑥𝑖)
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚

𝑥 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠

Step 1 Receive the inputs as stated above

Step 2 Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎
Set 𝑥(𝑚) = 𝑏

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ (Constructing interior mesh points, 𝑥𝑖)

 end for

Step 4 Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎 (Setting the initial condition)

Step 5 for 𝑖 = 1, 2,⋯ ,𝑚

𝑓𝑣𝑎𝑙 = 𝑓(𝑋(𝑖 − 1), 𝑤(𝑖 − 1)) (Computing the value 𝑓(𝑥𝑖−1, 𝑦𝑖−1))

𝑤(𝑖) = 𝑤(𝑖 − 1) + ℎ × 𝑓𝑣𝑎𝑙

 end for

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ , 𝑤𝑚]
𝑇 ;

STOP.

Question 17: Write down a Python program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤ 1, with initial

condition 𝑦(0) = 𝛼 = 1/2, using the Explicit Euler’s method (the Taylor method of order 1). Computer the

solution for 10 steps. At each step, compare the approximate solution with the exact solution, to be obtained

by 𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+
13

16
𝑒4𝑥 , by finding the relative error between the two solutions.

script_9.1: explicit_euler1.ipynb

1 from numpy import *

Numerical Solution of Ordinary Differential Equations (ODEs) 125

2
3 a = 0.0 # starting point of domain
4 b = 1.0 # ending point of domain
5 alpha = 0.5 # initial condition
6 m = 10 # number of steps
7
8 def fval(x, y):
9 return 4 * y + 4 * x ** 2 + 3 * x

10
11 def fexact(x):
12 return –x ** 2 – 1.2 * x – (5.0 / 16.0) + (13.0 / 16.0) * exp(4 * x)
13
14 h = (b – a) / m
15 x = zeros(m+1)
16 w = zeros(m+1)
17
18 x[0] = a
19 for i in range(1,m+1):
20 x[i] = x[i–1] + h
21
22 w[0]= alpha # setting initial condition
23
24 #------ Computing solutions with the Euler method ------
25
26 for i in range(1,m+1):
27 fv = fval(x[i–1], w[i–1])
28 w[i] = w[i–1] + h*fv
29
30 # ----------------- Printing Solutions -----------------
31 print("Node x[i] w[i] Exact Sol Relative Error")
32 for i in range(0,m+1):
33 sol = fexact(x[i])
34 err = abs(sol–w[i]) / abs(sol)
35
36 print(i,"\t","%.2f" %x[i],"\t","%.7f" %w[i],"\t","%.7f" %sol,"\t","%.8f" %err)

Output Console:

Node x[i] w[i] Exact Sol Relative Error

0 0.00 0.5000000 0.5000000 0.00000000

1 0.10 0.7000000 0.7696076 0.09044553

2 0.20 1.0140000 1.2157520 0.16594832

3 0.30 1.4956000 1.9350950 0.22711805

4 0.40 2.2198400 3.0718388 0.27735792

5 0.50 3.2917760 4.8411081 0.32003666

6 0.60 4.8584864 7.5638308 0.35766855

7 0.70 7.1258810 11.7187755 0.39192615

8 0.80 10.3822333 18.0201808 0.42385521

9 0.90 15.0311267 27.5335655 0.45407991

10 1.00 21.6375774 41.8484969 0.48295449

126 Numerical Recipes in Python

The above program can be written in a better way that a Python function for the Euler method is formed to

compute the solution. This makes the program better manageable and modular. The new program is given as

follows.

script_9.2: explicit_euler2.ipynb

1 from numpy import *
2
3 a = 0.0 # starting point of domain
4 b = 1.0 # ending point of domain
5 alpha = 0.5 # initial condition
6 m = 10 # number of steps
7
8 def fval(x, y):
9 return 4 * y + 4 * x ** 2 + 3 * x

10
11 def fexact(x):
12 return –x ** 2 –1.2 * x – (5.0 / 16.0) + (13.0 / 16.0) * exp(4 * x)
13
14 #----- User-defined function for the Euler's one-step -----
15
16 def euler(x, w, h):
17 for i in range(1,m+1):
18 fv = fval(x[i–1],w[i–1])
19 w[i] = w[i–1] + h*fv
20
21 h = (b – a) / m
22 x = zeros(m+1)
23 w = zeros(m+1)
24
25 x[0] = a
26 x[m] = b
27 for i in range(1,m+1):
28 x[i] = x[i–1] + h
29
30 w[0]= alpha # setting initial condition
31
32 #Call the Euler method function
33
34 euler(x, w, h)
35
36 # ----------------- Printing Solutions -----------------
37 print("Node x[i] w[i] Exact Sol Relative Error")
38 for i in range(0,m+1):
39 sol = fexact(x[i])
40 err = abs(sol–w[i]) / abs(sol)
41
42 print(i,"\t","%.2f" %x[i],"\t","%.7f" %w[i],"\t","%.7f" %sol,"\t","%.8f" %err)

Numerical Solution of Ordinary Differential Equations (ODEs) 127

Question 18: Write down an algorithm (pseudo code) to solve a first-order ODE using the Midpoint method

(which is an RK method of order 2).

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑦(𝑎) = 𝛼 by approximating 𝑦 = 𝑦(𝑥) at (𝑚 + 1)

equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚, such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏, ℎ = (𝑏 − 𝑎)/𝑚 and 𝑦(𝑥𝑖) = 𝑦𝑖

using the Midpoint method: For 𝑖 = 1,2,3,⋯ ,𝑚

𝑦𝑖̿ = 𝑦𝑖−1 +
ℎ

2
× 𝑓(𝑥𝑖−1, 𝑦𝑖−1)

𝑦𝑖 = 𝑦𝑖−1 + ℎ × 𝑓 (𝑥𝑖−1 +
ℎ

2
, 𝑦𝑖̿)

𝐈𝐍𝐏𝐔𝐓𝐒:

{

𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑤(𝑥𝑖)
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠

Step 1 Receive the inputs as stated above

Step 2 Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎
Set 𝑥(𝑚) = 𝑏

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ (Constructing interior mesh points, 𝑥𝑖)

 end for

Step 4 Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎 (Setting the initial condition)

Step 5 for 𝑖 = 1, 2,⋯ ,𝑚

𝑓𝑣𝑎𝑙1 = 𝑓(𝑥(𝑖 − 1), 𝑤(𝑖 − 1)) (Computing the value 𝑓(𝑥𝑖−1, 𝑦𝑖−1))

𝑎𝑢𝑥 = 𝑤(𝑖 − 1) + (ℎ/2) × 𝑓𝑣𝑎𝑙1

𝑓𝑣𝑎𝑙2 = 𝑓(𝑥(𝑖 − 1) + (ℎ/2), 𝑎𝑢𝑥) (Computing 𝑓(𝑥𝑖−1 + ℎ/2, 𝑎𝑢𝑥))

𝑤(𝑖) = 𝑤(𝑖 − 1) + ℎ × 𝑓𝑣𝑎𝑙2

 end for

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]
𝑇 ; STOP.

Question 19: Write down a Python program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤ 1, with initial

condition 𝑦(0) = 𝛼 = 1/2, using the Midpoint method (which is an RK method of order 2). Computer the

solution for 10 steps. At each step, compare the approximate solution with the exact solution, to be obtained

by 𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+
13

16
𝑒4𝑥 , by finding the relative error between the two solutions.

128 Numerical Recipes in Python

script_9.3: euler_mid.ipynb

1 from numpy import *
2
3 a = 0.0 # starting point of domain
4 b = 1.0 # ending point of domain
5 alpha = 0.5 # initial condition
6 m = 10 # number of steps
7
8 def fval(x, y):
9 return 4 * y + 4 * x ** 2 + 3 * x

10
11 def fexact(x):
12 return –x ** 2 – 1.2 * x – (5.0 / 16.0) + (13.0 / 16.0) * exp(4 * x)
13
14 #----- User-defined function for the Euler's midpoint -----
15
16 def eulermid(xa, wa, h):
17 for i in range(1,m+1):
18 fv = fval(xa[i – 1], wa[i – 1])
19 whalf = wa[i –1] + (h / 2.0) * fv
20 xhalf = xa[i – 1] + (h / 2.0)
21 fv = fval(xhalf, whalf)
22 wa[i] = wa[i – 1] + h * fv
23
24 h = (b – a) / m
25 x = zeros(m+1)
26 w = zeros(m+1)
27
28 x[0] = a
29 x[m] = b
30 for i in range(1,m+1):
31 x[i] = x[i–1] + h
32
33 w[0]= alpha # setting initial condition
34
35 #Call the Euler midpoint method function
36
37 eulermid(x, w, h)
38
39 # ----------------- Printing Solutions -----------------
40 print("Node x[i] w[i] Exact Sol Relative Error")
41 for i in range(0,m+1):
42 sol = fexact(x[i])
43 err = abs(sol–w[i]) / abs(sol)
44
45 print(i,"\t","%.2f" %x[i],"\t","%.7f" %w[i],"\t","%.7f" %sol,"\t","%.8f" %err)

Numerical Solution of Ordinary Differential Equations (ODEs) 129

Output Console:

Node x[i] w[i] Exact Sol Relative Error

0 0.00 0.5000000 0.5000000 0.00000000

1 0.10 0.7560000 0.7696076 0.01768118

2 0.20 1.1796800 1.2157520 0.02967053

3 0.30 1.8611264 1.9350950 0.03822479

4 0.40 2.9336671 3.0718388 0.04498015

5 0.50 4.5946273 4.8411081 0.05091413

6 0.60 7.1360484 7.5638308 0.05655632

7 0.70 10.9901516 11.7187755 0.06217577

8 0.80 16.7966243 18.0201808 0.06789923

9 0.90 25.5022040 27.5335655 0.07377764

10 1.00 38.5080619 41.8484969 0.07982210

Question 20: Write down an algorithm (pseudo code) to solve a first-order ODE using the RK method of order

2 (also known as the Modified or Improved Euler’s method).

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑦(𝑎) = 𝛼 by approximating 𝑦 = 𝑦(𝑥) at (𝑚 + 1)

equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚, such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏, ℎ = (𝑏 − 𝑎)/𝑚 and 𝑦(𝑥𝑖) = 𝑦𝑖

using the Modified Euler’s method of order 2: For 𝑖 = 1,2,3,⋯ ,𝑚

𝐾1 = ℎ × 𝑓(𝑥𝑖−1, 𝑦𝑖−1)

𝐾2 = ℎ × 𝑓(𝑥𝑖 , 𝑦𝑖−1 + 𝐾1)

𝑦𝑖 = 𝑦𝑖−1 +
1

2
× [𝐾1 +𝐾2]

𝐈𝐍𝐏𝐔𝐓𝐒:

{

𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑤(𝑥𝑖)
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠

Step 1 Receive the inputs as stated above

Step 2 Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎
Set 𝑥(𝑚) = 𝑏

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ (Constructing interior mesh points, 𝑥𝑖)

 end for

130 Numerical Recipes in Python

Step 4 Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎 (Setting the initial condition)

Step 5 for 𝑖 = 1, 2,⋯ ,𝑚

𝑘1 = ℎ × 𝑓(𝑥(𝑖 − 1),𝑤(𝑖 − 1))

𝑘2 = ℎ × 𝑓(𝑥(𝑖), 𝑤(𝑖 − 1) + 𝑘1)

𝑤(𝑖) = 𝑤(𝑖 − 1) + 0.5 × (𝑘1 + 𝑘2)

 end for

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]
𝑇

STOP.

Question 21: Write down a Python program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤ 1, with initial

condition 𝑦(0) = 𝛼 = 1/2, using the RK method of order 2 (also known as the Modified or Improved Euler’s

method). Computer the solution for 10 steps. At each step, compare the approximate solution with the exact

solution, to be obtained by 𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+
13

16
𝑒4𝑥 , by finding the relative error between the two

solutions.

script_9.4: modified_euler_rk2.ipynb

1 from numpy import *
2
3 a = 0.0 # starting point of domain
4 b = 1.0 # ending point of domain
5 alpha = 0.5 # initial condition
6 m = 10 # number of steps
7
8 def fval(x, y):
9 return 4 * y + 4 * x ** 2 + 3 * x

10
11 def fexact(x):
12 return –x ** 2 – 1.2 * x – (5.0 / 16.0) + (13.0 / 16.0) * exp(4 * x)
13
14 #----- User-defined function for the modified Euler method-----
15
16 def eulerimp(xa, wa, h):
17 for i in range(1,m+1):
18 fv = fval(xa[i – 1], wa[i – 1])
19 wnext = wa[i – 1] + h * fv
20 fvnext = fval(xa[i], wnext)
21 wa[i] = wa[i – 1] + h * (fv + fvnext) / 2.0
22
23 h = (b – a) / m
24 x = zeros(m+1)
25 w = zeros(m+1)
26
27 x[0] = a

Numerical Solution of Ordinary Differential Equations (ODEs) 131

28 x[m] = b
29 for i in range(1,m+1):
30 x[i] = x[i–1] + h
31
32 w[0]= alpha # setting initial condition
33
34 #Call the improved Euler (RK2) method function
35
36 eulerimp(x, w, h)
37
38 # ----------------- Printing Solutions -----------------
39 print("Node x[i] w[i] Exact Sol Relative Error")
40 for i in range(0,m+1):
41 sol = fexact(x[i])
42 err = abs(sol–w[i]) / abs(sol)
43
44 print(i,"\t","%.2f" %x[i],"\t","%.7f" %w[i],"\t","%.7f" %sol,"\t","%.8f" %err)

Output Console:

Node x[i] w[i] Exact Sol Relative Error

0 0.00 0.5000000 0.5000000 0.00000000

1 0.10 0.7570000 0.7696076 0.01638181

2 0.20 1.1821600 1.2157520 0.02763064

3 0.30 1.8657968 1.9350950 0.03581126

4 0.40 2.9415793 3.0718388 0.04240443

5 0.50 4.6073373 4.8411081 0.04828869

6 0.60 7.1558592 7.5638308 0.05393716

7 0.70 11.0204716 11.7187755 0.05958847

8 0.80 16.8424980 18.0201808 0.06535355

9 0.90 25.5710971 27.5335655 0.07127549

10 1.00 38.6110237 41.8484969 0.07736176

∎

Question 22: Write down an algorithm (pseudo code) to solve a first-order ODE using the RK method of order

4.

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑦(𝑎) = 𝛼 by approximating 𝑦 = 𝑦(𝑥) at (𝑚 + 1)

equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚, such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏, ℎ = (𝑏 − 𝑎)/𝑚 and 𝑦(𝑥𝑖) = 𝑦𝑖

using the RK method of order 4: For 𝑖 = 1,2,3,⋯ ,𝑚

𝐾1 = ℎ × 𝑓(𝑥𝑖−1, 𝑦𝑖−1)

𝐾2 = ℎ × 𝑓(𝑥𝑖−1 + 0.5ℎ, 𝑦𝑖−1 + 0.5𝐾1)

𝐾3 = ℎ × 𝑓(𝑥𝑖−1 + 0.5ℎ, 𝑦𝑖−1 + 0.5𝐾2)

𝐾4 = ℎ × 𝑓(𝑥𝑖 , 𝑦𝑖−1 + 𝐾3)

𝑦𝑖 = 𝑦𝑖−1 +
1

6
× [𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4]

132 Numerical Recipes in Python

𝐈𝐍𝐏𝐔𝐓𝐒:

{

𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑦(𝑥𝑖)
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠

Step 1 Receive the inputs as stated above

Step 2 Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎
Set 𝑥(𝑚) = 𝑏

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ (Constructing interior mesh points, 𝑥𝑖)

 end for

Step 4 Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎 (Setting the initial condition)

Step 5 for 𝑖 = 1, 2,⋯ ,𝑚

𝑘1 = ℎ × 𝑓(𝑥(𝑖 − 1),𝑤(𝑖 − 1))

𝑘2 = ℎ × 𝑓(𝑥(𝑖 − 1) + 0.5 × ℎ,𝑤(𝑖 − 1) + 0.5 × 𝑘1)

𝑘3 = ℎ × 𝑓(𝑥(𝑖 − 1) + 0.5 × ℎ,𝑤(𝑖 − 1) + 0.5 × 𝑘2)

𝑘4 = ℎ × 𝑓(𝑥(𝑖), 𝑤(𝑖 − 1) + 𝑘3)

𝑤(𝑖) = 𝑤(𝑖 − 1) + (𝑘1 + 2 × 𝑘2 + 2 × 𝑘3 + 𝑘4)/6

 end for

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]
𝑇

STOP.

Question 23: Write down a Python program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤ 1, with initial

condition 𝑦(0) = 𝛼 = 1/2, using the RK method of order 4. Computer the solution for 10 steps. At each step,

compare the approximate solution with the exact solution, to be obtained by 𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+
13

16
𝑒4𝑥 ,

by finding the relative error between the two solutions.

script_9.5: RK4.ipynb

1 from numpy import *
2
3 a = 0.0 # starting point of domain
4 b = 1.0 # ending point of domain
5 alpha = 0.5 # initial condition
6 m = 10 # number of steps
7

Numerical Solution of Ordinary Differential Equations (ODEs) 133

8 def fval(x, y):
9 return 4 * y + 4 * x ** 2 + 3 * x

10
11 def fexact(x):
12 return –x ** 2 – 1.2 * x – (5.0 / 16.0) + (13.0 / 16.0) * exp(4 * x)
13
14 #----- User-defined function for the RK4 method-----
15
16 def rk4(x, w, h):
17 for i in range(1,m+1):
18 k1 = h * (fval(x[i – 1], w[i – 1]))
19 k2 = h * (fval(x[i –1] + (h / 2.0), w[i – 1] + (k1 / 2.0)))
20 k3 = h * (fval(x[i – 1] + (h / 2.0), w[i – 1] + (k2 / 2.0)))
21 k4 = h * (fval(x[i], w[i – 1] + k3))
22
23 w[i] = w[i – 1] + (k1 + 2 * k2 + 2 * k3 + k4) / 6.0
24
25 h = (b – a) / m
26 x = zeros(m+1)
27 w = zeros(m+1)
28
29 x[0] = a
30 x[m] = b
31 for i in range(1,m+1):
32 x[i] = x[i–1] + h
33
34 w[0]= alpha # setting initial condition
35
36 #Call the RK4 method function
37
38 rk4(x, w, h)
39
40 # ----------------- Printing Solutions -----------------
41 print("Node x[i] w[i] Exact Sol Relative Error")
42 for i in range(0,m+1):
43 sol = fexact(x[i])
44 err = abs(sol–w[i]) / abs(sol)
45
46 print(i,"\t","%.2f" %x[i],"\t","%.7f" %w[i],"\t","%.7f" %sol,"\t","%.8f" %err)

Output Console:

Node x[i] w[i] Exact Sol Relative Error

0 0.00 0.5000000 0.5000000 0.00000000

1 0.10 0.7645467 0.7696076 0.00657595

2 0.20 1.2055637 1.2157520 0.00838021

3 0.30 1.9196623 1.9350950 0.00797517

4 0.40 3.0509602 3.0718388 0.00679678

5 0.50 4.8144431 4.8411081 0.00550804

6 0.60 7.5308119 7.5638308 0.00436537

7 0.70 11.6784671 11.7187755 0.00343964

134 Numerical Recipes in Python

8 0.80 17.9710547 18.0201808 0.00272617

9 0.90 27.4731440 27.5335655 0.00219447

10 1.00 41.7727886 41.8484969 0.00180910

Question 24: Write down an algorithm (pseudo code) to solve a first-order ODE using the Adams-Bashforth

method of order 4.

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑦(𝑎) = 𝛼 by approximating 𝑦 = 𝑦(𝑥) at (𝑚 + 1)

equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚,such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏, ℎ = (𝑏 − 𝑎)/𝑚 and 𝑦(𝑥𝑖) = 𝑦𝑖.

Having 𝑦(𝑥0) = 𝛼0 , 𝑦(𝑥1) = 𝛼1 , 𝑦(𝑥2) = 𝛼2 , and 𝑦(𝑥3) = 𝛼3 , compute 𝑦𝑖 using the 4-step explicit Adams-

Bashforth method of order 4: For 𝑖 = 4,5,6,⋯ ,𝑚

𝑦𝑖 = 𝑦𝑖−1 +
ℎ

24
× [55𝑓(𝑥𝑖−1, 𝑦𝑖−1) − 59𝑓(𝑥𝑖−2, 𝑦𝑖−2) + 37𝑓(𝑥𝑖−3, 𝑦𝑖−3) − 9𝑓(𝑥𝑖−4, 𝑦𝑖−4)]

𝐈𝐍𝐏𝐔𝐓𝐒:

{

𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑤(𝑥𝑖)
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠

Step 1 Receive the inputs as stated above

Step 2 Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎
Set 𝑥(𝑚) = 𝑏

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ (Constructing interior mesh points, 𝑥𝑖)

 end for

Step 4 Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎 (Setting the initial condition)

Step 5 Obtain or compute (using some other basic method for ODEs) the following:

 𝑤(1) = 𝑎𝑙𝑝ℎ𝑎1

 𝑤(2) = 𝑎𝑙𝑝ℎ𝑎2

 𝑤(3) = 𝑎𝑙𝑝ℎ𝑎3

Step 5 for 𝑖 = 4, 5, 6,⋯ ,𝑚

𝑓𝑣1 = 𝑓(𝑥(𝑖 − 1),𝑤(𝑖 − 1)) (Computing the value 𝑓(𝑥𝑖−1, 𝑦𝑖−1))

𝑓𝑣2 = 𝑓(𝑥(𝑖 − 2),𝑤(𝑖 − 2)) (Computing the value 𝑓(𝑥𝑖−2, 𝑦𝑖−2))

𝑓𝑣3 = 𝑓(𝑥(𝑖 − 3),𝑤(𝑖 − 3)) (Computing the value 𝑓(𝑥𝑖−3, 𝑦𝑖−3))

Numerical Solution of Ordinary Differential Equations (ODEs) 135

𝑓𝑣4 = 𝑓(𝑥(𝑖 − 4),𝑤(𝑖 − 4)) (Computing the value 𝑓(𝑥𝑖−4, 𝑦𝑖−4))

𝑤(𝑖) = 𝑤(𝑖 − 1) + (
ℎ

24
) × (55𝑓𝑣1 − 59𝑓𝑣2 + 37𝑓𝑣3 − 9𝑓𝑣4)

 end for

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]
𝑇

STOP.

Question 25: Write down a Python program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤ 1, with initial

condition 𝑦(0) = 𝛼 = 1/2, using the Adams-Bashforth method of order 4. Compute the solution for 10 steps.

For computing the approximate solution at the first three steps, use the RK4 method. At each step, compare

the approximate solution with the exact solution, to be obtained by 𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+
13

16
𝑒4𝑥 , by finding

the relative error between the two solutions.

script_9.6: adam_bashforth.ipynb

1 from numpy import *
2
3 a = 0.0 # starting point of domain
4 b = 1.0 # ending point of domain
5 alpha = 0.5 # initial condition
6 m = 10 # number of steps
7
8 def fval(x, y):
9 return 4 * y + 4 * x ** 2 + 3 * x

10
11 def fexact(x):
12 return –x ** 2 – 1.2 * x – (5.0 / 16.0) + (13.0 / 16.0) * exp(4 * x)
13
14 #----- User-defined function for the adam bashforth method-----
15
16 def adamsb4(x, w, h):
17 for i in range(4, m + 1):
18 k1 = fval(x[i – 1], w[i – 1])
19 k2 = fval(x[i – 2], w[i – 2])
20 k3 = fval(x[i – 3], w[i – 3])
21 k4 = fval(x[i – 4], w[i – 4])
22
23 w[i] = w[i – 1] + (h / 24.0) * (55 * k1 – 59 * k2 + 37 * k3 – 9 * k4)
24
25 #----- User-defined function for the RK4 method-----
26
27 def rk4(x, w, h):
28 for i in range(1,4):
29 k1 = h * (fval(x[i – 1], w[i – 1]))

136 Numerical Recipes in Python

30 k2 = h * (fval(x[i – 1] + (h / 2.0), w[i – 1] + (k1 / 2.0)))
31 k3 = h * (fval(x[i – 1] + (h / 2.0), w[i – 1] + (k2 / 2.0)))
32 k4 = h * (fval(x[i], w[i – 1] + k3))
33
34 w[i] = w[i – 1] + (k1 + 2 * k2 + 2 * k3 + k4) / 6.0
35
36 h = (b – a) / m
37 x = zeros(m+1)
38 w = zeros(m+1)
39
40 x[0] = a
41 x[m] = b
42 for i in range(1,m+1):
43 x[i] = x[i–1] + h
44
45 w[0]= alpha # setting initial condition
46
47 # Using RK4 as initial steps
48
49 rk4(x, w, h)
50
51 #Call the adam bashforth function
51
52 adamsb4(x, w, h)
53
54 # ----------------- Printing Solutions -----------------
55 print("Node x[i] w[i] Exact Sol Relative Error")
56 for i in range(0,m+1):
57 sol = fexact(x[i])
58 err = abs(sol – w[i]) / abs(sol)
59
60 print(i,"\t","%.2f" %x[i],"\t","%.7f" %w[i],"\t","%.7f" %sol,"\t","%.8f" %err)

Output Console:

Node x[i] w[i] Exact Sol Relative Error

0 0.00 0.5000000 0.5000000 0.00000000

1 0.10 0.7645467 0.7696076 0.00657595

2 0.20 1.2055637 1.2157520 0.00838021

3 0.30 1.9196623 1.9350950 0.00797517

4 0.40 3.0446855 3.0718388 0.00883945

5 0.50 4.7930616 4.8411081 0.00992469

6 0.60 7.4820511 7.5638308 0.01081194

7 0.70 11.5813609 11.7187755 0.01172602

8 0.80 17.7896098 18.0201808 0.01279515

9 0.90 27.1477196 27.5335655 0.01401365

10 1.00 41.2058778 41.8484969 0.01535585

Numerical Solution of Ordinary Differential Equations (ODEs) 137

Question 26: Write down an algorithm (pseudo code) to solve a first-order ODE using the Adams-Bashforth-

Moulton method of order 4.

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑦(𝑎) = 𝛼 by approximating 𝑦 = 𝑦(𝑥) at (𝑚 + 1)

equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚,such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏, ℎ = (𝑏 − 𝑎)/𝑚 and 𝑦(𝑥𝑖) = 𝑦𝑖.

Having 𝑦(𝑥0) = 𝛼0, 𝑦(𝑥1) = 𝛼1, 𝑦(𝑥2) = 𝛼2, and 𝑦(𝑥3) = 𝛼3, compute 𝑦𝑖 using

(1) the 4-step explicit Adams-Bashforth method of order 4 as the predictor:

𝑦𝑖 = 𝑦𝑖−1 +
ℎ

24
× [55𝑓(𝑥𝑖−1, 𝑦𝑖−1) − 59𝑓(𝑥𝑖−2, 𝑦𝑖−2) + 37𝑓(𝑥𝑖−3, 𝑦𝑖−3) − 9𝑓(𝑥𝑖−4, 𝑦𝑖−4)]

 (2) the 3-step implicit Adams-Moulton method of order 4 as the corrector:

𝑦𝑖 = 𝑦𝑖−1 +
ℎ

24
× [9𝑓(𝑥𝑖 , 𝑦𝑖) + 19𝑓(𝑥𝑖−1, 𝑦𝑖−1) − 5𝑓(𝑥𝑖−2, 𝑦𝑖−2) + 𝑓(𝑥𝑖−3, 𝑦𝑖−3)]

for 𝑖 = 4, 5, 6,⋯ ,𝑚.

𝐈𝐍𝐏𝐔𝐓𝐒:

{

𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑦(𝑥𝑖)
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠

Step 1 Receive the inputs as stated above

Step 2 Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎
Set 𝑥(𝑚) = 𝑏

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ (Constructing interior mesh points, 𝑥𝑖)

 end for

Step 4 Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎 (Setting the initial condition)

Step 5 Obtain or compute (using some other basic method for ODEs) the following:

 𝑤(1) = 𝑎𝑙𝑝ℎ𝑎1

 𝑤(2) = 𝑎𝑙𝑝ℎ𝑎2

 𝑤(3) = 𝑎𝑙𝑝ℎ𝑎3

Step 5 for 𝑖 = 4, 5, 6,⋯ ,𝑚

𝑓𝑣1 = 𝑓(𝑥(𝑖 − 1),𝑤(𝑖 − 1)) (Computing the value 𝑓(𝑥𝑖−1, 𝑦𝑖−1))

𝑓𝑣2 = 𝑓(𝑥(𝑖 − 2),𝑤(𝑖 − 2)) (Computing the value 𝑓(𝑥𝑖−2, 𝑦𝑖−2))

138 Numerical Recipes in Python

𝑓𝑣3 = 𝑓(𝑥(𝑖 − 3),𝑤(𝑖 − 3)) (Computing the value 𝑓(𝑥𝑖−3, 𝑦𝑖−3))

𝑓𝑣4 = 𝑓(𝑥(𝑖 − 4),𝑤(𝑖 − 4)) (Computing the value 𝑓(𝑥𝑖−4, 𝑦𝑖−4))

𝑤(𝑖) = 𝑤(𝑖 − 1) + (
ℎ

24
) × (55𝑓𝑣1 − 59𝑓𝑣2 + 37𝑓𝑣3 − 9𝑓𝑣4)

𝑓𝑣 = 𝑓(𝑥(𝑖), 𝑤(𝑖)) (Computing the value 𝑓(𝑥𝑖−4, 𝑦𝑖−4))

𝑤(𝑖) = 𝑤(𝑖 − 1) + (
ℎ

24
) × (9𝑓𝑣 + 19𝑓𝑣1 − 5𝑓𝑣2 + 𝑓𝑣3)

 end for

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]
𝑇

STOP.

Question 27: Write down a Python program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤ 1, with initial

condition 𝑦(0) = 𝛼 = 1/2, using the Adams-Bashforth-Moulton method of order 4. Compute the solution for

10 steps. For computing the approximate solution at the first three steps, use the RK4 method. At each step,

compare the approximate solution with the exact solution, to be obtained by 𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+
13

16
𝑒4𝑥 ,

by finding the relative error between the two solutions.

script_9.8: adam_bashforth_molten.ipynb

1 from numpy import *
2
3 a = 0.0 # starting point of domain
4 b = 1.0 # ending point of domain
5 alpha = 0.5 # initial condition
6 m = 10 # number of steps
7
8 def fval(x, y):
9 return 4 * y + 4 * x ** 2 + 3 * x

10
11 def fexact(x):
12 return –x ** 2 – 1.2 * x – (5.0 / 16.0) + (13.0 / 16.0) * exp(4 * x)
13
14 #----- User-defined function for the adam bashforth molten method-----
15
16 def adamsb4m3(x, w, h):
17 for i in range(4, m + 1):
18 fv1 = fval(x[i – 1], w[i – 1])
19 fv2 = fval(x[i – 2], w[i – 2])
20 fv3 = fval(x[i – 3], w[i – 3])
21 fv4 = fval(x[i – 4], w[i – 4])
22
23 w[i] = w[i – 1] + (h / 24.0) * (55 * fv1 – 59 * fv2 + 37 * fv3 – 9 * fv4)
24 fv = fval(x[i], w[i])
25 w[i] = w[i – 1] + (h / 24.0) * (9 * fv + 19 * fv1 – 5 * fv2 + fv3)
26
27 #----- User-defined function for the RK4 method-----

Numerical Solution of Ordinary Differential Equations (ODEs) 139

28
29 def rk4(x, w, h):
30 for i in range(1,4):
31 k1 = h * (fval(x[i – 1], w[i – 1]))
32 k2 = h * (fval(x[i – 1] + (h / 2.0), w[i – 1] + (k1 / 2.0)))
33 k3 = h * (fval(x[i – 1] + (h / 2.0), w[i – 1] + (k2 / 2.0)))
34 k4 = h * (fval(x[i], w[i – 1] + k3))
35
36 w[i] = w[i – 1] + (k1 + 2 * k2 + 2 * k3 + k4) / 6.0
37
38 h = (b – a) / m
39 x = zeros(m+1)
40 w = zeros(m+1)
41
42 x[0] = a
43 x[m] = b
44 for i in range(1,m+1):
45 x[i] = x[i–1] + h
46
47 w[0]= alpha # setting initial condition
48
49 # Using RK4 as initial steps
50
51 rk4(x, w, h)
51
52 #Call the adam bashforth moulten function
53
54 adamsb4m3(x, w, h)
55
56 # ----------------- Printing Solutions -----------------
57 print("Node x[i] w[i] Exact Sol Relative Error")
58 for i in range(0,m+1):
59 sol = fexact(x[i])
60 err = abs(sol – w[i]) / abs(sol)
61
62 print(i,"\t","%.2f" %x[i],"\t","%.7f" %w[i],"\t","%.7f" %sol,"\t","%.8f" %err)

Output Console:

Node x[i] w[i] Exact Sol Relative Error

0 0.00 0.5000000 0.5000000 0.00000000

1 0.10 0.7645467 0.7696076 0.00657595

2 0.20 1.2055637 1.2157520 0.00838021

3 0.30 1.9196623 1.9350950 0.00797517

4 0.40 3.0508703 3.0718388 0.00682605

5 0.50 4.8141708 4.8411081 0.00556428

6 0.60 7.5302111 7.5638308 0.00444480

7 0.70 11.6772868 11.7187755 0.00354036

8 0.80 17.9688762 18.0201808 0.00284706

9 0.90 27.4692778 27.5335655 0.00233489

10 1.00 41.7661082 41.8484969 0.00196874

140 Numerical Recipes in Python

Question 28: Write a Python program to solve the following system of two ODEs for the functions 𝑦1 = 𝑦1(𝑥)

and 𝑦2 = 𝑦2(𝑥), where 𝑥 ∈ [0,1]:

𝑦1
′ = 𝑦1𝑦2 − 2

𝑦2
′ = 2𝑦1 − 𝑦2

3

With initial conditions:

𝑦1(0) = 2.0

𝑦2(0) = 0.3

Use the RK4 method of order 4 for 5 steps.

For 5 steps the domain is discretized as

ℎ =
𝑏 − 𝑎

𝑚
=
1.0 − 0.0

5
= 0.2

𝑥0 = 0, 𝑥1 = 0.2, 𝑥2 = 0.4, 𝑥3 = 0.6, 𝑥4 = 0.8, 𝑥5 = 1.0.

According to the initial conditions:

𝑤10 = 𝑦10 = 𝑦1(𝑥0) = 𝑦1(0) = 2.0

𝑤20 = 𝑦20 = 𝑦2(𝑥0) = 𝑦2(0) = 0.3

The problem is to find approximations 𝑤1𝑖 to 𝑦1𝑖 = 𝑦1(𝑥𝑖) and 𝑤2𝑖 to 𝑦2𝑖 = 𝑦2(𝑥𝑖), for 𝑖 = 1,2,3,4,5.

The Python program for the solution is as follows.

script_9.9: ode_system2.ipynb

1 from numpy import *
2
3 a = 0.0 # starting point of domain
4 b = 1.0 # ending point of domain
5 alpha1 = 2.0 # initial condition
6 alpha2 = 0.3
7 m = 5 # number of steps
8
9 def f1(x, y1, y2):

10 return y1 * y2 – 2
11
12 def f2(x, y1, y2):
13 return 2 * y1 – y2 ** 3
14
15 # Define the RK4 solver for the ODE system of two equations
16
17 def rk4system2(x, w1, w2, h):
18 for i in range(1, m + 1):
19 k11 = h * f1(x[i –1], w1[i – 1], w2[i – 1])
20 k21 = h * f2(x[i – 1], w1[i – 1], w2[i – 1])

Numerical Solution of Ordinary Differential Equations (ODEs) 141

21
22 k12 = h * f1(x[i – 1] + 0.5 * h, w1[i – 1] + 0.5 * k11, w2[i – 1] + 0.5 * k21)

23 k22 = h * f2(x[i – 1] + 0.5 * h, w1[i – 1] + 0.5 * k11, w2[i –1] + 0.5 * k21)
24
25 k13 = h * f1(x[i – 1] + 0.5 * h, w1[i – 1] + 0.5 * k12, w2[i – 1] + 0.5 *

k22)

26 k23 = h * f2(x[i – 1] + 0.5 * h, w1[i – 1] + 0.5 * k12, w2[i – 1] + 0.5 *
k22)

27
28 k14 = h * f1(x[i – 1] + h, w1[i – 1] + k13, w2[i – 1] + k23)
29 k24 = h * f2(x[i – 1] + h, w1[i – 1] + k13, w2[i – 1] + k23)
30
31 w1[i] = w1[i – 1] + (k11 + 2 * k12 + 2 * k13 + k14) / 6.0
32 w2[i] = w2[i – 1] + (k21 + 2 * k22 + 2 * k23 + k24) / 6.0
33
34 h = (b – a) / m
35 x = zeros(m+1)
36 w1 = zeros(m+1)
37 w2 = zeros(m+1)
38 w1[0] = alpha1 # setting initial condition
39 w2[0] = alpha2
40
41 x[0] = a
42 x[m] = b
43
44 for i in range(1, m):
45 x[i] = x[i – 1] + h
46
48 # Call the RK4 solver
49
50 rk4system2(x, w1, w2, h)
51
52 # ----------------- Printing Solutions -----------------
53 print("Node x[i] w1[i] w2[i]")
54 for i in range(0,m+1):
55 print(i,"\t","%.2f" %x[i],"\t","%.7f" %w1[i],"\t","%.7f" % w2[i])

Output Console:

Node x[i] w1[i] w2[i]

0 0.00 2.0000000 0.3000000

1 0.20 1.8513219 0.9855220

2 0.40 1.9007946 1.3648472

3 0.60 2.0806503 1.5257072

4 0.80 2.3825142 1.6230648

5 1.00 2.8538285 1.7239291

∎

142 Numerical Recipes in Python

Question 29: Write a Python program to solve the following system of three ODEs for the functions 𝑦1 =

𝑦1(𝑥), 𝑦2 = 𝑦2(𝑥), and 𝑦3 = 𝑦3(𝑥), where 𝑥 ∈ [0,1]:

𝑦1
′ = 𝑦1 + 3𝑦2 − 3𝑦3 + 𝑒

−𝑥

𝑦2
′ = 2𝑦2 + 𝑦3 − 3𝑒

−𝑥

𝑦3
′ = 𝑦1 + 2𝑦2 + 𝑒

−𝑥

With initial conditions:

𝑦1(0) = 2.5

𝑦2(0) = −1.5

𝑦3(0) = −1.0

Use the RK4 method of order 4 for 10 steps.

For 10 steps, the domain is discretized as

ℎ =
𝑏 − 𝑎

𝑚
=
1.0 − 0.0

10
= 0.1

𝑥0 = 0, 𝑥1 = 0.1, 𝑥2 = 0.2, 𝑥3 = 0.3, 𝑥4 = 0.4, 𝑥5 = 0.5, 𝑥6 = 0.6, 𝑥7 = 0.7, 𝑥8 = 0.8, 𝑥9 = 0.9, 𝑥10 = 1.0.

According to the initial conditions:

𝑤10 = 𝑦10 = 𝑦1(𝑥0) = 𝑦1(0) = 2.5

𝑤20 = 𝑦20 = 𝑦2(𝑥0) = 𝑦2(0) = −1.5

𝑤30 = 𝑦30 = 𝑦3(𝑥0) = 𝑦3(0) = −1.0

The problem is to find approximations 𝑤1𝑖 to 𝑦1𝑖 = 𝑦1(𝑥𝑖), 𝑤2𝑖 to 𝑦2𝑖 = 𝑦2(𝑥𝑖), and 𝑤3𝑖 to 𝑦3𝑖 = 𝑦3(𝑥𝑖), for 𝑖 =

1,2,⋯ , 10.

The Python program for the solution is as follows.

script_9.10: ode_system3.ipynb

1 from numpy import *
2
3 a = 0.0 # starting point of domain
4 b = 1.0 # ending point of domain
5 alpha1 = 2.5 # initial condition
6 alpha2 = –1.5
7 alpha3 = –1.0
8 m = 5 # number of steps
9

10 def f1(x, y1, y2, y3):
11 return y1 + 3 * y2 – 3 * y3 + exp(–x)

Numerical Solution of Ordinary Differential Equations (ODEs) 143

12
13 def f2(x, y1, y2, y3):
14 return 2 * y2 + y3 – 3 * exp(–x)
15
16 def f3(x, y1, y2, y3):
17 return y1 + 2 * y2 + exp(–x)
18
19 # Define the RK4 solver for the ODE system
20
21 def rk4system3(x, w1, w2, w3, h):
22 for i in range(1, m + 1):
23 k11 = h * f1(x[i–1], w1[i–1], w2[i–1], w3[i–1])
24 k21 = h * f2(x[i–1], w1[i–1], w2[i–1], w3[i–1])
25 k31 = h * f3(x[i–1], w1[i–1], w2[i–1], w3[i–1])
26
27 k12 = h * f1(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k11, w2[i–1] + 0.5 * k21,

w3[i-1] + 0.5 * k31)

28 k22 = h * f2(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k11, w2[i–1] + 0.5 * k21,

w3[i-1] + 0.5 * k31)

29 k32 = h * f3(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k11, w2[i–1] + 0.5 * k21,
 w3[i-1] + 0.5 * k31)

30
31 k13 = h * f1(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k12, w2[i–1] + 0.5 *

k22, w3[i–1] + 0.5 * k32)

32 k23 = h * f2(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k12, w2[iv1] + 0.5 * k22,
w3[i–1] + 0.5 * k32)

33 k33 = h * f3(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k12, w2[i–1] + 0.5 *
k22, w3[i–1] + 0.5 * k32)

34
35 k14 = h * f1(x[i–1] + h, w1[i–1] + k13, w2[i–1] + k23, w3[i–1] + k33)
36 k24 = h * f2(x[i–1] + h, w1[i–1] + k13, w2[i–1] + k23, w3[i–1] + k33)
37 k34 = h * f3(x[i–1] + h, w1[i–1] + k13, w2[i–1] + k23, w3[i–1] + k33)
38
39 w1[i] = w1[i–1] + (k11 + 2 * k12 + 2 * k13 + k14) / 6.0
40 w2[i] = w2[i–1] + (k21 + 2 * k22 + 2 * k23 + k24) / 6.0
41 w3[i] = w3[i–1] + (k31 + 2 * k32 + 2 * k33 + k34) / 6.0
42
43 h = (b – a) / m
44 x = linspace(a, b, m+1)
45 w1 = zeros(m+1)
46 w2 = zeros(m+1)
47 w3 = zeros(m+1)
48 w1[0] = alpha1 # setting initial condition
49 w2[0] = alpha2
50 w3[0] = alpha3
51
52 # Call the RK4 solver
53
54 rk4system3(x, w1, w2, w3, h)
55

144 Numerical Recipes in Python

56 # ----------------- Printing Solutions -----------------
57 print("Node x[i] w1[i] w2[i] w3[i]")
58 for i in range(0,m+1):
59 print(i,"\t","%.2f" %x[i],"\t","%.7f" %w1[i],"\t","%.7f" % w2[i],"\t","%.8f" % w3[i])

Output Console:

Node x[i] w1[i] w2[i] w3[i]

0 0.00 2.5000000 -1.5000000 -1.00000000

1 0.20 2.4526244 -3.1668789 -1.22125420

2 0.40 1.4332465 -5.6843198 -2.39814695

3 0.60 -0.7132915 -9.7983813 -5.20827423

4 0.80 -4.2612434 -16.8302490 -10.77417722

5 1.00 -9.7413880 -29.1043858 -21.00695957

Question 30: Write a Python program to find the numerical solution of the ODE, 𝑥𝑦′′ − 𝑦′ + 8𝑥3𝑦3 = 0 with

initial condition 𝑦(1) = 0.5 and 𝑦′(1) = −0.5 for 𝑦(1.1). Consider the step size of ℎ = 0.1, thus only step is

required. i.e., 𝑚 = 1. Use the exact solution, 𝑦 = 1 (1 + 𝑥2)⁄ , to find the error in the numerical solution.

For the solution, consider

𝑦′ = 𝑧

Then, the given ODE becomes

𝑧′ =
(𝑧 − 8𝑥3𝑦3)

𝑥

Thus, the second-order IVP is essentially converted to the problem of a first-order system of ODEs of

comprising the two equations subject to the initial conditions:

𝑤10 = 𝑦0 = 𝑦(𝑥0) = 𝑦(1) = 0.5

𝑤20 = 𝑧0 = 𝑧(𝑥0) = 𝑧(1) = −0.5

The problem is to find approximations 𝑤11 to 𝑦1 = 𝑦(𝑥1) and 𝑤21 to 𝑧1 = 𝑧(𝑥1).

The Python program for the solution is as follows.

script_9.11: ode_order2.ipynb

1 from numpy import *
2
3 a = 1.0 # starting point of domain
4 b = 1.1 # ending point of domain
5 alpha1 = 0.5 # initial condition
6 alpha2 = –0.5
7 m = 5 # number of steps
8

Numerical Solution of Ordinary Differential Equations (ODEs) 145

9 def f1(x, y1, y2):
10 return y2
11
12 def f2(x, y1, y2):
13 return (y2 - 8 * x * x * x * y1 * y1 * y1) / x
14
15 # Define the RK4 solver for the ODE system of two equations
16
17 def rk4system2(x, w1, w2, h):
18 for i in range(1, m + 1):
19 k11 = h * f1(x[i – 1], w1[i – 1], w2[i – 1])
20 k21 = h * f2(x[i –1], w1[i – 1], w2[i – 1])
21
22 k12 = h * f1(x[i – 1] + 0.5 * h, w1[i – 1] + 0.5 * k11, w2[i – 1] + 0.5 * k21)

23 k22 = h * f2(x[i – 1] + 0.5 * h, w1[i – 1] + 0.5 * k11, w2[i – 1] + 0.5 * k21)
24
25 k13 = h * f1(x[i – 1] + 0.5 * h, w1[i – 1] + 0.5 * k12, w2[i – 1] + 0.5 *

k22)

26 k23 = h * f2(x[i – 1] + 0.5 * h, w1[i – 1] + 0.5 * k12, w2[i – 1] + 0.5 *
k22)

27
28 k14 = h * f1(x[i – 1] + h, w1[i – 1] + k13, w2[i – 1] + k23)
29 k24 = h * f2(x[i – 1] + h, w1[i – 1] + k13, w2[i – 1] + k23)
30
31 w1[i] = w1[i – 1] + (k11 + 2 * k12 + 2 * k13 + k14) / 6.0
32 w2[i] = w2[i – 1] + (k21 + 2 * k22 + 2 * k23 + k24) / 6.0
33
34 h = (b – a) / m
35 x = zeros(m+1)
36 w1 = zeros(m+1)
37 w2 = zeros(m+1)
38 w1[0] = alpha1 # setting initial condition
39 w2[0] = alpha2
40
41 x[0] = a
42 x[m] = b
43
44 for i in range(1, m):
45 x[i] = x[i – 1] + h
46
48 # Call the RK4 solver
49
50 rk4system2(x, w1, w2, h)
51
52 # ----------------- Printing Solutions -----------------
53 print("Node x[i] w1[i] w2[i]")
54 for i in range(0,m+1):
55 print(i,"\t","%.2f" %x[i],"\t","%.7f" %w1[i],"\t","%.7f" % w2[i])

146 Numerical Recipes in Python

Output Console:

Node x[i] w1[i] w2[i]

0 1.00 0.5000000 -0.5000000

1 1.02 0.4897001 -0.5299800

2 1.04 0.4788016 -0.5598408

3 1.06 0.4673080 -0.5894651

4 1.08 0.4552253 -0.6187399

5 1.10 0.4425615 -0.6475576

∎

Question 31: Solve the ODE 𝑦′′′ = −𝑦′′ + 3𝑦′ + 3𝑦 for 𝑦 = 𝑦(𝑥) in 𝑥 ∈ [0,2] with the initial conditions:

𝑦(0) = 2.0, 𝑦′(0) = −1.0, and 𝑦′′(0) = 8.0. Solve it for 10 steps.

Given the equation,

𝑦′′′ = −𝑦′′ + 3𝑦′ + 3𝑦 − − −(1)

For 𝑦 = 𝑦(𝑥) in 𝑥 ∈ [0,2] with the initial conditions:

𝑦(0) = 2.0

𝑦′(0) = −1.0

𝑦′′(0) = 8.0

consider

𝑦′ = 𝑧1 − − −(2)

𝑦′′ = 𝑧1
′ = 𝑧2 −− −(3)

Then, the given third-order Eq. (1) becomes

𝑧2
′ = −𝑧2 + 3𝑧1 + 3𝑦 − − −(4)

Thus, the third-order IVP is essentially converted to the problem of a first-order system of ODEs of comprising

the three equations (2) - (4) subject to the initial conditions:

𝑦(0) = 2.0

𝑧1(0) = −1.0

𝑧2(0) = 8.0

For 10 steps, the domain is discretized as

ℎ =
𝑏 − 𝑎

𝑚
=

2.0 − 0.0

10
= 0.2

𝑥0 = 0, 𝑥1 = 0.2, 𝑥2 = 0.4, 𝑥3 = 0.6, 𝑥4 = 0.8, 𝑥5 = 1.0, 𝑥6 = 1.2, 𝑥7 = 1.4, 𝑥8 = 1.6, 𝑥9 = 1.8, 𝑥10 = 2.0.

According to the initial conditions:

𝑤10 = 𝑦0 = 𝑦(𝑥0) = 𝑦(0) = 2.0

Numerical Solution of Ordinary Differential Equations (ODEs) 147

𝑤20 = 𝑧10 = 𝑧1(𝑥0) = 𝑧1(0) = −1.0

𝑤30 = 𝑧20 = 𝑧2(𝑥0) = 𝑧2(0) = 8.0

The problem is to find approximations 𝑤1𝑖 to 𝑦𝑖 = 𝑦(𝑥𝑖), 𝑤2𝑖 to 𝑧1𝑖 = 𝑧1(𝑥𝑖), and 𝑤3𝑖 to 𝑧2𝑖 = 𝑧2(𝑥𝑖), for 𝑖 =

1,2,⋯ , 10.

The Python program for the solution is as follows.

script_9.12: ode_order3.ipynb

1 from numpy import *
2
3 a = 0.0 # starting point of domain
4 b = 2.0 # ending point of domain
5 alpha1 = 2.0 # initial condition
6 alpha2 = –1.0
7 alpha3 = 8.0
8 m = 5 # number of steps
9

10 def f1(x, y, z1, z2):
11 return z1
12
13 def f2(x, y, z1, z2):
14 return z2
15
16 def f3(x, y, z1, z2):
17 return –z2 + 3 * z1 + 3 * y
18
19 # Define the RK4 solver for the ODE system
20
21 def rk4system3(x, w1, w2, w3, h):
22 for i in range(1, m + 1):
23 k11 = h * f1(x[i–1], w1[i–1], w2[i–1], w3[i–1])
24 k21 = h * f2(x[i–1], w1[i–1], w2[i–1], w3[i–1])
25 k31 = h * f3(x[i–1], w1[i–1], w2[i–1], w3[i–1])
26
27 k12 = h * f1(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k11, w2[i–1] + 0.5 * k21,

w3[i-1] + 0.5 * k31)

28 k22 = h * f2(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k11, w2[i–1] + 0.5 * k21,
w3[i-1] + 0.5 * k31)

29 k32 = h * f3(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k11, w2[i–1] + 0.5 * k21,
 w3[i–1] + 0.5 * k31)

30
31 k13 = h * f1(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k12, w2[i–1] + 0.5 *

k22, w3[i–1] + 0.5 * k32)

32 k23 = h * f2(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k12, w2[i–1] + 0.5 *
k22, w3[i–1] + 0.5 * k32)

148 Numerical Recipes in Python

33 k33 = h * f3(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k12, w2[i–1] + 0.5 *
k22, w3[i–1] + 0.5 * k32)

34
35 k14 = h * f1(x[i–1] + h, w1[i–1] + k13, w2[i–1] + k23, w3[i–1] + k33)
36 k24 = h * f2(x[i–1] + h, w1[i–1] + k13, w2[i–1] + k23, w3[i–1] + k33)
37 k34 = h * f3(x[i–1] + h, w1[i–1] + k13, w2[i–1] + k23, w3[i–1] + k33)
38
39 w1[i] = w1[i–1] + (k11 + 2 * k12 + 2 * k13 + k14) / 6.0
40 w2[i] = w2[i–1] + (k21 + 2 * k22 + 2 * k23 + k24) / 6.0
41 w3[i] = w3[i–1] + (k31 + 2 * k32 + 2 * k33 + k34) / 6.0
42
43 h = (b – a) / m
44 x = linspace(a, b, m+1)
45 w1 = zeros(m+1)
46 w2 = zeros(m+1)
47 w3 = zeros(m+1)
48 w1[0] = alpha1 # setting initial condition
49 w2[0] = alpha2
50 w3[0] = alpha3
51
52 # Call the RK4 solver
53
54 rk4system3(x, w1, w2, w3, h)
55
56 # ----------------- Printing Solutions -----------------
57 print("Node x[i] w1[i] w2[i] w3[i]")
58 for i in range(0,m+1):
59 print(i,"\t","%.2f" %x[i],"\t","%.7f" %w1[i],"\t","%.7f" % w2[i],"\t","%.8f" % w3[i])

Output Console:

Node x[i] w1[i] w2[i] w3[i]

0 0.00 2.0000000 -1.0000000 8.00000000

1 0.40 2.2144000 2.0592000 7.98400000

2 0.80 3.7553715 5.9235814 12.16498688

3 1.20 7.3178564 12.5912247 22.55617331

4 1.60 14.6281541 25.4339096 44.28844810

5 2.00 29.2965237 50.8850897 88.16040310

∎

Question 32: Write down an algorithm (pseudo code) to solve a second-order linear ODE (BVP) with

Dirichlet boundary condition using the finite difference method of second-order accuracy. The algorithm

should follow the Gauss-Seidel approach to solve the linear system resulted after discretization of the model

equation.

Algorithm: To solve 𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′) = 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 + 𝑟(𝑥) , for 𝑎 ≤ 𝑥 ≤ 𝑏 subject to the Dirichlet

boundary conditions: 𝑦(𝑎) = 𝛼 and 𝑦(𝑏) = 𝛽 by approximating 𝑦 = 𝑦(𝑥) at (𝑚 + 2) equispaced nodes

Numerical Solution of Ordinary Differential Equations (ODEs) 149

𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚, 𝑥𝑚+1 , such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 < 𝑥𝑚+1 = 𝑏 , ℎ = (𝑏 − 𝑎)/𝑚 and 𝑦(𝑥𝑖) = 𝑦𝑖

using the finite difference method based on the central difference of second-order accuracy.

𝐈𝐍𝐏𝐔𝐓𝐒:

{

𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of interior nodes in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the boundary condition 𝑦(𝑎)

𝑏𝑒𝑒𝑡𝑎: a real value as the boundary condition 𝑦(𝑏)

𝑁: an integer as the maximum number of iterations
𝑇𝑂𝐿: a real value as the error tolerance
Definitions of the functions 𝑝(𝑥), 𝑞(𝑥), and 𝑟(𝑥) in an appropriate way

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑍 = [𝑧0, 𝑧1, ⋯ , 𝑧𝑚, 𝑧𝑚+1]

𝑇: a real valued vector as the approximate values of 𝑦(𝑥𝑖)
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚, 𝑥𝑚+1

Auxiliary Variables:

{

ℎ: a real value as the step length in 𝑥 direction: ℎ = (𝑏 − 𝑎)/(𝑚 + 1)

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚,𝑚 + 1: a real valued vector to represent 𝑥𝑖𝑠

𝑍𝑃 = [𝑧𝑝0, 𝑧𝑝1, ⋯ , 𝑧𝑝𝑚, 𝑧𝑝𝑚+1]
𝑇: a real valued vector to keep a copy of 𝑍

𝑒𝑟𝑟: a real number to hold the value of error norm in each iteration
𝐵 = [𝑏0, 𝑏1, ⋯ , 𝑏𝑚]

𝑇: a real valued vector to hold right hand side constants

𝐷 = [𝑑0, 𝑑1, ⋯ , 𝑑𝑚]
𝑇: a real valued vector to hold diagonal entries

𝑈 = [𝑢0, 𝑢1, ⋯ , 𝑢𝑚]
𝑇: a real valued vector to hold upper diagonal entries

𝐿 = [𝑙0, 𝑙1, ⋯ , 𝑙𝑚]
𝑇: a real valued vector to hold lower diagonal entries

Step 1 Receive the inputs as stated above

Step 2 Set ℎ = (𝑏 − 𝑎)/(𝑚 + 1)

Set 𝑥(0) = 𝑎
Set 𝑥(𝑚 + 1) = 𝑏

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ (Constructing interior mesh points, 𝑥𝑖)

 end for

Step 4 (Applying the boundary conditions)
 Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎
 Set 𝑤(𝑚 + 1) = 𝑏𝑒𝑒𝑡𝑎

Step 5 (Setting the initial conditions on interior nodes)
 for 𝑖 = 1, 2,⋯ ,𝑚

Set 𝑤(𝑖) = 0 (Constructing interior mesh points, 𝑥𝑖)

 end for

Step 6 for 𝑖 = 1, 2,⋯ ,𝑚

 Set 𝐵(𝑖) = −ℎ × ℎ × 𝑟(𝑥(𝑖)); end for

 for 𝑖 = 1, 2,⋯ ,𝑚

 Set 𝐷(𝑖) = 2 + ℎ × ℎ × 𝑞(𝑥(𝑖)) ; end for

150 Numerical Recipes in Python

 for 𝑖 = 1, 2,⋯ ,𝑚

 Set 𝑈(𝑖) = −1 + ℎ × 0.5 × 𝑝(𝑥(𝑖)) ; end for

 for 𝑖 = 1, 2,⋯ ,𝑚

 Set 𝐿(𝑖) = −1 − ℎ × 0.5 × 𝑝(𝑥(𝑖)) ; end for

Step 7 for 𝑘 = 1, 2, 3,⋯ ,𝑁 perform steps 8-11

 Step 8

 for 𝑖 = 1, 2,⋯ ,𝑚 Set 𝑍𝑃(𝑖) = 𝑊 (keeping a copy of 𝑍 in 𝑍𝑃 for taking the norm)

Step 9

 for 𝑖 = 1, 2,⋯ ,𝑚 (compute the components of solution vector 𝑍)

𝑤(𝑖) =
𝐵(𝑖) − 𝐿(𝑖) × 𝑤(𝑖 − 1) − 𝑈(𝑖) × 𝑤(𝑖 + 1)

𝐷(𝑖)

end for

Step 10 Compute 𝑒𝑟𝑟 = ‖𝑊 − 𝑍𝑃‖

 (or 𝑒𝑟𝑟 = ‖𝑋 − 𝑋𝑃‖/‖𝑋‖) Here ‖∙‖ is any suitable norm.

Step 11

if (𝑒𝑟𝑟 < 𝑇𝑂𝐿)then

Exit/Break the loop
}

This means that the consecutive
approximations are nearly the same
Therefore, stop iterations.

.

 end for loop of Step 7 (Go to Step 8)

Step 12 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]
𝑇 ; STOP.

Question 33: Write a Python program that uses a second-order accurate Finite Difference method to solve

the following boundary value problem:

𝑦′′ = 𝑦′ + 2𝑦 + cos(𝑥) , for 𝑦 = 𝑦(𝑥), where 0 ≤ 𝑥 ≤
𝜋

2

subject to the following Dirichlet boundary conditions: 𝑦(0) = −0.3 and 𝑦 (
𝜋

2
) = −0.1.

For domain discretization, take step sizes as ℎ = ∆𝑥 =
𝜋

8

To form the computational domain, the physical domain [0,
𝜋

2
] is discretized by considering that it consists of

a number of equispaced discrete points or nodes, 𝑥𝑖 , for 𝑖 = 0, 1, 2,⋯ ,𝑚 + 1. For the given problem,

Number of interior nodes = 𝑚 = 3

𝑝(𝑥) = 1

𝑞(𝑥) = 2

𝑟(𝑥) = cos(𝑥)

Numerical Solution of Ordinary Differential Equations (ODEs) 151

The target is to obtain the approximations 𝑤𝑖 to the function values 𝑦𝑖 = 𝑦(𝑥𝑖) at the interior nodes 𝑥𝑖 , for 𝑖 =

1, 2, 3. The values of the solution function are known at 𝑥0 and 𝑥4 due to Dirichlet boundary conditions:

𝑤0 = 𝑦(𝑥0) = −0.3

𝑤4 = 𝑦(𝑥4) = −0.1

A Python program that uses the Gauss-Seidel approach for the stated solution is as follows.

script_9.13:finite_difference_2nd.ipynb

1 from numpy import *
2
3 a = 0.0 # starting point of domain
4 b = pi / 2 # ending point of domain
5 alpha = –0.3
6 beta = –0.1
7 N = 200
8 m = 3 # number of steps
9 TOL = 1e-7

10
11 def p(x):
12 return 1.0
13
14 def q(x):
15 return 2.0
16
17 def r(x):
18 return cos(x)
19
20 # Define the efficient Gauss-Seidel method
21
22 def egs(z, B, D, U, L, h):
23 for k in range(1, N + 1):
24 zp = copy(z)
25
26 for i in range(1, m + 1):
27 z[i] = (B[i] – L[i] * z[i – 1] – U[i] * z[i + 1]) / D[i]
28 print(f"{k:4}: z= {z[0]:.2f} ", end=" ")
29
30 for i in range(1, m + 1):
31 print(f"{z[i]:.8f} ", end=" ")
32 print(f"{z[m+1]:.2f} ")
33
34 err = sqrt(sum((z[1:m+1] – zp[1:m+1])**2 / z[1:m+1]**2))
35
36 if err < TOL:
37 break
38
39 h = (b – a) / (m+1)

152 Numerical Recipes in Python

40 x = linspace(a, b, m+2)
41 z = zeros(m + 2)
42 zp = zeros(m + 2)
43 B = zeros(m + 1)
44 D = zeros(m + 1)
45 U = zeros(m + 1)
46 L = zeros(m + 1)
47 x[0] = a
48 x[m+1] = b
49
50 for i in range(1, m + 1):
51 x[i] = x[i – 1] + h

 print(f"\tnodes {x[i]:.8f}")
52
53 z[0] = alpha
54 z[m+1] = beta
55
56 for i in range(1, m + 1):
57 B[i] = –h**2 * r(x[i])
58
59 for i in range(1, m + 1):
60 D[i] = 2 + h**2 * q(x[i])
61
62 for i in range(1, m + 1):
63 U[i] = –1.0 + 0.5 * h * p(x[i])
64
65 for i in range(1, m + 1):
66 L[i] = –1.0 - 0.5 * h * p(x[i])
67
68 # ----------------- Printing Solutions -----------------
69 print(f"{0:4}: z= {z[0]:.2f} ", end=" ")
70 for i in range(1, m + 1):
71 print(f"{z[i]:.2f} ", end=" ")
72 print(f"{z[m+1]:.2f} ")
73
74 # Call theGauss seidel function
75
76 egs(z, B, D, U, L, h)

Output Console:

nodes 0.39269908

nodes 0.78539816

nodes 1.17809725

 0: z= -0.30 0.00 0.00 0.00 -0.10

 1: z= -0.30 -0.21719513 -0.15979987 -0.14319552 -0.10

 2: z= -0.30 -0.27282754 -0.23848337 -0.18397352 -0.10

 3: z= -0.30 -0.30022025 -0.26687611 -0.19868816 -0.10

 4: z= -0.30 -0.31010484 -0.27712156 -0.20399790 -0.10

Numerical Solution of Ordinary Differential Equations (ODEs) 153

 5: z= -0.30 -0.31367167 -0.28081860 -0.20591391 -0.10

 6: z= -0.30 -0.31495875 -0.28215267 -0.20660530 -0.10

 7: z= -0.30 -0.31542319 -0.28263407 -0.20685478 -0.10

 8: z= -0.30 -0.31559078 -0.28280778 -0.20694481 -0.10

 9: z= -0.30 -0.31565126 -0.28287046 -0.20697729 -0.10

 10: z= -0.30 -0.31567308 -0.28289308 -0.20698902 -0.10

 11: z= -0.30 -0.31568095 -0.28290124 -0.20699325 -0.10

 12: z= -0.30 -0.31568380 -0.28290419 -0.20699477 -0.10

 13: z= -0.30 -0.31568482 -0.28290525 -0.20699532 -0.10

 14: z= -0.30 -0.31568519 -0.28290563 -0.20699552 -0.10

 15: z= -0.30 -0.31568532 -0.28290577 -0.20699559 -0.10

 16: z= -0.30 -0.31568537 -0.28290582 -0.20699562 -0.10

 17: z= -0.30 -0.31568539 -0.28290584 -0.20699563 -0.10

Chapter Summary

• The numerical solution of an ODE is not a definition of 𝑦 = 𝑦(𝑥). The numerical solution of

the ODE is a set of numbers 𝑤𝑖 that are approximations to the function values 𝑦(𝑥𝑖) at

some pre-specified discrete values 𝑥𝑖 ∈ [𝑎, 𝑏]. That is, 𝑤𝑖 ≅ 𝑦𝑖 = 𝑦(𝑥𝑖).

• To solve an initial-value problem consisting of a single first-order ODE in 𝑦 = 𝑦(𝑥) for 𝑎 ≤

𝑥 ≤ 𝑏 and an initial-value 𝑦(𝑎) = 𝛼 , first the domain [𝑎, 𝑏] is discretized by selecting

(𝑚 + 1) equispaced nodes 𝑥0 , 𝑥1 , 𝑥2 , ⋯ , 𝑥𝑚 in [𝑎, 𝑏] such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ <

𝑥𝑚 = 𝑏 , and ℎ = (𝑏 − 𝑎)/𝑚 . Then, approximations 𝑤𝑖 to the values 𝑦𝑖 = 𝑦(𝑥𝑖) for 𝑖 =

1,2,⋯ ,𝑚 are obtained with 𝑤0=𝑦(𝑎). For simplicity, 𝑦(𝑥𝑖) is denoted by 𝑦𝑖 .

• There is a wide variety of methods for finding numerical solutions of the ODEs involved in

initial value problems (IVPs) and boundary value problems (BVPs).

• Methods for IVPs include single step methods and multi-step methods, each category

having explicit and implicit methods. A hybrid method, i.e., predictor-corrector method,

involves a combination of explicit and implicit formulas.

• Methods for BVPs are so versatile and involve much richer mathematical constructs.

• The accuracy of the approximate solution can be improved either by using a larger number

of steps (a smaller step size), or by using a better numerical method.

• The prime characteristics (or considerations) associated with a finite difference scheme to

determine its quality include

154 Numerical Recipes in Python

➢ Stability

➢ Local Truncation Error

➢ Consistency (Compatibility)

➢ Discretization Error

➢ Convergence

∎∎∎

Chapter Exercises

Exercise 01: Find the numerical solution of the ODE, 𝑦′ = 3 − 3𝑦 − 𝑒−6𝑥, for 0 ≤ 𝑥 ≤ 2, with initial condition

𝑦(0) = 1.0. Consider the step size of 0.5. Use the exact solution, 𝑦(𝑥) =
1

3
(𝑒−6𝑥 − 𝑒−3𝑥 + 3), to find the error

in the numerical solution.

Exercise 02: Find the numerical solution of the ODE, 𝑦′ = 1 + (𝑥 − 𝑦)2, for 2 ≤ 𝑥 ≤ 3, with initial condition

𝑦(2) = 1.0. Consider the step size of 0.5. Use the exact solution, 𝑦(𝑥) = 𝑥 + 1 (1 − 𝑥)⁄ , to find the error in the

numerical solution.

Exercise 03: Find the numerical solution of the ODE, 𝑦′ = 2 + (𝑥 − 𝑦)2, for 2 ≤ 𝑥 ≤ 3, with initial condition

𝑦(2) = 1.5. Consider the step size of 0.5. Use the exact solution, 𝑦(𝑥) = 𝑥 − tan(−𝑥 + 2.463), to find the

Exercise 04: Find the numerical solution of the ODE, 𝑦′ = (1 + 𝑥) (1 + 𝑦)⁄ , for 0 ≤ 𝑥 ≤ 1 , with initial

condition 𝑦(0) = 2.0. Consider the step size of 0.5. Use the exact solution, 𝑦(𝑥) = √𝑥2 + 2𝑥 + 9 − 1, to find

the error in the numerical solution.

Exercise 05: For the functions 𝑦1 = 𝑦1(𝑥) and 𝑦2 = 𝑦2(𝑥), where 𝑥 ∈ [0,1], solve the following system of two

ODEs:

𝑦1
′ = 𝑦1𝑦2 − 2

𝑦2
′ = 2𝑦1 − 𝑦2

3

With initial conditions:

𝑦1(0) = 2.0

𝑦2(0) = 0.3

Use the RK4 method of order 4 for 5 steps.

Numerical Solution of Ordinary Differential Equations (ODEs) 155

HINT: For 5 steps the domain is discretized as

ℎ =
𝑏 − 𝑎

𝑚
=

1.0 − 0.0

5
= 0.2

𝑥0 = 0, 𝑥1 = 0.2, 𝑥2 = 0.4, 𝑥3 = 0.6, 𝑥4 = 0.8, 𝑥5 = 1.0.

According to the initial conditions:

𝑤10 = 𝑦10 = 𝑦1(𝑥0) = 𝑦1(0) = 2.0

𝑤20 = 𝑦20 = 𝑦2(𝑥0) = 𝑦2(0) = 0.3

The problem is to find approximations 𝑤1𝑖 to 𝑦1𝑖 = 𝑦1(𝑥𝑖) and 𝑤2𝑖 to 𝑦2𝑖 = 𝑦2(𝑥𝑖), for 𝑖 = 1,2,3,4,5.

Exercise 06: For the functions 𝑦1 = 𝑦1(𝑥), 𝑦2 = 𝑦2(𝑥), and 𝑦3 = 𝑦3(𝑥), where 𝑥 ∈ [0,1], solve the following

system of three ODEs:

𝑦1
′ = 𝑦1 + 3𝑦2 − 3𝑦3 + 𝑒

−𝑥

𝑦2
′ = 2𝑦2 + 𝑦3 − 3𝑒

−𝑥

𝑦3
′ = 𝑦1 + 2𝑦2 + 𝑒

−𝑥

with initial conditions:

𝑦1(0) = 2.5

𝑦2(0) = −1.5

𝑦3(0) = −1.0

Use the RK4 method of order 4 for 10 steps.

HINT: For 10 steps, the domain is discretized as

ℎ =
𝑏 − 𝑎

𝑚
=

1.0 − 0.0

10
= 0.1

𝑥0 = 0, 𝑥1 = 0.1, 𝑥2 = 0.2, 𝑥3 = 0.3, 𝑥4 = 0.4, 𝑥5 = 0.5, 𝑥6 = 0.6, 𝑥7 = 0.7, 𝑥8 = 0.8, 𝑥9 = 0.9, 𝑥10 = 1.0.

According to the initial conditions:

𝑤10 = 𝑦10 = 𝑦1(𝑥0) = 𝑦1(0) = 2.5

𝑤20 = 𝑦20 = 𝑦2(𝑥0) = 𝑦2(0) = −1.5

𝑤30 = 𝑦30 = 𝑦3(𝑥0) = 𝑦3(0) = −1.0

The problem is to find approximations 𝑤1𝑖 to 𝑦1𝑖 = 𝑦1(𝑥𝑖), 𝑤2𝑖 to 𝑦2𝑖 = 𝑦2(𝑥𝑖), and 𝑤3𝑖 to 𝑦3𝑖 = 𝑦3(𝑥𝑖), for 𝑖 =

1,2,⋯ , 10.

Exercise 07: Find the numerical solution of the IVP, 𝑦′′ − 8𝑦′ + 7𝑦 = 16𝑒−𝑥 for 0 ≤ 𝑥 ≤ 1 , with initial

condition 𝑦(0) = 4.0 and 𝑦′(0) = 4.0. Also find 𝑦(1.1). Consider the step size of 0.1. Use the exact solution,

𝑦 = (1 3⁄)(𝑒7𝑥 + 8𝑒𝑥 + 3𝑒−𝑥), to find the error in the numerical solution.

HINT: Given the equation,

𝑦′′ − 8𝑦′ + 7𝑦 = 16𝑒−𝑥 − − −(1)

156 Numerical Recipes in Python

For the solution, consider

𝑦′ = 𝑧 − − −(2)

Then, the given second-order Eq. (1) becomes

𝑧′ = 4𝑧 − 3𝑦 + 7𝑒−𝑥 − − −(3)

Thus, the second-order IVP is essentially converted to the problem of a first-order system of ODEs of

comprising the two equations (2) and (3) subject to the initial conditions:

𝑦(0) = 3.0

𝑧(0) = 3.0

For 10 steps, the domain is discretized as

ℎ =
𝑏 − 𝑎

𝑚
=

1.0 − 0.0

10
= 0.1

𝑥0 = 0, 𝑥1 = 0.1, 𝑥2 = 0.2, 𝑥3 = 0.3, 𝑥4 = 0.4, 𝑥5 = 0.5, 𝑥6 = 0.6, 𝑥7 = 0.7, 𝑥8 = 0.8, 𝑥9 = 0.9, 𝑥10 = 1.0.

According to the initial conditions:

𝑤10 = 𝑦0 = 𝑦(𝑥0) = 𝑦(0) = 3.0

𝑤20 = 𝑧0 = 𝑧(𝑥0) = 𝑧(0) = 3.0

The problem is to find approximations 𝑤1𝑖 to 𝑦𝑖 = 𝑦𝑖(𝑥𝑖) and 𝑤2𝑖 to 𝑧𝑖 = 𝑧(𝑥𝑖), for 𝑖 = 1,2,⋯ , 10.

Exercise 08: Solve the ODE 𝑦′′ = 4𝑦′ − 3𝑦 + 7𝑒−𝑥 for 𝑦 = 𝑦(𝑥) in 𝑥 ∈ [0,1] with the initial conditions: 𝑦(0) =

3.0 and 𝑦′(0) = 3.0. Solve it for 10 steps.

Exercise 09: Find the numerical solution of the BVP, 𝑦′′ − 9𝑦′ + 𝑦 = 𝑥 for 0 ≤ 𝑥 ≤ 1, with initial condition

𝑦(0) = 0.0 and 𝑦′(1) = 6.0. Consider the step size of 0.1.

Exercise 10: Find the numerical solution of the ODE, 𝑥2𝑦′′ + 3𝑥𝑦′ + 3𝑦 = 0, with initial condition 𝑦(1) = 1

and 𝑦′(1) = −5 for 𝑦(1.1). The exact solution is, 𝑦 =
1

𝑥
(cos(√2 ln 𝑥) + (

1

𝑥2
− 5) sin(√2 ln 𝑥)).

Exercise 11: Find the numerical solution of the ODE, 𝑦′′ − 6𝑦′ + 9𝑦 = 𝑥2𝑒3𝑥 , with initial condition 𝑦(0) = 2

and 𝑦′(0) = 6 for 𝑦(1.1). The exact solution is, 𝑦 = 2𝑒3𝑥 +
1

12
𝑥4𝑒3𝑥 .

Exercise 12: Solve the ODE 𝑦′′′ = −𝑦′′ + 3𝑦′ + 3𝑦 for 𝑦 = 𝑦(𝑥) in 𝑥 ∈ [0,2] with the initial conditions:

𝑦(0) = 2.0, 𝑦′(0) = −1.0, and 𝑦′′(0) = 8.0. Solve it for 10 steps.

Exercise 13: Using a second-order accurate Finite Difference method, solve the following BVP:

𝑦′′ = 9𝑦′ − 𝑦 + 𝑥, for 𝑦 = 𝑦(𝑥), where 0 ≤ 𝑥 ≤ 1

subject to the following Dirichlet boundary conditions: 𝑦(0) = 0 and 𝑦(1) = 6.

For domain discretization, take step sizes as ℎ = ∆𝑥 = 0.25.

Exercise 14: Using a second-order accurate Finite Difference method, solve the following BVP:

𝑦′′ = −5𝑦′ − 8𝑦 + 𝑥2, for 𝑦 = 𝑦(𝑥), where 1 ≤ 𝑥 ≤ 2

subject to the following Dirichlet boundary conditions: 𝑦(1) = 0 and 𝑦(2) = 24. For domain discretization,

take step sizes as ℎ = ∆𝑥 = 0.25.

∎∎∎

157

Chapter 10

Introduction to SciPy

SciPy (Scientific Python) is an open-source library in Python that is used for solving mathematical,

scientific, engineering, and technical problems. It allows users to manipulate the data and visualize

the data using a wide range of high-level Python commands. SciPy stands for scientific Python and

it is built on the Python NumPy extension. It contains varieties of sub-packages that help to solve

the most common issue related to scientific computing. Though NumPy provides a number of

functions that can help to resolve linear algebra, Fourier transforms, integration, etc., the SciPy

module in Python is a fully-featured version of these functions and many more. Most data science

features are available in SciPy rather than NumPy. The SciPy library supports integration, gradient

optimization, special functions, ordinary differential equation solvers, parallel programming tools,

and many more. We can say that SciPy implementation exists in every complex numerical

computation.

Following are some useful sub-packages of SciPy.

scipy.io for File I/O

This SciPy sub-package contains modules, classes and functions to read data from and write data

to various file formats sch as MATLAB files, unformatted Fortran files wave sound files, etc.

import numpy as np

from scipy import io as sio

array = np.ones((2,2))

#store data in example.mat file

sio.savemat("example.mat", { "ar" : array})

#get data from example.mat file

data = sio.loadmat("example.mat")

Preliminary Concepts in Numerical Analysis 158

data["ar"]

Output:

array([1., 1.] , [1. , 1.]])

scipy.special for Special Functions

SciPy special functions include Cubic Root, Exponential, Log sum Exponential, Permutation and

Combination, Lambert, Bessel, Hypergeometric functions, etc.

Cube Root Function

from scipy.special import cbrt

cb = cbrt(27)

print(cb)

Output:

3.0

Exponential Function

from scipy.special import exp10

exp = exp10([1,10])

print(exp)

Output:

[1.e+01 1.e+10]

Permutations and Combinations

from scipy.special import comb

from scipy.special import perm

com = comb(5,3)

159 Numerical Recipes in Python

per = perm(5,3)

print("Combination = " , com)

print("permutation =" , per)

Output:

Combination = 10.0

Permutation = 60.0

 Bessel Function

import scipy.special as special

import matplotlib.pyplot as plt

import numpy as np

x = np.linspace(1,50,10,0)

jn1 = special.jn(2,x)

plt.title("Bessel function first kind order")

plt.plot(x,jn1)

Output:

Preliminary Concepts in Numerical Analysis 160

scipy.linalg for Linear Algebra

It includes the basic functions to find the inverse, determinant of a matrix and to solve Eigenvalue

problems, Decompositions, Matrix functions, etc.

Finding the inverse and determinant

import numpy as np

from scipy import linalg

A = np.array([[5,2] , [3,6]])

B = linalg.inv(A)

C = linalg.det("determinant = " , A)

Print(B)

Print(C)

Output:

[[0.25 -0.08333333]

 [-0.125 0.20833333]]

Determinant = 24.0

Eigenvalues and Eigenvector

import numpy as np

from scipy import linalg

A = np.array([[5,2] , [3,6]])

Eg_val , Eg_vect = linalg.eig(A)

print("Eigen value = " , Eg_val)

print("Eigen vector = " , Eg_vect)

Output:

Eigen value = [3.+0.j 8.+0.j]

Eigen vector = [[-0.7071067 -0.554700]

 [0.70710678 -0.83205029]]

161 Numerical Recipes in Python

scipy.interpolate for Interpolation

It includes spline functions and classes 1-D and multidimensional interpolation classes, Lagrange

and Taylor polynomial interpolators.

import numpy as np

from scipy import interpolate

import matplotlib.pyplot as plt

x = np.linspace(0,5,10)

y = np.cos(x**2/3+5)

plt.scatter(x,y, c = 'r')

plt .show()

Output:

scipy.integrate for Numerical Integration

It includes functions to solve single integration, double, triple, multiple Gaussian quadrate,

Trapezoidal, and Simpson’s rules.

Single Integration

from scipy import integrate

Preliminary Concepts in Numerical Analysis 162

f = lambda x: x**3

a = 0

b = 1

integration = integrate.quad(f,0,1)

print(integration)

Output:

(0.25, 2.7755575615628914e-15)

Double Integration

from scipy import integrate

from math import sqrt

f = lambda x , y : 64*x*y

#lower limit of second integral

p = lambda x: 0

#upper limit of first integral

q = lambda y : sqrt(1 – 2*y**2)

#double integration

integration = integrate.dblquad(f,0,2/4,p,q)

print(integration)

Output:

(3.0, 9.657432734515774e-14)

scipy.optimize for Optimization

It provides a function for minimizing and maximizing objective functions. It also solvers for non-

linear problems, linear programming, root findings, and curve fitting.

from scipy import optimize

import matplotlib.pyplot as plt

163 Numerical Recipes in Python

import numpy as np

def f(x):

 return -np.sin(x)

x = np.linspace(0,5,10,0)

start = 3

optimize.fmin(f,start)

plt.plot(x , f(x))

plt.scatter(optimized, f(optimized))

plt.legend(['Function -sin(x) ' , 'Starting point' , 'Optimized

minimum'])

Output:

scipy.stats for Statistical functions

This sub-module of SciPy is having a large number of probability distributions and a growing

library of statistical functions.

Uniform Distribution

from scipy.stats import uniform

Preliminary Concepts in Numerical Analysis 164

a = np.array([8,7,5,3,2])

print(uniform.cdf(a, loc = 5 , scale = 3))

Output:

[1. 0.66666667 0. 0. 0.]

∎∎∎

165

Bibliography

1. Richard L. Burden & J. Douglas Faires, (2011), Numerical Analysis, (9th Edition), USA,

Brooks/Cole Pub. Co.

2. Steven C. Chapra & Raymond P. Canale, (2006), Numerical Methods for Engineers, (5th

Edition), NY, USA, McGraw-Hill Co.

3. David R. Kincaid & E. Ward Cheney, (2002), Numerical Analysis: Mathematics of Scientific

Computing, (3rd Edition), USA, Brooks/Cole Pub. Co.

4. E. Ward Cheney & David R. Kincaid, (2013), Numerical Mathematics and Computing, (7th

Edition), New-Delhi India, Cengage Learning India Pvt. Ltd.

5. Brian Bradie, (2005), A Friendly Introduction to Numerical Analysis, Pearson.

6. John H. Mathews & Kurtis D. Fink, (2015), Numerical Methods using MATLAB, (4th Edition),

India, Pearson India Education Services Pvt. Ltd.

7. M. K. Jain, S. R. K. Iyengar & R. K. Jain, (2012), Numerical Methods for Scientific and

Engineering Computation, (6th Edition), New-Delhi India, New Age International Pvt. Ltd.

8. George R. Lindfield & John E. T. Penny, (2013), Numerical Methods using MATLAB, (3rd

Edition), USA, Academic Press, An imprint of Elsevier.

9. Amos Gillat, (2011), MATLAB: An Introduction with Applications, (4th Edition), USA, John

Wiley & Sons, Inc.

10. Laurene V. Fausett, (2009), Applied Numerical Analysis using MATLAB, (2nd Edition), India,

PEARSON Education Inc.

11. Babu ram, (2010), Numerical Methods, India, PEARSON Education Inc.

12. Francis Schied, (1990), 2000 Solved Problems in Numerical Analysis, (International

Edition), NY, USA, McGraw-Hill Co.

13. P. Siva Ramakrishna Das & C. Vijayakumari, (2004), Numerical Analysis, (1st Edition), India,

Dorling Kindersley Pvt. Ltd.

14. Saeed Akhtar Bhatti & Naveed Akhtar Bhatti, (2008), A First Course in Numerical Analysis

with C++, (5th Edition), Lahore, Pakistan, A-ONE Publishers.

166

15. Mohammad Iqbal, (1990), An Introduction to Numerical Analysis, Urdu Bazar Lahore,

Pakistan, Ilmi Kitab Khana.

16. Fiaz Ahmad & Muhammad Afzal Rana, (1995), Elements of Numerical Analysis, Islamabad,

Pakistan, National Book Foundation

17. Amjad Pervez, (1996), An Introduction to Numerical Analysis, Urdu Bazar Lahore,
Pakistan, A.H. Publishers.

18. Germund Dahlquist & Ake Björck, (2003), Numerical Methods, New Jersey, USA, Prentice-
Hall Inc.

19. Erwin Kreyszig, (2011), Advanced Engineering Mathematics, (10th Edition), USA, John

Wiley & Sons, Inc.

20. S. S. Sastry, (2019), Introductory Methods of Numerical Analysis, (Fifth Edition), PHI

Learning Private Limited.

21. Curtis F. Gerald & Patrick O. Wheatley, (2003), Applied Numerical Analysis, (7th Edition),

India, PEARSON Education Inc.

22. K. Sankara Rao, (2009), Numerical Methods for Scientists and Engineers, (Third Edition),

PHI Learning Private Limited.

23. Lal Din Baig, (2014), Numerical Analysis, Ilmi Kitab Khana, Lahore.

	Python4_0_Front.pdf
	Python4_1_Preface.pdf
	Python4_2_Chapter1NumericalPreliminaries.pdf
	Python4_3_Chapter2RootFinding.pdf
	Python4_4_Chapter3Interpolation.pdf
	Python4_5_Chapter4Integration.pdf
	Python4_6_Chapter5Differentiation.pdf
	Python4_7_Chapter6DirectLinearSolvers.pdf
	Python4_8_Chapter7IterativeLinearSolvers.pdf
	Python4_9_Chapter8EigenValuesandEigenVectors.pdf
	Python4_10_Chapter9NSODEs.pdf
	Python4_11_Chapter10IntroductiontoSciPy.pdf
	Python4_12_Bibliography.pdf

