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Chapter 1 

Preliminary Concepts  

in Numerical Analysis  

1.1     Introduction 

1.2     Number Systems and Representations 

1.3     The Round-off Error 

1.4     The Truncation Error 

 

To unleash the topics of this chapter, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

Computing Resources 

The numerical methods are devised just to be used on computers. It makes no sense to study a 
numerical method without considering its practicality using some computing tools. A variety of 
numerical computing tools, both freeware and proprietary, are available. The students are advised to 
understand the algorithmic (step-by-step) style of the numerical methods they learn. This book suggests 
the following resources for beginners. 

(1) C++: The numerical methods can be programmed in any programming language, especially 
C++, FORTRAN, and Python. The book discusses a wide variety of C++ programs of the 
numerical methods in this book. One can modify the as per need. Several C++ IDEs (Integrated 
Development Environments) are available, such as Dev-C++, and Code::Blocks for Windows 
and GNU-C++ for Linux operating system. One can even find C++ Apps (apps is an acronym for 
computer application software) for Android or iOS devices. Some online C++ IDEs are also 
available, which can be used for executing C++ programs without installing them. 

http://www.timerenders.com.pk/


Preliminary Concepts in Numerical Analysis 2 

 

(2) Python: There are several free Python IDEs available for the Desktop use (such as Spyder, 
Jupyter, and PyCharm) or On-line use (such as Google Colab). It is quite a pertinent skill of the 
day that the students of computational sciences are familiar with programming in Python. The 
companion website of this book (www.timerender.com.pk) shares a Python Library having a 
variety of codes for the numerical methods discussed in this book. 

(3) MATLAB®: It is a proprietary software, by The MathWorks, Inc., available in both Desktop and 
Online versions. MATLAB® offers a wide variety of built-in functions and programming 
capabilities for mathematical computations (both symbolic and numeric, although more 
suitable and expert for numeric computations), for all modern areas of science and 
engineering. The book discusses a wide variety of MATLAB® programs and MATLAB® built-in 
functions for the numerical methods in this book. 

(4) GNU-Octave: It is an open-source (and freeware) version of MATLAB®, available in both 
Desktop and Online versions. Most of the MATLAB® codes and built-in functions discussed in 
this book can be executed in GNU-Octave and Octave-online. 

(5) MATHEMATICA®: It is a proprietary software by Wolfram Research. It is one of the best 
Computer Algebra Systems (CAS) available. It offers an extensive variety of built-in functions 
and programming capabilities for mathematical computations (both symbolic and numeric), 
for all modern areas of science and engineering. 

(6) MAPLE®: It is a proprietary software by Maplesoft for mathematical computations (both 
symbolic and numeric), for all modern areas of science and engineering. It is also one of the 
best Computer Algebra Systems (CAS). 

(7) Spread-Sheet: A spread-sheet software (such as Excel by Microsoft®) can be used for 
computations involved in simple numerical methods. The companion website of this book 
(www.timerender.com.pk) may shares a spread-sheet workbook having a variety of sheets for 
most of the numerical methods discussed in this book. 

(8) Various Math Solver Tools: Wolfram|Alpha, Symbolab, and Microsoft® Math Solver are three 
of the advanced tools for math education to be used as calculators. These are extensive, 
feature-rich, online tools, accessible both through the web browser and the relevant 
android/iOS apps. These tools provide automated step by step solutions to algebra and 
calculus problems covering from middle school through college. The premier versions of these 
tools are freely available, whereas professional (pro) versions are not free. 

(9) Various Other Online Tools/Websites: There are various other online tools and websites that 
offer basic computing facilities for numerical and symbolic computations. Examples include: 

• AtoZmath.com [https://atozmath.com/] 

• CalculatorSoup® [https://www.calculatorsoup.com/]. 

• Keisan - CASIO®  [https://keisan.casio.com/] 

∎∎∎ 
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Question 06:  What are the significant figures (or significant digits) of an approximate number? 

Significant figures of a number (that approximates a true value) are the digits that are used to 

express the number meaningfully. The significant figures are counted for a number that 

approximates some other number to express the degree of precision in the approximate number. 

The significant figures begin with the leftmost nonzero digit and end with the rightmost correct 

digit. The rightmost zeros, which are exact, are also significant. That is, 

• All the nonzero digits (i. e. , 1, 2, 3, ⋯ ,9) are significant. 

• Zeroes appearing anywhere between two nonzero digits are significant (e.g., in 

3005.00102 there are nine significant digits). 

• Leading zeros (i.e., left to the first nonzero digit) are not significant (e.g., the number 

0.000081 has only two significant digits, namely 8 and 1). The leading zeros are used to fix 

the decimal place.  

• Trailing zeroes are significant if they are exact with regard to some true value. Trailing 

zeros may or may not be significant. It depends on the context; how the number is 

approximated or obtained by rounding-off some other number. 

∎ 

Remark: The significant figures of a number can easily be identified by using its normalized 

scientific notation. The digits in the fractional part (or mantissa) are regarded as significant figures. 

For example, each of the numbers 42.134, 6.0013, and 0.0015784 has five significant figures, which 

can be identified easily by converting these numbers into their normalized scientific notation as: 

42.134 = 0.42134 × 102

6.0013 = 0.60013 × 10
0.0015784 = 0.15784 × 10−2

 

∎ 

Remarks: For the following, set the rounding rule (like MS Excel and Python) that “to round a 

number to 𝑘 decimal places, if the (𝑘 + 1)th digit is 5 or greater than 5, then add 1 to the 𝑘th digit.” 

• 6500 has 2 significant figures (i.e., the digits 6 and 5) if it has been obtained by rounding-off a 

number to the nearest 100 (e.g., by rounding-off the numbers 6497 or 6543.88 to the nearest 

hundred). In fact, any number in the interval [6450, 6550) gives 6500, when rounded to the 

nearest 100. 

• 6500 has 3 significant figures (i.e., the digits 6, 5, and the following 0) if it has been obtained 

by rounding-off a number to the nearest 10 (e.g., by rounding-off the numbers 6497 or 6504.99 

to the nearest ten). In fact, any number in the interval [6495, 6505) gives 6500, when rounded 

to the nearest 10. 
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• 6500 has 4 significant figures if it has been obtained by rounding-off a number to the nearest 

whole number (e.g., by rounding-off the numbers 6499.8 or 6500.47 to the nearest whole 

number). In fact, any number in the interval [6499.5, 6500.5) gives 6500, when rounded to the 

nearest whole number. 

• 70500 has at least 3 significant figures (i.e., the digits 7, 5, and the 0 in between 7 and 5). 

Depending upon the context, as just explained, it may have 3 to 5 significant figures. 

• 0.00364300 has 4 significant figures (i.e., the digits 3, 6, 4, and 3) if it has been obtained by 

rounding-off a number to 4 significant figures (e.g., by rounding-off the numbers 0.003642859 

or 0.0036432099 to 4 significant figures). Usually, in that case, the approximate number is 

written as 0.003643, without any non-significant trailing zero. In fact, any number in the 

interval [0.0036425,0.0036435) gives 0.003643, when rounded to 4 significant figures. 

• 0.00364300 has 5 significant figures (i.e., the digits 3, 6, 4, 3, and the following 0) if it has been 

obtained by rounding-off a number to 5 significant figures (e.g., by rounding-off the numbers 

0.003642978001 or 0.003643049 to 5 significant figures). Usually, in that case, the 

approximate number is written as 0.0036430, without any non-significant trailing zero. In fact, 

any number in the interval [0.00364295,0.00364305) gives 0.0036430, when rounded to 5 s.f. 

• 0.00364300 has 6 significant figures (i.e., the digits 3, 6, 4, 3, and the following two 0s) if it has 

been obtained by rounding-off a number to 6 significant figures (e.g., by rounding-off the 

numbers 0.003642998001 or 0.003643001 to 6 significant figures). In fact, any number in the 

interval [0.003642995,0.003643005) gives 0.00364300, when rounded to 6 significant 

figures. 

∎ 

Remark:  

An approximation 𝑥∗ to a number 𝑥 is called accurate to 𝑡 significant figures if there are exactly 𝑡 

digits in the mantissa of 𝑥∗ that agree with the first 𝑡 digits of the mantissa of 𝑥, where 𝑥 has the 

same exponent as 𝑥∗. Suppose that the number 𝑥 is represented in the following form 

 𝑥 = ±0. 𝑑1𝑑2𝑑3 ⋯ 𝑑𝑡𝑑𝑡+1 ⋯ × 10𝑒  

Then, the number 𝑥∗ is accurate to 𝑡 significant figures to the number 𝑥 if it can be written in the 

following form 

𝑥∗ = ±0. 𝑑1𝑑2𝑑3 ⋯ 𝑑𝑡𝑑𝑡+1
′ ⋯ × 10𝑒  

∎ 
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Fig. (1.3): According to the IEEE 754 standard, single-precision floating point representation of a 
binary real number 𝑥 = ±1. b2b3b4 ⋯ × 2e is (1 − 2s) × 2c−127 × (1 + f). 

 

Fig. (1.4): According to the IEEE 754 standard, double-precision floating point representation of a 
binary real number x = ±1. b2b3b4 ⋯ × 2e is (1 − 2s) × 2c−1023 × (1 + f). 

Here, 𝑠 is used for the sign of the number (0 means positive, 1 means negative). 𝑐 in the exponent 

is called the biased exponent. 𝑓 is the mantissa minus 1 (the hidden bit). 

 

 

Fig. (1.5): Overflow/Underflow for single-precision floating-point representation 

 

Fig. (1.6): Overflow/Underflow for double-precision floating-point representation 
∎∎∎ 
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Chapter Summary 

• The numerical methods obtain some approximate solution of the problems, usually in the numeric form, 

in contrast to the analytic or exact methods, which obtain the exact solution of the problem. 

• Numerical Analysis is the field of deriving, analyzing, and implementing the numerical methods. 

• The most common approach followed by the numerical methods is the iterative approach. According to 

this, choose an initial approximation or guess to the solution and apply a set of simple computational 

steps to obtain a better approximation. Repeatedly apply the same set of steps to the better 

approximations, ultimately obtaining a sufficiently accurate solution and then stop the repetition. Each 

course of repetition of the set of computational steps is called iteration. Geometrically, a root of an 

equation 𝑓(𝑥) = 0 is the point where the graph of 𝑓(𝑥) intersects the 𝑥-axis. 

• For selecting a numerical method from several choices, the characteristics of accuracy, 

efficiency, and robustness are taken into consideration. 

• The numerical analysis may be regarded as the “mathematics of scientific computing”. 

• Errors can be quantified as: 

o Absolute Error = |True value − Approximate value| 

o Relative Error =
absolute error

|True value|
=

|True value−Approximate value|

|True value|
 

o Percentage Relative Error =
absolute error

|True value|
× 100 % 

• The errors can be categorized in three major categories in regard to their sources: Data Error or 

Inherent Error (quite unrelated to the numerical methods; occur as blunders, mistakes, model 

simplification, or data uncertainty), Round-off Error (occurs due to number approximation by humans 

and computers), Truncation Error (occurs due to approximation of a mathematical procedure to avoid 

insignificance), and Discretization error (occurs due to approximation of a continuous function by a set 

of discrete data points). 

• Significant figures of a real number (which is an approximation of the true value) are the digits that are 

used to express the number meaningfully. The significant digits begin with the leftmost nonzero digit and 

end with the rightmost correct digit. The rightmost zeros, which are exact are also significant. 

• An approximation 𝑥∗ to a number 𝑥 is called accurate to 𝑡 significant figures if there are exactly 𝑡 digits in 

the mantissa of 𝑥∗ that agreed with the first 𝑡 digits of the mantissa of 𝑥 having the same exponent or 

characteristics. 

• Accuracy of an approximate value is a measure of how much the approximate value agrees with the true 

value. Precision, on the other hand, has nothing to do with how much the approximate value agrees with 

the true value. Precision is only concerned about the size of the number. 

• The following four are the commonly used number systems, even supported by the computer 

architectures. 

Decimal number system (base 10)  Binary number system (base 2) 
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Octal number system (base 8)  Hexadecimal number system (base 16) 

• Any nonzero real decimal number 𝑥 can be represented in floating-point form: 𝑥 = ±0. 𝑑1𝑑2𝑑3 ⋯ × 10𝑒. 

Here 𝑑𝑖 , 𝑖 = 1, 2, ⋯ are digits from 0 to 9 with 𝑑1 ≠ 0, called most significant digit and 𝑒 is an integer that 

might be positive, negative or zero, called an exponent or characteristic. The number 0. 𝑑1𝑑2𝑑3 ⋯, may 

be denoted by 𝑚, is called the finite normalized mantissa. For numbers in the decimal system with base 

10, 
1

10
 ≤ 𝑚 < 1. That is, 𝑚 ∈ [

1

10
, 1). 

• For numbers in the binary system, the floating-point representation of a number 𝑥 can be given by, 

𝑥 = ±0. 𝑏1𝑏2𝑏3 ⋯ × 2𝑒 = ±𝑚 × 2𝑒 , were each of 𝑏𝑖  is a bit, either 0 or 1, with 𝑏1 ≠ 0, and 
1

2
 ≤ 𝑚 < 1. 

• The numbers that are representable precisely in a computer are called machine numbers. The real 

numbers with a non-terminating fractional part (such as 1/3) cannot be represented, precisely. So many 

other numbers (for example, 0.01) also has not a precise representation in computer (i.e., a machine 

number). 

• If the number lies within the allowable range of the possible numbers according to the precision level of 

the computer, then it is rounded to a nearby machine number (incurring the round-off error) for storing 

it. The rounding options involve correct rounding (round to nearest machine number), rounding up, 

rounding down or towards zero, etc. 

• There are commonly two ways to terminate the mantissa of a number to obtain its nearest machine 

number, namely, correct chopping and correct rounding. The chopping or rounding of the number to the 

nearest machine number (representable in a computer) for representation in computers (for storage or 

for using in computations) causes the error in a number called the round-off error. 

• The floating-point form of a number 𝑥 representable in a computer can be regarded as consisting of the 

three parts:  𝑥 = ±𝑚 × 𝛽𝑒 = 𝒔𝒊𝒈𝒏 × 𝒎𝒂𝒏𝒕𝒊𝒔𝒔𝒂 × (𝑏𝑎𝑠𝑒)𝒆𝒙𝒑𝒐𝒏𝒆𝒏𝒕 

The sign is either positive (+) or negative (−), the finite normalized mantissa is from the interval [
1

𝛽
, 1), 

and the integer exponent either positive, negative, or zero as a power of the base. 

• An account on the IEEE Binary Floating-Point Arithmetic Standard 754-1985 for representing the real 

numbers in computers can be found under Question 13 in this chapter. 

• If a number 𝒙∗ is accurate to 𝒕 significant figures in approximating a number 𝒙 then the relative error is 

bounded above by 5 × 10−𝑡. That is, 
|𝑥−𝑥∗|

|𝑥|
≤ 5 × 10−𝑡  

• If an iterative process is to be stopped when the successive approximations become accurate to 𝑡 

significant figures, the relative error bound might be set as 5 × 10−𝑡. Thus, the relative error is computed 

after every iteration using the result of the current iteration and that of the previous iteration. If the 

relative error is smaller than the bound of 5 × 10−𝑡, then it ensures that the approximation the accurate 

to 𝑡 significant digits. 

• Whenever two nearly equal numbers are subtracted, some loss of significance might occur. The risk of 

loss of significance can be eliminated by avoiding the subtraction through some mathematical 

manipulation. 
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Chapter Exercises 

Exercise 01: Compute the absolute error 𝐸𝑎 and relative error 𝐸𝑟 in an approximation of 𝑥 by 𝑥∗  

(𝑖) 𝑥 = log10 2 , 𝑥∗ = 0.301 (𝑖𝑖) 𝑥 = 17 6⁄ , 𝑥∗ = 2.8333

(𝑖𝑖𝑖) 𝑥 = √𝜋, 𝑥∗ = 1.77245 (𝑖𝑣) 𝑥 = 𝑒−1, 𝑥∗ = 0.36787
 

Exercise 02: Write the following numbers in floating-point form and identify their mantissa and exponent: 

(𝑖) 𝑥 = −23.500128 (𝑖𝑖) 𝑥 = 658.000012 (𝑖𝑖𝑖) 𝑥 = 0.010023

(𝑖𝑣) 𝑥 = −0.0000782 (𝑣) 𝑥 =
1

234.24
(𝑣𝑖) 𝑥 = 541000

 

Exercise 03: Simplify the following expression by performing the computations  

(a) Exactly 

(b) Using four-digit chopping arithmetic 

(c) Using four-digit rounding arithmetic 

(d) Compute the relative errors 

(𝑖)
7

4
−

5

3
(𝑖𝑖)

5

4
(

2

3
+ 4) (𝑖𝑖𝑖)

𝜋 − 1

4
3

(𝑖𝑣) 10𝜋 − 2𝑒 + 1 (𝑣) (
432 − 0.0012

101
) (𝑣𝑖) (

2

9
) . (

9

7
)

 

Consider 𝜋 and 𝑒 expressed with fifteen significant digits as the exact numbers. 

Exercise 04: Calculate the roundoff error if chopping and rounding is used to write the following numbers 

accurate to four decimal digits: 

(𝑖) 355/113 (𝑖𝑖) √3/142 (𝑖𝑖𝑖) √ln 2
3

 

Exercise 05: We want to round-off each the following numbers to three decimal places. For which number, 

the result of “round-off by chopping” and “round-off by rounding-rule” will be the same: 

(A) 5.5555 (B) 3.3575 (C) 5.5565 (D) 4.4555 

Exercise 06: Find the absolute and relative errors involved in rounding 4.9997 to 5.000. 

Exercise 07: Suppose a real number 𝑥 is represented approximately by 0.6032 with the relative error is at 

most 0.1%. What is 𝑥? 

Exercise 08: Suppose that a number is accurate to 𝑛 significant figures and 𝑎1 is the first significant figure 

than show that the relative error is bounded above by 
1

𝑎1
× 101−𝑛. 

Exercise 09: Show that if a number is rounded off to 𝑛 digits than the relative error is bounded by 
1

2
× 101−𝑛 . 

∎∎∎ 
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Chapter 2 

Solution of a Nonlinear Equation 

  in One Variable 

Corridor I: BASICS 

 Let’s plan it 
 

 

2.1     Introduction 

2.2     Bracketing Methods 

       2.2.1     The Bisection Method (or Bolzano Method) 

       2.2.2     The False-Position Method (or Regula-Falsi Method) 

2.3     Open Methods 

       2.3.1     The Fixed-Point Iteration Method 

       2.3.2     The Newton-Raphson Method 

       2.3.3     The Secant Method 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

  

http://www.timerenders.com.pk/
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Corridor II: ANALYSIS 

Let’s think deep 
 

2.4     Convergence Analysis 

                     The Bisection Method 

                     The Regula-Falsi Method 

                     The Secant Method 

                     The Newton-Raphson Method 

                     The Fixed-Point Iteration Method 

2.5     Further Discussions 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

Corridor III: PROGRAMMING ARCADE 

Let’s do it 
 

2.6     Algorithms and Implementations 

                     The Newton-Raphson Method 

                     The Fixed-Point Iteration Method 

                     The Secant Method 

                     The Bisection Method 

                     The Regula-Falsi Method 

      

 

To see more examples for practicing, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

For codes, please visit: https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis 

∎∎∎ 

 

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/
https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis
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2.6 Algorithms and Implementations 

Question 36: Write down the algorithm (pseudo code) of the Newton’s method to solve 𝑓(𝑥) = 0. The 

algorithm should perform a fixed number of iterations. 

To find a root of a non-linear equation 𝑓(𝑥) = 0 the Newton-Raphson method requires an initial solution 𝑥0 

and considers the 𝑥-intercept of the tangent line to the function 𝑓(𝑥) at 𝑥 = 𝑥0 as the new approximation. 

Then, the 𝑥-intercept of the tangent line to the function at the new approximation is considered as the next 

approximation. This way, the process is repeated with the successive approximations until sufficient 

convergence is achieved. The formula to generate the sequence of successive approximations based on the 

said approach is given by 

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
, for 𝑘 = 1, 2, 3,⋯ 

Algorithm: To solve 𝑓(𝑥) = 0 using the following iterative formula (given an initial approximation 𝑥0): 

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
, for 𝑘 = 1, 2, 3,⋯ 

𝐈𝐍𝐏𝐔𝐓𝐒:   {
𝒙𝟎: a real value as the initial approximation 𝑥0 sufficiently close to the root
𝑵: an integer as the maximum number of iterations

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(on completing 𝑵 iterations)

 

Step 1 Receive the inputs as stated above 

Step 2 Set 𝒙𝒏 = 𝒙𝟎 (initialize 𝒙𝒏 with the initial approximation) 

Step 3 for 𝒌 = 𝟏, 𝟐, 𝟑,⋯ ,𝑵 perform Steps 4-6 

Step 4   Set 𝒙𝒑 = 𝒙𝒏    {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.

 

Step 5 Set 𝒇𝒙𝒑 as the value of 𝑓(𝒙𝒑) 

Set 𝒅𝒇𝒙𝒑 as the value of 𝑓′(𝒙𝒑) 

Step 6  

𝒙𝒏 = 𝒙𝒑 −
𝒇𝒙𝒑

𝒅𝒇𝒙𝒑
{
Computing a new  
approximation to the root

 

end for (Go to Step 4 for the next iteration) 

Step 7 Print the output: 𝒙𝒏                 

 [Additionally, the initial approximation (𝒙𝟎), number of iterations (𝒌), and 𝑓(𝒙𝒏) can be printed] 

STOP. 

Remark: In the algorithm, it is assumed that neither any pitfall of the method will occur, nor 𝑓(𝑥) will be equal 

to zero (or the machine-epsilon) in any iteration for the given problem and initial approximation. 
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Question 37: Write a Python program to find a real root of 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 using the Newton-

Raphson method. Take initial approximation as 𝑥0 = 0. Here 𝑓′(𝑥) = 4 + cos 𝑥 − 𝑒𝑥.  The program should 

perform a fixed number of iterations. 

script_2.1: newton1.ipynb 

                                  

1 from numpy import *                    

2 N = 12          # setting the maximum number of iterations            

3                                  

4 x0 = float(input("Enter the initial approximation: "))  

5 print("iter.                xk                   f(xk)")           

6                                  

7 xk = x0                 

8 fxk = 4*xk + sin(xk) – exp(xk)                 

9 for k in range(1,N+1):                  

10   xp = xk                       

11   fxp = fxk                     

12   dfxp = 4 + cos(xp) – exp(xp)                     

13   xk = xp – (fxp/dfxp)                     

14   fxk = 4*xk + sin(xk) – exp(xk)                  

15                  

16   #print(k, xk, fxk, sep="\t")             

17   print(f"{k}\t {xk:.16f}\t{fxk:.16f}")             

18                                  

18 print(N , "iterations completed.")                

Output Console: 

Enter the initial approximation: 0 

iter.           xk                      f(xk) 

1  0.2500000000000000 -0.0366214574332184 

2  0.2599382850500705 -0.0000759982664056 

3  0.2599589955313102 -0.0000000003332497 

4  0.2599589956221257 0.0000000000000000 

5  0.2599589956221257 0.0000000000000000 

6  0.2599589956221257 0.0000000000000000 

7  0.2599589956221257 0.0000000000000000 

8  0.2599589956221257 0.0000000000000000 

9  0.2599589956221257 0.0000000000000000 

10  0.2599589956221257 0.0000000000000000 

11  0.2599589956221257 0.0000000000000000 

12  0.2599589956221257 0.0000000000000000 

12 iterations completed. 

 

Remark: In the program, it is assumed that neither any pitfall of the method will occur, nor 𝑓(𝑥) will be equal 
to zero (or the machine-epsilon) in any iteration for the given problem and initial approximation. 

Remark: In the program, it is assumed that neither any pitfall of the method will occur, nor 𝑓(𝑥) will be equal 

to zero (or the machine-epsilon) in any iteration. 
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Remark: The algorithm in Question 36 (likewise 18) has a shortcoming that on completion of the given fixed 

number of 𝑁 iterations the solutions might not have been converged (the desired accuracy might not have 

been achieved). Moreover, the algorithm has a shortcoming if the convergence has been achieved (or 

divergence has occurred) in few iterations, even then the iterations would not stop immediately; the algorithm 

will complete the fixed number of iterations. These shortcomings in the algorithm can be addressed by 

incorporating the two convergence criteria such that if the convergence is achieved (i. e., error < tolerence), 

then no more iterations will be performed, however, the number of iterations would not exceed the maximum 

limit on the number of iterations. Such an indispensable modification regarding the stopping criteria is 

adopted throughout the subsequent part of the book. 

Remark: The Numpy library has functions sin(x), cos(x), and exp(x). In the script newton1.ipynb the 

Numpy library is imported completely using the wildcard *.  Therefore, it is sufficient to write sin(x), cos(x), 

and exp(x) in the script to use these functions. If the Numpy library is imported as: 

import numpy as np 

Then, it is required to write np.sin(x), np.cos(x), and np.exp(x) for using these functions. 

Interestingly, these functions are also available in the math module of the Standard Python Library. 

Question 38: Write down the algorithm (pseudo code) of the Newton’s method to solve 𝑓(𝑥) = 0. 

Algorithm: To solve 𝑓(𝑥) = 0 using the following iterative formula (given an initial approximation 𝑥0): 

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
, for 𝑘 = 1, 2, 3,⋯ 

𝐈𝐍𝐏𝐔𝐓𝐒:   {

𝒙𝟎: a real value as the initial approximation 𝑥0 sufficiently close to the root
𝑻𝑶𝑳: a real value as the tolerance (permissible error)
𝑵: an integer as the maximum number of iterations

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(either on convergence or on completing 𝑵 iterations − whichever happens first)

 

Step 1 Receive the inputs as stated above 

Step 2 Set 𝒙𝒏 = 𝒙𝟎 (initialize 𝒙𝒏 with the initial approximation) 

Step 3 for 𝒌 = 𝟏, 𝟐, 𝟑,⋯ ,𝑵 perform Steps 4-8 

Step 4 Set 𝒙𝒑 = 𝒙𝒏    {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.

 

Step 5 Set 𝒇𝒙𝒑 as the value of 𝑓(𝒙𝒑) 

Set 𝒅𝒇𝒙𝒑 as the value of 𝑓′(𝒙𝒑) 

Step 6  

𝒙𝒏 = 𝒙𝒑 −
𝒇𝒙𝒑

𝒅𝒇𝒙𝒑
{
Computing a new  
approximation to the root
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Step 7 Set 𝒆𝒓𝒓 = |𝒙𝒏 − 𝒙𝒑|                                        (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|/|𝑥𝑝|) 

Step 8  

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳) then

Exit/Break the loop 
}

This means that the consecutive 
approximations are nearly the same
Therefore, stop iterations.

. 

end for (Go to Step 4 for the next iteration) 

Step 9 Print the output: 𝒙𝒏                 

 [Additionally, the initial approximation (𝒙𝟎), number of iterations (𝒌), 𝑓(𝒙𝒏), and error (𝒆𝒓𝒓) can be printed] 

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)  OUTPUT (‘The desired accuracy achieved; Solution converged.’) 

else   OUTPUT (‘The number of iterations exceeded the maximum limit.’)  because 𝒌 > 𝑵 

STOP. 

Remark: In the algorithm, it is assumed that neither any pitfall of the method will occur, nor 𝑓(𝑥) will be equal 

to zero (or the machine-epsilon) in any iteration for the given problem and initial approximation. 

Question 39: Write a Python program to find a real root of 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 using the Newton-

Raphson method. Take initial approximation as 𝑥0 = 0. Here 𝑓′(𝑥) = 4 + cos 𝑥 − 𝑒𝑥. The iterations of the 

method should stop when either the approximation is accurate within 10−5, or the number of iterations exceed 

100, whichever happens first. 

script_2.2: newton2.ipynb 

                                  

1 from numpy import *                 

2                                  

3 TOL = 0.000001        # setting the tolerance            

4 N = 50                  # setting the maximum number of iterations            

5                                  

6 x0 = float(input("Enter the initial approximation: "))     

7 print("iter.         xk              f(xk)                       Error")   

8      

9 xk = x0   ;   fxk = 4*xk + sin(xk) – exp(xk)               

10 for k in range(1,N+1):                       

11   xp = xk                        

12   fxp = fxk               

13   dfxp = 4 + cos(xp) – exp(xp)              

14   xk = xp - (fxp/dfxp)                  

15                        

16   fxk = 4*xk + sin(xk) – exp(xk)            

17                 

18   err = abs(xk – xp)/abs(xk)              

19                        

20   #print(k, xk, fxk, err, sep="\t")               

21   print(f"{k}\t {xk:.16f}\t{fxk:.16f}\t{err:.12f}")               

22   if err < TOL:                     
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23     break                        

24                                  

25 if err < TOL:                         

26   print("Required accuracy achieved; Solution is convergent.")    

27 else:                             

28   print("The Number of iterations exceeded the maximum limit.")    

 

Output Console: 

Enter the initial approximation: 0 

iter.         xk                    f(xk)                        Error 

1  0.2500000000000000 -0.0366214574332184 1.000000000000 

2  0.2599382850500705 -0.0000759982664056 0.038233248511 

3  0.2599589955313102 -0.0000000003332497 0.000079668261 

4  0.2599589956221257 0.0000000000000000 0.000000000349 

Required accuracy achieved; Solution is convergent. 

Remark: This program is based on the assumption that neither any pitfall of the method will occur, nor 𝑓(𝑥) 

will be equal to zero (or machine-epsilon) in any iteration for the given problem and data. 

Question 40: Write a Python program to find a real root of the equation 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 using the 

Newton-Raphson method. Take initial approximation as 𝑥0 = 0. Here 𝑓′(𝑥) = 4 + cos 𝑥 − 𝑒𝑥. Use #define 

directive to evaluate 𝑓(𝑥) and 𝑓′(𝑥) wherever required. The iterations of the method should stop when either 

the approximation is accurate within 10−5, or the number of iterations exceed 100, whichever happens first. 

script_2.3: newton3.ipynb 

                                  

1 from numpy import *                    

2 N = 500                # setting the maximum number of iterations          

3 TOL = 0.000001        # setting the tolerance            

4                                  

5 def fval(x):                          

6   y = 4 * x + sin(x) – exp(x)             

7   return (y)                         

8                                  

9 def dfval(x):                          

10   dy = 4 + cos(x) – exp(x)              

11   return (dy)                         

12                                  

13 x0 = float(input("Enter the initial approximation: "))  

14 print("iter.           xk               f(xk)             Error")           

15                                  

16 xk = x0 ;  fxk = fval(xk)                    

17 for k in range(1,N+1):                  

18   xp = xk                       

19   fxp = fxk                     

20   dfxp = dfval(xp)                     

21   xk = xp – (fxp/dfxp)                     
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22                         

23   fxk = fval(xk)                      

24                                  

25   err = abs(xk – xp)/abs(xk)                 

26                                  

27   #print(k, xk, fxk, err, sep="\t")     

28   print(f"{k}\t {xk:.16f}\t{fxk:.16f}\t{err:.12f}")     

29   if err < TOL:                        

30     break                       

31                                  

32 if err < TOL:                           

33   print("Required accuracy achieved; Solution is convergent.")   

34 else:                              

35   print("The Number of iterations exceeded the maximum limit.") 

 

Output Console: 

Enter the initial approximation: 0 

iter.         xk                    f(xk)                        Error 

1  0.2500000000000000 -0.0366214574332184 1.000000000000 

2  0.2599382850500705 -0.0000759982664056 0.038233248511 

3  0.2599589955313102 -0.0000000003332497 0.000079668261 

4  0.2599589956221257 0.0000000000000000 0.000000000349 

Required accuracy achieved; Solution is convergent. 

 

Question 41: Write down the algorithm (pseudo code) of the Fixed-Point Iteration method to solve 𝑓(𝑥) = 0. 

The Fixed-Point Iteration method is an open method that approximates a root of the equation 𝑓(𝑥) = 0 by 

rearranging the equation 𝑓(𝑥) = 0 to get an appropriate form 𝑥 = 𝑔(𝑥) and generating a sequence of 

successive approximations {𝑥𝑘}𝑘=1
∞  by the iterative formula 𝑥𝑘 = 𝑔(𝑥𝑘−1), for 𝑘 = 1, 2, 3,⋯ . The said 

sequence may  

o converge but could be different for different forms of 𝑥 = 𝑔(𝑥), 

o converge but could be different for different choices of the initial approximation 𝑥0 for a particular 

form of 𝑥 = 𝑔(𝑥), or 

o diverge for some unsuitable form of 𝑥 = 𝑔(𝑥) or an initial approximation 𝑥0. 

 

Algorithm: To solve 𝑓(𝑥) = 0 ⟺ 𝑥 = 𝑔(𝑥), using the following iterative formula (given an initial 

approximation 𝑥0) 

𝑥𝑘 = 𝑔(𝑥𝑘−1), for 𝑘 = 1, 2, 3,⋯ 

𝐈𝐍𝐏𝐔𝐓𝐒:   {

𝒙𝟎: a real value as the initial approximation 𝑥0 sufficiently close to the root
𝑻𝑶𝑳: a real value as the tolerance (permissible error)
𝑵: an integer as the maximum number of iterations
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𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(either on convergence or on completing 𝑵 iterations − whichever happens first)

 

Step 1 Receive the inputs as stated above 

Step 2 Set 𝒙𝒏 = 𝒙𝟎 (initialize 𝒙𝒏 with the initial approximation) 

Step 3 for 𝒌 = 𝟏, 𝟐, 𝟑,⋯ ,𝑵 perform Steps 4-7 

Step 4 Set 𝒙𝒑 = 𝒙𝒏    {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.

 

Step 5  

Set 𝒙𝒏 as the value of 𝑔(𝒙𝒑) {
Computing a new  
approximation to the root

 

Step 6 Set 𝒆𝒓𝒓 = |𝒙𝒏 − 𝒙𝒑|                              (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|/|𝑥𝑝|) 

Step 7  

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳) then

Exit/Break the loop 
}

This means that the consecutive 
approximations are nearly the same
Therefore, stop iterations.

. 

end for (Go to Step 4 for the next iteration) 

Step 8 Print the output: 𝒙𝒏                 

 [Additionally, the initial approximation (𝒙𝟎), number of iterations (𝒌), 𝑓(𝒙𝒏), and error (𝒆𝒓𝒓) can be printed] 

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)  OUTPUT (‘The desired accuracy achieved; Solution converged.’) 

else   OUTPUT (‘The number of iterations exceeded the maximum limit.’) 

STOP. 

Question 42: Write a Python program to find a real root of the equation 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 using the 

Fixed-Point Iteration method. Take 𝑥 = 𝑔(𝑥) =
1

4
(𝑒𝑥 − sin 𝑥) and 𝑥0 = 0 as an initial approximation. The 

iterations of the method should stop when either the approximation is accurate within 10−5, or the number of 

iterations exceeds 100, whichever happens first. 

script_2.4: fixed_point.ipynb 

                                  

1 from numpy import *                    

2 N = 500                    # setting the maximum number of iterations         

3 TOL = 0.000001        # setting the tolerance             

4                                  

5 def fval(x):                          

6   y = 4 * x + sin(x) – exp(x)             

7   return (y)                         

8                                  

9 def gval(x):                          
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10   g = 0.25 * (exp(x) – sin(x))              

11   return (g)                         

12                                  

13 x0 = float(input("Enter the initial approximation: "))  

14 print("iter.           xk               f(xk)              Error")           

15                                  

16 xk = x0                            

17 for k in range(1,N+1):                  

18   xp = xk                       

19   xk = gval(xp)                     

20                         

21   fxk = fval(xk)                      

22                                  

23   err = abs(xk – xp)/abs(xk)                 

24                                  

   #print(k, xk, fxk, err, sep="\t")           

26   print(f"{k}\t {xk:.16f}\t{fxk:.16f}\t{err:.12f}")           

27   if err < TOL:                        

28     break                       

29                                  

30 if err < TOL:                           

25   print("Required accuracy achieved; Solution is convergent.")   

32 else:                              

33   print("The Number of iterations exceeded the maximum limit.") 

 

Output Console: 

Enter the initial approximation: 0 

iter.           xk                  f(xk)                     Error 

1  0.2500000000000000 -0.0366214574332184 1.000000000000 

2  0.2591553643583046 -0.0029494454793164 0.035327705375 

3  0.2598927257281337 -0.0002431823527489 0.002837175868 

4  0.2599535213163210 -0.0000200881176871 0.000233870993 

5  0.2599585433457428 -0.0000016596390247 0.000019318578 

6  0.2599589582554989 -0.0000001371177203 0.000001596059 

7  0.2599589925349290 -0.0000000113285412 0.000000131865 

Required accuracy achieved; Solution is convergent. 

 

 
Question 43: Write down the algorithm (pseudo code) of the Secant method to solve 𝑓(𝑥) = 0. 

The iterative formula of the Secant method for solving 𝑓(𝑥) = 0 (with 𝑥 = 𝑥0 and 𝑥 = 𝑥1 as the initial 

approximations) is given by 

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)(𝑥𝑘−1 − 𝑥𝑘−2)

𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)
, for 𝑘 = 2, 3, 4,⋯ 
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Algorithm: To solve 𝑓(𝑥) = 0 using the iterative formula (given the root containing interval): 

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)(𝑥𝑘−1 − 𝑥𝑘−2)

𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)
, for 𝑘 = 2, 3, 4,⋯ 

𝐈𝐍𝐏𝐔𝐓𝐒:      {

𝒂 and 𝒃: two real values as the initial approximations sufficiently close to the root
𝑻𝑶𝑳: a real value as the tolerance (permissible error)
𝑵: an integer as the maximum number of iterations

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(either on convergence or on completing 𝑵 iterations − whichever happens first)

 

Step 1 Receive the inputs as stated above 

Step 2 Set 𝒙𝒏 = 𝒃 (initialize 𝒙𝒏 with any of the two endpoints) 

Step 3 Set 𝒙𝟎 = 𝒂 

 Set 𝒙𝟏 = 𝒃 

Set 𝒇𝒙𝟎 as the value of 𝑓(𝒙𝟎) 

Set 𝒇𝒙𝟏 as the value of 𝑓(𝒙𝟏) 

Step 4 for 𝒌 = 𝟐, 𝟑,⋯ ,𝑵 + 𝟏 perform Steps 5-10 

Step 5  Set 𝒙𝒑 = 𝒙𝒏    {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.

 

Step 6  

𝒙𝒏 = 𝒙𝟏 −
𝒇𝒙𝟏(𝒙𝟏 − 𝒙𝟎)

𝒇𝒙𝟏 − 𝒇𝒙𝟎
{
Computing a new  
approximation to the root

 

Step 7 Set 𝒇𝒙𝒏 as the value of 𝑓(𝒙𝒏) 

Step 8 Set 𝒆𝒓𝒓 = |𝒙𝒏 − 𝒙𝒑|/|𝒙𝒑|                                 (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|) 

Step 9  

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳) then

Exit/Break the loop 
}

This means that the consecutive 
approximations are nearly the same
Therefore, stop iterations.

. 

else
Set 𝒙𝟎 = 𝒙𝟏
Set 𝒇𝒙𝟎 = 𝒇𝒙𝟏

Set 𝒙𝟏 = 𝒙𝒏
Set 𝒇𝒙𝟏 = 𝒇𝒙𝒏

 

}
 
 

 
 

preparing two approximations
for the next iteration

  

end for (Go to Step 5 for the next iteration) 

Step 10 Print the output: 𝒙𝒏                 

[Additionally, the initial approx. (𝒙𝟎 and 𝒙𝟏), number of iterations (𝒌 − 𝟏), 𝑓(𝒙𝒏), and error (𝒆𝒓𝒓) can be printed] 

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)  OUTPUT (‘The desired accuracy achieved; Solution converged.’) 

else   OUTPUT (‘The number of iterations exceeded the maximum limit.’) 

STOP. 
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Question 44: Write a Python program to find a real root of the equation 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 using the 

Secant method. Take initial approximation as 𝑥0 = 0 and 𝑥1 = 1. The iterations of the method should stop 

when either the approximation is accurate within 10−5, or the number of iterations exceeds 100, whichever 

happens first. 

 

script_2.5: secant.ipynb 

                                  

1 from numpy import *                    
2 N = 500                   # setting the maximum number of iterations          
3 TOL = 0.000001        # setting the tolerance            
4                                  
5 def fval(x):                          
6   y = 4 * x + sin(x) – exp(x)             
7   return (y)                         
8                                  
9 a = float(input("Enter the first initial approximation: "))  

10 b = float(input("Enter the second initial approximation: "))  
11 xk = b  
12 x0 = a  
13 x1 = b  
14 fx0 = fval(x0)  
15 fx1 = fval(x1)  
16 print("k     xk–2       xk–1       xk          f(xk)          Error") 
17                                  
18 for k in range(2,N+2):                  
19   xp = xk                       
20   xk = x1 – (fx1 * (x1 – x0)) / (fx1 – fx0)             
21                         
22   fxk = fval(xk)                      
23                                  
24   err = abs(xk – xp)/abs(xk)                 
25                                  
26   #print(k, xk, fxk, err, sep="            ")             
27   print(f"{k}\t {xk:.16f}\t{fxk:.16f}\t{err:.12f}")      
28                           
29   if err < TOL:                        
30     break                       
31   else:                             
32     x0 = x1                      
33     fx0 = fx1                      
34     x1 = xk                      
35     fx1 = fxk                      
36                                  
37 if err < TOL:                           
38   print("Required accuracy achieved; Solution is convergent.")   
39 else:                              
40   print("The Number of iterations exceeded the maximum limit.") 
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Output Console: 

Enter the first initial approximation: 0 

Enter the second initial approximation: 1 

k        xk                           f(xk)                  Error 

2  0.3201855379035207 0.2181015285252024 2.123189156349 

3  0.2423578458166424 -0.0648264842999824 0.321127182100 

4  0.2601902817383949 0.0008486682977629 0.068536133643 

5  0.2599598472066112 0.0000031249088128 0.000886423554 

6  0.2599589955804161 -0.0000000001530542 0.000003276002 

7  0.2599589956221257 0.0000000000000000 0.000000000160 

Required accuracy achieved; Solution is convergent. 

 

Question 45: Write down the algorithm (pseudo code) of the Bisection method to solve 𝑓(𝑥) = 0. 

The Bisection method selects 𝑐 ∈ (𝑎 + 𝑏), as the midpoint of the interval [𝑎, 𝑏], using the formula 

𝑐 = 𝑎 +
(𝑏 − 𝑎)

2
 

Algorithm: To solve 𝑓(𝑥) = 0 using the iterative formula (given the root containing interval): 

𝑥𝑘 = 𝑥𝑘−2 +
𝑥𝑘−1 − 𝑥𝑘−2

2
, for 𝑘 = 2, 3, 4,⋯ 

𝐈𝐍𝐏𝐔𝐓𝐒:      {

𝒂 and 𝒃: two real values as the initial approximations bracketing the root

𝑻𝑶𝑳: a real value as the tolerance (permissible error)
𝑵: an integer as the maximum number of iterations

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(either on convergence or on completing 𝑵 iterations − whichever happens first)

 

Step 1 Receive the inputs as stated above 

Step 2 Set 𝒙𝒏 = 𝒃 (initialize 𝒙𝒏 with any of the two endpoints) 

Step 3 Set 𝒙𝟎 = 𝒂 

Set 𝒙𝟏 = 𝒃 

Set 𝒇𝒙𝟎 as the value of 𝑓(𝒙𝟎) 

Set 𝒇𝒙𝟏 as the value of 𝑓(𝒙𝟏) 

Step 4 for 𝒌 = 𝟐, 𝟑,⋯ ,𝑵 + 𝟏 perform Steps 5-10 

Step 5 Set 𝒙𝒑 = 𝒙𝒏    {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.

 

Step 6  

𝒙𝒏 = 𝒙𝟎 +
𝒙𝟏 − 𝒙𝟎

𝟐
{
Computing a new  
approximation to the root

 

Step 7 Set 𝒇𝒙𝒏 as the value of 𝑓(𝒙𝒏) 



22 Numerical Recipes in Python 

 

Step 8 Set 𝒆𝒓𝒓𝟏 = |𝒙𝒏 − 𝒙𝒑|/|𝒙𝒏|                              (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|) 

 Set 𝒆𝒓𝒓𝟐 = |𝒇𝒙𝒏|                               

 Set 𝒆𝒓𝒓 = 𝒎𝒊𝒏(𝒆𝒓𝒓𝟏, 𝒆𝒓𝒓𝟐)                              

Step 9  

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳 )then

Exit/Break the loop 
}

This means that either 𝒇(𝒙𝒏) is the close to 
zero, or the consecutive approximations are
nearly the same. Therefore, stop iterations.

  

else if (𝒇(𝒙𝟎)𝒇(𝒙𝒏) < 0) then 

Set 𝒙𝟏 = 𝒙𝒏
Set 𝒇𝒙𝟏 = 𝒇𝒙𝒏

else
Set 𝒙𝟎 = 𝒙𝒏
Set 𝒇𝒙𝟎 = 𝒇𝒙𝒏

 

}
 
 

 
 

Adjusting one endpoint 
of the interval such that 
half of the interval will be  
used in the next iteration

  

 end for (Go to Step 5 for the next iteration) 

Step 10 Print the output: 𝒙𝒏                 

[Additionally, the starting interval [𝑎, 𝑏], number of iterations (𝒌 − 𝟏), 𝑓(𝒙𝒏), and error (𝒆𝒓𝒓) can be printed] 

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)  OUTPUT (‘The desired accuracy achieved; Solution converged.’) 

else   OUTPUT (‘The number of iterations exceeded the maximum limit.’) 

STOP. 
∎ 

Remark: While using a bracketing method, there might arise a situation in which the two consecutive 

approximations to the roots are not sufficiently close to each other (i.e., the sequence of successive 

approximations has not converged), but the function values at the approximations are sufficiently close to 

zero (i.e., |𝑓(𝑥𝑘)| < tolerence). Therefore, there is no point to proceed the iterations further. The iterations 

should be stopped. Therefore, the algorithm of a bracketing method (the Bisection, or  Regula-Falsi method) 

should include both of the convergence criteria of testing the convergence of the roots, and closeness of the 

function values to zero. The iterations should be terminated on whichever criterion is met first, ensuring the 

convergence. To accommodate this in the algorithm, the two kinds of errors are computed and the minimum 

of the two errors is found to compare with the tolerance: 

Set 𝑒𝑟𝑟1 = |𝑥𝑛 − 𝑥𝑝|/|𝑥𝑛|    (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|) 

Set 𝑒𝑟𝑟2 = |𝑓𝑥𝑛|                               

Set 𝑒𝑟𝑟 = 𝑚𝑖𝑛(𝑒𝑟𝑟1, 𝑒𝑟𝑟2)            
∎ 

Question 46: Write a Python program to find a real root of the equation 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 in [0, 1] 

using the Bisection method. The two function values at the endpoints of the interval have opposite signs. The 

iterations of the method should stop when either the approximation is accurate within 10−5, or the number of 

iterations exceeds 100, whichever happens first. 
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script_2.6: bisection.ipynb 

                              

1 from numpy import *                
2 N = 500                # setting the maximum number of iterations     
3 TOL = 0.000001        # setting the tolerance        
4                              
5 def fval(x):                      
6   y = 4*x + sin(x) – exp(x)         
7   return (y)                     
8                              
9 a = float(input("Enter the first initial approximation: ")) 

10 b = float(input("Enter the second initial approximation: ")) 
11 xk = b 
12 x0 = a  
13 x1 = b 
14 fx0 = fval(x0) 
15 fx1 = fval(x1) 
16 print("k     a       b       ck          f(c)          Error") 
17                              
18 for k in range(2,N+2):              
19   xp = xk                   
20   xk = x0 + (x1 – x0)/2         
21                     
22   fxk = fval(xk)                  
23                              
24   err1 = abs(xk – xp)/abs(xk)             
25   err2 = abs(fxk)             
26   err = min(err1,err2)             
27                              
28   #print(k, x0, xp, xk, fxk, err, sep="\t")         
29   print(f"{k}\t{x0:.7f}\t{xp:.7f}\t {xk:.10f}\t{fxk:.10f}\t{err:.8f}")        
30   if err < TOL:                 
31     break                  
32   elif fx0 * fxk < 0:                  
33     x1 = xk                  
34     fx1 = fxk                  
35   else:                       
36     x0 = xk                   
37     fx0 = fxk                   
38                              
39 if err < TOL:                       
40   print("Required accuracy achieved; Solution is convergent.") 
41 else:                          
42   print("The Number of iterations exceeded the maximum limit.") 

      

Output Console: 
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Enter the first initial approximation: 0 

Enter the second initial approximation: 1 

k       a              b          ck                     f(c)          Error 

2 0.0000000   1.0000000   0.5000000000      0.8307042679 0.83070427 

3 0.0000000   0.5000000   0.2500000000    -0.0366214574 0.03662146 

4 0.2500000   0.2500000   0.3750000000    0.4112811145 0.33333333 

5 0.2500000   0.3750000   0.3125000000    0.1906005734 0.19060057 

6 0.2500000   0.3125000   0.2812500000    0.0777719929 0.07777199 

7 0.2500000   0.2812500   0.2656250000    0.0207665250 0.02076653 

8 0.2500000  0.26562500   0.2578125000    -0.0078801924 0.00788019 

9 0.2578125   0.25781250  0.2617187500    0.0064550521 0.00645505 

10 0.2578125   0.2617188   0.2597656250    -0.0007096071 0.00070961 

11 0.2597656   0.2597656   0.2607421875    0.0028734643 0.00287346 

12 0.2597656   0.2607422   0.2602539062    0.0010821139 0.00108211 

13 0.2597656   0.2602539   0.2600097656    0.0001862997 0.00018630 

14 0.2597656   0.2600098   0.2598876953    -0.0002616421 0.00026164 

15 0.2598877   0.2598877   0.2599487305    -0.0000376683 0.00003767 

16 0.2599487   0.2599487   0.2599792480    0.0000743164 0.00007432 

17 0.2599487   0.2599792   0.2599639893    0.0000183242 0.00001832 

18 0.2599487   0.2599640   0.2599563599    -0.0000096720 0.00000967 

19 0.2599564   0.2599564   0.2599601746    0.0000043261 0.00000433 

20 0.2599564   0.2599602   0.2599582672    -0.0000026729 0.00000267 

21 0.2599583   0.2599583   0.2599592209    0.0000008266 0.00000083 

Required accuracy achieved; Solution is convergent. 

 

∎ 

 

Question 47: Write down the algorithm (pseudo code) of the Regula-Falsi method to solve 𝑓(𝑥) = 0. 

The Regula-Falsi method selects 𝑐 ∈ (𝑎 + 𝑏), as the point where the line segment joining 𝑓(𝑎) and 𝑓(𝑏) 

intersects the 𝑥-axis, using the formula 

𝑐 =  𝑏 −
𝑓(𝑏)(𝑏 − 𝑎)

𝑓(𝑏) − 𝑓(𝑎)
 

Algorithm: To solve 𝑓(𝑥) = 0 using the iterative formula (given the root containing interval): 

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)(𝑥𝑘−1 − 𝑥𝑘−2)

𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)
, for 𝑘 = 2, 3, 4,⋯ 
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𝐈𝐍𝐏𝐔𝐓𝐒:      {

𝒂 and 𝒃: two real values as the initial approximations bracketing the root
𝑻𝑶𝑳: a real value as the absolute error tolerance
𝑵: an integer as the maximum number of iterations

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(either on convergence or on completing 𝑵 iterations − whichever happens first)

 

Step 1 Receive the inputs as stated above 

Step 2 Set 𝒙𝒏 = 𝒃 (initialize 𝒙𝒏 with any of the two endpoints) 

Step 3 Set 𝒙𝟎 = 𝒂 

Set 𝒙𝟏 = 𝒃 

Set 𝒇𝒙𝟎 as the value of 𝑓(𝒙𝟎) 

Set 𝒇𝒙𝟏 as the value of 𝑓(𝒙𝟏) 

Step 4 for 𝒌 = 𝟐, 𝟑,⋯ ,𝑵 + 𝟏 perform Steps 5-10 

Step 5 Set 𝒙𝒑 = 𝒙𝒏    {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.

 

Step 6  

𝒙𝒏 = 𝒙𝟏 −
𝒇𝒙𝟏(𝒙𝟏 − 𝒙𝟎)

𝒇𝒙𝟏 − 𝒇𝒙𝟎
{
Computing a new  
approximation to the root

 

Step 7 Set 𝒇𝒙𝒏 as the value of 𝑓(𝒙𝒏) 

Step 8 Set 𝒆𝒓𝒓𝟏 = |𝒙𝒏 − 𝒙𝒑|/|𝒙𝒏|                              (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|) 

 Set 𝒆𝒓𝒓𝟐 = |𝒇𝒙𝒏|                               

 Set 𝒆𝒓𝒓 = 𝒎𝒊𝒏(𝒆𝒓𝒓𝟏, 𝒆𝒓𝒓𝟐)                              

Step 9  

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳 )then

Exit/Break the loop 
}

This means that either 𝒇(𝒙𝒏) is the close to
zero, or the consecutive approximations are
nearly the same. Therefore, stop iterations.

  

else if (𝒇(𝒙𝟎)𝒇(𝒙𝒏) < 0) then 

Set 𝒙𝟏 = 𝒙𝒏
Set 𝒇𝒙𝟏 = 𝒇𝒙𝒏

else
Set 𝒙𝟎 = 𝒙𝒏
Set 𝒇𝒙𝟎 = 𝒇𝒙𝒏

 

}
 
 

 
 

Adjusting one endpoint 
of the interval such that 
a shorter interval will be  
used in the next iteration

  

 end for (Go to Step 5 for the next iteration) 

Step 10 Print the output: 𝒙𝒏                 

[Additionally, the starting interval [𝑎, 𝑏], number of iterations (𝒌 − 𝟏), 𝑓(𝒙𝒏), and error (𝒆𝒓𝒓) can be printed] 

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)  OUTPUT (‘The desired accuracy achieved; Solution converged.’) 

else   OUTPUT (‘The number of iterations exceeded the maximum limit.’) 

STOP. 
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Question 48: Write a Python program to find a real root of the equation 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 in [0, 1] 

using the Regula-Falsi method. The two function values at the endpoints of the interval have opposite signs. 

Use #define directive to evaluate 𝑓(𝑥) wherever required. The iterations of the method should stop when 

either the approximation is accurate within 10−5, or the number of iterations exceeds 100, whichever happens 

first. 

script_2.7: regula_falsi.ipynb 

                                  

1 import numpy as np                    
2 N = 500                # setting the maximum number of iterations          
3 TOL = 0.000001        # setting the tolerance            
4                                  
5 def fval(x):                          
6   y = 4*x + sin(x) – exp(x)             
7   return (y)                         
8                                  
9 a = float(input("Enter the left endpoint of the interval: "))  

10 b = float(input("Enter the right endpoint of the interval: "))  
11 xk = b  
12 x0 = a  
13 x1 = b  
14 fx0 = fval(x0)  
15 fx1 = fval(x1)  
16 print("k       a         b        ck          f(c)          Error") 
17                                  
18 for k in range(2,N+2):                  
19   xp = xk                       
20   xk = x1 - (fx1 * (x1 – x0))/(fx1 – fx0)             
21                         
22   fxk = fval(xk)                      
23                                  
24   err1 = abs(xk – xp) / abs(xk)                 
25   err2 = abs(fxk)                 
26   err = min(err1,err2)                 
27                                  
28   #print(k, x0, xp, xk, fxk, err, sep="\t")             
29   print(f"{k}\t{x0:.7f}\t{xp:.7f}\t {xk:.10f}\t{fxk:.10f}\t{err:.8f}")       
30   if ( fxk < TOL ):                   
31     break                       
32   elif err < TOL:                     
33     break                      
34   elif fx0 * fxk < 0:                      
35     x1 = xk                      
36     fx1 = fxk                      
37   else:                           
38     x0 = xk                       
39     fx0 = fxk                       
40                                  



Solution of a Nonlinear Equation in One Variable 27 
 

41 if err < TOL:                           
42   print("Required accuracy achieved; Solution is convergent")   
43 else:                              
44   print("The Number of iterations exceeded the maximum limit.") 

 

Output Console: 

Enter the left endpoint of the interval: 0 

Enter the right endpoint of the interval: 1 

k            a           b        ck              f(c)              Error 

2 0.0000000  1.0000000   0.3201855379 0.2181015285 0.21810153 

3 0.0000000  0.3201855   0.2628561991 0.0106248258 0.01062483 

4 0.0000000  0.2628562   0.2600927589 0.0004908334 0.00049083 

5 0.0000000  0.2600928   0.2599651593 0.0000226176 0.00002262 

6 0.0000000  0.2599652   0.2599592796 0.0000010421 0.00000104 

7 0.0000000  0.2599593   0.2599590087 0.0000000480 0.00000005 

Required accuracy achieved; Solution is convergent 

∎ 

 

Remark:  An interesting online calculator by CASIO® at https://keisan.casio.com has the 

following webpage to approximate the root of a non-linear equation using different methods. 

https://keisan.casio.com/menu/system/000000001000 

 

∎∎∎ 
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Chapter Summary 

• The root-finding problem refers to find some appropriate value 𝑥 = 𝛼 in the domain of a function 𝑓 such 

that 𝑓(𝛼) = 0. Every such possible value 𝛼 is called a root of the equation 𝑓(𝑥) = 0. 

• Geometrically, a root of an equation 𝑓(𝑥) = 0 is the point where the graph of 𝑓 intersects the 𝑥-axis. 

• An iterative numerical method to approximate the root starts with some appropriate or reasonable 

estimation (also called initial approximation or guess) of the exact root and attempts to refine the 

approximation, iteratively. The iterations are repeated until a desired level of accuracy is achieved.  

• Let 𝑥0 denotes the initial approximation and 𝑥1, 𝑥2, 𝑥3, ⋯ denote the successive iterative solutions to an 

exact root 𝛼 of the equation 𝑓(𝑥) = 0. The sequence {𝑥𝑘}𝑘=0
∞  of the successive approximations is said to 

converge to the exact root 𝛼, if the successive approximations approach 𝛼. In such a case, the iterative 

method is also said to converge. In other words, the iterative method is said to be convergent for a given 

initial approximation if the corresponding sequence of successive approximations is convergent to the 

exact solution. Under certain conditions, it is possible for an iterative method that the sequence of 

successive approximations might diverge from a desired exact root 𝛼. 

• Stopping Criteria: The most common convergence criterion to stop the iterative process is based on the 

comparison of the estimated error with the error tolerance. For this purpose, the current approximation 

is considered as the true solution and the previous approximation is considered as the approximate 

solution for estimating the error and any appropriate one of the following criteria is used, 

(1) |𝑥𝑘 − 𝑥𝑘−1| ≤ 𝜏

(2) |
𝑥𝑘 − 𝑥𝑘−1

𝑥𝑘
| ≤ 𝜏

(3) |
𝑥𝑘 − 𝑥𝑘−1

𝑥𝑘
| × 100 ≤ 𝜏

 

Here 𝑥𝑘 and 𝑥𝑘−1 denote the current and previous approximations, respectively, and 𝜏 denotes the 

tolerance. 

• Another Stopping Criterion: Note that the values of the function 𝑓 tend to zero with the progress of the 

iterative process. Thus, falling of the difference between the function values and zero beyond a certain 

level might also indicate convergence. 

• The numerical methods of finding a root of 𝑓(𝑥) = 0 can be categorized as bracketing methods and open 

methods. 

• Bracketing methods start with an interval containing a root and squeeze down the interval, iteratively. 

Two well-known root bracketing methods are the Bisection method and the Regula-Falsi (False-Position) 

method.  
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• Open Methods are those who obtain successive single approximations irrespective of their location at 

any side of the root. Some of the well-known open methods are the Fixed-Point Iteration method, the 

Newton-Raphson method (Newton’s method), and the Secant method. 

• A bracketing method for finding a root/zero of a continuous function 𝑓 starts with an interval [𝑎, 𝑏] 

containing a root. The opposite signs of 𝑓(𝑎) and 𝑓(𝑏) ensure (due to the Intermediate value theorem) 

that there exists a root 𝛼 of 𝑓(𝑥) = 0 in (𝑎, 𝑏). To get closer to the root 𝛼, first a point 𝑐 ∈ (𝑎 + 𝑏) is chosen. 

If 𝑓(𝑐) = 0, then 𝑐 is the exact root. Otherwise, either of the intervals [𝑎, 𝑐] or [𝑐, 𝑏] is chosen as the 

squeezed interval containing the root. The root lies in [𝑎, 𝑐] if 𝑓(𝑎)𝑓(𝑐) < 0, or in [𝑐, 𝑏] if 𝑓(𝑐)𝑓(𝑏) < 0. 

The selected interval is relabeled as [𝑎, 𝑏] and the process is repeated. This way, a sequence of points 

𝑐1, 𝑐2, 𝑐3 , ⋯, is formed. The iterations are performed until the approximations of the root of 𝑓(𝑥) in two 

consecutive iterations are sufficiently close to each other. 

• The Bisection method selects 𝑐 ∈ (𝑎 + 𝑏), as the midpoint of the interval [𝑎, 𝑏], using the formula 

𝑐 =
(𝑎 + 𝑏)

2
 

• The Regula-Falsi method selects 𝑐 ∈ (𝑎 + 𝑏), as the point where the line segment joining 𝑓(𝑎) and 𝑓(𝑏) 

intersects the 𝑥-axis, using the formula 

𝑐 =  𝑏 −
𝑓(𝑏)(𝑏 − 𝑎)

𝑓(𝑏) − 𝑓(𝑎)
 

• For the Bisection method, the error-bound is given by,  

|𝛼 − 𝑐𝑘| ≤
𝑏 − 𝑎

2𝑘
,         for 𝑘 = 1, 2, 3,⋯, 

Here 𝛼 is the exact root of the equation 𝑓(𝑥) = 0 in (𝑎, 𝑏) and 𝑐𝑘 =
 𝑎𝑘−1+𝑏𝑘−1

2
 is the midpoint of the interval 

in 𝑘th iteration. 

• The formula to determine the maximum number of iterations 𝑁 of the Bisection method after which the 

error associated with any point in the squeezed interval is not greater than a given permissible absolute 

error 𝜏𝑎  is as below: 

𝑁 ≥
log(𝑏 − 𝑎) − log(𝜏𝑎)

log(2)
 

This formula tells that, for an interval of unit length, it is sure that after 10, 14, 17, and 20 iterations the 

length of the squeezed interval (or the absolute error) is not greater than 10−3, 10−4 , 10−5, and 10−6, 

respectively.   

• The Fixed-Point Iteration method is an open method that approximates a root of the equation 𝑓(𝑥) =

0 by rearranging the equation 𝑓(𝑥) = 0 to get an appropriate form 𝑥 = 𝑔(𝑥) and generating a sequence 

of successive approximations {𝑥𝑘}𝑘=1
∞  by the iterative formula 𝑥𝑘 = 𝑔(𝑥𝑘−1), for 𝑘 = 1, 2, 3,⋯ . The said 

sequence may  

o converge but could be different for different forms of 𝑥 = 𝑔(𝑥), 



30 Numerical Recipes in Python 

 

o converge but could be different for different choices of the initial approximation 𝑥0 for a 

particular form of 𝑥 = 𝑔(𝑥), or 

o diverge for some unsuitable form of 𝑥 = 𝑔(𝑥) or an initial approximation 𝑥0. 

• Suppose that 𝑓 is a continuous function and the equation 𝑓(𝑥) = 0 has a real root 𝛼. Suppose that the 

equation 𝑓(𝑥) = 0 can be rearranged in the form 𝑥 = 𝑔(𝑥) such that 𝛼 is a fixed-point of the function 𝑔, 

and 𝑔 and 𝑔’ are continuous in some neighbourhood 𝐼 around 𝛼.  If 

 |𝑔′(𝑥)| ≤ 𝐾 < 1, for all 𝑥 ∈ 𝐼, 

then for any initial approximation 𝑥0 ∈ 𝐼, the sequence {𝑥𝑘}𝑘=1
∞  of successive approximations, generated 

by the iterative formula 𝑥𝑘 = 𝑔(𝑥𝑘−1), for 𝑘 = 1, 2, 3,⋯, converges to the solution 𝛼. 

• To find a root of a non-linear equation 𝑓(𝑥) = 0 the Newton-Raphson method requires an initial 

solution 𝑥0 and considers the 𝑥-intercept of the tangent line to the function 𝑓(𝑥) at 𝑥 = 𝑥0 as the new 

approximation. Then, the 𝑥-intercept of the tangent line to the function at the new approximation is 

considered as the next approximation. This way, the process is repeated with the successive 

approximations until sufficient convergence is achieved. The formula to generate the sequence of 

successive approximations based on the said approach is given by 

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
, for 𝑘 = 1, 2, 3,⋯ 

• A sufficient condition of convergence for the Newton-Raphson method: Suppose that 𝛼 is a root of the 

equation 𝑓(𝑥) = 0. Suppose that 𝐼 is a neighbourhood of 𝛼 such that 𝑓(𝑥), 𝑓′(𝑥) and 𝑓′′(𝑥) are continuous 

on 𝐼. If |𝑓(𝑥)𝑓′′(𝑥)| ≤ |𝑓′(𝑥)|2, for all 𝑥 ∈ 𝐼, then for an initial approximation 𝑥0 ∈ 𝐼, the sequence {𝑥𝑘}𝑘=1
∞  

of successive approximations, generated by the Newton’s formula, converges to the solution 𝛼. 

• The iterative formula of the Secant method for solving 𝑓(𝑥) = 0 (with 𝑥 = 𝑥0 and 𝑥 = 𝑥1 as the initial 

approximations) is given by 

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)(𝑥𝑘−1 − 𝑥𝑘−2)

𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)
, for 𝑘 = 2, 3, 4,⋯ 

• Comparison of the False-Position method and the Secant method: 

o The False-Position method is a bracketing method, whereas the Secant method is an open method. 

o The False-Position method keeps the root bracketed by selects out the root bracketing subintervals 

out the two subintervals obtains in each of the iterations. On the other hand, the Secant method 

selects the two most recent approximations out of the three available approximations in any 

iteration to proceed to the next iteration.  

o The False-Position method always converges, whereas the Secant method may not converge for 

certain situations.  

o If the Secant method is convergent, it converges faster than the False-Position method. That is, it has 

a higher convergence rate than that of the False-Position method. 
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• The order/rate of convergence of the Bisection method is 1 (i.e., linear) and the asymptotic error constant 

is (1 2⁄ ) 

• The order/rate of convergence of the False-Position or Regula-Falsi method is 1 (i.e., linear) and the 

asymptotic error constant is −
1

2

𝑓′′(𝛼)

𝑓′(𝛼)
𝜀0 

• The order/rate of convergence of the Fixed-Point Iteration method is 1 (i.e., linear) and the asymptotic 

error constant is the maximum value of the function 𝑔′(𝑥) in some neighbourhood around the solution 𝛼. 

• The order/rate of convergence of the Newton-Raphson method is 2 (i.e., quadratic) and the asymptotic 

error constant is −
1

2

𝑓′′(𝛼)

𝑓′(𝛼)
 

• The order/rate of convergence of the Secant method is 1.62 (i.e., superlinear). 

• The Newton-Raphson method may fail to converge to a root in different situations including where 𝑓′(𝑥) 

or 𝑓′′(𝑥) becomes zero at any approximation. 

• The Newton-Raphson method converges to a multiple root very slowly (instead of exhibiting quadratic 

convergence). 

• The Aitken’s ∆𝟐 method offers a technique for accelerating the convergence of any sequence that is 

linearly convergent. From the given sequence {𝑥𝑘}𝑘=1
∞  that linearly converges to 𝛼, another sequence 

{𝑥̿𝑘}𝑘=1
∞  that also converges to 𝛼 with possibly improved convergence rate is constructed by using the 

Aitken’s acceleration formula given as 

𝑥̿𝑘 ≅ 𝑥𝑘 −
  (∆𝑥𝑘)

2

∆2𝑥𝑘
 

∎∎∎ 

 

  



32 Numerical Recipes in Python 

 

Chapter Exercises 

Exercise 01: Find a real root of the following equations using the Bisection method accurate to four 

decimal places. 

(i) log(𝑥) − cos 𝑥 = 0 

(ii)  𝑒−𝑥 − 10𝑥 = 0 

(iii) 𝑥3 + 𝑥2 − 1 = 0    

Exercise 02: Find a real root of the following equations using the Bisection method accurate to 

three decimal places. 

(i) 𝑥6 − 𝑥4 − 𝑥3 − 1 = 0 

(ii) 𝑥3 − sin 𝑥 + 1 = 0 

(iii) 𝑥 log10 𝑥 = 4.77 

Exercise 03: Approximate the solution of the following equations using the Regula-Falsi method 

accurate to three decimal places. 

(i) 3𝑥 + sin 𝑥 − 𝑒𝑥 = 0 

(ii) 4𝑥3 − 1 − 𝑒(𝑥
2/2) 

(iii) 𝑥2 = (𝑒−2𝑥 − 2)/𝑥 

Exercise 04: Find the approximation to a real root of the equation 2 sin 𝑥 −
𝑒𝑥

4
− 1 = 0 starting 

with [−5, −3] using the Regula-Falsi method. 

Exercise: Find a real root of each of the following equations using (𝑎) the Bisection method, (𝑏) 

the Regula-Falsi method, (𝑐) the Newton’s method, (𝑑) the Secant method. Choose the initial 

approximation/s in the given interval. Assume that the tolerance for the approximate root is 0.001. 

The numeric values should not be rounded to less than 5 decimal places. (𝑥 is in radians, wherever 

applicable). 

(𝑖) cos 𝑥 − 𝑥𝑒𝑥 = 0, in [0, 1] 

(𝑖𝑖) cos 𝑥 − 𝑥 + 2 = 0, in [1, 2] 

(𝑖𝑖𝑖) 𝑒𝑥 − 𝑥 − 3 = 0, in [1, 2] 

(𝑖𝑣) ln(𝑥) + 𝑥 − 4 = 0, in [2, 3] 

(𝑣) 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0, in [0, 1]. 

Exercise 06: Find a real root of the Chebyshev polynomial of degree four, 𝑇4(𝑥) = 8𝑥4 − 8𝑥2 + 1 

using the Newton’s method accurate to four decimal places.   
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Exercise 07: Find a root of the Laguerre polynomial of degree four, 𝐿4(𝑥) = 𝑥
4 − 16𝑥3 + 72𝑥2 −

96𝑥 + 24 using the Newton’s method accurate to four decimal places. 

Exercise 08: Find a root of the following equations using the Newton’s method accurate to 4 

decimal places. 

(i) 2𝑥 + 3 cos 𝑥 − 𝑒𝑥 = 0,  

(ii) 𝑥2 − 4𝑥 + 4 − ln 𝑥 = 0 

(iii) tan 𝑥 − 6 = 0 

Exercise 09: Find the roots accurate to within 10−3 of the Legendre polynomial  𝑃4(𝑥) = 𝑥
4 −

6

7
𝑥2 +

3

35
  on each interval, using the Secant method. 

(i) [−1,−0.5]  

(ii) [−0.5, 0] 

(iii) [0, 0.5] 

(iv) [0.5, 1]  

Exercise 10: Approximate the value of √4
3

 using the Secant method accurate to 10−4. 

Exercise 11: Find a real root of the following equations using the Secant method accurate to 10−3 

. 

(i) 𝑥3 − 2𝑥 + 2 = 0 

(ii) 10 − 2𝑥 + sin 𝑥 = 0 

(iii) 2𝑒−3𝑥 + 1 − 3𝑒−3𝑥 = 0 

Exercise 12: Use the Fixed-Point method to find a root of the following, accurate to 3 decimal 

places. 

(i) 𝑒𝑥 − 2𝑥2  for 0 ≤ 𝑥 ≤ 2 

(ii) 𝑥𝑒𝑥 = 0 for 1 ≤ 𝑥 ≤ 2 

(iii) 𝑥2 − sin 𝑥 − 𝑥 = 0 

Exercise 13: Find the solutions of the following equations using the fixed-point method accurate 

to 10−3 . 

(i) 𝑥 = tan 𝑥 

(ii) 𝑥 = cos 𝑥 

(iii) 𝑥 = sin(𝑥 + 2) 

Exercise 14: Find the solution of the equation (relevant to the vibrating beam), 

cos 𝑥 cosh 𝑥 = 1 
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near 𝑥 = −
3

2
𝜋 using the Newton-Raphson method. 

Exercise 15: The velocity 𝑉, in meters per second (𝑚/𝑠), of a free falling sky diver is expressed as: 

𝑉 =
𝑔𝑚

𝐷𝑐
(1 − 𝑒𝑥𝑝 (

−𝐷𝑐𝑡

𝑚
)) 

Here 𝑚 is the mass of the falling body in kilograms (𝑘𝑔), 𝐷𝑐  is the drag coefficient in kilogram per 
second (𝑘𝑔/𝑠), 𝑡 is the time in seconds (𝑠), and 𝑔 = 9.8𝑚/𝑠2 is the gravitation acceleration. If the 
velocity of a body of mass 85𝑘𝑔 is 40𝑚/𝑠 after 5 seconds of free fall, then calculate the drag 
coefficient. 

Hint for the Solution: 

Given 𝑚 = 80𝑘𝑔, 𝑉 = 40𝑚/𝑠, 𝑔 = 9.8𝑚/𝑠2, and 𝑡 = 5𝑠, the equation takes the form: 

40 =
(9.8)(85)

𝐷𝑐
(1 − 𝑒𝑥𝑝 (

−5𝐷𝑐
85

)) 

or 

𝑓(𝐷𝑐) = 𝐷𝑐 + 17 ln(1 − 0.04802𝐷𝑐) = 0 

Solve this equation for 𝐷𝑐 , using any appropriate iterative method. To obtain an initial guess of 𝐷𝑐 , 
a trick is to calculate 𝑉 for different assumed values of 𝐷𝑐 . The values of the 𝐷𝑐 , which produce 
values of 𝑉 close to 40, can offer reasonable initial guess of 𝐷𝑐 . While using an iterative method, 
approximate error should be calculated at each iteration. [𝑒𝑥𝑝(𝑥) = 𝑒𝑥] 

Exercise 16: The velocity 𝑉, in meters per second (𝑚/𝑠), of a free falling sky diver is expressed as: 

𝑉 =
𝑔𝑚

𝐷𝑐
(1 − 𝑒𝑥𝑝 (

−𝐷𝑐𝑡

𝑚
)) 

Here 𝑚 is the mass of the falling body in kilograms (𝑘𝑔), 𝐷𝑐  is the drag coefficient in kilogram per 
second (𝑘𝑔/𝑠), 𝑡 is the time in seconds (𝑠), and 𝑔 = 9.8𝑚/𝑠2 is the gravitation acceleration. If the 
velocity of a falling body with drag coefficient of 18 𝑘𝑔/𝑠 is 50𝑚/𝑠 after 7 seconds of free fall, then 
calculate the mass 𝑚 of the body, accurate to 0.0001. [𝑒𝑥𝑝(𝑥) = 𝑒𝑥] 

Hint for the Solution: 

Given 𝐷𝑐 = 18𝑘𝑔/𝑠, 𝑉 = 50𝑚/𝑠, 𝑔 = 9.8𝑚/𝑠2, and 𝑡 = 7𝑠, the equation takes the form: 

50 =
(9.8)𝑚

18
(1 − 𝑒𝑥𝑝 (

−126

𝑚
)) 

or 

𝑓(𝑚) = 𝑚 ln (1 −
91.83673

𝑚
) + 126 = 0 
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Solve this equation for 𝑚, using any appropriate iterative method. To obtain an initial guess of 𝑚, a 
trick is to calculate 𝑉 for different assumed values of 𝑚. The values of the 𝑚, which produce values 
of 𝑉 close to 50, can offer reasonable initial guess of 𝑚. While using an iterative method, 
approximate the error at each iteration. 

Exercise 17: The volume 𝑉 of spherical water-tank in cubic meters can be calculated as: 

𝑉 =
𝜋𝐻2(3𝑅 − 𝐻)

3
 

where 𝐻 denotes the height of water level in meters from the base of the tank, and 𝑅 denotes the 
radius of the spherical tank in meters. If the radius 𝑅 of a tank is 2.5 meters, then how much water 
level must be raised in the tank to hold 27 cubic meters of water. 

Hint for the Solution: 

Given 𝑅 = 2.5 and 𝑉 = 27, and taking 𝜋 = 3.14159  the equation takes the form 

27 =
𝜋𝐻2(7.5 − 𝐻)

3
 

or 

𝑓(𝐻) = 3.14159𝐻3 − 23.56193𝐻2 + 81 = 0 

Solve this equation for H, using any appropriate iterative method. Intuitively, appropriate initial 
guesses for 𝐻 can be taken from [0,2𝑅]. While using an iterative method, approximate error should 
be calculated at each iteration. 

Exercise 18: Numerically, compare the convergence of the method: 

𝑥𝑘 = 𝑥𝑘−1 − 2
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
, for 𝑘 = 1, 2, 3,⋯ 

with the Newton-Raphson method on a function with a known double root. 

Exercise 19: The ideal gas equation relates the volume (𝑉 in 𝐿), temperature (𝑇 in 𝐾), pressure (𝑃 

in 𝑎𝑡𝑚), and the amount of gas (number of moles 𝑛) by: 

𝑃 =
𝑛𝑅𝑇

𝑉
 

where 𝑅 = 0.08206 (𝐿 𝑎𝑡𝑚)/(mol 𝐾) is the gas constant. 

The van der Waals equation gives the relationship between these quantities for a real gas by 

(𝑃 +
𝑛2𝑎

𝑉2
) (𝑉 − 𝑛𝑏) = 𝑛𝑅𝑇 

where 𝑎 and 𝑏 are constants that are specific for each gas. 
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Calculate the volume of 2 mol 𝐶𝑂2 at temperature of 50°C, and pressure of 6 𝑎𝑡𝑚. For 𝐶𝑂2, 𝑎 =

 3.59 (𝐿2 𝑎𝑡𝑚)/𝑚𝑜𝑙2, and b = 0.0427 L/ mol. Because 𝐶𝑂2 is a real gas, so we need to use the second 

equation for the solution. But for solving the second equation for the volume, obtain an appropriate 

guess of the volume from the first equation: ideal gas equation. 

Exercise 20: Golden-ratio corresponds to the order of which method: 

(A) Secant (B) Regula-Falsi (C) Fixed-Point Iteration (D) Newton-Raphson   

Exercise 21: Which of the following methods, has an explicit formula that can be used to determine 

the required number of iterations in advance for achieving a given accuracy: 

(A) Bisection    (B) Regula-Falsi     (C) Fixed-Point Iteration   (D) Newton-Raphson    (E) Secant 

Exercise 22: The convergence rate of which of the following methods is highest: 

(A) Bisection    (B) Regula-Falsi     (C) Fixed-Point Iteration   (D) Newton-Raphson    (E) Secant 

∎∎∎ 
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Chapter 3 

Polynomial Interpolation  

Corridor I: BASICS 

 Let’s plan it 
 

 

3.1     Introduction 

3.2     The Newton’s Divided Difference Interpolation 

3.3     The Lagrange Interpolation 

3.4     Deriving the Lagrange Interpolation Formula from the Newton’s Divided-Difference 

3.5     Interpolation Formulas for Equally Spaced Nodes 

3.6     Hermite Interpolation 

3.7     Spline Interpolation 

        3.7.1     Linear Spline 

        3.7.2     Quadratic Spline 

        3.7.3     Cubic Spline 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

 

 

 

 

http://www.timerenders.com.pk/
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Corridor II: ANALYSIS 

 Let’s think deep 
 

 

3.8     Error of Interpolation 

 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

 

 

 

Corridor III: PROGRAMMING ARCADE 

 Let’s do it 
 

 

3.9     Algorithms and Implementations 

The Newton's Divided Difference Interpolation Formula 

 

 

To see more examples for practicing, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

For codes, please visit: https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis 

∎∎∎ 

 

 

 

 

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/
https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis
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3.9 Algorithms and Implementations 

Question 21: Write down an algorithm (pseudo code) to interpolate or extrapolate the function at a point 

using the 𝑛th-degree Newton’s Divided difference interpolating polynomial. 

Algorithm: Given 𝒏 + 1 data points, approximate 𝑓(𝑥) at 𝑥 = 𝒙𝒑 with 𝑃𝒏(𝒙𝒑) . 

𝐈𝐍𝐏𝐔𝐓𝐒:   {

𝒏: an integer as the degree of interpolating polynomial
𝒙𝒊, 0 ≤ 𝑖 ≤ 𝒏: real values as the aribrary nodes
𝒇𝒊, 0 ≤ 𝑖 ≤ 𝒏: real values as the function values corresponding to 𝒙𝒊 nodes
𝒙𝒑: real values as the entries 

 

𝐎𝐔𝐓𝐏𝐔𝐓:  𝒇𝒙𝒑: a real number as an interpolated value at 𝒙 = 𝒙𝒑 

Step 1 Receive the inputs as stated above 

Step 2 for 𝑖 = 0, 1,⋯ , 𝒏
𝑑𝑑𝑓𝑖,0 = 𝒇𝒊      (Computing zeroth divided differences, 𝑓[𝒙𝒊] = 𝒇𝒊)  

 

Step 3 (Computing the divided differences of order 1 to 𝒏) 

for 𝑗 = 1, 2,⋯ ,𝒏

for 𝑖 = 0, 1,⋯ , 𝒏 − 𝑗  

𝑑𝑑𝑓𝑖,𝑗 =
[𝑑𝑑𝑓𝑖+1,𝑗−1 − 𝑑𝑑𝑓𝑖,𝑗−1]

[𝑥𝑖+𝑗 − 𝑥𝑖]

}       (

𝑓[𝑥𝑖 , ⋯ , 𝑥𝑖+𝑗] =

𝑓[𝑥𝑖+1, ⋯ , 𝑥𝑖+𝑗] − 𝑓[𝑥𝑖 , ⋯ , 𝑥𝑖+𝑗−1]

𝑥𝑖+𝑗 − 𝑥𝑖

)    

Step 4 (Evaluating the interpolation polynomial at 𝒙𝒑)       

Set 𝑝𝑟𝑜 = 1

Set 𝒇𝒙𝒑 = 𝑑𝑑𝑓0,0

for 𝑘 = 1, 2,⋯ , 𝒏
𝑝𝑟𝑜 = 𝑝𝑟𝑜 × (𝑥𝑝 − 𝒙𝑘−1)

𝒇𝒙𝒑   = 𝒇𝒙𝒑 + 𝑝𝑟𝑜 × 𝑑𝑑𝑓0,𝑘}
 
 

 
 

   (𝑃𝑛 = 𝑓[𝑥0] +∑ [𝑓[𝑥0, ⋯ , 𝑥𝑘]∏(𝑥𝑝 − 𝑥𝑡)

𝑘−1

𝑡=0

]

𝑛

𝑘=1

) 

Step 5  Print the output: 𝒇𝒙𝒑 

STOP. 
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Question 22: Write a Python program for the second order Newton’s Divided Difference Interpolation. 

script_3.1: divided_difference2.ipynb  

                                  

1 from numpy import *                     
2                                  
3 n = 2  # degree of interpolating polynomial   

4 f = [3,13, –23]                  

5 x = [1, –4,0]                

6 ddf= zeros([3,3])               

7                               

8 xp = float(input("Enter a value which the interpolate is to be obtained: ")) 
9                               

10 #computing zeroth divided difference           

11 for i in range(n+1):                 

12   ddf[i][0] = f[i]                   

13                              

14 #computing the divided difference of Order 1 to n     

15 for j in range(1,n+1):                 

16   for i in range(n–j+1):              

17     ddf[i][j] = (ddf[i+1][j–1] – ddf[i][j–1]) / (x[i+j] – x[i] ) 
18                              

19 pro = 1   #evaluting the interpolating polynomial at xp 
20 fxp = ddf[0][0]                        
21 for k in range(1,n+1):                
22   pro = pro *(xp – x[k–1])               
23   fxp = fxp + pro * ddf[0][k]               
24                               

25 print("The interpolate or extrapolate value of function at x = xp:", fxp) 

Output Console: 

Enter a value which the interpolate is to be obtained: 0.5 

The interpolate or extrapolate value of function at x = xp: -11.75 

Question 23: Write a Python program for the Newton’s Divided Difference Interpolation. 

script_3.2: divided_differenceN.ipynb 

                                  

1 from numpy import *                     
2                                  
3 n = 3  # degree of interpolating polynomial          
4 f = zeros([n+1])                         
5 x = zeros([n+1])                        
6 ddf= zeros([n+1,n+1])                   
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7                                  
8 print("The Divided Difference Interpolation.")          
9 print("Enter real values as the arbitrary nodes")          

10 for i in range(n+1):                        
11   x[i] = float(input(" "))     # x[i] = float(x[i])   
12                                  
13 print("Enter real values as the function values corresponding to x_i nodes ") 
14 for i in range(n+1):                        
15   f[i] = float(input(" "))                  
16                                  
17 xp = float(input("Enter a value which the interpolate is to be obtained: ")) 
18                                  
19 #computing zeroth divided difference             
20 for i in range(n+1):                        
21   ddf[i][0] = f[i]                    
22                                  
23 #computing the divided difference of Order 1 to n       
24 for j in range(1,n+1):                     
25   for i in range(n-j+1):                  
26     ddf[i][j] = (ddf[i+1][j–1] – ddf[i][j–1]) / (x[i+j] – x[i] ) 
27                                  
28 pro = 1     #Evaluting the interpolation polynomial at xp 
29 fxp = ddf[0][0]                         
30 for k in range(1,n+1):                
31   pro = pro *(xp – x[k–1])           
32   fxp = fxp + pro * ddf[0][k]           
33                                  
34 print("The interpolate or extrapolate value of function at x = xp is",fxp) 

Output Console: 

The Divided Difference Interpolation.  

Enter real values as the arbitrary nodes  

 -1 

 2 

 3 

 6 

Enter real values as the function values corresponding to x_i nodes  

 -3 

 5 

 17 

 21 

Enter a value which the interpolate is to be obtained: 2 

The interpolate or extrapolate value of function at x = xp is 5.0 

 

 
∎∎∎ 
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Chapter Summary 

• Curve fitting refers to the process of constructing a curve (a mathematical function) that reasonably fits 

the given discrete data points along a continuum. The obtained curve offers a simpler alternative to the 

original function (whose values at discrete points were given) that might be used to estimate the data 

values at points between the given points (and sometimes beyond the given data points, as well). 

• Regression and Interpolation are the two basic approaches for curve fitting. Regression is the process 

of deriving a single curve that provides for the general trend of the data (and that curve is not required 

to pass through any of the data points). Interpolation is the process of fitting a curve (a single function or 

a piecewise function) that interpolates (passes through) each of the given data points. 

• Suppose that the values of a function 𝑓 at different points 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛  are given. The points 𝑥𝑖  are 

referred to as nodes or arguments and the 𝑛 + 1 ordered pairs (𝑥𝑖 , 𝑓(𝑥𝑖)), 𝑖 = 0, 1, 2,⋯ , 𝑛, are referred 

to as data points of 𝑓. Interpolation (or, more precisely, polynomial interpolation) refers to the process 

of approximating the value of 𝑓 at any intermediate point to the given data points.  

• The interpolation process consists of determining the unique polynomial 𝑃𝑛(𝑥) of degree at most 𝑛 that 

interpolates (passes through) the given data points, i.e.,  

𝑃𝑛(𝑥𝑖) = 𝑓(𝑥𝑖) 

And then, the polynomial 𝑃𝑛(𝑥) serves as the formula to approximate the function values at intermediate 

points to the given data points and, thus, is referred to as interpolating polynomial. If the polynomial 

𝑃𝑛(𝑥) is used approximate the function values at beyond the given data points, then the process is called 

extrapolation. 

• Newton’s Divided Difference Interpolation: For 𝑛 + 1 arbitrarily spaced data points, (𝑥0, 𝑓0), (𝑥1, 𝑓1),

⋯ , (𝑥𝑛 , 𝑓𝑛), of a function 𝑓,  the Newton’s Divided Difference interpolation formula for the interpolating 

polynomial 𝑃𝑛(𝑥) of degree at most 𝑛 is given by 

𝑃𝑛(𝑥) = 𝑓[𝑥0] + 𝑓[𝑥0, 𝑥1](𝑥 − 𝑥0) + 𝑓[𝑥0, 𝑥1, 𝑥2](𝑥 − 𝑥0)(𝑥 − 𝑥1)

+⋯+ 𝑓[𝑥0, 𝑥1, 𝑥2,⋯ , 𝑥𝑛](𝑥 − 𝑥0)(𝑥 − 𝑥1)⋯ (𝑥 − 𝑥𝑛−1)

or

𝑃𝑛(𝑥) = 𝑓[𝑥0] +∑𝑓[𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑘](𝑥 − 𝑥0)(𝑥 − 𝑥1)⋯(𝑥 − 𝑥𝑘−1)

𝑛

𝑘=1

 

Here the 𝒌th divided difference of the function 𝑓 with respect to the nodes 𝑥𝑖 , 𝑥𝑖+1, ⋯ , 𝑥𝑖+𝑘  is denoted 

by 𝑓[𝑥𝑖 , 𝑥𝑖+1, ⋯ , 𝑥𝑖+𝑘] and is recursively defined by 

𝑓[𝑥𝑖 , 𝑥𝑖+1,⋯ , 𝑥𝑖+𝑘] =
𝑓[ 𝑥𝑖+1, 𝑥𝑖+2, ⋯ , 𝑥𝑖+𝑘] − 𝑓[𝑥𝑖 , 𝑥𝑖+1, ⋯ , 𝑥𝑖+(𝑘−1)]

𝑥𝑖+𝑘 − 𝑥𝑖
 

with 𝑓[𝑥𝑖] = 𝑓(𝑥𝑖) = 𝑓𝑖  as the zeroth divided difference. 
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• Lagrange Interpolation: For 𝑛 + 1 arbitrarily spaced data points, (𝑥0, 𝑓0), (𝑥1, 𝑓1),⋯ , (𝑥𝑛, 𝑓𝑛),  of a 

function 𝑓,  the Lagrange interpolation formula for the interpolating polynomial 𝑃𝑛(𝑥) of degree at most 

𝑛 is given by 

𝑃𝑛(𝑥) = 𝐿0(𝑥)𝑓(𝑥0) + 𝐿1(𝑥)𝑓(𝑥1) + ⋯+ 𝐿𝑛(𝑥)𝑓(𝑥𝑛)

= ∑𝐿𝑘(𝑥)

𝑛

𝑘=0

𝑓(𝑥𝑘)
 

Here 𝐿𝑘(𝑥) denotes the 𝒌th Lagrange coefficient (also called cardinal polynomial) and is defined by 

𝐿𝑘(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥1)⋯ (𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘+1)⋯ (𝑥 − 𝑥𝑛)  

(𝑥𝑘 − 𝑥0)(𝑥𝑘 − 𝑥1)⋯ (𝑥𝑘 − 𝑥𝑘−1)(𝑥𝑘 − 𝑥𝑘+1)⋯ (𝑥𝑘 − 𝑥𝑛)
= ∏

𝑥 − 𝑥𝑗

𝑥𝑘 − 𝑥𝑗

𝑛

𝑗=0
𝑗≠𝑘

 

and satisfies the Kronecker delta equation: 

𝐿𝑘(𝑥) = {
1 for 𝑥 = 𝑥𝑘

0 for all 𝑥, except 𝑥 = 𝑥𝑘

 

• First Theorem on Interpolation Error: If 𝑃𝑛(𝑥) is the polynomial of degree at most 𝑛 that interpolates 

a function 𝑓 at 𝑛 + 1 arbitrary nodes 𝑥0, 𝑥1 ,⋯ , 𝑥𝑛 in an interval [𝑎, 𝑏] and if 𝑓 ∈ 𝐶(𝑛+1)[𝑎, 𝑏], then for each 

𝑥 in [𝑎, 𝑏], there exists an 𝜉 in (𝑎, 𝑏) for which 

𝐸(𝑥) = 𝑓(𝑥) − 𝑃𝑛(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥1)⋯(𝑥 − 𝑥𝑛)
𝑓(𝑛+1)(𝜉) 

(𝑛 + 1)!
 

Here 𝐸(𝑥) is the truncation error of the polynomial interpolation. 

• A Lagrange interpolation formula can be obtained from the relevant Newton’s Divided Difference 

interpolation formula, after some rearrangements.  

• Suppose that 𝑛 + 1 data points, (𝑥0, 𝑓0), (𝑥1, 𝑓1),⋯ , (𝑥𝑛 , 𝑓𝑛), of a function 𝑓 are given on the interval [𝑎, 𝑏] 

for consecutively arranged and equispaced nodes 𝑥0, 𝑥1, 𝑥2,⋯ , 𝑥𝑛 , such that 

𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏

with astep size of length ℎ = 𝑥𝑖 − 𝑥𝑖−1, for 𝑖 = 1, 2, 3,⋯ , 𝑛

and 𝑓(𝑥𝑖) = 𝑓𝑖

 

The Newton Forward-Difference Interpolation formula for the interpolating polynomial 𝑃𝑛(𝑥) of 

degree at most 𝑛 is given by 

𝑃𝑛(𝑥) = 𝑓0 + 𝛼∆𝑓0 +
𝛼(𝛼 − 1)

2!
∆2𝑓0 +⋯+

𝛼(𝛼 − 1)(𝛼 − 2)⋯(𝛼 − (𝑛 − 1))

𝑛!
∆𝑛𝑓0 

where 
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𝛼 =
𝑥 − 𝑥0
ℎ

 

Here the 𝒌th forward-difference of 𝑓 at 𝑥𝑖  is denoted by  ∆𝑘𝑓𝑖  and is recursively defined by 

∆𝑘𝑓𝑖 = ∆(∆𝑘−1𝑓𝑖) = ∆𝑘−1𝑓𝑖+1 − ∆
𝑘−1𝑓𝑖 for 𝑘 = 2, 3,⋯ , 𝑛  

with ∆𝑓𝑖 = 𝑓𝑖+1 − 𝑓𝑖  

The Newton Backward-Difference Interpolation formula for the interpolating polynomial 𝑃𝑛(𝑥) of 

degree at most 𝑛 is given by 

𝑃𝑛(𝑥) = 𝑓𝑛 + 𝛽∇𝑓𝑛 +
𝛽(𝛽 + 1)

2!
∇2𝑓𝑛 +⋯+

𝛽(𝛽 + 1)(𝛽 + 2)⋯ (𝛽 + (𝑛 − 1))

𝑛!
∇𝑛𝑓𝑛  

where  

𝛽 =
𝑥 − 𝑥𝑛
ℎ

 

Here the 𝒌th backward-difference of 𝑓 at 𝑥𝑖  is denoted by  ∇𝑘𝑓𝑖  and is recursively defined by 

∇𝑘𝑓𝑖 = ∇(∇𝑘−1𝑓𝑖) = ∇𝑘−1𝑓𝑖 − ∇
𝑘−1𝑓𝑖−1 for 𝑘 = 2, 3,⋯ , 𝑛  

with ∇𝑓𝑖 = 𝑓𝑖 − 𝑓𝑖−1 

• There are central difference interpolation formulas also available in the literature, which are more suited 

for approximation of a function value around mid of the interval of interpolation. Following are the 

examples of some well-known central difference interpolation formulas: 

o Gauss Forward Difference Interpolation Formula 

o Gauss Backward Difference Interpolation Formula  

o Stirling’s Central Difference Interpolation Formula 

o Bessel’s Central Difference Interpolation Formula 

o Everrett’s Central Difference Interpolation Formula 

 
∎∎∎ 
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Chapter Exercises 

 

Exercise 01: Find the linear interpolating polynomial passing through the following set of pairs of the points. 

(i) {(0.1, sin(0.1)), (0.2, sin(0.2))} 

(ii) {(1.2,
1

(1.2)2
) , (1.4,

1

(1.4)2
)} 

(iii) {(1, 7), (2, 4)} 

(iv) {(1, 𝑒−1), (1.5, 𝑒−
1

1.5)} 

Exercise 02: Construct the interpolating polynomial to approximate the following functions at 𝑥 = 0.25. Use 

the arguments 𝑥0 = −0.3, 𝑥1 = 0, 𝑥2 = 0.4. 

(i) 𝑓(𝑥) = ln(1 + 𝑥) 

(ii) 𝑓(𝑥) = 𝑒−𝑥
2
 

(iii) 𝑓(𝑥) = tan 𝑥2 

(iv) 𝑓(𝑥) =
1

√𝑥2−1
 

Exercise 03: Use the Lagrange Interpolating Polynomial and the Newton’s Divided Difference Interpolating 

polynomial of the appropriate degree to interpolate the following: 

(i) Compute 𝑓(1.5), given that, 𝑓(0.5) = 0.479, 𝑓(1.0) = 0.841, 𝑓(2.0) = 0.909 

(ii) Compute 𝑓(3.6), given that 𝑓(3.0) =  0.1506, 𝑓(4.0) = 0.3001, 𝑓(4.5) = 0.2663, 𝑓(4.7) = 0.2346 

(iii) Compute 𝑓(2/3), given that,  

𝑓(1.1) =  −0.071812,     𝑓(1.3) = −0.024750,     𝑓(1.7) = 0.334937,     𝑓(2.0) = 1.101000 

Exercise 04: Find the missing value in the following table using the Newton’s Divided Difference Interpolating 

polynomial. 

𝑥 −1 1 2 3 

𝑓(𝑥) −21 15 ? 3 

Exercise 05: Find the missing value in the following table using Lagrange Interpolating Polynomial 

𝑥 −2 0 2 4 6 

𝑓(𝑥) 33 5 9 ? 113 
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Exercise 06: Find, for what values of 𝑥, 𝑦 attained extreme values using the data given below 

𝑥 3 4 5 6 7 8 

𝑦 0.205 0.240 0.259 0.262 0.250 0.224 

Exercise 07: Use Lagrange Interpolating Polynomial of the appropriate degree to complete the record of the 

export of a certain commodity during six years 

Year: 𝑥 1981 1982 1983 1984 1985 1986 

Export: 𝑦 43 84 93 ? 105 157 

Exercise 08: Use the Newton’s Divided Difference Interpolating Polynomial to obtain an interpolation that 

passing through the following points 

𝑥 0 0.1 0.3 0.4 0.7 0.8 

𝑦 −1.5 −1.27 −0.98 −0.63 −0.22 0.25 

Exercise 09: Find a bound for the error associated with linear polynomial interpolation for the following 

function. Use the arguments 𝑥0 = 0, 𝑥1 = 0.4.  

(i) 𝑓(𝑥) = ln(1 + 𝑥) 

(ii) 𝑓(𝑥) = 𝑒−𝑥
2
 

(iii) 𝑓(𝑥) = tan 𝑥2  

(iv) 𝑓(𝑥) =
1

√𝑥2−1
 

Exercise 10: Find a bound for the error associated with quadratic polynomial interpolation for the following 

function. Use the arguments 𝑥0 = 0, 𝑥1 = 0.1, 𝑥2 = 0.4. 𝑓(𝑥) = sin 𝑥 + cos 𝑥 

(i) 𝑓(𝑥) = 𝑥 ln 𝑥 

(ii) 𝑓(𝑥) = 𝑥 sin 𝑥 − 𝑥3 + 2𝑥 − 1  

(iii) 𝑓(𝑥) = √𝑥 − 𝑥2 

Exercise 11: Find a bound for the error associated with cubic polynomial interpolation for the following 

function. Use the arguments 𝑥0 = 1, 𝑥1 = 1.3, 𝑥2 = 1.6, 𝑥3 = 2.0  

(i) 𝑓(𝑥) = sin(𝑒−𝑥 − 1)  

(ii) 𝑓(𝑥) = ln 𝑥 − 𝑥4 + 𝑥2 − 1 

(iii) 𝑓(𝑥) = 𝑥2𝑒−𝑥
2
 

(iv) 𝑓(𝑥) =
1

√1+𝑥
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Exercise 12: Construct the Newton’s Forward and Backward Difference Interpolating polynomials passes 

through the points (0.2, 0.9980), (0.4, 0.9686),  (0.6, 0.8443), and (0.8, 0.5358). 

Exercise 13: Construct the Newton’s Forward and Backward Difference Interpolating polynomials to 

approximate the following functions at 𝑥 = 1.2 and 2.0. Use the arguments 𝑥0 = 1.1, 𝑥1 = 1.3, 𝑥2 = 1.5, 𝑥3 =

1.7, 𝑥4 = 1.9 

(i) 𝑓(𝑥) = ln(1 + 𝑥) 

(ii) 𝑓(𝑥) = 𝑒−𝑥
2
 

(iii) 𝑓(𝑥) = tan 𝑥2  

(iv) 𝑓(𝑥) =
1

√𝑥2−1
 

Exercise 14: Some data of the speed (𝑉) versus drag coefficient (𝐶𝑑) of a cricket ball is given in the following 

table: Estimate 𝐶𝑑 at 𝑉 = 150 𝑘𝑚/ℎ. 

𝑉 in 𝑘𝑚/ℎ 𝐶𝑑 

0 0.5 

80 0.48 

120 0.39 

160 0.32 

Exercise 15: The mileages covered by a car per liter of fuel at different speeds are shown is the table below: 

Speed in 𝑘𝑚/ℎ Mileage covered in 𝑘𝑚/𝑙 

60 14.2 

75 16.1 

90 14.8 

105 13.7 

120 11.5 

Using interpolation, approximate the fuel efficiency of the car at the speed of 100 𝑘𝑚/ℎ. 

Hint for the Solution: Use any interpolation formula, preferable the Newton’s Backward Difference 

Interpolation formula. 

Exercise 16: Some recorded data of number of deaths due to Novel Coronavirus (2019-nCoV) is given in the 

table below. Use interpolation to determine number of deaths on January 29 and 31, 2020. 
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Date Number of Deaths 

Jan. 24 16 

Jan. 26 24 

Jan. 28 26 

Jan. 30 43 

Feb. 1 45 

Hint for the Solution: The given data spans over 9 days. The function values are given for 𝑥 = 1, 3, 5, 7, 9. Find 

an interpolating polynomial and use it to calculate value at 𝑥 = 6 and 𝑥 = 8 for the desired solutions. 

Exercise 17: The census data of Pakistan is given in the following table (source: Pakistan Bureau of Statistics): 

Census Year Population in thousands 

1951 33740 

1961 42880 

1972 65309 

1981 84254 

1998 132352 

2017 207774 

Use interpolation to determine the population for the year 2010. 

Hint for the Solution: The given data spans over 67 years. The function values are given for 𝑥 =

1, 11, 22, 31, 48, 67. Find an interpolating polynomial and use it to calculate value at 𝑥 = 60 for the desired 

solution. 

 

Exercise 18: Suppose that a table lists the values of the tangent function for the angles ranging from 0o to 45o 

in increments of 5o. What is the largest error that we would introduce by performing linear interpolation 

between successive values in this table? 

∎∎∎ 



49 
 

Chapter 4 

Numerical Integration  

Corridor I: BASICS 

 Let’s plan it 
 

 

 

4.1     Introduction 

4.2     The Trapezoidal Rule 

4.3     The Simpson’s 1/3 Rule 

4.4     Generalized Closed Newton-Cotes Quadrature 

 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

  

http://www.timerenders.com.pk/
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Question 12: Tabulate Closed Newton-Cotes Integration formulas with relevant features, for both 

the basic and the composite forms, separately. 

Suppose that 𝑛 data points, (𝑥𝑗 , 𝑓𝑗), where 𝑓(𝑥𝑗) = 𝑓𝑗, of the integrand 𝑓(𝑥) are given on the interval 

[𝑎, 𝑏] = [𝑥0, 𝑥1] for consecutively arranged and equispaced nodes 𝑥𝑗  such that ℎ = (𝑏 − 𝑎)/𝑛. The 

Closed Newton Cotes quadrature formulas for the definite integral = ∫ 𝑓(𝑥)
𝑥𝑛

𝑥0
𝑑𝑥 are tabulated 

below. 

Numerical 
Integration 

Method 

Formula 

Required 
number of 
function 
values at 

equidistant 
points 

Interpolating 
polynomial used for 
integral evaluation  
(to derive the formula) 

Rectangular 

Rule 

I = ℎ(𝑓0)             (starting-point rule) or 

I = ℎ(𝑓1)             (end-point rule) or 

I = ℎ(𝑓∗)            (mid-point rule) 

where 𝑓∗ = 𝑓 (
𝑥0+𝑥1

2
) 

one 
Polynomial of degree 0  

(constant function) 

Trapezoidal 

Rule 
I =

ℎ

2
[𝑓0 + 𝑓1] two 

Polynomial of degree 1  

(linear polynomial) 

Simpson’s 1/3 

Rule 
I =

ℎ

3
[𝑓0 + 4𝑓1 + 𝑓2] three 

Polynomial of degree 2  

(quadratic polynomial) 

Simpson’s 3/8 

Rule 
I =

3ℎ

8
[𝑓0 + 3(𝑓1 + 𝑓2) + 𝑓3] four 

Polynomial of degree 3  

(cubic polynomial) 

Boole’s Rule 

(Milne’s Rule) 
I =

2ℎ

45
[7𝑓0 + 32𝑓1 + 12𝑓2 + 32𝑓3 + 7𝑓4] five Polynomial of degree 4 

Six-Point Rule 
I =

5ℎ

288
[19𝑓0 + 75𝑓1 + 50𝑓2 + 50𝑓3

                                                   +75𝑓4 + 19𝑓5]
 six Polynomial of degree 5 

Weddle’s Rule 
I =

ℎ

140
[41𝑓0 + 216𝑓1 + 27𝑓2 + 272𝑓3

                                      +27𝑓4 + 216𝑓5 + 41𝑓6]
 seven Polynomial of degree 6 
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Numerical 
Integration 

Method 

Formula 

(for 𝑛 + 1 data points, (𝑥𝑗 , 𝑓𝑗), 𝑗 = 0,1,2, ⋯ , 𝑛,  

and 𝑛 subintervals of equal length ℎ = (𝑥𝑛 − 𝑥0) 𝑛⁄ ) 

Possible 
values of 𝒏  

(K represents 
the number of 

multiple 
applications of 

the formula) 

Interpolating 
polynomial 

used for 
integral 

evaluation  

(to derive the 
formula) 

Composite 
Rectangular 

Rule 

I = ℎ[𝑓0 + 𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1]  (starting-point rule) or 

I = ℎ[𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1 + 𝑓𝑛]  (end-point rule) or 

I = ℎ[𝑓1
∗ + 𝑓2

∗ + ⋯ + 𝑓𝑛−1
∗ + 𝑓𝑛

∗]  (mid-point rule) 

where 𝑓𝑗
∗ = 𝑓 (

𝑥𝑗−1+𝑥𝑗

2
) , for 𝑗 = 1,2,3, … , 𝑛 

n = 1, 2, 3, ...  
(i.e., n = K 

could be any 
positive 
integer) 

Piecewise 
polynomial of 

degree 0  
(piecewise-

constant 
function) 

Composite  
Trapezoidal 

Rule 
I =

ℎ

2
[𝑓0 + 2(𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1) + 𝑓𝑛] 

𝑛 =  1, 2, 3, ⋯  
(i.e., n = K 

could be any 
positive 
integer) 

Piecewise 
polynomial of 

degree 1  
(piecewise-

linear) 

Composite 
Simpson’s 
1/3 Rule 

I =
ℎ

3
[𝑓0 + 4(𝑓1 + 𝑓3 + ⋯ + 𝑓𝑛−1)        

+ 2(𝑓2 + 𝑓4 + ⋯ + 𝑓𝑛−2) + 𝑓𝑛] 

n = 2, 4, 6, ...  
(i.e., n = 2K, 

where  
K = 1, 2, 3, ...) 

Piecewise 
polynomial of 

degree 2  
(piecewise-
quadratic) 

Composite 
Simpson’s 
3/8 Rule 

I =
3ℎ

8
[𝑓0 + 3(𝑓1 + 𝑓2) + 2(𝑓3) + 3(𝑓4 + 𝑓5) + 2(𝑓6)

                                                      + ⋯ +  3(𝑓𝑛−2 + 𝑓𝑛−1) + 𝑓𝑛]
 

n = 3, 6, 9, ... 
(i.e., n = 3K, 

where 
K = 1, 2, 3, ...) 

Piecewise 
polynomial of 

degree 3  
(piecewise-

cubic) 

Composite 
Boole’s Rule 
(Composite 

Milne’s 
Rule) 

I =
2ℎ

45
[7𝑓0 + 32(𝑓1 + 𝑓5 + 𝑓9 + ⋯ + 𝑓𝑛−3) 

+ 12(𝑓2 + 𝑓6 + 𝑓10 + ⋯ + 𝑓𝑛−2) 

+ 32(𝑓3 + 𝑓7 + 𝑓11 + ⋯ + 𝑓𝑛−1) 

+ 14(𝑓4 + 𝑓8 + 𝑓12 + ⋯ + 𝑓𝑛−4) + 7𝑓𝑛] 

n = 4, 8, 12, ... 
(i.e., n = 4K, 

where  
K = 1, 2, 3, ...) 

Piecewise 
polynomial of 

degree 4 

Composite   
Six-Point 

Rule 

I =
5ℎ

288
[19𝑓0 + 75(𝑓1 + 𝑓6 + 𝑓11 + ⋯ + 𝑓𝑛−4) 

+ 50(𝑓2 + 𝑓7 + 𝑓12 + ⋯ + 𝑓𝑛−3) 

+ 50(𝑓3 + 𝑓8 + 𝑓13 + ⋯ + 𝑓𝑛−2) 

+ 75(𝑓4 + 𝑓9 + 𝑓14 + ⋯ + 𝑓𝑛−1) 

+ 38(𝑓5 + 𝑓10 + 𝑓15 + ⋯ + 𝑓𝑛−5) + 19𝑓𝑛] 

n = 5, 10, 15, ...  
(i.e., n = 5K, 

where  
K = 1, 2, 3, ...) 

Piecewise 
polynomial of 

degree 5 

Composite 
Weddle’s 

Rule 

I =
ℎ

140
[41𝑓0 + 216(𝑓1 + 𝑓7 + 𝑓13 + ⋯ + 𝑓𝑛−5) 

+ 27(𝑓2 + 𝑓8 + 𝑓14 + ⋯ + 𝑓𝑛−4) 

+ 272(𝑓3 + 𝑓9 + 𝑓15 + ⋯ + 𝑓𝑛−3) 

+ 27(𝑓4 + 𝑓10 + 𝑓16 + ⋯ + 𝑓𝑛−2) 

+ 216(𝑓5 + 𝑓11 + 𝑓17 + ⋯ + 𝑓𝑛−1) 

+ 82(𝑓6 + 𝑓12 + 𝑓18 + ⋯ + 𝑓𝑛−6) + 41𝑓𝑛] 

n = 6, 12, 18, ...  
(i.e., n = 6K, 

where  
K = 1, 2, 3, ...) 

Piecewise 
polynomial of 

degree 6 

∎∎∎ 
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Corridor II: ANALYSIS 

 Let’s think deep 

 

4.5     Truncation Error of the Trapezoidal Rule 

4.6     Truncation Error of the Simpson’s 1/3 Rule 

4.7     Further Discussions 

4.8     The Gaussian Quadrature 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

 

Corridor III: PROGRAMMING ARCADE 

 Let’s do it 
 

 

4.9     Algorithms and Implementations 

The Composite Trapezoidal Rule 

The Composite Simpson’s 1/3 Rul 

The Composite Simpson’s 3/8 Rule 

 

To see more examples for practicing, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

For codes, please visit: https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis 

∎∎∎ 

 

 

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/
https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis
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4.9 Algorithms and Implementations 

Question 13: Write down the algorithm (pseudo-code) of the Composite Trapezoidal rule for numerical 

integration of definite integrals. 

The Composite Trapezoidal rule to integrate a function 𝑓 over the interval [𝑎, 𝑏] is given by, 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≅
ℎ

2
[𝑓0 + 2(𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1) + 𝑓𝑛] 

where ℎ =
𝑏 − 𝑎

𝑛
=

𝑥𝑛 − 𝑥0

𝑛
, 𝑓𝑗 = 𝑓(𝑥𝑗) and 𝑥𝑗 = 𝑥0 + 𝑗ℎ for 𝑗 = 0, 1, 2, ⋯ , 𝑛 

Algorithm:  To approximate the definite integral 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 using the formula: 

𝐼 =
ℎ

2
[𝑓0 + 2(𝑓1 + 𝑓2 + 𝑓3 + ⋯ + 𝑓𝑛−1) + 𝑓𝑛] 

𝐈𝐍𝐏𝐔𝐓𝐒:           {
𝒂 and 𝒃: two real values as the endpoints of the interval of integration 
𝒏: a positive integer as the number of subintervals

 

𝐎𝐔𝐓𝐏𝐔𝐓:          𝑰: a real number as an approximation to the integral 

Step 1  Receive the inputs as stated above 

Step 2  Set real number 𝒙𝟎 = 𝒂 

Set real number 𝒙𝒏 = 𝒃 

Set real number 𝒉 = (𝒙𝒏 − 𝒙𝟎)/𝒏 

Set real number 𝒇𝒙𝟎 as the value 𝑓(𝒂) 

Set real number 𝒇𝒙𝒏 as the value 𝑓(𝒃) 

Step 3  Set 𝑰 = 𝒇𝒙𝟎 + 𝒇𝒙𝒏 

Step 4  Set real number 𝒙𝒄 = 𝒙𝟎 

Set real number 𝒔𝒖𝒎 = 𝟎 

for 𝑗 = 1, 2, ⋯ , 𝒏 − 1  

  Set 𝒙𝒄 = 𝒙𝒄 + 𝒉 

Set 𝒇𝒙𝒄 as the value 𝑓(𝒙𝒄) 

Set 𝒔𝒖𝒎 = 𝒔𝒖𝒎 + 𝒇𝒙𝒄     (Forming 𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1 )  

 end for 

Step 5  Set 𝑰 = (𝒉 𝟐⁄ ) × (𝑰 + 𝟐 × 𝒔𝒖𝒎) 

Step 6  Print the output: 𝑰 

STOP. 
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Question 14: Write a Python program to evaluate the integral of 𝑓(𝑥) = √𝑥2 + 1 over [0, 2] with 12 
subintervals using the Composite Trapezoidal rule.  

script_4.1: trapezoidal.ipynb  

                                  

1 from numpy import *                        

2                                  

3 print("The Composite Trapezoidal Rule")                

4 x0 = float(input("Enter the lower limit of integral: "))          

5 xn = float(input("Enter the upper limit of integral: "))      

6 n = int(input("Enter the number of subintervals n: "))    

7                                  

8 h = (xn – x0) / n                          

9 fx0 = sqrt(x0**2 + 1)                        

10 fxn = sqrt(xn**2 + 1)                       

11 I = fx0 + fxn                       

12 xc = x0                           

13 sum = 0                           

14                                  

15 for i in range(1,n):                     

16   xc = xc + h                      

17   fxc = sqrt(xc**2 + 1)                     

18   sum = sum + fxc                    

19 I = (h / 2) * (I + 2 * sum)                   

20                                  

21 print("The Approximate Integral =", I)             

Output Console: 

The Composite Trapezoidal Rule 

Enter the lower limit of integral: 0 

Enter the upper limit of integral: 2 

Enter the number of subintervals n: 12  

The Approximate Integral = 2.9599562632284453 

 

Question 15: Write a Python program to evaluate the integral of 𝑓(𝑥) = √𝑥2 + 1 over [0, 2] with 12 

subintervals using the Composite Trapezoidal rule. Use #define directive for evaluating 𝑓(𝑥) at the different 

nodes (i.e., for finding the values of 𝑓 at the different nodes). 

script_4.2: trapezoidal2.ipynb 

                                  
1 from numpy import *                       

2                                  

3 def fval(x):                      

4   y = sqrt(x**2 + 1)                   

5   return(y)                         
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6                                  

7 print("The Composite Trapezoidal Rule")               

8 x0 = float(input("Enter the lower limit of integral: "))         

9 xn = float(input("Enter the upper limit of integral: "))     

10 n = int(input("Enter the number of subintervals n: "))   

11                                  

12 h = (xn – x0) / n                         

13 fx0 = fval(x0)                       

14 fxn = fval(xn)                      

15 I = fx0 + fxn                      

16 xc = x0                          

17 sum = 0                          

18                                  

19 for i in range(1,n):                    

20   xc = xc + h                      

21   fxc = fval(xc)                     

22   sum = sum + fxc                    

23 I = (h / 2) * (I + 2 * sum)                  

24                                  

25 print("The Approximate Integral =",I)            

Output Console: 

The Composite Trapezoidal Rule 

Enter the lower limit of integral: 0 

Enter the upper limit of integral: 2 

Enter the number of subintervals n: 12  

The Approximate Integral = 2.9599562632284453 

 

Question 16: Write down the algorithm (pseudo-code) of the Composite Simpson’s 1/3 rule for numerical 

integration of definite integrals. 

The Composite Simpson’s 1/3 rule to integrate a function 𝑓 over the interval [𝑎, 𝑏] is given by, 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≅
ℎ

3
[𝑓0 + 4(𝑓1 + 𝑓3 + ⋯ + 𝑓𝑛−1) + 2(𝑓2 + 𝑓4 + ⋯ + 𝑓𝑛−2) + 𝑓𝑛] 

where ℎ =
𝑏 − 𝑎

𝑛
=

𝑥𝑛 − 𝑥0

𝑛
, 𝑓𝑗 = 𝑓(𝑥𝑗) and 𝑥𝑗 = 𝑥0 + 𝑗ℎ for 𝑗 = 0, 1, 2, ⋯ , 𝑛 

Algorithm:  To approximate the definite integral 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 using the formula: 

𝐼 =
ℎ

3
[𝑓0 + 4(𝑓1 + 𝑓3 + ⋯ + 𝑓𝑛−1) + 2(𝑓2 + 𝑓4 + ⋯ + 𝑓𝑛−2) + 𝑓𝑛] 

𝐈𝐍𝐏𝐔𝐓𝐒:           {
𝒂 and 𝒃: two real values as the endpoints of the interval of integration 
𝒏: a positive even integer as the number of subintervals

 

𝐎𝐔𝐓𝐏𝐔𝐓:          𝑰: a real number as an approximation to the integral 
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Step 1  Receive the inputs as stated above 

Step 2  Set real number 𝒙𝟎 = 𝒂 

Set real number 𝒙𝒏 = 𝒃 

Set real number 𝒉 = (𝒙𝒏 − 𝒙𝟎)/𝒏 

Set real number 𝒇𝒙𝟎 as the value 𝑓(𝒂) 

Set real number 𝒇𝒙𝒏 as the value 𝑓(𝒃) 

Step 3  Set 𝑰 = 𝒇𝒙𝟎 + 𝒇𝒙𝒏 

Step 4  Set real number 𝒙𝒄 = 𝒙𝟎 

Set real number 𝒔𝒖𝒎𝟏 = 𝟎 

Set real number 𝒔𝒖𝒎𝟐 = 𝟎  

for 𝑗 = 1, 2, ⋯ , 𝒏 − 1  

  Set 𝒙𝒄 = 𝒙𝒄 + 𝒉 

Set 𝒇𝒙𝒄 as the value 𝑓(𝒙𝒄) 

  if  𝑗 is odd 

Set 𝒔𝒖𝒎𝟏 = 𝒔𝒖𝒎𝟏 + 𝒇𝒙𝒄  (Forming 𝑓1 + 𝑓3 + ⋯ + 𝑓𝑛−1 )  

   else 

Set 𝒔𝒖𝒎𝟐 = 𝒔𝒖𝒎𝟐 + 𝒇𝒙𝒄  (Forming 𝑓2 + 𝑓4 + ⋯ + 𝑓𝑛−2 ) 

 end for 

Step 5  Set 𝑰 = (𝒉 𝟑⁄ ) × (𝑰 + 𝟒 × 𝒔𝒖𝒎𝟏 + 𝟐 × 𝒔𝒖𝒎𝟐) 

Step 6  Print the output: 𝑰 ;  STOP.   

Question 17: Write a Python program to evaluate the integral of 𝑓(𝑥) = √𝑥2 + 1 over [0, 2] with 12 

subintervals using the Composite Simpson’s 1/3 rule.  

script_4.3: simpsons13.ipynb 

                                  

1 from numpy import *                       

2                                  

3 def fval(x):                      

4   y = sqrt(x**2 + 1)                   

5   return(y)                         

6                                  

7 print("The Composite Simpson’s Rule")               

8 x0 = float(input("Enter the lower limit of integral: "))         

9 xn = float(input("Enter the upper limit of integral: "))      

10 n = int(input("Enter the number of subintervals n: "))   

11                                  

12 h = (xn – x0) / n                         

13 fx0 = fval(x0)                       

14 fxn = fval(xn)                      
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15 I = fx0 + fxn                      

16 xc = x0                          

17 sum1 = 0                          

18 sum2 = 0                          

19                                  

20 for i in range(1,n):                    

21   xc = xc + h                      

22   fxc = fval(xc)                     

23   if i%2 != 0:                     

24     sum1 = sum1 + fxc                    

25   else:                           

26     sum2 = sum2 + fxc                   

27 I = (h / 3) * (I + 4 * sum1 + 2 * sum2)              

28                                  

29 print("The Approximate Integral =", I)            

Output Console: 

The Composite Simpson’s Rule 

Enter the lower limit of integral: 0 

Enter the upper limit of integral: 2 

Enter the number of subintervals n: 12 

The Approximate Integral = 2.957885258976941 

Question 18: Write down the algorithm (pseudo-code) of the Composite Simpson’s 3/8 rule for numerical 

integration of definite integrals. 

Algorithm:  To approximate the definite integral 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 using the formula: 

𝐼 =
3ℎ

8
[𝑓0 + 3(𝑓1 + 𝑓2 + 𝑓4 + 𝑓5 + ⋯ + 𝑓𝑛−2 + 𝑓𝑛−1) + 2(𝑓3 + 𝑓6 + ⋯ + 𝑓𝑛−3) + 𝑓𝑛] 

𝐈𝐍𝐏𝐔𝐓𝐒:            {
𝒂 and 𝒃: two real values as the endpoints of the interval of integration 
𝒏: a positive integer (multiple of 3) as the number of subintervals

 

𝐎𝐔𝐓𝐏𝐔𝐓:          𝑰: a real number as an approximation to the integral 

Step 1  Receive the inputs as stated above 

Step 2  Set real number 𝒙𝟎 = 𝒂 

Set real number 𝒙𝒏 = 𝒃 

Set real number 𝒉 = (𝒙𝒏 − 𝒙𝟎)/𝒏 

Set real number 𝒇𝒙𝟎 as the value 𝑓(𝒂) 

Set real number 𝒇𝒙𝒏 as the value 𝑓(𝒃) 

Step 3  Set 𝑰 = 𝒇𝒙𝟎 + 𝒇𝒙𝒏 

Step 4  Set real number 𝒙𝒄 = 𝒙𝟎 

Set real number 𝒔𝒖𝒎𝟏 = 𝟎 

Set real number 𝒔𝒖𝒎𝟐 = 𝟎 
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for 𝑗 = 1, 2, ⋯ , 𝒏 − 1  

Set 𝒙𝒄 = 𝒙𝒄 + 𝒉 

Set 𝒇𝒙𝒄 as the value 𝑓(𝒙𝒄) 

if  𝑗 is divisible by 3 

Set 𝒔𝒖𝒎𝟐 = 𝒔𝒖𝒎𝟐 + 𝒇𝒙𝒄  (Forming 𝑓3 + 𝑓6 + ⋯ + 𝑓𝑛−3 ) 

else 

Set 𝒔𝒖𝒎𝟏 = 𝒔𝒖𝒎𝟏 + 𝒇𝒙𝒄   (
Forming 𝑓1 + 𝑓2 + 𝑓4 + 𝑓5

+ ⋯ + 𝑓𝑛−2 + 𝑓𝑛−1
) 

end for 

Step 5  Set 𝑰 = (𝟑 × 𝒉 𝟖⁄ ) × (𝑰 + 𝟑 × 𝒔𝒖𝒎𝟏 + 𝟐 × 𝒔𝒖𝒎𝟐) 

Step 6  Print the outpu. 

STOP. 

Question 19: Write a Python program to evaluate the integral of 𝑓(𝑥) = √𝑥2 + 1 over [0, 2] with 12 

subintervals using the Composite Simpson’s 3/8 rule.  

script_4.3: simpson38.ipynb 

                                  

1 from numpy import *                       

2                                  

3 def fval(x):                      

4   y = sqrt(x**2 + 1)                   

5   return(y)                         

6                                  

7 print("The Composite Simpson’s 3/8 Rule")            

8 x0 = float(input("Enter the lower limit of integral: "))         

9 xn = float(input("Enter the upper limit of integral: "))      

10 n = int(input("Enter the number of subintervals n: "))   

11                                  

12 h = (xn – x0) / n                         

13 fx0 = fval(x0)                       

14 fxn = fval(xn)                      

15 I = fx0 + fxn                      

16 xc = x0                          

17 sum1 = 0                          

18 sum2 = 0                          

19                                  

20 for i in range(1,n):                    

21   xc = xc + h                      

22   fxc = fval(xc)                     

23   if i%3 != 0:                     

24     sum2 = sum2 + fxc                    

25   else:                           

26     sum1 = sum1 + fxc                   

27 I = (3 * h/8) * (I + 3*sum1 + 2*sum2)              

28                                  

29 print("The Approximate Integral =",I)            
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Output Console: 

The Composite Simpson’s 3/8 Rule 

Enter the lower limit of integral: 0 

Enter the upper limit of integral: 2 

Enter the number of subintervals n: 12 

The Approximate Integral = 2.490906146724771 

 

Remark: Likewise the programs in the solutions of Problem 19, the programmer can modify the programs in 

the solutions of Problems 20 and 22 to evaluate the function values at the desired nodes through the use of 

user-defined function and inline function  (using #define). 

∎∎∎ 

 

Chapter Summary 

• Numerical integration or quadrature refers to the process of numerically approximating the value of 

the integral 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥, by using the values of 𝑓 at a finite number of sample points. The limits of 

integration could be finite, semi-finite, or infinite. 

• The integral is approximated by a numerical integration rule or quadrature formula, 𝑄𝑓, which is a 

linear combination of certain function values: 

𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 ≅ 𝑄𝑓 = ∑ 𝜔𝑗 ∙ 𝑓(𝑥𝑗)

𝑛

𝑗=0

 

Here 𝑥𝑖  are the ordered points, called the quadrature nodes (or simply nodes), taken usually within the 

limits of integration at which the function values 𝑓(𝑥𝑗) are known and 𝜔𝑗  are called the weights of the 

quadrature formula. 

• The quadrature formula satisfies the property that  

𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = 𝑄𝑓 + 𝐸𝑓, 

where 𝐸𝑓 is the truncation error (also called the error term) associated with the quadrature formula. 

• The Newton-Cotes integration formulas are based on the approach that 𝑛 + 1 number of equispaced and 

ordered nodes are chosen within the limits of integration and the integrand function is replaced by an 

interpolating polynomial of degree at most 𝑛 by using the nodes, and then the analytic integration of the 

polynomial is performed to obtain the formula. A Composite Newton-Cotes integration formula is 
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obtained by applying the relevant Newton-Cotes formula in each of the different consecutive segments of 

the interval of integration and then summing the integrals over all the segments.  

• The examples of Newton-Cotes integration formulas include Trapezoidal rule, Simpson’s 1/3 rule, 

Simpson’s 3/8 rule, Boole’s rule, Six-Point rule, and Weddle’s rule. 

• The Trapezoidal rule to numerically integrate the function 𝑓 over the interval [𝑎, 𝑏] is 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≅
(𝑏 − 𝑎)

2
[𝑓(𝑎) + 𝑓(𝑏)] 

• The Composite Trapezoidal rule to integrate a function 𝑓 over the interval [𝑎, 𝑏] is given by, 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≅
ℎ

2
[𝑓0 + 2(𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1) + 𝑓𝑛] 

where ℎ =
𝑏 − 𝑎

𝑛
=

𝑥𝑛 − 𝑥0

𝑛
, 𝑓𝑗 = 𝑓(𝑥𝑗) and 𝑥𝑗 = 𝑥0 + 𝑗ℎ for 𝑗 = 0, 1, 2, ⋯ , 𝑛 

• The Simpson’s 1/3 rule to integrate a function 𝑓 over the interval [𝑎, 𝑏] is given by, 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≅
ℎ

3
[𝑓0 + 4𝑓1 + 𝑓2] 

where ℎ =
𝑏 − 𝑎

2
=

𝑥2 − 𝑥0

2
, 𝑓𝑗 = 𝑓(𝑥𝑗) and 𝑥𝑗 = 𝑥0 + 𝑗ℎ for 𝑗 = 0, 1, 2 

• The Composite Simpson’s 1/3 rule to integrate a function 𝑓 over the interval [𝑎, 𝑏] is given by, 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≅
ℎ

3
[𝑓0 + 4(𝑓1 + 𝑓3 + ⋯ + 𝑓𝑛−1) + 2(𝑓2 + 𝑓4 + ⋯ + 𝑓𝑛−2) + 𝑓𝑛] 

where ℎ =
𝑏 − 𝑎

𝑛
=

𝑥𝑛 − 𝑥0

𝑛
, 𝑓𝑗 = 𝑓(𝑥𝑗) and 𝑥𝑗 = 𝑥0 + 𝑗ℎ for 𝑗 = 0, 1, 2, ⋯ , 𝑛 

• A comprehensive summary of the Newton-Cotes formulas and the Composite Newton-Cotes formulas can 

be found under Question 12 (page 252). 

• The error term 𝐸𝑇 of order 𝒪(ℎ3) associated with the Trapezoidal rule in approximating 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 

is given by, 

𝐸𝑇 = −
 1

12
ℎ3𝑓′′(𝜉), 

for some appropriate point 𝜉 in (𝑎, 𝑏) and ℎ = 𝑏 − 𝑎. 

• The error term 𝐸𝐶𝑇  of order 𝒪(ℎ2) associated with the Composite Trapezoidal rule in approximating 𝐼 =

∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 is given by, 

𝐸𝐶𝑇 = −
𝑏 − 𝑎

12
ℎ2𝑓′′(𝜂), 
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for some appropriate point 𝜂 in (𝑎, 𝑏) and ℎ = (𝑏 − 𝑎)/𝑛, where 𝑛 is the number of subintervals of [𝑎, 𝑏]. 

• The error term 𝐸𝑆 of order 𝒪(ℎ5) associated with the Simpson’s 1/3 rule in approximating 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 

is given by, 

𝐸𝑆 = −
 1

90
ℎ5𝑓(4)(𝜉), 

for some appropriate point 𝜉 in (𝑎, 𝑏) and ℎ = (𝑏 − 𝑎)/2. 

• The error term 𝐸𝐶𝑆 of order 𝒪(ℎ4) associated with the Composite Simpson’s 1/3 rule in approximating 

𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 is given by, 

𝐸𝐶𝑆 = −
𝑏 − 𝑎

180
ℎ4𝑓(4)(𝜂) 

for some appropriate point 𝜂 in (𝑎, 𝑏) and ℎ = (𝑏 − 𝑎)/𝑛, where 𝑛 is the number of subintervals of [𝑎, 𝑏]. 

• Suppose 𝐼ℎ denotes the approximate integral using a quadrature formula with step size ℎ, and 𝐸ℎ denotes 

the associated error. Then, the exact integral = 𝐼ℎ + 𝐸ℎ 

Similarly, suppose 𝐼ℎ 2⁄  denotes the approximate integral using the same quadrature formula with a step 

size ℎ 2⁄ , and 𝐸ℎ 2⁄  denotes the associated error. Then, the exact integral = 𝐼ℎ 2⁄ + 𝐸ℎ 2⁄  

According to the interval halving method, for a Newton-Cotes integration formula with an error of order 

𝒪(ℎ𝑁) an estimate of the error 𝐸ℎ 2⁄  is given by,  

𝐸ℎ 2⁄ ≅
1

2𝑁 − 1
(𝐼ℎ 2⁄ − 𝐼ℎ) 

This leads to a better approximation of the integral as below: 

𝐼 ≅ 𝐼ℎ 2⁄ +
1

2𝑁 − 1
(𝐼ℎ 2⁄ − 𝐼ℎ) 

This corresponds to a special process called Richardson Extrapolation, in which two estimates of the 

solution are used to obtain a third approximation, which is a more accurate one. This approach for 

numerical integration forms an initial stage of a relatively broader way of numerical integration, called 

Romberg Integration. Recall that for the Composite Trapezoidal rule 𝑁 = 2, and for the Composite 

Simpson’s 1/3 rule 𝑁 = 4. 

• There could be several approaches for improving the estimates of the integrals: 

o Using smaller step size (or larger number of subintervals)  

o Using higher-order formula (e.g., using the Simpson’s rule instead of the Trapezoidal rule) 

o Using Richardson’s extrapolation (i.e., using two less accurate estimates to obtain a more 

accurate estimate). 

• The degree of precision, also referred to as the order of accuracy, of a quadrature formula is 𝑝 if and only 

if the associated truncation error is zero for all polynomials of degree less than or equal to 𝑝, and the error 

is not zero for some polynomial of degree greater than 𝑝. Note that the Trapezoidal rule is based on the 
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interpolating polynomial of degree 1 (linear polynomial). Therefore, it produces the exact result while 

integrating a polynomial of degree 1. Hence it has the degree of precision as 1. The Simpson’s 1/3 rule 

might be expected to have a degree of precision as 2 because it is based on interpolating polynomial of 

degree 2 (quadratic polynomial). However, it produces the exact result while integrating a polynomial of 

degree 2, as well as degree 3. Hence, it has the degree of precision as 3. This fact is also evident while 

deriving the error term for the Simpson’s 1/3 rule. This property, together with certain other reasons, 

makes the Composite Simpson’s 1/3 rule often the best choice among the Newton-Cotes integration 

formulas. 

• A concise description of the error terms associated with the Newton-Cotes formulas and relevant degrees 

of precision can be found under Question 23 (page 276). 

• The Gaussian Quadrature is an advanced numerical integration technique in which the quadrature nodes 

are selected in the interval of integration using the roots of some special polynomial to obtain an optimal 

approximation of the integral. 

∎∎∎ 

Chapter Exercises 

Exercise 01: Approximate the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 for the following functions over the interval [0, 1] using the 

Trapezoidal, Simpson’s 1/3 and Simpson’s 3/8 rules. 

(𝑖) 𝑓(𝑥) = 𝑥2 + 𝑥 − 1 (𝑖𝑖) 𝑓(𝑥) = ln(1 + 𝑥) (𝑖𝑖𝑖) 𝑓(𝑥) =
1

1 + 𝑥2

(𝑖𝑣) 𝑓(𝑥) = cos (
𝑥

𝜋
) (𝑣) 𝑓(𝑥) =

1

√𝑥2 + 4

 

Exercise 02: Approximate the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 for the following functions over the interval [0, 1] using the 

Composite Trapezoidal, Simpson’s 1/3, and Simpson’s 3/8 rules with ℎ = 0.1. 

(𝑖) 𝑓(𝑥) = 𝑥2 + 𝑥 − 1 (𝑖𝑖) 𝑓(𝑥) = ln(1 + 𝑥) (𝑖𝑖𝑖) 𝑓(𝑥) =
1

1 + 𝑥2

(𝑖𝑣) 𝑓(𝑥) = cos (
𝑥

𝜋
) (𝑣) 𝑓(𝑥) =

1

√𝑥2 + 4

 

Exercise 03: Approximate the integral  

∫ sin (
𝜋√𝑥

4
) 𝑑𝑥

16

4

 

using the Composite Trapezoidal rule with ℎ = 1 and five-digit rounding arithmetic. 

Exercise 04: Find an approximate value of the integral ∫ (2 + sin(2√𝑥))𝑑𝑥
2

0
 using the Composite Trapezoidal 

rule for 𝑛 = 10 and five-digit rounding arithmetic. 
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Exercise 05: Approximate the arc length of the following functions over the interval [0, 𝜋] 

(𝑖) 𝑓(𝑥) = sin2 𝑥 (𝑖𝑖) 𝑓(𝑥) = ln (
4 + 𝑥

𝜋
) 

using the Composite Simpson’s 1/3 rule for ℎ =
𝜋

6
 and four-digit rounding arithmetic. 

Exercise 06: Find the approximate value of the integral ∫ (𝑓(𝑥))
2

𝑑𝑥
8

3
 using the Composite Simpson’s 1/3 rule, 

given that 

𝑥𝑗  3 4 5 6 7 8 9 

𝑓(𝑥𝑗) 0.205 0.240 0.259 0.262 0.250 0.224 0.220 

Exercise 07: Approximate the area of a surface of revolution of the following curves: 

(𝑖)   𝑥 = 4𝑦,                                                    (𝑖𝑖)    𝑥 = tan 𝑦 

about the 𝑦 − 𝑎𝑥𝑖𝑠 from 0 ≤ 𝑦 ≤ 1 using the Composite Simpson’s 3/8 rule for 𝑛 = 10 and four-digit rounding 

arithmetic. 

Exercise 08: Find the approximate value of the integral 

𝑓(𝑥) = ∫
𝑥

𝑥2 + 3

3

0

𝑑𝑥 

using the Composite Boole’s rule with step size ℎ = 0.25 and five-digit rounding arithmetic.  

Exercise 09: Find the approximate value of the integral 

𝑓(𝑥) = ∫ ln(𝑥 − 1)

5

2

𝑑𝑥 

using the Composite Six-Point rule with step size ℎ = 0.3 and five-digit rounding arithmetic.  

Exercise 10: Find the approximate value of the integral 

𝑓(𝑥) = ∫ sinh(𝑥2)

4

1

𝑑𝑥 

using the Composite Weddle’s rule with step size ℎ = 0.25 and five-digit rounding arithmetic.  

Exercise 11: Suppose that 𝑓(0) = 1, 𝑓(0.5) = 2.5, 𝑓(1) = 2 and 𝑓(0.25) = 𝑓(0.75) = 𝛼. Find 𝛼 if the 

Composite Trapezoidal rule with 𝑛 = 4 gives the value 1.75 for ∫ 𝑓(𝑥)𝑑𝑥
1

0
. 
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Exercise 12: Suppose that 𝑓(4) = 0.240, 𝑓(6) = 0.262, 𝑓(8) = 0.224, 𝑓(3) = 𝑓(5) = 𝑓(7) = 𝛼, and 𝑓(9) =

0.220 Find 𝛼 if the Composite Simpson’s 1/3 Rule gives the value 1.473 for 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

9

3

 

Exercise 13: Suppose that 𝑓(0.2) = 1.56, 𝑓(0.4) = 2.00, 𝑓(0.6) = 3.01, 𝑓(0.1) = 𝑓(0.3) = 𝑓(0.5) = 𝛼, and 

𝑓(0.7) = 3.32 Find 𝛼 if the Composite Simpson’s 3/8 rule gives the value 1.30312 for 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

0.7

0.1

 

Exercise 14: To approximate the integral of 𝑓(𝑥) over the interval [0, 1] with an absolute error less than 
1

2
× 10−4, how many subintervals are needed, in case of (𝑎) the Composite Trapezoidal rule, (𝑏) the Composite 

Simpson’s 1/3 rule, and (𝑐) the Composite Simpson’s 3/8 rule? Given that, 

(𝑖) 𝑓(𝑥) = 𝑥2 + 𝑥 − 1 (𝑖𝑖) 𝑓(𝑥) = ln(1 + 𝑥) (𝑖𝑖𝑖) 𝑓(𝑥) =
1

1 + 𝑥2

(𝑖𝑣) 𝑓(𝑥) = cos (
𝑥

𝜋
) (𝑣) 𝑓(𝑥) =

1

√𝑥2 + 4

 

Exercise 15: Suppose we wish to evaluate the integral 

 𝑓(𝑥) = ∫ sin(√𝑥)𝑑𝑥
𝜋

0
  

numerically, with an error of magnitude less than 10−5. How many subintervals are needed if we wish to use 
the Composite Trapezoidal and Composite Simpson 1/3 rules? 

Exercise 16: Find the number of subintervals 𝑛 or step length ℎ so that the error 𝐸𝑇𝐶  for the Composite 
Trapezoidal rule and error 𝐸𝑆𝐶  for the Composite Simpson’s 1/3 rule is less than 5 × 10−4 for numerically 
integrating the Legendre polynomial, 

 𝑃4(𝑥) = 𝑥4 −
6

7
𝑥2 +

3

35
 

over the interval [−1, 1].  

Exercise 17: Obtain an upper bound on the absolute error when the Chebyshev polynomial of degree four, 

𝑇4(𝑥) = 8𝑥4 − 8𝑥2 + 1 

is integrated over the interval [−1, 1] by means of the Composite Simpson’s 3/8 rule. 

Exercise 18: Obtain an upper bound on the absolute error when the Laguerre polynomial of degree four 

𝐿4(𝑥) = 𝑥4 − 16𝑥3 + 72𝑥2 − 96𝑥 + 24 
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is integrated over the interval [−1, 1], by means of the Composite Simpson’s 3/8 rule. 

Exercise 19: A car travels the loop of the racing track in 65 seconds. The speed of the car in meter/second is 
recorded after every 5 seconds as shown in the following table:  

Time 0 5 10 15 20 25 30 35 40 45 50 55 60 65 

Speed 0 40 62 70 72 65 71 79 75 72 68 63 75 82 

Estimate the length of the loop of the racing track? 

Hint for the Solution: 

Clearly, the speed say 𝑆 is shown to be a function of time, say 𝑡, and its values 𝑆(𝑡) for different time instants 𝑡 

are given. Obtain the estimate of the integral distance = ∫ 𝑆(𝑡)
65

0
𝑑𝑡 using any appropriate numerical 

integration rule with the data given in the Table. 

Exercise 20: The prime number theorem states that the number of primes in an interval 𝑎 ≤ 𝑥 ≤ 𝑏 is 
approximately 

∫
1

ln 𝑥

𝑏

𝑎

𝑑𝑥 

Estimate the number of primes existing in [50,150]. 

Hint for the Solution: Numerically evaluate the given integral for 𝑎 = 50 and 𝑏 = 150 using different values of 

𝑓(𝑥) =
1

ln 𝑥
 at equispaced nodes in [50,150], separated by step length ℎ = 10 or 20. 

Exercise 21: The depths D (in meters) of a 80 meters wide river at different horizontal distances 𝑠 from the 
bank is given in the following table.  

𝑠 0 10 20 30 40 50 60 70 80 

𝐷 0 3.5 6 12 10 15 9 5 0 

Estimate the area of the cross-section of the river. 

Hint for the Solution: Clearly, 𝐷 is shown to be a function of 𝑠 and its values 𝐷(𝑠) for different points 𝑠 are 

given. Obtain the estimate of the integral,  𝑎𝑟𝑒𝑎 = ∫ 𝐷(𝑠)
80

0
𝑑𝑠 using any appropriate numerical integration 

rule with the data given in the Table. 

Exercise 22: A rectangular swimming pool is 35 feet wide and 60 feet long. At different positions 𝑃 in feet 
along the length of the pool, the depths 𝐷 in feet are shown in the following Table. Estimate the volume of the 
pool using numerical integration.  
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𝑃 0 6 12 18 24 30 36 42 48 54 60 

𝐷 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 

Hint for the Solution: 

Clearly, 𝐷 is shown to be a function of 𝑃 and its values 𝐷(𝑃) for different points 𝑃 are given. Obtain the estimate 

of the integral  𝑤 = ∫ 𝐷(𝑃)
60

0
𝑑𝑃 using any appropriate numerical integration rule with the data given in the 

Table. Note that 𝑤 is the estimated area of one side-wall of the pool along the length. Multiplying it with the 
width of 35 feet will give the volume of the pool. 

Exercise 23: We know that 

∫
1

1 + 𝑥2

1

0

𝑑𝑥 = tan−1𝑥|0
1 = tan−1 1 =

𝜋

4
 

This means that the value of 𝜋 can be obtained evaluating the above integral and then multiplying the answer 
by 4. Suppose that we want to approximate 𝜋 to four decimal places. This means absolute error must be less 

than 5.0 × 10−5. This means that the error in approximating the integral must be less than 
1

4
× (5.0 × 10−5) =

1.25 × 10−5. Use the Composite Simpson’s 1/3 rule to approximate the value of 𝜋. For this, first determine that 
what should be the minimum number of subintervals that would keep the error less than the tolerance. 

Exercise 24: The number of subintervals required to apply the Composite Simpson’s 1/3 rule should be 

(A) Multiple of 1  (B) Multiple of 2  

(C) Multiple of 3                (D) unconditionally many      (E) None of above 

Exercise 25: The Simpson’s 1/3 rule is based on the integration of interpolating polynomial of degree 2. The 

Simpson’s 1/3 rule can accurately integrate the polynomials of degree 

(A) up to 1  (B) up to 2  

(C) up to 3  (D) up to any      (E) None of above 

Exercise 26: The Gaussian quadrature is different from the Newton’s Cotes Integration in regards to 

(A) selection of polynomial degree  (B) selection of quadrature nodes 

(C) problem dependence   (D) None of above 

∎∎∎ 
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Chapter 5 

Numerical Differentiation 

Corridor I: BASICS 

 Let’s plan it 
 

 

5.1     Introduction 

5.2     Finite Difference Approximations of Derivatives using the Taylor Series 

       5.2.1     First Order Derivatives 

       5.2.2     Second Order Derivatives 

5.3     Listing of the Derivative Formulas 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

  

 

http://www.timerenders.com.pk/
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∎∎∎ 
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Chapter 6 

Direct Linear Solvers  

Corridor I: BASICS 

 Let’s plan it 

 

 

6.1     Introduction to Linear Systems 

6.2     Solving Linear Systems using the Gaussian Elimination Method 

6.3     Pivoting Strategies 

                      Partial Pivoting 

                      Scaled Partial Pivoting 

                      Complete Pivoting 

6.4     The Gauss-Jordan Method 

6.5     Solving Linear Systems using the LU Factorization Method 

       6.5.1     The Doolittle’s Method 

       6.5.2     The Crout’s Method 

       6.5.3     The Cholesky’s Method 

 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

 

http://www.timerenders.com.pk/
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Fig. (6.3): A classification chart of linear solvers. 

Corridor II: ANALYSIS 

 Let’s think deep 

 

6.6     Operation Count Analysis 

6.7     Matrix Inversion 

 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎    

http://www.timerenders.com.pk/
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Corridor III: PROGRAMMING ARCADE 

 Let’s do it 

 

Remark: Suggestion: Before this Section, study, Corridor III of Chapter 07 to cope the difficulty level. 

6.8     Algorithms and Implementations 

The Gaussian Elimination Method with Partial Pivoting 

Solving AX = B using the Doolittle's Method 

Solving AX = B using the Crout's Method 

Solving AX = B using the Cholesky's Method 

Performing Operation Count Analysis 

 

To see more examples for practicing, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

For codes, please visit: https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis 

∎∎∎ 

6.8 Algorithms and Implementations 

People have been communicating and interconnecting since the beginning, but in 

this era the communications and interconnections without modern technologies (like 

phones, networks, internet, radio, and television) stand nowhere in regards to 

possibility or survival. Likewise, people have been doing mathematics since early 

ages, but in this modern era the mathematical applicability without making use of 

the computers stands nowhere. Let’s modernize “OUR” culture of doing 

mathematics so that it can be useful for all the disciplines of science and engineering. 

It’s time to lead the frontiers of the knowledge and its applicability, rather than 

http://www.timerenders.com.pk/
https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis
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Question 20: Write down an algorithm (pseudo code) to solve a linear system 𝑨𝑿 = 𝑩 using the Gaussian 

Elimination method with partial pivoting. 

Algorithm: To solve 𝑨𝑿 = 𝑩. 

𝐈𝐍𝐏𝐔𝐓𝐒:        {

𝒏: an integer as the number of equations and unknowns

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the coefficient matrix

𝑩 = [𝒃𝟏, 𝒃𝟐, ⋯ , 𝒃𝒏]
𝑻: a real valued vector as the vector of right hand side constants

 

𝐎𝐔𝐓𝐏𝐔𝐓𝐒: {
𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]

𝑻: a real valued vector as the solution vector
or a message that the given system has no unique solution

 

Step 1 Receive the inputs as stated above 

Step 2 (Forward Elimination Phase) 

for 𝑖 = 1,2,⋯ , 𝒏 − 𝟏 

Set 𝑟 = 𝑖
for 𝑗 = 𝑖 + 1,⋯ , 𝒏 

if (|𝒂𝒓𝒊| < |𝒂𝒋𝒊|)   𝑟 = 𝑗
}  (

Searching largest absolute coefficient
in 𝑖th column for partial pivoting

) 

if (𝒂𝒓𝒊 = 0) OUTPUT (‘The given system has no unique solution’) and STOP 

else 

if (𝑟 ≠ 𝑖), then interchange the 𝑖𝑡ℎ row with 𝑟𝑡ℎ row, and 𝑏𝑖  with 𝑏𝑟 

for 𝑘 = 𝑖 + 1, 𝑖 + 2,⋯ , 𝒏 

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 =
𝒂𝒌𝒊
𝒂𝒊𝒊

for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏

𝒂𝒌𝒋 = 𝒂𝒌𝒋 −𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × 𝒂𝒊𝒋

𝒃𝒌 = 𝒃𝒌 −𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × 𝒃𝒊 }
 
 
 

 
 
 

     (

row replacement in the 
augmented matrix for
 eliminating the coefficients
 below the pivot

) 

Step 3 if (𝒂𝒏𝒏 = 0) OUTPUT (‘The given system has no unique solution’) and STOP 

 else go to step 4  

Step 4 (Back Substitution Phase) 

𝒙𝒏 =
𝒃𝒏
𝒂𝒏𝒏

 

for 𝑖 = 𝒏 − 1,⋯ ,2, 1 
𝑠𝑢𝑚 = 0
for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏 

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒂𝒊𝒋 × 𝒙𝒋

𝒙𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒂𝒊𝒊 }
 
 

 
 

     (𝑥𝑖 =
1

𝑎𝑖𝑖
[𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=𝑖+1

]) 

Step 5 Print the output: 𝑿 = [𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏]
𝑻 and STOP. 
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Question 21: Write a Python program to solve the following linear system using the Gaussian Elimination 

method with partial pivoting. For simplification, specify the linear system within the program. 

 
1.7𝑥1 + 2.3𝑥2 − 1.5𝑥3 = 2.35

1.1𝑥1 + 1.6𝑥2 − 1.9𝑥3 = −0.94

2.7𝑥1 − 2.2𝑥2 + 1.5𝑥3 = 2.70

 

script_6.1: gauss_elimination.ipynb 

                                  

1 from numpy import *                       
2                                  
3 a = [[1.7, 2.3, –1.5],[1.1, 1.6, –1.9],[2.7, –2.2, 1.5]]     
4 b = [2.35, –0.94, 2.70]                    
5 n = 3                            
6 t = zeros(n)                        
7                                  
8 # Forward Elimination phase                  
9 for i in range(n):                         

10   r = i                        
11   for j in range(i+1,n):                
12     if abs(a[r][i]) < abs(a[i][j]):             
13       r = j                      
14   if a[r][i] == 0:                   
15     print("System has no unique solution")        
16     break                        
17   else:                           
18     if r != i:                     
19       for j in range(n):                
20         temp = a[i][j]              
21         a[i][j] = a[r][j]              
22         a[r][j] = temp              
23   temp1 = b[i]                     
24   b[i] = b[r]                        
25   b[r] = temp1                        
26                                  
27   for k in range(i+1,n):                  
28     multiplier = a[k][i]/a[i][i]             
29     for j in range(i+1,n):                   
30       a[k][j] = a[k][j] - multiplier * a[i][j]     
31     b[k] = b[k] - multiplier * b[i]            
32                                  
33 if a[n–1][n–1] == 0:                       
34   print("The system has no unique solution")       
35 else:                             
36   t[n–1] = b[n–1] / a[n–1][n–1]      
37 for i in reversed(range(n–1)):              
38   sum=0                        
39   for j in range(i+1,n) :                   
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40     sum = sum + a[i][j] * t[j]             
41 t[i] = (b[i] – sum) / a[i][i]                 
42                                  
43 print("The solution of given system is", t)            

Output Console: 

The solution of given system is [-0.61111111  0.          2.9       ] 

 
Remark: The Python program in Question 21 can be modified to receive the linear system at the execution 

time (instead of fixing in the code). For this, lines 3 and 4 in the solution of Question 21should be replaced by 

the following code segment: 

# Input Section 

print("\nEnter the coefficient matrix row-wise for", n, "unknowns:") 

a = [[0.0] * n for _ in range(n)] 

for i in range(n): 

    for j in range(n): 

        a[i][j] = float(input()) 

 

print("Enter the elements of constant vector B:") 

b = [0.0] * n 

for i in range(n): 

    b[i] = float(input()) 

 

Question 22: Write down an algorithm (pseudo code) to solve a linear system using the Doolittle’s method. 

Algorithm: To solve a linear system 𝑨𝑿 = 𝑩, for which the factorization 𝑨 = 𝑳𝑼 is possible. 

𝐈𝐍𝐏𝐔𝐓𝐒:        {

𝒏: an integer as the number of equations and unknowns

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the coefficient matrix

𝑩 = [𝒃𝟏, 𝒃𝟐, ⋯ , 𝒃𝒏]
𝑻: a real valued vector as the vector of right hand side constants

 

𝐎𝐔𝐓𝐏𝐔𝐓𝐒: {

𝑳 = (𝒍𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the lower triangular matrix

𝑼 = (𝒖𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the upper triangular matrix

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻: a real valued vector as the solution vector

 

Step 1 (Formation of 𝑳 and 𝑼 as factors of 𝑨, i.e., 𝑨 = 𝑳𝑼) 

for 𝑖 = 1, 2,⋯ , 𝒏 

Set 𝒍𝒊𝒊 = 1 

 For 𝑗 = 𝑖, 𝑖 + 1,⋯ , 𝒏 
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𝑠𝑢𝑚 = 0
for 𝑠 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒔 × 𝒖𝒔𝒋
𝒖𝒊𝒋 = 𝒂𝒊𝒋 − 𝑠𝑢𝑚

}   (𝑢𝑖𝑗 = 𝑎𝑖𝑗 −∑𝑙𝑖𝑠𝑢𝑠𝑗

𝑖−1

𝑠=1

) 

for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏 
𝑠𝑢𝑚 = 0
for 𝑠 = 1, 2,⋯ , 𝑖 − 1 

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒋𝒔 × 𝒖𝒔𝒊

𝒍𝒋𝒊 =
[𝒂𝒋𝒊 − 𝑠𝑢𝑚]

𝒖𝒊𝒊 }
 
 

 
 

   (𝑙𝑗𝑖 =
1

𝑢𝑖𝑖
[𝑎𝑗𝑖 −∑𝑙𝑗𝑠𝑢𝑠𝑖

𝑖−1

𝑠=1

]) 

Step 2 (Forward substitution phase for solving 𝑳𝒀 = 𝑩) 

𝒚𝟏 = 𝒃𝟏 

                for 𝑖 = 2, 3,⋯ , 𝒏 
𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒋 × 𝒚𝒋
𝒚𝒊 = 𝒃𝒊 − 𝑠𝑢𝑚 }

 

 
 (𝑦𝑖 = 𝑏𝑖 −∑𝑙𝑖𝑗𝑦𝑗

𝑖−1

𝑗=1

) 

Step 3 (Back Substitution Phase for solving 𝑼𝑿 = 𝒀) 

𝒙𝒏 =
𝒚𝒏
𝒖𝒏𝒏

 

for 𝑖 = 𝒏 − 1,⋯ ,2, 1 
𝑠𝑢𝑚 = 0
for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ , 𝒏 

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒖𝒊𝒋 × 𝒙𝒋

𝒙𝒊 =
[𝒚𝒊 − 𝑠𝑢𝑚]

𝒖𝒊𝒊 }
 
 

 
 

  (𝑥𝑖 =
1

𝑢𝑖𝑖
[𝑦𝑖 − ∑ 𝑢𝑖𝑗𝑥𝑗

𝑛

𝑗=𝑖+1

]) 

STOP. 

 

Question 23:  Write a Python program to solve the following linear system using the Doolittle’s method. For 
simplification, specify the linear system within the program. 

1.7𝑥1 + 2.3𝑥2 − 1.5𝑥3 = 2.35

1.1𝑥1 + 1.6𝑥2 − 1.9𝑥3 = −0.94

2.7𝑥1 − 2.2𝑥2 + 1.5𝑥3 = 2.70

 

script_6.2: dolittles.ipynb 

                                  

1 from numpy import *                     
2                                  
3 n = 3                          
4 a = [[1.7, 2.3, –1.5], [1.1, 1.6, –1.9], [2.7, –2.2, 1.5]] 

5 b = [2.35, –0.94, 2.70]                   
6 x = zeros(n)                    
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7 y = zeros(n)                    
8 l = diag(ones(n))                     
9 u = zeros([n,n])                    

10                                  
11 for j in range(n):                       
12   u[0][j] = a[0][j]                   
13   l[j][0] = a[j][0] / u[0][0]              
14                                  
15 for i in range(1,n):                      
16   l[i][i]=1                       
17   for j in range(i,n):                    
18     sum = 0                       
19     for k in range(i):                  
20       sum = sum + l[i][k] * u[k][j]            
21     u[i][j] = a[i][j] – sum                  
22   for j in range(i+1,n):                   
23     sum = 0                         
24     for k in range(i):                   
25       sum = sum + l[j][k] * u[k][i]           
26     l[j][i] = ( a[j][i] – sum ) / u[i][i]           
27                                  
28 #Forward substitution phase for solving LY=B       
29 y[0] = b[0]                         
30 for i in range(n):                       
31   sum = 0                       
32   for j in  range(i):                      
33     sum = sum + l[i][j] * y[j]              
34   y[i] = b[i] – sum                   
35                                  
36 #Back substitution phase for solving UX=Y         
37 x[n–1] = y[n–1] / u[n–1][n–1]               
38 for i in reversed(range(n–1)):                 
39   sum = 0                          
40   for j in range(i+1,n):                    
41     sum = sum + (u[i][j] * x[j])               
42   x[i] = ( y[i] – sum ) / u[i][i]                
43                                  
44 print("The L matrix is:")                       
45 for i in range(n):                        
46   for j in range(n):                     
47     print(l[i][j], "            ",end=" ")            
48   print(" ")                        
49                                  
50 print("The U matrix is:")                     
51 for i in range(n):                        
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52   for j in range(n):                     
53     print(u[i][j], "         ",end=" ")              
54   print(" ")                         
55                                  
56 print("The required solution is:")                 
57 for i in range(n):                       
58   print(x[i], "         ",end=" ")                 

Output Console: 

The L matrix is: 

1.0              0.0              0.0                

0.6470588235294118              1.0              0.0                

1.5882352941176472              -52.36842105263156              1.0       

         

The U matrix is: 

1.7           2.3           -1.5             

0.0           0.11176470588235299           -0.9294117647058822           

  

0.0           0.0           -44.7894736842105             

The required solution is: 

1.1000000000000056           2.0999999999999965           2.90000000000000

  

 
∎ 

Remark: Replace the lines 4 and 5 in the solution of Question 23 with the following code segment to receive 

the linear system at the execution time (instead of fixing in the code): 

# Input Section 

print("\nEnter the coefficient matrix row-wise for", n, "unknowns:") 

a = [] 

for i in range(n): 

    row = [] 

    for j in range(n): 

        row.append(float(input())) 

    a.append(row) 

 

print("Enter the elements of the constant vector B:") 

b = [] 

for i in range(n): 

    b.append(float(input())) 

 

 

 

∎ 
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Question 24: Write down an algorithm (pseudo code) to solve a linear system using the Crout’s method. 

Algorithm: To solve a linear system 𝑨𝑿 = 𝑩, for which the factorization 𝑨 = 𝑳𝑼 is possible. 

𝐈𝐍𝐏𝐔𝐓𝐒:        {

𝒏: an integer as the number of equations and unknowns

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the coefficient matrix

𝑩 = [𝒃𝟏, 𝒃𝟐, ⋯ , 𝒃𝒏]
𝑻: a real valued vector as the vector of right hand side constants

 

𝐎𝐔𝐓𝐏𝐔𝐓𝐒: {

𝑳 = (𝒍𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the lower triangular matrix

𝑼 = (𝒖𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the upper triangular matrix

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻: a real valued vector as the solution vector

 

Step 1 (Formation of 𝑳 and 𝑼 as factors of 𝑨, i.e., 𝑨 = 𝑳𝑼) 

for 𝑖 = 1, 2,⋯ , 𝒏 

Set 𝒖𝒊𝒊 = 1 

 for 𝑗 = 𝑖, 𝑖 + 1,⋯ , 𝒏 
𝑠𝑢𝑚 = 0
for 𝑠 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒋𝒔 × 𝒖𝒔𝒊
𝒍𝒋𝒊 = 𝒂𝒋𝒊 − 𝑠𝑢𝑚 }

 

 

    (𝑙𝑗𝑖 = 𝑎𝑗𝑖 −∑𝑙𝑗𝑠𝑢𝑠𝑖

𝑖−1

𝑠=1

) 

for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏    
𝑠𝑢𝑚 = 0
for 𝑠 = 1, 2,⋯ , 𝑖 − 1 

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒔 × 𝒖𝒔𝒋

𝒖𝒊𝒋 =
[𝒂𝒊𝒋 − 𝑠𝑢𝑚]

𝒍𝒊𝒊 }
 
 

 
 

  (𝑢𝑖𝑗 =
1

𝑙𝑖𝑖
[𝑎𝑖𝑗 −∑𝑙𝑖𝑠𝑢𝑠𝑗

𝑖−1

𝑠=1

]) 

Step 2 (Forward Substitution Phase for solving 𝑳𝒀 = 𝑩) 

𝒚𝟏 =
𝒃𝟏
𝒍𝟏𝟏

 

                for 𝑖 = 2, 3,⋯ , 𝒏 
𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒋 × 𝒚𝒋

𝒚𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒍𝒊𝒊 }
 
 

 
 

          (𝑦𝑖 =
1

𝑙𝑖𝑖
[𝑏𝑖 −∑𝑙𝑖𝑗𝑦𝑗

𝑖−1

𝑗=1

]) 

Step 3 (Back Substitution Phase for solving 𝑼𝑿 = 𝒀) 

𝒙𝒏 = 𝒚𝒏 

for 𝑖 = 𝒏 − 1,⋯ ,2, 1 
𝑠𝑢𝑚 = 0
for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ , 𝒏 

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒖𝒊𝒋 × 𝒙𝒋
𝒙𝒊 = 𝒚𝒊 − 𝑠𝑢𝑚

}     (𝑥𝑖 = 𝑦𝑖 − ∑ 𝑢𝑖𝑗𝑥𝑗

𝑛

𝑗=𝑖+1

) 

STOP. 
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Question 25: Write a Python program to solve the following linear system using the Crout’s method. For 

simplification, specify the linear system within the program. 

1.7𝑥1 + 2.3𝑥2 − 1.5𝑥3 = 2.35

1.1𝑥1 + 1.6𝑥2 − 1.9𝑥3 = −0.94

2.7𝑥1 − 2.2𝑥2 + 1.5𝑥3 = 2.70

 

 

script_6.3: crouts.ipynb 

                                  

1 from numpy import *                     

2                                  

3 n = 3                          

4 a = [[1.7, 2.3, –1.5], [1.1, 1.6, –1.9], [2.7, –2.2, 1.5]] 

5 b = [2.35, –0.94, 2.70]                   

6 x = zeros(n)                    

7 y = zeros(n)                    

8 l = zeros([n,n])                     

9 u = diag(ones(n))                    

10                                  

11 for j in range(n):    #Crouts Method      

12   l[j][0] = a[j][0]                   

13   u[0][j] = a[0][j] / l[0][0]              

14                                  

15 for i in range(1,n):                      

16   u[i][i] = 1                       

17   for j in range(i,n):                    

18     sum = 0                       

19     for k in range(i):                  

20       sum = sum + l[i][k] * u[k][j]            

21     l[j][i] = a[j][i] – sum                  

22   for j in range(i+1,n):                   

23     sum = 0                         

24     for k in range(i):                   

25       sum = sum + l[i][k] * u[k][j]           

26     u[i][j] = ( a[i][j] – sum ) / l[i][i]           

27                                  

28 #Forward substitution phase for solving LY=B       

29 y[0] = b[0] / l[0][0]                   

30 for i in range(n):                       

31   sum = 0                       

32   for j in  range(i):                      

33     sum = sum + l[i][j] * y[j]              

34   y[i] = (b[i] – sum) / l[i][i]                   

35                                  

36 #Back substitution phase for solving UX=Y         

37 x[n–1] = y[n–1]               
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38 for i in reversed(range(n–1)):                 

39   sum = 0                          

40   for j in range(i+1,n):                    

41     sum = sum + (u[i][j] * x[j])               

42   x[i] = ( y[i] – sum )                

43                                  

44 print("The L matrix is:")                       

45 for i in range(n):                      

46   for j in range(n):                     

47     print(l[i][j], "            ",end=" ")            

48   print(" ")                        

49                                  

50 print("The U matrix is:")                     

51 for i in range(n):                        

52   for j in range(n):                     

53     print(u[i][j], "         ",end=" ")              

54   print(" ")                         

55                                  

56 print("The required solution is:")                 

57 for i in range(n):                       

58   print(x[i], "         ",end=" ")                 

Output Console: 

The L matrix is: 

1.7              0.0              0.0                

1.1              0.11176470588235299              0.0                

2.7              -1.2294117647058824              -6.341176470588229      

          

The U matrix is: 

1.0           1.352941176470588           -0.8823529411764706             

0.0           1.0           -8.315789473684205             

0.0           0.0           1.0             

The required solution is: 

-14.775803144224206           14.832877648667132           4.4311688311688

35 

 

∎ 

Remark: Replace the lines 4 and 5 in the solution of Question 25with the following code segment to receive 

the linear system at the execution time (instead of fixing in the code): 

# Input Section 

print("\nEnter the coefficient matrix row-wise for", n, "unknowns:") 

a = [] 

for i in range(n): 

    row = [] 

    for j in range(n): 
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        row.append(float(input())) 

    a.append(row) 

 

print("Enter the elements of the constant vector B:") 

b = [] 

for i in range(n): 

    b.append(float(input())) 

∎ 

 

Question 26: Write down an algorithm (pseudo code) to solve a linear system using the Cholesky’s method. 

Algorithm: To solve a linear system 𝑨𝑿 = 𝑩, for which the factorization 𝑨 = 𝑳𝑳𝑻 is possible. 

𝐈𝐍𝐏𝐔𝐓𝐒:        {

𝒏: an integer as the number of equations and unknowns

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the coefficient matrix

𝑩 = [𝒃𝟏, 𝒃𝟐, ⋯ , 𝒃𝒏]
𝑻: a real valued vector as the vector of right hand side constants

 

𝐎𝐔𝐓𝐏𝐔𝐓𝐒: {
𝑳 = (𝒍𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the lower triangular matrix

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻: a real valued vector as the solution vector

 

Step 1 (Formation of 𝑳 as factors of 𝑨, i.e., 𝑨 = 𝑳𝑳𝑻) 

for 𝑖 = 1, 2,⋯ , 𝒏 

𝑠𝑢𝑚 = 0
for 𝑘 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒌 × 𝒍𝒊𝒌
𝒍𝒊𝒊 = 𝒔𝒒𝒓𝒕(𝒂𝒊𝒊 − 𝑠𝑢𝑚)

}        

(

 
 
𝑙𝑖𝑖 = [𝑎𝑖𝑖 −∑ 𝑙𝑖𝑘

2
𝑖−1

𝑘=1

]

1
2

)

 
 

 

for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏 
𝑠𝑢𝑚 = 0
for 𝑘 = 1, 2,⋯ , 𝑖 − 1 

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒌 × 𝒍𝒋𝒌

𝒍𝒋𝒊 =
[𝒂𝒋𝒊 − 𝑠𝑢𝑚]

𝒍𝒊𝒊 }
 
 

 
 

           (𝑙𝑗𝑖 =
1

𝑙𝑖𝑖
[𝑎𝑗𝑖 −∑ 𝑙𝑖𝑘𝑙𝑗𝑘

𝑖−1

𝑘=1

]) 

Step 2 (Forward Substitution Phase for solving 𝑳𝒀 = 𝑩) 

𝒚𝟏 =
𝒃𝟏
𝒍𝟏𝟏

 

                for 𝑖 = 2, 3,⋯ , 𝒏 
𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒋 × 𝒚𝒋

𝒚𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒍𝒊𝒊 }
 
 

 
 

      (𝑦𝑖 =
1

𝑙𝑖𝑖
[𝑏𝑖 −∑𝑙𝑖𝑗𝑦𝑗

𝑖−1

𝑗=1

]) 
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Step 3 (Back Substitution Phase for solving 𝑳𝑻𝑿 = 𝒀) 

𝒙𝒏 =
𝒚𝒏
𝒍𝒏𝒏

 

for 𝑖 = 𝒏 − 1,⋯ ,2, 1 
𝑠𝑢𝑚 = 0
for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏 

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒋𝒊 × 𝒙𝒋

𝒙𝒊 =
[𝒚𝒊 − 𝑠𝑢𝑚]

𝒍𝒊𝒊 }
 
 

 
 

  (𝑥𝑖 =
1

𝑙𝑖𝑖
[𝑦𝑖 − ∑ 𝑙𝑗𝑖𝑥𝑗

𝑛

𝑗=𝑖+1

]) 

STOP. 

 

Question 27: Write a Python program to solve the following positive definite linear system using the 

Cholesky’s method. For simplification, specify the linear system within the program. 

 

0.4𝑥1 + 0.12𝑥3 = 1.4

0.64𝑥2 + 0.32𝑥3 = 1.6

−0.12𝑥1 + 0.32𝑥2 + 0.56𝑥3 = 5.4

 

script_6.4: cholesky.ipynb 

                                  

1 from numpy import *                     
2                                  
3 n = 3                          
4 a = [[0.4, 0.0, 0.12], [0.0, 0.64, 0.32],[–0.12, 0.32, 0.56]] 
5 b = [1.4, 1.6, 5.4]                   
6 x = zeros(n)                    
7 y = zeros(n)                    
8 l = zeros([n,n])                     
9 l[0][0] = sqrt(a[0][0])                    

10                                  
11 for j in range(n):    #Cholesky Method      
12   l[j][0] = a[j][0] / l[0][0]                   
14                                  
15 for i in range(1,n):                      
16   sum=0                       
17   for k in range(i):                    
18     sum = sum + l[i][k] * l[i][k]             
19   l[i][i] = a[i][i] – sum                  
20   l[i][i] = sqrt(l[i][i])                 
22   for j in range(i+1,n):                   
23     sum = 0                         
24     for k in range(i):                   
25       sum = sum + l[i][k] * l[j][k]           
26     l[j][i] = ( a[j][i] – sum ) / l[i][i]           
28                                  
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29 #Forward substitution phase for solving LY=B       
30 y[0] = b[0] / l[0][0]                   
31 for i in range(n):                       
32   sum = 0                       
33   for j in  range(i):                      
34     sum = sum + l[i][j] * y[j]              
35   y[i] = (b[i] – sum)/l[i][i]                   
37                                  
38 #Back substitution phase for solving L^t X = Y         
39 x[n–1] = y[n–1] / l[n–1][n–1]               
41 for i in reversed(range(n–1)):                 
42   sum = 0                          
43   for j in range(i+1,n):                    
44     sum = sum + (l[j][i] * x[j])               
45   x[i] = ( y[i] – sum )/l[i][i]                
47                                  
48 print("The L matrix is:")                       
49 for i in range(n):                        
50   for j in range(n):                     
51     print(l[i][j], "            ",end=" ")            
52   print(" ")                        
53                                  
54 print("The required solution is:")                 
55 for i in range(n):                       
56   print(x[i], "         ",end=" ")                 

Output Console: 

The L matrix is: 

0.6324555320336759              0.0              0.0                

0.0              0.8              0.0                

-0.18973665961010275              0.39999999999999997              0.60332

41251599343                

The required solution is: 

7.637362637362637           -4.395604395604395           13.79120879120879

2  

 

      

∎ 

Remark: Following are some notations and formulas that might be useful in carrying out operation count 

analysis of the algorithms. 
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∑ 𝑐𝑓(𝑝)

𝑛

𝑝=1

= 𝑐∑𝑓(𝑝)

𝑛

𝑝=1

∑[𝑓(𝑝) + 𝑔(𝑝)]

𝑛

𝑝=1

= ∑𝑓(𝑝) +∑𝑔(𝑝)

𝑛

𝑝=1

𝑛

𝑝=1

∑1

𝑛

𝑝=1

= 1 + 1 +⋯+ 1 = 𝑛

∑1

𝑛

𝑝=𝑘

= 𝑛 − 𝑘 + 1

∑𝑝

𝑛

𝑝=1

= 1 + 2 + 3 +⋯+ 𝑛 =
𝑛(𝑛 + 1)

2 =
𝑛2

2
+ 𝒪(𝑛)

∑𝑝2
𝑛

𝑝=1

= 12 + 22 +⋯+ 𝑛2 =
𝑛(𝑛 + 1)(2𝑛 + 1)

6
=

𝑛3

3
+ 𝒪(𝑛2)

 

Question 28: Perform the operation count analysis of the algorithm that involves the following phases to solve 

an 𝑛 × 𝑛 linear system: 

(1) Forward elimination to obtain the upper triangular form using the Gauss Elimination method. 

(2) Back substitution to solve the upper triangular system. 

(1) The forward elimination phase occurs just after setting the inputs in the algorithm. This phase contains 

three nested loops. The first loop, say 𝑖-loop (which ranges from 𝑖 = 1 to 𝑛 − 1), corresponds to the 𝑛 − 1 

elimination stages of the method. For each row 𝑖, the 𝑖th element is considered a pivot element.  The second 

loop, say 𝑘-loop (which ranges from 𝑘 = 𝑖 + 1 to 𝑛), corresponds to the elements below the pivot element to 

make them zero. The third loop, say 𝑗-loop (which ranges from 𝑗 = 𝑖 + 1 to 𝑛) corresponds to the columns 

after the pivot element.  

Note that, for any loop with index ranging from 𝑖 + 1  to 𝑛 , the number of passes/iterations will be 𝑛 −

(𝑖 + 1) + 1 (or simply (𝑛 − 𝑖) passes). Therefore, each of the 𝑘-loop and 𝑗-loop has (𝑛 − 𝑖) passes.  

Each pass of 𝑘-loop will perform one division to obtain the multiplier, and one multiplication and subtraction 

to update the right-hand side constant,  𝑏𝑘 . Moreover, in each pass of 𝑘 -loop, (𝑛 − 𝑖)  multiplications and 

(𝑛 − 𝑖) subtractions will be performed in 𝑗-loop to update the relevant entries of the coefficient matrix, 𝑎𝑘𝑗 . 

Thus, in each pass of 𝑘 -loop, the total number of multiplications/divisions will be (1 + 1 + (𝑛 − 𝑖))  or 

(𝑛 − 𝑖 + 2) and the total number of additions/subtractions will be (1 + 𝑛 − 𝑖). 

As there are (𝑛 − 𝑖)  passes of 𝑘 -loop in each pass of 𝑖 -loop, therefore there will be (𝑛 − 𝑖) × (𝑛 − 𝑖 + 2) 

multiplications/divisions and (𝑛 − 𝑖) × (𝑛 − 𝑖 + 1) additions/subtractions in each pass of 𝑖-loop. 
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Hence, the total number of multiplications/divisions in 𝑛 − 1 passes of 𝑖-loop of the forward elimination phase 

will be 

∑(𝑛 − 𝑖)(𝑛 − 𝑖 + 2)

𝑛−1

𝑖=1

= ∑(𝑛 − 𝑖)((𝑛 + 2) − 𝑖)

𝑛−1

𝑖=1

 

= ∑[𝑛(𝑛 + 2) − 𝑛𝑖 − 𝑖(𝑛 + 2) + 𝑖2]

𝑛−1

𝑖=1

  =    ∑[𝑛(𝑛 + 2) − 2𝑖(𝑛 + 1) + 𝑖2]

𝑛−1

𝑖=1

 

= 𝑛(𝑛 + 2)∑1− 2(𝑛 + 1)

𝑛−1

𝑖=1

∑𝑖

𝑛−1

𝑖=1

+∑ 𝑖2
𝑛−1

𝑖=1

 

= 𝑛(𝑛 + 2)(𝑛 − 1) − 2(𝑛 + 1) [
(𝑛 − 1)𝑛

2
] + [

(𝑛 − 1)𝑛(2𝑛 − 1)

6
] 

= 𝑛(𝑛 − 1) [𝑛 + 2 − 𝑛 − 1 +
𝑛

3
−
1

6
] 

= (𝑛2 − 𝑛) [
𝑛

3
+
5

6
] =

𝑛3

3
+
𝑛2

2
−
5𝑛

6
=

𝑛3

3
+ 𝒪(𝑛2) 

Similarly, the total number of additions/subtractions in 𝑛 − 1 passes of 𝑖-loop of the forward elimination 

phase will be 

∑(𝑛 − 𝑖)(𝑛 − 𝑖 + 1)

𝑛−1

𝑖=1

= ∑(𝑛 − 𝑖)((𝑛 + 1) − 𝑖)

𝑛−1

𝑖=1

 

= ∑[𝑛(𝑛 + 1) − 𝑛𝑖 − 𝑖(𝑛 + 1) + 𝑖2]

𝑛−1

𝑖=1

 

= ∑[𝑛(𝑛 + 1) − 𝑖(2𝑛 + 1) + 𝑖2]

𝑛−1

𝑖=1

 

= 𝑛(𝑛 + 1)∑1− (2𝑛 + 1)

𝑛−1

𝑖=1

∑𝑖

𝑛−1

𝑖=1

+∑ 𝑖2
𝑛−1

𝑖=1

 

= 𝑛(𝑛 + 1)(𝑛 − 1) − (2𝑛 + 1) [
(𝑛 − 1)𝑛

2
] + [

(𝑛 − 1)𝑛(2𝑛 − 1)

6
] 

= 𝑛(𝑛 − 1) [𝑛 + 1 − 𝑛 −
1

2
+
𝑛

3
−
1

6
] 

= (𝑛2 − 𝑛) [
𝑛

3
+
1

3
] =

𝑛3

3
−
𝑛

3
=

𝑛3

3
+ 𝒪(𝑛) 

The summary of the operation count of the Gaussian Elimination phase is given as: 
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Operations 

Total flops 
Multiplications⁄divisions Additions⁄subtractions 

Forward Elimination 
𝑛3

3
+
𝑛2

2
−
5𝑛

6
 

𝑛3

3
−
𝑛

3
 

2𝑛3

3
+ 𝒪(𝑛2) 

(2) The back substitution phase occurs after the forward elimination phase. This phase contains two nested 

loops.  The first loop, say 𝑖-loop (which ranges from 𝑖 = 𝑛 − 1 to 1), corresponds to 𝑛 − 1 of the components 

of the solution vector. The second loop, say 𝑗-loop (which ranges from 𝑗 = 𝑖 + 1 to 𝑛), corresponds to the 

columns after the diagonal elements. 

Each pass of 𝑖-loop will perform one subtraction and one division to obtain the value of 𝑥𝑖 . Moreover, in each 

pass of 𝑖-loop, the number of both of the multiplications and additions will be  𝑛 − (𝑖 + 1) + 1 (or simply 

(𝑛 − 𝑖)) in 𝑗-loop. Thus, in each pass of 𝑖-loop, the total number of both of the multiplications/divisions and 

additions/subtractions will be (𝑛 − 𝑖 + 1). 

Hence, the total number of the multiplications/divisions in the back substitution phase will be 

1 +∑(𝑛 + 1 − 𝑖)

𝑛−1

𝑖=1

= 1 + (𝑛 + 1)∑1

𝑛−1

𝑖=1

−∑ 𝑖

𝑛−1

𝑖=1

= 1 + (𝑛 + 1)(𝑛 − 1) − [
(𝑛 − 1)𝑛

2
]

= 1 + 𝑛2 − 1 −
𝑛2

2
+
𝑛

2
=

𝑛2

2
+
𝑛

2
=

𝑛2

2
+ 𝒪(𝑛)

 

Similarly, the total number of the additions/subtractions in the back substation phase will be 

∑(𝑛 + 1 − 𝑖)

𝑛−1

𝑖=1

=
𝑛2

2
+
𝑛

2
− 1 =

𝑛2

2
+ 𝒪(𝑛) 

Finally, the summary of the operation count of the complete algorithm (including the two phases) is given as: 

 
Operations 

Total flops 
Multiplications⁄divisions Additions⁄subtractions 

Forward elimination 
𝑛3

3
+
𝑛2

2
−
5𝑛

6
 

𝑛3

3
−
𝑛

3
 

2𝑛3

3
+
𝑛2

2
−
7𝑛

6
 

Back Substitution 
𝑛2

2
+
𝑛

2
 

𝑛2

2
−
𝑛

2
 𝑛2 

Totals 
𝑛3

3
+ 𝑛2 −

𝑛

3
 

𝑛3

3
+
n2

2
−
5𝑛

6
 

2𝑛3

3
+
3𝑛2

2
−
7𝑛

6
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Question 29: Perform the operation count analysis of the algorithm that involves the following phases to solve 

an 𝑛 × 𝑛 linear system: 

(1) Factorization of the coefficient matrix using the Doolittle’s method. 

(2) Forward substitution to solve the lower triangular system. 

(3) Back substitution to solve the upper triangular system. 

(1) The factorization of the coefficient matrix 𝐴 into the product of the unit lower triangular 𝐿 and the upper 

triangular 𝑈 matrices occurs just after setting the inputs in the algorithm. The formulation of 𝐿 and 𝑈 as the 

factors of 𝐴 contains three nested loops. The first loop, say 𝑖-loop (which ranges from 𝑖 = 1 to 𝑛), corresponds 

to the 𝑖 th row and column of 𝑈  and 𝐿  respectively. The second loop, say 𝑗-loop (ranges from 𝑗 = 𝑖 to 𝑛), 

corresponds to the column 𝑗 of 𝑈 and (ranges from 𝑗 = 𝑖 + 1 to 𝑛), corresponds to the row 𝑗 of 𝐿. The third 

loop, say 𝑠-loop (which ranges from 𝑠 = 1 to 𝑖 − 1), corresponds to the multiplication of the rows of 𝐿 and 

columns of 𝑈.  

Note that, the 𝑗-loop corresponding to column 𝑗 of 𝑈 ranging from 𝑖 to 𝑛, the number of passes/iterations will 

be 𝑛 − 𝑖 + 1. Similarly, the number of passes/iterations in 𝑗-loop, corresponds to row 𝑗 of 𝐿 ranging from 𝑖 +

1 to 𝑛, will be 𝑛 − (𝑖 + 1) + 1 (or simply (𝑛 − 𝑖)).  

Each pass of 𝑗-loop will perform one subtraction to obtain the entry 𝑢𝑖𝑗 of 𝑈. Moreover, in each pass of 𝑗-loop, 

the number of both of the multiplications and additions will be  (𝑖 − 1) − 1 + 1 (or simply (𝑖 − 1)) in s-loop. 

Thus, in each pass of j-loop, the total number of multiplications/divisions will be (𝑖 − 1) and the total number 

of additions/subtractions will be (1 + 𝑖 − 1) or (𝑖). Similarly, in each pass of 𝑗-loop, to obtain the entry 𝑙𝑗𝑖  of 𝐿, 

the total number of both of the multiplications and additions will be  (𝑖 − 1) + 1 (or simply (𝑖)).  

As there are (𝑛 − 𝑖 + 1) passes of 𝑗-loop in each pass of 𝑖-loop, therefore there will be (𝑛 − 𝑖 + 1) × (𝑖 − 1) 

multiplications/divisions and (𝑛 − 𝑖 + 1) × (𝑖)  additions/subtractions in each pass of 𝑖 -loop for the 

formulation of row 𝑖 of 𝑈. Similarly, in each pass of 𝑖-loop, there will be (𝑛 − 𝑖) × (𝑖) multiplications/divisions 

and (𝑛 − 𝑖) × (𝑖) additions/subtractions in each pass of 𝑖-loop for the formulation of column 𝑖 of 𝐿.  

Hence, the total number of multiplications/divisions in 𝑛  passes of 𝑖 -loop for the formulation of upper 

triangular matric 𝑈 will be 

∑(𝑛 − 𝑖 + 1)(𝑖 − 1)

𝑛

𝑖=1

= ∑(𝑛 + 1 − 𝑖)(𝑖 − 1)

𝑛

𝑖=1

 

= ∑[(𝑛 + 1)𝑖 − (𝑛 + 1) − 𝑖2 + 𝑖]

𝑛

𝑖=1

= ∑[(𝑛 + 2)𝑖 − 𝑖2 − (𝑛 + 1)]

𝑛

𝑖=1
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= (𝑛 + 2)∑𝑖

𝑛

𝑖=1

−∑𝑖2
𝑛

𝑖=1

− (𝑛 + 1)∑1

𝑛

𝑖=1

 

= (𝑛 + 2) [
𝑛(𝑛 + 1)

2
] − [

𝑛(𝑛 + 1)(2𝑛 + 1)

6
] − (𝑛 + 1)𝑛 

= 𝑛(𝑛 + 1) [
𝑛

2
+ 1 −

𝑛

3
−
1

6
− 1] = (𝑛2 + 𝑛) [

𝑛

6
−
1

6
] 

=
𝑛3

6
−
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛) 

Similarly, the total number of additions/subtractions in 𝑛  passes of 𝑖 -loop for the formulation of upper 

triangular matric 𝑈 will be 

∑(𝑛 − 𝑖 + 1)(𝑖)

𝑛

𝑖=1

=
𝑛3

6
+
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛) 

Moreover, the total number of multiplications/divisions and additions/subtractions in 𝑛 passes of 𝑖-loop for 

the formulation of unit lower triangular matric 𝐿 will be 

∑(𝑛 − 𝑖)(𝑖) 

𝑛

𝑖=1

= ∑(𝑛 − 𝑖)(𝑖)

𝑛

𝑖=1

= ∑(𝑛𝑖 − 𝑖2)

𝑛

𝑖=1

 

= 𝑛∑𝑖

𝑛

𝑖=1

−∑𝑖2
𝑛

𝑖=1

= 𝑛 [
𝑛(𝑛 + 1)

2
] − [

𝑛(𝑛 + 1)(2𝑛 + 1)

6
] 

= 𝑛(𝑛 + 1) [
𝑛

2
−
𝑛

3
−
1

6
] = (𝑛2 + 𝑛) [

𝑛

6
−
1

6
] 

=
𝑛3

6
−
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛) 

The summary of the operation count of the 𝐿𝑈-factorization is given as: 

 
Operations 

Total flops 
Multiplication/Division Addition/Subtraction 

Upper Triangular 
Matrix 𝑈  

𝑛3

6
−
𝑛

6
 

𝑛3

6
+
𝑛

6
 

𝑛3

3
 

Lower Triangular 
Matrix 𝐿 

𝑛3

6
−
𝑛

6
 

𝑛3

6
−
𝑛

6
 

𝑛3

3
−
𝑛

3
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𝐿𝑈-factorization 
𝑛3

3
−
𝑛

3
 

𝑛3

3
 

2𝑛3

3
−
𝑛

3
 

(2) The forward substitution phase occurs after the formulation of 𝐿 and 𝑈 as factors of the coefficient matrix 

for solving the lower triangular system. This phase contains two nested loops.  The first loop, say 𝑖-loop (which 

ranges from 𝑖 = 2 to 𝑛), corresponds to 𝑛 − 1 of the components of the intermediate vector 𝑌. The second 

loop, say 𝑗-loop (which ranges from 𝑗 = 1 to 𝑖 − 1), corresponds to the columns before the diagonal elements. 

Each pass of 𝑖-loop will perform one subtraction to obtain the value of 𝑦𝑖. Moreover, in each pass of 𝑖-loop, the 

number of both of the multiplications and additions will be  (𝑖 − 1) − 1 + 1 (or simply (𝑖 − 1)) in j-loop. Thus, 

in each pass of i-loop, the total number of multiplications/divisions will be (𝑖 − 1) and the total number of 

additions/subtractions will be (1 + 𝑖 − 1) or (𝑖). 

Hence, the total number of the multiplications/divisions in the forward substitution phase will be 

∑(𝑖 − 1)

𝑛

𝑖=2

= ∑𝑖

𝑛

𝑖=2

−∑1

𝑛

𝑖=2

= [
𝑛(𝑛 + 1)

2
− 1] − (𝑛 − 2 + 1)

=
𝑛2

2
+
𝑛

2
− 1 − 𝑛 + 1 =

𝑛2

2
−
𝑛

2
=

𝑛2

2
+ 𝒪(𝑛)

 

Similarly, the total number of the additions/subtractions in the forward substation phase will be 

∑(𝑖)

𝑛

𝑖=2

=
𝑛2

2
+
𝑛

2
− 1 =

𝑛2

2
+ 𝒪(𝑛) 

The summary of the operation count of the Unit Lower triangular system 𝐿𝑌 = 𝐵 is given as: 

 
Operations 

Total flops 
Multiplication/Division Addition/Subtraction 

Unit Lower  
triangular system 
𝐿𝑌 = 𝐵  

𝑛2

2
−
𝑛

2
 

𝑛2

2
+
𝑛

2
− 1 𝑛2 − 1 

(3) The back substitution phase occurs after the solution of the lower triangular system. This phase contains 

two nested loops.  The first loop, say 𝑖-loop (which ranges from 𝑖 = 𝑛 − 1 to 1), corresponds to 𝑛 − 1 of the 

components of solution vector 𝑋. The second loop, say 𝑗-loop (which ranges from 𝑗 = 𝑖 + 1 to 𝑛), corresponds 

to the columns after the diagonal elements. 
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Each pass of 𝑖-loop will perform one subtraction and one division to obtain the value of 𝑥𝑖 . Moreover, in each 

pass of 𝑖-loop, the number of both of the multiplications and additions will be  𝑛 − (𝑖 + 1) + 1 (or simply 

(𝑛 − 𝑖)) in 𝑗-loop. Thus, in each pass of 𝑖-loop, the total number of both of the multiplications/divisions and 

additions/subtractions will be (𝑛 − 𝑖 + 1). 

Hence, the total number of the multiplications/divisions in the back substitution phase will be 

1 +∑(𝑛 + 1 − 𝑖)

𝑛−1

𝑖=1

= 1 + (𝑛 + 1)∑1

𝑛−1

𝑖=1

−∑ 𝑖

𝑛−1

𝑖=1

= 1 + (𝑛 + 1)(𝑛 − 1) − [
(𝑛 − 1)𝑛

2
]

= 1 + 𝑛2 − 1 −
𝑛2

2
+
𝑛

2
=

𝑛2

2
+
𝑛

2
=

𝑛2

2
+ 𝒪(𝑛)

 

Similarly, the total number of the additions/subtractions in the back substation phase will be 

∑(𝑛 + 1 − 𝑖)

𝑛−1

𝑖=1

=
𝑛2

2
+
𝑛

2
− 1 =

𝑛2

2
+ 𝒪(𝑛) 

The summary of the operation count of the Upper triangular system 𝑈𝑋 = 𝑌 is given as: 

 
Operations 

Total flops 
Multiplications/Divisions Additions/Subtractions 

Upper triangular 
system 𝑈𝑋 = 𝑌 

𝑛2

2
+
𝑛

2
 

𝑛2

2
+
𝑛

2
− 1 𝑛2 + 𝑛 − 1 

Question 30: Perform the operation count analysis of the algorithm that involves the following phases to solve 

an 𝑛 × 𝑛 linear system: 

(1) Factorization of the coefficient matrix using the Doolittle’s method 

(2) Forward substitution to solve the lower triangular system. 

(3) Back substitution to solve the upper triangular system. 

(1) The factorization of the coefficient matrix 𝐴 into the product of the lower triangular 𝐿 and the unit upper 

triangular 𝑈 matrices occur just after setting the inputs in the algorithm. The formulation of 𝐿 and 𝑈 as the 

factors of 𝐴 contains three nested loops. The first loop, say 𝑖-loop (which ranges from 𝑖 = 1 to 𝑛), corresponds 

to the 𝑖th column of 𝐿 and 𝑖th row of 𝑈 respectively. The second loop, say 𝑗-loop (ranges from 𝑗 = 𝑖 to 𝑛), 

corresponds to the 𝑗th row of 𝐿 and (ranges from 𝑗 = 𝑖 + 1 to 𝑛), corresponds to the 𝑗th column of 𝑈. The third 
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loop, say 𝑠-loop (which ranges from 𝑠 = 1 to 𝑖 − 1), corresponds to the multiplication of the rows of 𝐿 and 

columns of 𝑈.  

Note that, the 𝑗-loop corresponding to row 𝑗 of 𝐿 ranging from 𝑖 to 𝑛, the number of passes/iterations will be 

𝑛 − 𝑖 + 1. Similarly, the number of passes/iterations in 𝑗-loop, corresponds to column 𝑗 of 𝑈 ranging from 𝑖 +

1 to 𝑛, will be 𝑛 − (𝑖 + 1) + 1 (or simply (𝑛 − 𝑖)).  

Each pass of 𝑗-loop will perform one subtraction to obtain the entry 𝑙𝑗𝑖  of 𝐿. Moreover, in each pass of 𝑗-loop, 

the number of both of the multiplications and additions will be  (𝑖 − 1) − 1 + 1 (or simply (𝑖 − 1)) in s-loop. 

Thus, in each pass of j-loop, the total number of multiplications/divisions will be (𝑖 − 1) and the total number 

of additions/subtractions will be (1 + 𝑖 − 1) or (𝑖). Similarly, in each pass of 𝑗-loop, to obtain the entry 𝑢𝑖𝑗 of 

𝑈, the total number of both of the multiplications and additions will be  (𝑖 − 1) + 1 (or simply (𝑖)).  

As there are (𝑛 − 𝑖 + 1) passes of 𝑗-loop in each pass of 𝑖-loop, therefore there will be (𝑛 − 𝑖 + 1) × (𝑖 − 1) 

multiplications/divisions and (𝑛 − 𝑖 + 1) × (𝑖)  additions/subtractions in each pass of 𝑖 -loop for the 

formulation of column 𝑖  of 𝐿 . Similarly, in each pass of 𝑖 -loop, there will be (𝑛 − 𝑖) × (𝑖) 

multiplications/divisions and (𝑛 − 𝑖) × (𝑖) additions/subtractions in each pass of 𝑖-loop for the formulation 

of row 𝑖 of 𝑈.  

Hence, the total number of multiplications/divisions in 𝑛 passes of 𝑖-loop for the formulation of the lower 

triangular matric 𝐿 will be 

∑(𝑛 − 𝑖 + 1)(𝑖 − 1)

𝑛

𝑖=1

= ∑(𝑛 + 1 − 𝑖)(𝑖 − 1)

𝑛

𝑖=1

 

= ∑[(𝑛 + 1)𝑖 − (𝑛 + 1) − 𝑖2 + 𝑖]

𝑛

𝑖=1

= ∑[(𝑛 + 2)𝑖 − 𝑖2 − (𝑛 + 1)]

𝑛

𝑖=1

 

= (𝑛 + 2)∑𝑖

𝑛

𝑖=1

−∑𝑖2
𝑛

𝑖=1

− (𝑛 + 1)∑1

𝑛

𝑖=1

 

= (𝑛 + 2) [
𝑛(𝑛 + 1)

2
] − [

𝑛(𝑛 + 1)(2𝑛 + 1)

6
] − (𝑛 + 1)𝑛 

= 𝑛(𝑛 + 1) [
𝑛

2
+ 1 −

𝑛

3
−
1

6
− 1] = (𝑛2 + 𝑛) [

𝑛

6
−
1

6
] 

=
𝑛3

6
−
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛) 

Similarly, the total number of additions/subtractions in 𝑛 passes of 𝑖-loop for the formulation of the lower 

triangular matric 𝐿 will be 
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∑(𝑛 − 𝑖 + 1)(𝑖)

𝑛

𝑖=1

=
𝑛3

6
+
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛) 

Moreover, the total number of multiplications/divisions and additions/subtractions in 𝑛 passes of 𝑖-loop for 

the formulation of the unit upper triangular matric 𝑈 will be 

∑(𝑛 − 𝑖)(𝑖) 

𝑛

𝑖=1

= ∑(𝑛 − 𝑖)(𝑖)

𝑛

𝑖=1

= ∑(𝑛𝑖 − 𝑖2)

𝑛

𝑖=1

 

= 𝑛∑𝑖

𝑛

𝑖=1

−∑𝑖2
𝑛

𝑖=1

= 𝑛 [
𝑛(𝑛 + 1)

2
] − [

𝑛(𝑛 + 1)(2𝑛 + 1)

6
] 

= 𝑛(𝑛 + 1) [
𝑛

2
−
𝑛

3
−
1

6
] = (𝑛2 + 𝑛) [

𝑛

6
−
1

6
] 

=
𝑛3

6
−
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛) 

The summary of the operation count of the 𝐿𝑈-factorization is given as: 

 
Operations 

Total flops 
Multiplication/Division Addition/Subtraction 

Lower Triangular 
Matrix 𝐿  

𝑛3

6
−
𝑛

6
 

𝑛3

6
+
𝑛

6
 

𝑛3

3
 

Upper Triangular 
Matrix 𝑈 

𝑛3

6
−
𝑛

6
 

𝑛3

6
−
𝑛

6
 

𝑛3

3
−
𝑛

3
 

𝐿𝑈-factorization 
𝑛3

3
−
𝑛

3
 

𝑛3

3
 

2𝑛3

3
−
𝑛

3
 

(2) The forward substitution phase occurs after the formulation of 𝐿 and 𝑈 as factors of the coefficient matrix 

for solving the lower triangular system. This phase contains two nested loops.  The first loop, say 𝑖-loop (which 

ranges from 𝑖 = 2 to 𝑛), corresponds to 𝑛 − 1 of the components of the intermediate vector 𝑌. The second 

loop, say 𝑗-loop (which ranges from 𝑗 = 1 to 𝑖 − 1), corresponds to the columns before the diagonal elements. 

Each pass of 𝑖-loop will perform one subtraction and one division to obtain the value of 𝑦𝑖. Moreover, in each 

pass of 𝑖-loop, the number of both of the multiplications and additions will be  (𝑖 − 1) − 1 + 1 (or simply 

(𝑖 − 1)) in 𝑗-loop. Thus, in each pass of 𝑖-loop, the total number of both of the multiplications/divisions and 

additions/subtractions will be (1 + 𝑖 − 1) or simply (𝑖). 
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Hence, the total number of the multiplications/divisions in the forward substitution phase will be 

1 +∑(𝑖)

𝑛

𝑖=2

= 1 +∑𝑖

𝑛

𝑖=2

= 1 + [
𝑛(𝑛 + 1)

2
− 1]

=
𝑛2

2
+
𝑛

2
=

𝑛2

2
+
𝑛

2
=

𝑛2

2
+ 𝒪(𝑛)

 

Similarly, the total number of the additions/subtractions in the forward substation phase will be 

∑(𝑖)

𝑛

𝑖=2

=
𝑛2

2
+
𝑛

2
− 1 =

𝑛2

2
+ 𝒪(𝑛) 

The summary of the operation count of the Unit Lower triangular system 𝐿𝑌 = 𝐵 is given as: 

 
Operations 

Total flops 
Multiplication/Division Addition/Subtraction 

Lower  
triangular system 
𝐿𝑌 = 𝐵  

𝑛2

2
+
𝑛

2
 

𝑛2

2
+
𝑛

2
− 1 𝑛2 + 𝑛 − 1 

(3) The back substitution phase occurs after the solution of the lower triangular system. This phase contains 

two nested loops.  The first loop, say 𝑖-loop (which ranges from 𝑖 = 𝑛 − 1 to 1), corresponds to 𝑛 − 1 of the 

components of solution vector 𝑋. The second loop, say 𝑗-loop (which ranges from 𝑗 = 𝑖 + 1 to 𝑛), corresponds 

to the columns after the diagonal elements. 

Each pass of 𝑖-loop will perform one subtraction to obtain the value of 𝑥𝑖 . Moreover, in each pass of 𝑖-loop, the 

number of both of the multiplications and additions will be  𝑛 − (𝑖 + 1) + 1 (or simply (𝑛 − 𝑖)) in j-loop. Thus, 

in each pass of i-loop, the total number of multiplications/divisions will be (𝑛 − 𝑖) and the total number of 

additions/subtractions will be (𝑛 − 𝑖 + 1). 

Hence, the total number of the multiplications/divisions in the back substitution phase will be 

∑(𝑛 − 𝑖)

𝑛−1

𝑖=1

= 𝑛∑1

𝑛−1

𝑖=1

−∑ 𝑖

𝑛−1

𝑖=1

= 𝑛(𝑛 − 1) − [
(𝑛 − 1)𝑛

2
]

= 𝑛2 − 𝑛 −
𝑛2

2
+
𝑛

2
=

𝑛2

2
−
𝑛

2
=

𝑛2

2
+ 𝒪(𝑛)
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Similarly, the total number of the additions/subtractions in the back substation phase will be 

∑(𝑛 + 1 − 𝑖)

𝑛−1

𝑖=1

=
𝑛2

2
+
𝑛

2
− 1 =

𝑛2

2
+ 𝒪(𝑛) 

The summary of the operation count of the Upper triangular system 𝑈𝑋 = 𝑌 is given as: 

 
Operations 

Total flops 
Multiplications/Divisions Additions/Subtractions 

Upper triangular 
system 𝑈𝑋 = 𝑌 

𝑛2

2
−
𝑛

2
 

𝑛2

2
+
𝑛

2
− 1 𝑛2 − 1 

 

∎∎∎ 
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Chapter Summary 

• A system of linear equations (simply called as linear system) is a set or collection of two or more linear 

equations with the same set of variables whose simultaneous solution satisfies all the equations. 

Precisely, a linear system can be referred to as a set of simultaneous linear algebraic equations. 

• If 𝑚 > 𝑛, where 𝑚 is the number of equations and 𝑛 is the number of unknowns, then the linear system 

is called over-determined. If 𝑚 < 𝑛, then the linear system is called under-determined. 

• A linear system 𝐴𝑋 = 𝐵 is called homogenous if 𝐵 is a zero vector (i.e., 𝐵 = 𝟎̅), and non-homogeneous 

or inhomogeneous if 𝐵 ≠ 𝟎̅. 

• A non-homogeneous linear system 𝐴𝑋 = 𝐵 is called consistent if it has a unique solution or infinitely 

many solutions, and it is called inconsistent if it has no solution. 

• If 𝐴−1 does not exist, then matrix 𝐴 is called singular or non-invertible. If 𝐴−1exists then 𝐴 is called non-

singular matrix and is invertible. 

• If det(𝐴) = 0, then 𝐴−1 does not exist and the system 𝐴𝑋 = 𝐵 does not have a unique solution; the system 

either has no solution or infinitely many solutions. 

• Although the steps of the algorithms for the solution of a linear system are elementary in nature, there 

might be certain pitfalls. This raises the need of skillful selection and use of an appropriate algorithm for 

obtaining the solution. 

• In general, methods for the solution of linear systems (also called linear solvers) are evaluated based on 

their accuracy, speed of convergence, and computer resource requirements (CPU-requirements, memory 

requirements). 

• A linear equation in two variables, say 𝑥 and 𝑦, represents a line in 𝑥𝑦-plane. If there exists a unique 

solution of the system then it is the point where the two lines intersect. 

• A linear equation in three variables, say 𝑥, 𝑦, and 𝑧, represents a plane in 𝑥𝑦𝑧-space. If there exists a 

unique solution of such a system then it is the point where the three planes intersect. 

• There are two broad categories of methods to solve linear systems: the direct (also called exact) 

methods and iterative methods. The prominent features of these two categories can be found in Question 

5 (Section 6.1). 

• An  𝑛 × 𝑛  square matrix 𝑈 = (𝑢𝑖𝑗)  is called the upper triangular matrix if 𝑢𝑖𝑗 = 0  whenever 𝑖 > 𝑗 . A 

linear system 𝑈𝑋 = 𝑌 is said to be upper triangular system if it's coefficient matrix is an upper triangular 

one. It has a unique solution if no diagonal element is zero (i.e., |𝑢𝑖𝑖| ≠ 0, for 𝑖 = 1,2,⋯ , 𝑛), otherwise it 
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has either no solution or infinitely many solutions. If there is a unique solution of an upper triangular 

system then the solution can easily be obtained by a so-called back substitution process. In analogy, the 

said propositions also hold for a lower triangular matrix 𝐿 = (𝑙𝑖𝑗) for which 𝑙𝑖𝑗 = 0 whenever 𝑖 < 𝑗. The 

solution of a lower-triangular system can be obtained by a similar so-called forward substitution 

process. 

• To solve a linear system 𝐴𝑋 = 𝐵, the Gaussian Elimination method aims at obtaining an upper triangular 

system 𝑈𝑋 = 𝑌, equivalent to 𝐴𝑋 = 𝐵. This process may be termed as forward elimination. The upper 

triangular system can then be solved by back substitution. 

• To guard against the pitfalls of the Gaussian Elimination method, the process of pivoting is performed 

while using the method. The pivoting could be any of partial, scaled or complete. 

• Pivoting refers to the interchanging of two rows of the augmented matrix so that the diagonal coefficient 

(to be used as the pivot element) is of greatest magnitude among the possible ones for the row under 

consideration.  

• Pivoting must be performed if the main diagonal coefficient is zero (to make the triangular system non-

singular). Pivoting should be performed if the magnitude of the main diagonal element is a smaller one 

(to prevent the propagation of the round-off error). 

• The Gauss-Jordan method is a variant of the Gaussian Elimination method. It is based on the same 

elementary row operations; however, it eliminates all the elements below as well as above the pivot 

element ( in the same column ) . Thus it does not produce an upper-triangular system for back-

substitution; rather it obtains a diagonal matrix in which the solution vector is almost readily available. 

• The 𝐿𝑈 Factorization or 𝐿𝑈 Decomposition method is another direct solver. A concise description of this 

method (and its variants) can be found in Question 12 (Section 6.5). 

• The operation count analysis of an algorithm usually refers to the counting of the arithmetic operations 

involved. This is useful in determining the execution time required by the algorithm. For numerical 

computations, the operation count analysis is mostly considered as the counting of the floating-point 

operations (simply called as flops) involved in the algorithm. 

• The additions/subtractions are considered to be requiring less CPU-time (being lighter operations) as 

compared to the multiplications/divisions. Therefore, it might be appropriate to count the two types of 

operations separately for the operation count analysis. 

∎∎∎ 

 

  



Direct Linear Solvers 97 

 

 
 

Chapter Exercises 

Exercise 01: Solve the following system using the Gaussian Elimination method with back substitution.  

2𝑥1 − 3𝑥2 + 𝑥3 = −1
4𝑥1 + 4𝑥2 − 3𝑥3 = 3

−2𝑥1 + 3𝑥2 + 𝑥3 = 7

 

Exercise 02: Solve the following system using the Gaussian Elimination method with partial pivoting.  

𝑥1 + 𝑥2 + 𝑥3 = 6
3𝑥1 + 3𝑥2 + 𝑥3 = 12
2𝑥1 + 𝑥2 + 5𝑥3 = 20

 

Exercise 03: Solve the following system using the Gaussian Elimination method with partial pivoting and 

three-digit rounding arithmetic. 

2.5𝑥1 − 3𝑥2 + 4.6𝑥3 = −1.05
−3.5𝑥1 + 2.6𝑥2 + 1.5𝑥3 = −14.46
−6.5𝑥1 + −3.5𝑥2 + 7.3𝑥3 = −17.735

 

Exercise 04: Solve the following system using the Gaussian Elimination method with scaled partial pivoting. 

𝑥1 + 𝑥2 − 2𝑥3 = 3
4𝑥1 − 2𝑥2 + 𝑥3 = 5
3𝑥1 − 𝑥2 + 3𝑥3 = 8

 

Exercise 05: Solve the following system using the Gaussian Elimination method with scaled partial pivoting 

and four-digit rounding arithmetic. 

3.03𝑥1 − 12.1𝑥2 + 14𝑥3 = −119
−3.03𝑥1 + 12.1𝑥2 − 7𝑥3 = 120
6.11𝑥1 − 14.2𝑥2 + 21𝑥3 = −139

 

Exercise 06: Solve the following system using the Gaussian Elimination method with complete pivoting. 

𝑥1 + 2𝑥2 + 2𝑥3 = 1
2𝑥1 + 6𝑥2 + 10𝑥3 = −2
3𝑥1 + 14𝑥2 + 28𝑥3 = −11

 

Exercise 07: Solve the following system using the Gaussian Elimination method with complete pivoting and 

three-digit rounding arithmetic. 

1.012𝑥1 − 2.132𝑥2 + 3.104𝑥3 = 1.984
−2.132𝑥1 + 4.096𝑥2 − 7.013𝑥3 = −5.049
3.104𝑥1 − 7.013𝑥2 + 0.014𝑥3 = −3.895
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Exercise 08: Solve the following system using the Gauss-Jordan method  

𝑥1 + 2𝑥2 + 𝑥3 = 6
2𝑥1 + 3𝑥2 + 4𝑥3 = 12
4𝑥1 + 3𝑥2 + 2𝑥3 = 12

 

Exercise 09: Solve the following system using the Gauss-Jordan method and three-digit rounding arithmetic. 

0.125𝑥1 + 0.201𝑥2 + 0.401𝑥3 = 2.306
0.375𝑥1 + 0.501𝑥2 + 0.601𝑥3 = 4.806
0.501𝑥1 + 0.301𝑥2 + 0.001𝑥3 = 2.91

 

Exercise 10: Solve the following linear system 𝐴𝑋 = 𝐵 using the Doolittle’s method. 

𝑥1 + 𝑥2 + 𝑥3 = 3

2𝑥1 − 𝑥2 + 2𝑥3 = 16

3𝑥1 + 𝑥2 + 𝑥3 = −3

 

Exercise 11: Solve the following linear system 𝐴𝑋 = 𝐵 using the Doolittle’s method. 

𝑥1 + 𝑥2 + 2𝑥3 + 2𝑥4 = 9
2𝑥1 + 4𝑥2 + 7𝑥3 + 3𝑥4 = 25
−𝑥1 − 5𝑥2 − 6𝑥3 + 2𝑥4 = −17
𝑥1 − 𝑥2 + 3𝑥3 + 8𝑥4 = 15

 

Exercise 12: Solve the following linear system 𝐴𝑋 = 𝐵 using the Crout’s method. 

8𝑥1 + 𝑥2 − 𝑥3 = 8
2𝑥1 + 𝑥2 + 9𝑥3 = 12
𝑥1 − 7𝑥2 + 2𝑥3 = −4

 

Exercise 13: Solve the following linear system 𝐴𝑋 = 𝐵 using the Crout’s method. 

𝑥1 + 𝑥2 + 0𝑥3 + 3𝑥4 = 9
2𝑥1 + 𝑥2 − 𝑥3 + 𝑥4 = 5
3𝑥1 − 𝑥2 + 𝑥3 + 2𝑥4 = 6
−𝑥1 + 2𝑥2 + 3𝑥3 − 𝑥4 = 4

 

Exercise 14: Solve the following linear system 𝐴𝑋 = 𝐵 using the Cholesky’s method. 

2𝑥1 + 3𝑥2 + 4𝑥3 = 1

3𝑥1 + 8𝑥2 + 5𝑥3 = 6

4𝑥1 + 5𝑥2 + 10𝑥3 = −1

 

Exercise 15: Solve the given linear system 𝐴𝑋 = 𝐵 using the Cholesky’s method 

4𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 9
𝑥1 + 3𝑥2 − 𝑥3 + 𝑥4 = 4
𝑥1 − 𝑥2 + 2𝑥3 + 0𝑥3 = 4
𝑥1 + 𝑥2 + 0𝑥3 + 2𝑥4 = 6
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Exercise 16: The upward velocity of a rocket at three different times after its launching are given as follows: 

Time, 𝑡 in (𝑠) Velocity, 𝑣 in (𝑚/𝑠) 

6 115.7 

9 182.5 

12 295.6 

The velocity data is approximated by a polynomial as 

 𝑣(𝑡) = 𝑎1𝑡
2 + 𝑎2𝑡 + 𝑎3,      5 ≤ 𝑡 ≤ 12 

Thus, the coefficients 𝑎1, 𝑎2 and 𝑎3 for the above expression are given by  

[
36 6 1
81 9 1
144 12 1

] [

𝑎1
𝑎2
𝑎3
] = [

115.7
182.5
295.6

] 

Find the values of  𝑎1 ,𝑎2  and 𝑎3  using a linear solver. Then, calculate the velocity at  𝑡 = 7, 8, 10, and 11 

seconds. 

Exercise 17: A factory produces three products, say Prod1, Prod2, and Prod3, by using three kinds of raw 
materials, say Raw1, Raw2, and Raw3. The units of each of the raw materials needed to produce one unit of 
each of the products are shown the table below. 

Sectors Raw1 Raw2 Raw3 

Prod1 5 3 1 

Prod2 4 4 3 

Prod3 2 1 3 

If 335 units of Raw1, 532 units of Raw2, and 440 units of Raw3 are available, then how much each of the three 
products can be produced. 

Hint for the Solution: 

Assume that 𝑥1, 𝑥2 and 𝑥3 represent the quantities of the products: Prod1, Prod2, and Prod3, respectively. The 
problem can be represented by a linear system whose solution would provide the required values. 

5𝑥1 + 4𝑥2 + 2𝑥3 = 335

3𝑥1 + 4𝑥2 + 𝑥3 = 532

𝑥1 + 3𝑥2 + 3𝑥3 = 440

 

Exercise 18: Assume that the economy of a country depends on the three sectors: Food, Cloth, and House. The 
production of one unit of each of these needs certain units of each of these sectors, as shown in the following 
table: 
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Sectors 
Food Units 

Needed 
Cloth Units 

Needed 
House Units 

Needed 

Food 0.45 0.18 0.15 

Cloth 0.25 0.27 0.07 

House 0.30 0.40 0.45 

The consumer demand is as in the table below: 

Sector worth in billion rupees 

Food 220 

Cloth 185 

House 550 

For satisfying the above demands, what total output is required from each of the sectors. 

Hint for the Solution in MATLAB: Assume that 𝑥1, 𝑥2 and 𝑥3 represent the total outputs in units from Food, 

Cloth and House sectors, respectively. The problem can be represented by a linear system whose solution 

would provide the required values. 

Exercise 19: A bakery produces three products: Cake, Pastry, and Muffin. It uses three kinds of materials: 

Flour, Milk, and Sugar. The units of each of the raw materials needed to produce one unit of each of the bakery 

products are shown the table below.  

Product -> Cake Pastry Muffin 

Flour 6 5 3 

Milk 4 5 2 

Sugar 2 3 3 

If 347 units of Flour, 604 units of Milk, and 502 units of Sugar are available, then how much each of the three 

products can be produced. 

Exercise 20: Pivoting is necessary with the Gaussian elimination if 

(A) the coefficient matrix is singular  (B) the linear system is homogenous 

(C) the linear system is ill conditioned (D) None of above 

Exercise 21: Cholesky decomposition for a linear system is not possible, if 

(A) the linear system is ill conditioned (B) the linear system is homogenous 

(C) the coefficient matrix is asymmetric (D) None of above 

∎∎∎ 
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Chapter 7 

Iterative Linear Solvers  

Corridor I: BASICS 

 Let’s plan it 
 

7.1     Vector Norms and Distances 

7.2     Convergence Criteria for Linear Solvers 

7.3     Basic Methods 

       7.3.1     The Jacobi Method 

       7.3.2     The Gauss-Seidel Method 

       7.3.3     The SOR Method 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

Fig. (7.4): Explanation of the different types of distances between the two vectors. 

http://www.timerenders.com.pk/
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Corridor II: ANALYSIS 

 Let’s think deep 
 

 

7.4     Matrix Norms and Conditioning 

7.5     Iteration Matrix and Matrix Form of a Solver 

 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

 

Corridor III: PROGRAMMING ARCADE 

 Let’s do it 
 

 

7.6     Algorithms and Implementations 

`The Jacobi Method 

Modification in the Jacobi Method's algorithm for the Gauss-Seidel Method 

Modification in the Jacobi Method's algorithm for the SOR Method 

 

To see more examples for practicing, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

For codes, please visit: https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis 

∎∎∎ 

 

 

7.6 Algorithms and Implementations 

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/
https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis
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Question 22: Write down an algorithm (pseudo code) to solve a linear system using the Jacobi method. 

The Jacobi method can be written in a compact form as 

𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[
 
 
 
 

𝑏𝑖 −∑𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=1
𝑗≠𝑖 ]

 
 
 
 

, for 𝑖 = 1, 2,⋯ , 𝑛 

Algorithm: To solve 𝐴𝑋 = 𝐵, given an initial approximation 𝑋(0). 

𝐈𝐍𝐏𝐔𝐓𝐒:      

{
  
 

  
 
𝒏: an integer as the number of equations and unknowns

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the coefficient matrix

𝑩 = [𝒃𝟏, 𝒃𝟐, ⋯ , 𝒃𝒏]
𝑻:  a real valued vector as the vector of right hand side constants

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻:  a real valued vector (having initial approximation, 𝑋(0))

𝑻𝑶𝑳:  a real value as the error tolerance
𝑵: an integer as the maximum number of iterations

 

𝐎𝐔𝐓𝐏𝐔𝐓:    {
𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]

𝑻:  a real valued vector as the approximate solution
(either on convergence, or on completing 𝑵 iterations − which ever happens first)

 

Step 1 Receive the inputs as stated above 

Step 2 for 𝒌 = 𝟏, 𝟐, 𝟑,⋯ ,𝑵  perform steps 3-6 

Step 3      for 𝑖 = 1, 2,⋯ , 𝒏 Set 𝒙𝒑𝒊 = 𝒙𝒊 {
𝑿𝑷 = [𝒙𝒑𝟏, 𝒙𝒑𝟐, ⋯ , 𝒙𝒑𝒏]

𝑻 is to keep a copy of present
approximation 𝑿, because 𝑿 is going to be updated

 

Step 4       for 𝑖 = 1, 2,⋯ ,𝒏   (compute the components of solution vector 𝑿) 

𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ , 𝒏 

𝑖𝑓 (𝒋 ≠ 𝒊) 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒂𝒊𝒋 × 𝑿𝑷𝒋

𝒙𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒂𝒊𝒊 }
 
 

 
 

(

 
 
𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[
 
 
 
 

𝑏𝑖 −∑𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=1
𝑗≠𝑖 ]

 
 
 
 

)

 
 

 

Step 5      Compute 𝒆𝒓𝒓 = ‖𝑿 − 𝑿𝑷‖           (or 𝒆𝒓𝒓 = ‖𝑿 − 𝑿𝑷‖/‖𝑿‖)  Here ‖∙‖ is any suitable norm. 

Step 6  

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳 )then

Exit/Break the loop 
}

This means that the consecutive 
approximations are nearly the same
Therefore, stop iterations.

. 

end for loop of Step 2  (Go to Step 3) 

Step 7  Print the output: 𝑿 = [𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏]
𝑻  
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if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)  OUTPUT (‘The desired accuracy achieved; Solution converged.’) 

else   OUTPUT (‘The number of iterations exceeded the maximum limit.’) 

STOP. 

Question 23: What modification a programmer needs to make in the algorithm (pseudo code) of the Jacobi 

method (as given in the answer of Question 22) to convert it into the Gauss-Seidel method for solving a linear 

system. 

The algorithm (pseudo code) of the Jacobi method (as given in the answer of Question 22) can be converted 

into the algorithm of the Gauss-Seidel method simply by replacing its Step 4 with the following: 

 

Step 4 for 𝑖 = 1, 2,⋯ , 𝒏   (compute the components of solution vector 𝑿) 

𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ ,𝒏 

𝑖𝑓 (𝒋 ≠ 𝒊) 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒂𝒊𝒋 × 𝒙𝒋

𝒙𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒂𝒊𝒊 }
 
 

 
 

  

(

 
 
𝑠𝑢𝑚 =∑𝑎𝑖𝑗𝑥𝑗

(𝑘)

𝑖−1

𝑗=1

+ ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=𝑖+1

𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[𝑏𝑖 − 𝑠𝑢𝑚] )

 
 

 

∎ 

Question 24: What modification a programmer needs to make in the algorithm (pseudo code) of the Jacobi 

method (as given in the answer of Question 22)  to convert it into the Gauss-Seidel method with over-

relaxation (i.e., the SOR method) for solving a linear system. 

The algorithm (pseudo code) of the Jacobi method (as given in the answer of Question 22) can be converted 

into the algorithm of the SOR method simply by taking one more input: 

𝑾𝑭 = 1.3:    a real value as the over − relaxation / weighting factor 

And then replacing Step 4 with the following: 

Step 4   

              for 𝑖 = 1, 2,⋯ ,𝒏  (compute the components of solution vector 𝑿) 

𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ ,𝒏 

𝑖𝑓 (𝒋 ≠ 𝒊) 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒂𝒊𝒋 × 𝒙𝒋

𝒙𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒂𝒊𝒊 }
 
 

 
 

  

(

 
 
𝑠𝑢𝑚 =∑𝑎𝑖𝑗𝑥𝑗

(𝑘)

𝑖−1

𝑗=1

+ ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=𝑖+1

𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[𝑏𝑖 − 𝑠𝑢𝑚] )

 
 

𝒙𝒊 = 𝑾𝑭 × 𝒙𝒊 + (1 −𝑾𝑭)𝑿𝑷𝒊 (apply over − relaxation)

 

∎ 
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Question 24: Write a Python program to solve the following linear system using the Jacobi method. Take 

initial approximate solution as: 𝑋(0) = [0, 0, 0]𝑇 . The iterations of the method should stop when either the 
approximation is accurate within 10−6, or the number of iterations exceeds 200, whichever happens first. 

5𝑥1 + 3𝑥2 + 2𝑥3 = 17, 3𝑥1 + 4𝑥2 − 𝑥3 = 8, −𝑥1 + 𝑥2 − 3𝑥3 = −8 

script_7.1: jacobi.ipynb 

                                  

1 from numpy import *                        
2                                  
3 N = 200                            
4 TOL = 0.000001                         
5 n = 3                               
6 a = [[5, 3, 2], [3, 4, –1], [–1, 1, –3]]        
7 b = [17, 8, –8]                         
8                                  
9 x = zeros(n)                            

10 xp = zeros(n)                          
11 print("iter.       x1           x2           x3             Error")   
12                                  
13 for k in range(1,N+1):                  
14   print(k, end=" ")                     
15   for i in range(n):                     
16     xp[i] = x[i]                     
17   for i in range(n):                     
18     sum = 0                       
19     for j in range(n):                    
20       if j!=i:                      
21         sum = sum + a[i][j] * xp[j]   
22     x[i] = (b[i] – sum) / a[i][i]              
23     print("      ", round(x[i],8), end=" ")             
24                                  
25   sum = 0                          
26   for i in range(n):                      
27     sum = sum + ((x[i] – xp[i]) * (x[i] – xp[i]))    
28   err = sqrt(sum)                       
29   print("    ", round(err,8))                      
30   if err < TOL:                       
31     break                       
32                                  
33 print("The latest approximate solution vector is given:")     
34 for i in range(n):                       
35   print(x[i], "\t", end=" ")                  
36                                  
37 if err < TOL:                           
38   print("\nThe desire accuracy is achieved; Solution is convergent.") 
39 else:                              
40   print("\nThe number of iterations exceeded the maximum limit.") 

Output Console: 
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iter.       x1          x2           x3              Error 

1       3.4            2.0          2.66666667      4.76141902 

2       1.13333333     0.11666667   2.2             2.98370575 

3       2.45           1.7          2.32777778      2.06322144 

4       1.44888889     0.74444444   2.41666667      1.38679887 

5       1.98666667     1.5175       2.43185185      0.94183355 

6       1.51675926     1.11796296   2.51027778      0.62176639 

7       1.72511111     1.49         2.53373457      0.42705067 

8       1.49250617     1.33960031   2.5882963       0.28231562 

. 

. 

. 

128     1.00000857     1.99999121   2.99999365      1.34e-06 

129     1.00000781     1.99999198   2.99999421      1.22e-06 

130     1.00000713     1.9999927    2.99999472      1.11e-06 

131     1.00000649     1.99999333   2.99999519      1.01e-06 

132     1.00000593     1.99999393   2.99999561      9.3e-07 

The latest approximate solution vector is given:  

1.00000593  1.99999393  2.99999561   

The desire accuracy is achieved; Solution convergent 

 

Remark: Replacing xp[j] by x[j] in line 34 of the Python program in Problem 17 would convert the program 

for the Gauss-Seidel method, because it would then correspond to computing  

𝑠𝑢𝑚 =∑𝑎𝑖𝑗𝑥𝑗
(𝑘)

𝑖−1

𝑗=1

+ ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=𝑖+1

 

Remark: In the program of Problem 17, the code segment of lines 45-47 can be placed just before line 45 to 

print the latest result on completion of each of the iterations.  

∎ 

Question 25: Write a Python program to solve the following linear system using the Gauss-Seidel method 

with over-relaxation (the SOR method). Take initial approximate solution as: 𝑋(0) = [0, 0, 0]𝑇 and over-

relaxation factor as 1.2. The iterations of the method should stop when either the approximation is accurate 

within 10−6, or the number of iterations exceeds 200, whichever happens first. 

5𝑥1 + 3𝑥2 + 2𝑥3 = 17, 3𝑥1 + 4𝑥2 − 𝑥3 = 8, −𝑥1 + 𝑥2 − 3𝑥3 = −8 

script_7.2: gauss_seidel.ipynb 

                                  

1 from numpy import *                       
2                                  
3 N = 200                           
4 TOL = 0.000001                        
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5 n = 3                              
6 wf = 1.2                         
7 a = [[5, 3, 2], [3, 4, –1],[–1, 1, –3]]       
8 b = [17, 8, –8]                        
9                                  

10 x = zeros(n)                           
11 xp = zeros(n)                         
12 print("iter.       x1           x2           x3             Error")  
13                                  
14 for k in range(1,N+1):                 
15   print(k, end=" ")                     
16   for i in range(n):                     
17     xp[i] = x[i]                     
18   for i in range(n):                     
19     sum = 0                       
20     for j in range(n):                    
21       if j!=i:                      
22         sum = sum + a[i][j] * x[j]   
23     x[i] = (b[i] – sum) / a[i][i]              
24     x[i] = (wf * x[i]) + ((1 – wf) * xp[i])    
25     print("      ", round(x[i],8), end=" ")             
26                                  
27   sum = 0                          
28   for i in range(n):                      
29     sum = sum + ((x[i] – xp[i]) * (x[i] – xp[i]))    
30   err = sqrt(sum)                       
31   print("     ", round(err,8))                      
32   if err < TOL:                       
33     break                       
34                                  
35 print("The latest approximate solution vector is given:")    
36 for i in range(n):                      
37   print(x[i], "\t", end=" ")                  
38                                  
39 if err < TOL:                          
40   print("\nThe desire accuracy is achieved; Solution is convergent.") 
41 else:                             
42   print("\nThe number of iterations exceeded the maximum limit.") 

Output Console: 

iter.         x1          x2           x3             Error 

1           4.081        -1.2721        1.0592        4.40298633 

2          3.6714242     -0.33212162    1.38674176    1.07591327 

3          2.919206713   0.255160813    1.85703329    1.06391052 

4          2.42106694    0.727117624    2.15101363    0.74653261 

5          2.039775395   1.064082715    2.3795202     0.55780278 

6          1.763735676   1.313677426    2.54407266    0.40690657 

7          1.560250257   1.496261097    2.6655898     0.29918143 

8          1.411158868   1.630381758    2.7545712     0.21939527 

. 
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. 

. 

45     1.0000043845     1.9999960645      2.99999738      2.32e-06 

46     1.0000032246     1.999997146       2.99999808      1.71e-06 

47     1.0000023747     1.9999978747      2.99999858      1.25e-06 

48     1.0000017448     1.9999984348      2.99999896      9.2e-07 

The latest approximate solution vector is given:  

1.00000174  1.99999843  2.99999896   

The desire accuracy is achieved; Solution convergent 

 

∎ 

Remark: The Python programs in Question 23 and 25 can be modified to receive the linear system at the 

execution time (instead of fixing in the code). For this, the lines 6-7 in the program of Question 23 and the 

lines 7-8 in the program of Question 25 should be replaced by the following code segment: 

n = int(input("Enter the number of unknowns: ")) 

 

# Initialize coefficient matrix 'a' as a list of lists 

a = [] 

print("Enter the coefficient matrix row-wise:") 

for i in range(n): 

    row = [] 

    for j in range(n): 

        row.append(float(input())) 

    a.append(row) 

 

# Initialize the constant vector 'b' as a list 

b = [] 

print("Enter the elements of constant vector 'B':") 

for i in range(n): 

    b.append(float(input())) 

 

# Display the coefficient matrix 'a' and vector 'b' 

print("Coefficient Matrix 'a':") 

for row in a: 

    print(row) 

 

print("Constant Vector 'b':") 

print(b) 
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Chapter Summary 

• The norm of a vector is a real-valued function that provides a measure of “size”, “length”, or 

“magnitude” of the vector. Let ℝ denotes the set of real numbers, and ℝ𝑛 denotes the space of 

n-dimensional real-valued column vectors. A norm of a vector on ℝ𝑛 is a function, ‖∙‖ ∶ ℝ𝑛 →

ℝ, with the following properties, 

1. ‖𝑋‖ ≥ 0, for all  𝑋 ∈ ℝ𝑛 

2. ‖𝑋‖ = 0, if and only if 𝑋 = 𝟎 in ℝ𝑛 

3. ‖α𝑋‖ = |α|‖𝑋‖, for all α ∈ ℝ and 𝑋 ∈ ℝ𝑛 

4. ‖𝑋 + 𝑌‖ ≤ ‖𝑋‖ + ‖𝑌‖, for all 𝑋, 𝑌 ∈ ℝ𝑛 

• The vector norm definitions, as well as the concerning illustrations, can be found in Question 

01 (Section 7.1).  

• The norm of a vector gives a measure for the distance between an arbitrary vector and the zero 

vector, just as the absolute value of a real number is its distance from 0.  

• The distance between two vectors is defined as the norm of the “difference vector” of the two 

vectors, just as the distance between two real numbers is the absolute value of their difference. 

The definitions of different vector distances, as well as the concerning illustrations, can be 

found in Question 02 (Section 7.1).  

• To determine the convergence of an iterative solution, the norm of the difference vector of 

every two consecutive approximations is ensured to be smaller than a pre-specified error 

tolerance 𝜏, i.e., 

‖𝑋(𝑘) − 𝑋(𝑘−1)‖ < 𝜏 

• A square matrix, say 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 , is said to be diagonally dominant if, for 𝑖 = 1, 2,⋯ , 𝑛 

|𝑎𝑖𝑖| ≥ ∑|𝑎𝑖𝑗|

𝑛

𝑗=1
𝑗≠𝑖

, 

• A linear system is said to be diagonally dominant if its coefficient matrix is diagonally 

dominant (i.e., the magnitude of the diagonal entry in a row is greater than or equal to the sum 

of the magnitudes of all other entries in that row). 

• If “≥” is replaced by “>” in the above equation, then  𝐴  is said to be strictly diagonally 

dominant. A strictly diagonally dominant matrix is always non-singular. 
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• If a linear system is not diagonally dominant, then a rearrangement of its rows might make it 

diagonally dominant. 

• The Gauss-Jacobi, Gauss-Seidel, and SOR methods must converge if the linear system to be 

solved is diagonally dominant. 

• Suppose that 𝐴𝑋 = 𝐵  is a 𝑛 × 𝑛  linear system to be solved such that 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛  is the 

coefficient matrix, 𝐵 = (𝑏𝑖)𝑛×1 is the vector of right-hand side constants, and 𝑋 = (𝑥𝑖)𝑛×1 is the 

vector of unknowns.  

➢ The Jacobi method can be written in a compact form as 

𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[
 
 
 

𝑏𝑖 −∑𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=1
𝑗≠𝑖 ]

 
 
 

, for 𝑖 = 1, 2,⋯ , 𝑛 

➢ The Gauss-Seidel method can be written in a compact form as 

𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[𝑏𝑖 − (∑𝑎𝑖𝑗𝑥𝑗

(𝑘)

𝑖−1

𝑗=1

+ ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=𝑖+1

)] , for 𝑖 = 1, 2,⋯ , 𝑛 

➢ The successive over-relaxation (SOR) method can be written in a compact form as 

𝑥̿𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[𝑏𝑖 − (∑𝑎𝑖𝑗𝑥𝑗

(𝑘)

𝑖−1

𝑗=1

+ ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=𝑖+1

)] , for 𝑖 = 1, 2,⋯ , 𝑛 

𝑥𝑖
(𝑘)

= 𝜔𝑥̿𝑖
(𝑘)
+ (1 − 𝜔)𝑥𝑖

(𝑘−1) (for 1 ≤ 𝜔 ≤ 2,   usually the best is around 1.2 ) 

Here 𝑘 = 1, 2, 3,⋯, represents the iterations and 𝑥𝑖
(𝑘)

 represents the kth approximation of the 

ith unknown. The iterative procedure is started with an initial approximation vector 𝑋(0) =

[𝑥1
(0), 𝑥2

(0), 𝑥3
(0), ⋯ , 𝑥𝑛

(0)
]
𝑻

and produces a sequence of successive approximations {𝑋(𝑘)}
𝑘=1

∞
 , 

such that 𝑋(𝑘) = [𝑥1
(𝑘), 𝑥2

(𝑘), 𝑥3
(𝑘), ⋯ , 𝑥𝑛

(𝑘)
]
𝑻

. The sequence is anticipated to refine/improve 

the approximate solution gradually and ultimately converge to the exact solution vector 

(theoretically). In practice, the iterations of the method are stopped when a sufficient level of 

accuracy is achieved. 

• The norm of a matrix is a real-valued function that provides a measure of “size”, “length”, or 

“magnitude” of the matrix. Let ℝ denotes the set of real numbers, and 𝕄𝑛 denotes the set of 

𝑛 × 𝑛 real-valued matrices. The norm of a matrix on 𝕄𝑛 is a function, ‖∙‖ ∶ 𝕄𝑛 → ℝ, with the 

following properties, 

1. ‖𝐴‖ ≥ 0, for all  𝐴 ∈ 𝕄𝑛 
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2. ‖𝐴‖ = 0, if and only if 𝐴 = 𝟎 in 𝕄𝑛 

3. ‖α𝐴‖ = |α|‖𝐴‖, for all α ∈ ℝ and 𝐴 ∈ 𝕄𝑛  

4. ‖𝐴 + 𝐵‖ ≤ ‖𝐴‖ + ‖𝐵‖, for all 𝐴, 𝐵 ∈ 𝕄𝑛  

5. ‖𝐴𝐵‖ ≤ ‖𝐴‖‖𝐵‖, for all 𝐴, 𝐵 ∈ 𝕄𝑛 

• The matrix norm definitions can be found in Question 11 (Section 7.4). 

• The distance between two matrices 𝐴 and 𝐵 with respect to a certain norm ‖∙‖ is defined as 

the norm of the “difference matrix” of the two matrices, i.e., ‖𝐴 − 𝐵‖. 

• The condition number of a non-singular matrix 𝐴 with respect to a matrix norm ‖∙‖ is 

defined as 

𝒦(𝐴) = ‖𝐴‖‖𝐴−1‖,    (and 𝒦(𝐴)  ≥ 1) 

• The condition number of a linear system is the condition number of its coefficient matrix. 

• A computational problem is called ill-conditioned (or ill-posed) if small changes in the data 

(the input) cause large changes in the solution (the output). On the other hand, a problem is 

called well-conditioned (or well-posed) if small changes in the data cause only small changes 

in the solution. 

• The main issue while solving an ill-conditioned problem is that the round-off errors can cause 

production of wide range worthless solutions (which appear to be original ones because they 

approximately satisfy the given problem). Therefore, minimizing the round-off errors becomes 

more relevant for the ill-conditioned problems. 

• If 𝐴𝑋 = 𝐵 is an ill-conditioned linear system then the solution of its perturbed system (the 

one which is obtained by making small changes in the original system, either through small 

changes in 𝐴, or in 𝐵) is much different from that of the original linear system. In that case, the 

matrix 𝐴 is said to be an ill-conditioned matrix. The determinant of an ill-conditioned matrix 𝐴 

is usually close to zero (NOT the zero). Remind that if the determinant is exactly zero then a 

relevant linear system 𝐴𝑋 = 𝐵 has either no solution, or an infinite number of solutions. 

• There is no strict line between the well-conditioning and ill-conditioning of a system, as these 

concepts are qualitative. A linear system whose condition number (i.e., the condition number 

of its coefficient matrix )  is close to 1 is well-conditioned, whereas a condition number 

significantly larger than 1 indicates that the linear system is ill-conditioned. If the condition 

number is below 100, it is usually not a reason for concern. However, a condition number of 

more than 100 calls for caution. It may be noted that a coefficient matrix, having magnitudes 

of diagonal elements larger than that of other elements in each of the rows, indicates well-

conditioning of the linear system. 

• In general, an iterative linear solver involves a process that converts an 𝑛 × 𝑛 system 𝐴𝑋 = 𝐵 

into an equivalent system of the form 𝑋 = 𝑇𝑋 + 𝐶 for some fixed matrix 𝑇 and vector 𝐶. After 
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the initial vector 𝑋(0)  is selected, the sequence of approximate solution vectors,  𝑋(1),  𝑋(2),

𝑋(3), ⋯, is generated by computing 

𝑋(𝑘) = 𝑇𝑋(𝑘−1) + 𝐶,       for  𝑘 = 1, 2, 3,⋯  

The matrix 𝑇 is called the iteration matrix of the iterative method, and the relation is called 

the matrix form of the iterative method. 

• The iterative linear solvers for which the iteration matrix remains unchanged (or fixed) during 

the iterative process are said to be stationary solvers, whereas the iterative linear solvers for 

which the iteration matrix changes from iteration to iteration are referred to as non-stationary 

solvers.  

• Examples of stationary solvers include simple methods like the Jacobi, Gauss-Seidel, and SOR 

methods. Examples of the non-stationary solvers include more sophisticated methods like the 

Krylov subspace methods: especially, Conjugate Gradient (CG)  methods, Minimal Residual 

methods (especially GMRES), and many more. 

∎∎∎ 

Chapter Exercises 

Exercise 01: Workout first three iterations of (𝑖) the Jacobi method, (𝑖𝑖) the Gauss-Seidel method, and (𝑖𝑖𝑖) 

the Gauss-Seidel method with successive over-relaxation factor  𝜔 = 1.2 and 𝜔 = 1.5 for solving the following 

systems for any initial approximation. Perform computations with a precision of 4 decimal digits, at least. 

Assume the error tolerance as 0.0001. 

(a) 

𝑥1 − 0.25𝑥2 − 0.25𝑥3 = 9
−0.25𝑥1 + 𝑥2 − 0.25𝑥3 = 4
−0.25𝑥1 − 0.25𝑥2 + 𝑥3 = −1

 

(b) 

4𝑥1 + 𝑥2 − 𝑥3 + 𝑥4 = 2.5
𝑥1 + 4𝑥2 − 𝑥3 − 𝑥4 = 0.5

−𝑥1 − 𝑥2 + 5𝑥3 + 𝑥4 = 5
𝑥1 − 𝑥2 + 𝑥3 + 3𝑥4 = 4

 

(c) 
2𝑥1 − 𝑥2 + 𝑥3 = −3
2𝑥1 + 4𝑥2 + 2𝑥3 = 8
−𝑥1 − 𝑥2 + 2𝑥3 = 1

 

 

(d) 

𝑥1 − 0.25𝑥2 − 0.25𝑥3 + 0𝑥4 = 11
−0.25𝑥1 + 𝑥2 + 0𝑥3 − 0.25𝑥4 = 7
−0.25𝑥1 + 0𝑥2 + 𝑥3 − 0.25𝑥4 = 3

0𝑥1 − 0.25𝑥2 − 0.25𝑥3 + 𝑥4 = −1

 

(e) 
0.2𝑥1 + 0.3𝑥2 + 0𝑥3 = 0.1
0.3𝑥1 + 0𝑥2 + 0.2𝑥3 = 0.1
0𝑥1 + 0.2𝑥2 + 0.3𝑥3 = 0.8

 

(f) 
8𝑥1 + 4𝑥2 + 0𝑥3 + 0𝑥4 = 10
4𝑥1 + 12𝑥2 + 2𝑥3 + 0𝑥4 = 12
0𝑥1 + 2𝑥2 + 7𝑥3 + 2.5𝑥4 = 9.25
0𝑥1 + 0𝑥2 + 2.5𝑥3 + 4.5𝑥4 = 4.75

 

 

∎∎∎ 
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Chapter 8 

Eigenvalues and Eigenvectors  

Corridor I: BASICS 

 Let’s plan it 

8.1     Basic Definitions and Concepts 

8.2     General Approach of Finding Eigenvalues and Eigenvectors 

8.3     Some Numerical Methods for Eigenvalues 

The Power Method 

The Householder Method 

The QR Factorization Method 

The Sturm Method 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

 

Corridor II: ANALYSIS 

 Let’s think deep 

8.4     Further Discussions 

The Power Theorem 

The Gerschgorin Circle Theorems 

The Singular Value Decomposition (SVD) 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/
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Corridor III: PROGRAMMING ARCADE 

 Let’s do it 

 
8.5     Algorithms and Implementations 

The Power Method 

 

To see more examples for practicing, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

For codes, please visit: https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis 

∎∎∎ 

 

8.5 Algorithms and Implementations 

Question 12: Write down an algorithm (pseudo code) to find dominant eigenvalue and a corresponding 

eigenvector of a matrix using the Power method. 

Algorithm: To approximate the dominant eigenvalue and associated eigenvector of an 𝑛 × 𝑛 matrix 𝐴, given 

a nonzero normalized vector 𝑋 (i.e., having 1 as the largest component) as the initial approximation. 

𝐈𝐍𝐏𝐔𝐓𝐒:   

{
 
 

 
 
𝒏: an integer as the length of the vector 𝑋

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻:  a real valued vector (as a normalised initial approximation)

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix whose eigenvalue is to be obtained

𝑻𝑶𝑳:  𝑎 real value as the tolerance 
𝑵:  an integer as the maximum number of iterations

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑩: a real value as the approximate eigenvalue

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻:  𝑎 normalized vector as the eigenvector corresponding to 𝑩 

 

Step 1          Receive the inputs as stated above 

Step 2          for 𝒌 = 𝟏, 𝟐, 𝟑,⋯ ,𝑵  perform steps 3-6 

Step 3      for 𝑖 = 1, 2,⋯ , 𝒏 Set 𝒙𝒑𝒊 = 𝒙𝒊 {
𝑿𝑷 = [𝒙𝒑𝟏, 𝒙𝒑𝟐, ⋯ , 𝒙𝒑𝒏]

𝑻 is to keep a copy of present
approximation 𝑿, because 𝑿 is going to be updated

 

http://www.timerenders.com.pk/
https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis
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Step 4 (Compute the vector such that 𝑋(𝑘) = 𝐴𝑋(𝑘−1)) 

for 𝑖 = 1, 2,⋯ , 𝒏 

sum = 0
for 𝑗 = 1, 2,⋯ ,𝒏

 

sum = sum + 𝒂𝒊𝒋 × 𝒙𝒑𝒋
𝑥𝑖 = sum }

 

 
   (𝑥𝑖

(𝑘)
=∑𝑎𝑖𝑗

𝑛

𝑗=1

𝑥𝑗
(𝑘−1)

)    

Step 5 (Approximate the eigenvalue 𝑩 and normalize the vector 𝑿) 

set 𝑟 = 1
for 𝑖 = 1, 2,⋯ , 𝒏

 

if (|𝑥𝑖| > |𝑥𝑟|)   𝑟 = 𝑖
set 𝑩 = 𝑥𝑟

}         (

Finding the element of 𝑋 with
the largest absolute value 
and then setting it as 𝑩 

)    

for 𝑖 = 1, 2,⋯ , 𝒏   

        𝑥𝑖 = 𝑥𝑖/𝑩                                                                                   (Normalizing the vector 𝑋) 

Step 6  

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳 )then

Exit/Break the loop 
}

This means that the consecutive 
approximations are nearly the same
Therefore, stop iterations.

. 

end for loop of Step 2  (Go to Step 3) 

Step 9         Print the output: eigenvalue 𝑩, and eigenvector  𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻 

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)         OUTPUT (‘The desired accuracy achieved; Solution converged.’) 

else               OUTPUT (‘The number of iterations exceeded the maximum limit.’) 

STOP.    

Question 13: Write a Python program to find the dominant eigenvalue of the following matrix using the Power 

method. For simplification, specify the matrix within the program. Take 𝑋(0) = [1, 1, 1]𝑇  as the initial 

approximation. The iterations of the method should stop when either the approximation is accurate within 

10−5, or the number of iterations exceeds 100, whichever happens first. 

𝐴 = [
4 1 0
2 5 0
7 2 1

] 

script_8.1: power.ipynb 

                                  

1 from numpy import *                     
2                                  
3 N = 100                     
4 TOL = 0.00001                       
5 n = 3                          
6 a = [[4, 1, 0], [2, 5, 0], [7, 2, 1]]                
7 x = [1, 1, 1]                  
8                                  
9 xp = zeros(n)                     

10 print("iter.       x1           x2           x3             Error")      
11                                  
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12 for k in range(1,N+1):                      
13   print(k, end=" ")                 
14   for i in range(n):                 
15     xp[i] = x[i]                   
16   for i in range(n):                      
17     sum = 0                      
18     for j in range(n):                     
19       sum = sum + a[i][j] * xp[j]              
20     x[i] = sum                      
21                                  
22   r = 0                          
23   for i in range(n):                      
24     if abs(x[i]) > abs(x[r]):              
25       r = i                      
26                                  
27   B = x[r]                         
28   for i in range(n):                     
29     x[i] = x[i] / B                    
30     print("      ", round(x[i], 8), end=" ")             
31                                  
32 #Computing the error as L2-Norm               
33   sum1 = 0                        
34   for i in range(n):                     
35     sum1 = sum1 + (x[i] – xp[i]) * (x[i] – xp[i])      
36   err = sqrt(sum1)                      
37   print("     ",round(err,8))                     
38   if err < TOL:                    
39     break                    
40                                  
41 print("The approximate dominant eigenvalue is", B)              
42 print("The corresponding eigenvector is:")              
43                                  
44 for i in range(n):                       
45   print(x[i], "    ",end=" ")                   
46                                  
47 if err < TOL:                          
48   print("\nThe desire accuracy is achieved; Solution convergent")    
49 else:                            
50   print("\nThe number of iteration exceeded the maximum limit")     

 

Output Console: 

iter.      x1            x2                 x3           Error 

1        0.51            0.71              1.0         0.58309519 

2        0.457627122     0.762711862       1.0         0.07568513 

3        0.452662723     0.825443783       1.0         0.06292805 

4        0.452974074     0.864768684       1.0         0.03932613 

5        0.453644675     0.886351895       1.0         0.02159363 

6        0.454074026     0.897588186       1.0         0.01124449 
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7        0.454305837     0.903308497       1.0         0.00572501 

8        0.45442498      0.906192358       1.0         0.00288632 

9        0.454485039     0.907639869       1.0         0.00144876 

10       0.4545152110    0.9083649610      1.0         0.00072573 

11       0.4545303311    0.9087278311      1.0         0.00036318 

12       0.4545378912    0.9089093412      1.0         0.00018167 

13       0.4545416713    0.9090001213      1.0         9.086e-05 

14       0.4545435614    0.9090455114      1.0         4.543e-05 

15       0.4545445115    0.9090682115      1.0         2.272e-05 

16       0.4545449816    0.9090795616      1.0         1.136e-05 

17       0.4545452217    0.9090852417      1.0         5.69e-06 

The approximate dominant eigenvalue is 5.99997398 

The corresponding eigenvector is: 

0.45454522     0.90908524     1.0      

The desired accuracy achieved; Solution converged 

 

Remark: The Python program in Question 13 can be modified to receive the square matrix and the 

initial approximation of the Eigenvector at the execution time (instead of fixing in the code). For 

this, the code segment at lines 6 and 7 in the program of Question 13 should be replaced by the 

following code segment: 

# Initialize the matrix 'a' and initial approximation 'b' as empty lists 

a = [] 

 

print("Enter the matrix row-wise:") 

for i in range(n): 

    row = list(map(float, input().split())) 

    a.append(row) 

 

# Convert the 'a' list into a NumPy array 

a = np.array(a) 

 

b = np.empty(n, dtype=float) 

 

print("Enter the initial approximation:") 

b = np.array(list(map(float, input().split()))) 

 

# Now, you can use the 'a' matrix and 'b' vector in your Python code as needed. 

∎∎∎ 
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Chapter Summary 

• An eigenvalue of a square matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛
is a number 𝜆 such that the vector equation 

𝐴𝑋 = 𝜆𝑋 

• has a non-zero solution vector 𝑋. The solution vector 𝑋 is then called an eigenvector of the matrix 𝐴 

corresponding to the eigenvalue 𝜆. The set of all eigenvalues of a matrix is called the spectrum of the 

matrix. An eigenvalue is also called a characteristic value or latent root. Likewise, an eigenvector is also 

called a characteristic vector or latent vector. 

• A concise account of the results and techniques relevant to the eigenvalues and eigenvectors is given in 

Section 8.1. 

• The theorem of the Power method: Suppose that an 𝑛 × 𝑛  matrix 𝐴 has 𝑛 eigenvalues 𝜆1, 𝜆2,⋯ , 𝜆𝑛and 

associated 𝑛 linearly independent eigenvectors, 𝑉1, 𝑉2, ⋯ , 𝑉𝑛 . Further, suppose that 𝑋(0) is a normalized 

vector  (i.e., a vector having maximum absolute value as 1) in the space of the said eigenvectors. The 

sequence of normalized vectors {𝑋(𝑘)}
𝑘=1

∞
and the sequence of scalars {𝛽𝑘}𝑘=1

∞  generated recursively by  

𝑋(𝑘) =
1

𝛽𝑘
𝑌(𝑘), 

where 𝑌(𝑘) = 𝐴𝑋(𝑘−1), and 𝛽𝑘 = 𝑦𝑟
(𝑘)

such that |𝑦𝑟
(𝑘)
| = ‖𝑌(𝑘)‖

∞
, 

will converge to the dominant eigenvector and eigenvalue, respectively.  

• In the Power method, both the sequences of the scalars {𝛽𝑘}𝑘=1
∞  and the normalized vectors {𝑋(𝑘)}

𝑘=1

∞
 

converge linearly to the dominant eigenvalue 𝜆1 and a corresponding eigenvector 𝑉1, respectively. Thus, 

the order of convergence of the Power method is linear. 

• Aitken’s ∆𝟐 method offers a technique for accelerating the convergence of any sequence that is linearly 

convergent. Using a given sequence, say  {𝛽𝑘}𝑘=1
∞ , which converges linearly to  𝜆1 , another sequence 

{𝛽̂𝑘}𝑘=1
∞

 (that also converges to 𝜆1 with possibly improved convergence rate) is constructed by using the 

Aitken’s ∆2 process as: 

𝛽̂𝑘 = 𝛽𝑘 −
(𝛽𝑘+1 − 𝛽𝑘)

2

𝛽𝑘+2 − 2𝛽𝑘+1 + 𝛽𝑘
= 𝛽𝑘 −

  (∆𝛽𝑘)
2

∆2𝛽𝑘
, for 𝑘 = 0, 1, 2,⋯  

• Suppose that 𝜆 is a non-zero eigenvalue of a square matrix 𝐴 and 𝑋 is an eigenvector corresponding to 𝜆. 

Then, 1 𝜆⁄  is an eigenvalue of 𝐴−1  and the same 𝑋  is an eigenvector corresponding to 1 𝜆⁄ . Thus, the 

reciprocal of all the non-zero eigenvalues of a square matrix 𝐴 are the eigenvalues of 𝐴−1 (having the 

same set of eigenvectors) . Hence, the largest of the absolute eigenvalues of 𝐴  is the smallest of the 
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eigenvalues of 𝐴−1 (and vice-versa). Thus, the Power method can be used to obtain the largest eigenvalue 

of 𝐴−1 and then taking its reciprocal gives the smallest eigenvalue of 𝐴. 

∎∎∎ 

Chapter Exercises 

Exercise 01: Find all the eigenvalues and eigenvectors of the following matrices using the characteristic 

equations. Also find the spectrum, spectral radius, trace, and determinant of the given matrix.  

(i) [
3 2 −1
2 6 4
−1 4 5

]  (ii) [
3 −2 0.5
−1 −2 1.5
−4 0 4

]  (iii) [
2 0 0
−6 8 −14
0 0 −6

] 

(iv) [
−15.5 −10 10
3 4.5 −3
−17 −10 11.5

] (v) [
4.5 0 1.5
−6 9 6
1.5 0 4.5

] 

Exercise 02: Apply the Power method to find the dominant eigenvalue and corresponding eigenvector of the 

given matrices. 

(i) [
3 2 −1
2 6 4
−1 4 5

]  (ii) [
3 −2 0.5
−1 −2 1.5
−4 0 4

]  (iii) [
2 0 0
−6 8 −14
0 0 −6

] 

(iv) [
−15.5 −10 10
3 4.5 −3
−17 −10 11.5

] (v) [
4.5 0 1.5
−6 9 6
1.5 0 4.5

] 

Exercise 03: Apply the Power method to find the dominant eigenvalue and corresponding eigenvector of the 

given matrices. 

(i) [

8 1 0 0
0 7 0 0
−2 1 10 0
−4 −1 4 6

] (ii) [

1 10 6 −6
0 −9 0 0

−0.5 16.5 7.5 0.5
−6.5 10.5 6.5 1.5

] 

Exercise 04: Use Householder’s method to place the following matrices in tridiagonal form. 

(i) [
1 1 1
1 1 0
1 0 1

]  (ii) [
2 −1 −1
−1 2 −1
−1 −1 2

] 
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(iii) [

5 −2 −0.5 1.5
−2 5 1.5 −0.5
−0.5 1.5 5 −2
1.5 −0.5 −2 5

] (iv) [

2 −1 −1 0
−1 3 0 0
−1 0 4 1
0 −2 2 3

] 

Exercise 05: Apply two iterations of the QR Factorization method without shifting the following matrices. 

(i) [
4 −1 0
−1 3 −1
0 −1 2

]  (ii) [
3 1 0
1 4 2
0 2 1

] 

(iii) [

4 2 0 0
2 4 2 0
0 2 4 2
0 0 2 4

]  (iv) [

0.5 0.25 0 0
0.25 0.8 0.4 0
0 0.4 0.6 0.1
0 0 0.1 1

] 

Exercise 06: Determine a singular value decomposition for the following matrices. 

(i) [
1 1 0
−1 0 1
0 1 −1

]  (ii) [
2 1
−1 1
1 1

] 

(iii) [
1 1 0
1 0 1
0 1 1

]  (iv) [
2 1
1 0
0 1

] 

 ∎∎∎ 
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Chapter 9 

Numerical Solution of               

Ordinary Differential Equations (ODEs)  

Corridor I: BASICS 

 Let’s plan it 

 

9.1     Introduction 

9.2     Solving IVPs using Single Step Methods and Multistep Methods 

The Euler Method 

The Mid-point Method (an RK2 method of Order 2) 

The Modified/Improved Euler Method (an RK2 method of Order 2) 

The RK Method of order 4 (RK4) 

9.3     Solving IVPs using Predictor-Corrector Methods 

The Adams-Bashforth-Moulton Method of Order 4 

9.4     Solving Systems of ODEs and Higher Order ODEs 

Using the Classical RK4 Method 

9.5     Solving Linear BVPs using the Finite Difference Method 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

 

http://www.timerenders.com.pk/
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Corridor II: ANALYSIS 

 Let’s think deep 

 

9.6     Some Theoretical Concepts and Error Analysis 

 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

 

 

Figure: The connection between various terms related to MDE (Model Differential Equation/s - 
ODE/PDE) and the related FDE (Finite Difference Equation/s). 

http://www.timerenders.com.pk/
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Corridor III: PROGRAMMING ARCADE 

 Let’s think deep 

 

9.7     Algorithms and Implementations 

Euler method 

Mid-point method 

Modified/Improved Euler method 

RK method of order 4 (RK4) 

Adams-Bashforth method of order 4 

Adams-Bashforth-Moulton method of order 4 

RK4 method for a system of two ODEs 

RK4 method for a system of three ODEs 

RK4 method for Second Order ODE 

RK4 method for Third Order ODE 

Linear FDM for BVP 

 

 

To see more examples for practicing, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

For codes, please visit: https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis 

 

∎∎∎ 

 

9.7 Algorithms and Implementations 
 

 

 

 

 

 

http://www.timerenders.com.pk/
https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis
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Question 16: Write down an algorithm (pseudo code) to solve a first-order ODE using the Explicit Euler’s 

method (the Taylor method of order 1). 

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏  and 𝑦(𝑎) = 𝛼  by approximating 𝑦 = 𝑦(𝑥)  at (𝑚 + 1) 

equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚, such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏, ℎ = (𝑏 − 𝑎)/𝑚  and 𝑦(𝑥𝑖) = 𝑦𝑖  

using the Explicit Euler’s method (the Taylor method of order 1): For 𝑖 = 1,2,3,⋯ ,𝑚 

𝑤𝑖 = 𝑤𝑖−1 + ℎ × 𝑓(𝑥𝑖−1, 𝑦𝑖−1) 

𝐈𝐍𝐏𝐔𝐓𝐒:  

{
 

 
𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way 

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑤(𝑥𝑖) 
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

 

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚 

𝑥 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠
 

Step 1 Receive the inputs as stated above 

Step 2         Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎
Set 𝑥(𝑚) = 𝑏

 

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1  
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ (Constructing interior mesh points, 𝑥𝑖  )  

 end for 

Step 4         Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎 (Setting the initial condition) 

Step 5 for 𝑖 = 1, 2,⋯ ,𝑚 

𝑓𝑣𝑎𝑙 = 𝑓(𝑋(𝑖 − 1), 𝑤(𝑖 − 1)) (Computing the value 𝑓(𝑥𝑖−1, 𝑦𝑖−1) ) 

𝑤(𝑖) = 𝑤(𝑖 − 1) +  ℎ × 𝑓𝑣𝑎𝑙 

 end for 

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ , 𝑤𝑚]
𝑇 ;      

STOP. 

Question 17: Write down a Python program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤ 1, with initial 

condition 𝑦(0) = 𝛼 = 1/2, using the Explicit Euler’s method (the Taylor method of order 1). Computer the 

solution for 10 steps. At each step, compare the approximate solution with the exact solution, to be obtained 

by 𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+
13

16
𝑒4𝑥 , by finding the relative error between the two solutions. 

 

script_9.1: explicit_euler1.ipynb 

                                  

1 from numpy import *                    
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2                                  
3 a = 0.0  # starting point of domain         
4 b = 1.0   # ending point of domain         
5 alpha = 0.5      # initial condition           
6 m = 10           # number of steps            
7                                  
8 def fval(x, y):                         
9   return 4 * y + 4 * x ** 2 + 3 * x              

10                                  
11 def fexact(x):                        
12   return –x ** 2 – 1.2 * x – (5.0 / 16.0) + (13.0 / 16.0) * exp(4 * x)    
13                                  
14 h = (b – a) / m                        
15 x = zeros(m+1)                       
16 w = zeros(m+1)                         
17                                  
18 x[0] = a                          
19 for i in range(1,m+1):                         
20   x[i] = x[i–1] + h                     
21                                  
22 w[0]= alpha   # setting initial condition           
23                                  
24 #------ Computing solutions with the Euler method ------         
25                                  
26 for i in range(1,m+1):                       
27   fv = fval(x[i–1], w[i–1])                
28   w[i] = w[i–1] + h*fv                   
29                                  
30 # ----------------- Printing Solutions -----------------           
31 print("Node       x[i]           w[i]         Exact Sol         Relative Error")          
32 for i in range(0,m+1):                        
33   sol = fexact(x[i])                    
34   err = abs(sol–w[i]) / abs(sol)                   
35                                  
36   print(i,"\t","%.2f" %x[i],"\t","%.7f" %w[i],"\t","%.7f" %sol,"\t","%.8f" %err)  

Output Console: 

Node     x[i]        w[i]        Exact Sol         Relative Error 

0   0.00   0.5000000   0.5000000   0.00000000 

1   0.10   0.7000000   0.7696076   0.09044553 

2   0.20   1.0140000   1.2157520   0.16594832 

3   0.30   1.4956000   1.9350950   0.22711805 

4   0.40   2.2198400   3.0718388   0.27735792 

5   0.50   3.2917760   4.8411081   0.32003666 

6   0.60   4.8584864   7.5638308   0.35766855 

7   0.70   7.1258810   11.7187755   0.39192615 

8   0.80   10.3822333   18.0201808   0.42385521 

9   0.90   15.0311267   27.5335655   0.45407991 

10   1.00   21.6375774   41.8484969   0.48295449 
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The above program can be written in a better way that a Python function for the Euler method is formed to 

compute the solution. This makes the program better manageable and modular. The new program is given as 

follows.   

script_9.2: explicit_euler2.ipynb 

                                  

1 from numpy import *                    
2                                  
3 a = 0.0  # starting point of domain         
4 b = 1.0   # ending point of domain         
5 alpha = 0.5      # initial condition           
6 m = 10           # number of steps            
7                                  
8 def fval(x, y):                         
9   return 4 * y + 4 * x ** 2 + 3 * x              

10                                  
11 def fexact(x):                        
12   return –x ** 2 –1.2 * x – (5.0 / 16.0) + (13.0 / 16.0) * exp(4 * x)    
13                                  
14 #----- User-defined function for the Euler's one-step -----       
15                                  
16 def euler(x, w, h):                       
17   for i in range(1,m+1):                     
18     fv = fval(x[i–1],w[i–1])               
19     w[i] = w[i–1] + h*fv                   
20                                  
21 h = (b – a) / m                        
22 x = zeros(m+1)                       
23 w = zeros(m+1)                         
24                                  
25 x[0] = a                          
26 x[m] = b                          
27 for i in range(1,m+1):                         
28   x[i] = x[i–1] + h                     
29                                  
30 w[0]= alpha   # setting initial condition           
31                                  
32 #Call the Euler method function                   
33                                  
34 euler(x, w, h)                       
35                                  
36 # ----------------- Printing Solutions -----------------           
37 print("Node       x[i]           w[i]         Exact Sol         Relative Error")          
38 for i in range(0,m+1):                        
39   sol = fexact(x[i])                    
40   err = abs(sol–w[i]) / abs(sol)                   
41                                  
42   print(i,"\t","%.2f" %x[i],"\t","%.7f" %w[i],"\t","%.7f" %sol,"\t","%.8f" %err)  
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Question 18: Write down an algorithm (pseudo code) to solve a first-order ODE using the Midpoint method 

(which is an RK method of order 2). 

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏  and 𝑦(𝑎) = 𝛼  by approximating 𝑦 = 𝑦(𝑥)  at (𝑚 + 1) 

equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚, such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏, ℎ = (𝑏 − 𝑎)/𝑚  and 𝑦(𝑥𝑖) = 𝑦𝑖  

using the Midpoint method: For 𝑖 = 1,2,3,⋯ ,𝑚 

𝑦𝑖̿ = 𝑦𝑖−1 +
ℎ

2
× 𝑓(𝑥𝑖−1, 𝑦𝑖−1)

𝑦𝑖 = 𝑦𝑖−1 + ℎ × 𝑓 (𝑥𝑖−1 +
ℎ

2
, 𝑦𝑖̿)

 

𝐈𝐍𝐏𝐔𝐓𝐒:  

{
 

 
𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way 

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑤(𝑥𝑖) 
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

 

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚 

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠
 

Step 1 Receive the inputs as stated above 

Step 2         Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎
Set 𝑥(𝑚) = 𝑏

 

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1  
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ (Constructing interior mesh points, 𝑥𝑖  )  

 end for 

Step 4         Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎 (Setting the initial condition) 

Step 5 for 𝑖 = 1, 2,⋯ ,𝑚 

𝑓𝑣𝑎𝑙1 = 𝑓(𝑥(𝑖 − 1), 𝑤(𝑖 − 1))      (Computing the value 𝑓(𝑥𝑖−1, 𝑦𝑖−1)) 

𝑎𝑢𝑥 = 𝑤(𝑖 − 1) + (ℎ/2) × 𝑓𝑣𝑎𝑙1 

𝑓𝑣𝑎𝑙2 = 𝑓(𝑥(𝑖 − 1) + (ℎ/2), 𝑎𝑢𝑥)   (Computing 𝑓(𝑥𝑖−1 + ℎ/2, 𝑎𝑢𝑥) ) 

𝑤(𝑖) = 𝑤(𝑖 − 1) + ℎ × 𝑓𝑣𝑎𝑙2 

 end for 

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]
𝑇   ;   STOP. 

Question 19: Write down a Python program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤ 1, with initial 

condition 𝑦(0) = 𝛼 = 1/2, using the Midpoint method (which is an RK method of order 2). Computer the 

solution for 10 steps. At each step, compare the approximate solution with the exact solution, to be obtained 

by 𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+
13

16
𝑒4𝑥 , by finding the relative error between the two solutions. 
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script_9.3: euler_mid.ipynb 

                                  

1 from numpy import *                    
2                                  
3 a = 0.0  # starting point of domain         
4 b = 1.0   # ending point of domain         
5 alpha = 0.5      # initial condition           
6 m = 10           # number of steps            
7                                  
8 def fval(x, y):                         
9   return 4 * y + 4 * x ** 2 + 3 * x              

10                                  
11 def fexact(x):                        
12   return –x ** 2 – 1.2 * x – (5.0 / 16.0) + (13.0 / 16.0) * exp(4 * x)    
13                                  
14 #----- User-defined function for the Euler's midpoint -----       
15                                  
16 def eulermid(xa, wa, h):                       
17   for i in range(1,m+1):                     
18     fv = fval(xa[i – 1], wa[i – 1])               
19     whalf = wa[i –1] + (h / 2.0) * fv                
20     xhalf = xa[i – 1] + (h / 2.0)                   
21     fv = fval(xhalf, whalf)                   
22     wa[i] = wa[i – 1] + h * fv                   
23                                  
24 h = (b – a) / m                        
25 x = zeros(m+1)                       
26 w = zeros(m+1)                         
27                                  
28 x[0] = a                          
29 x[m] = b                          
30 for i in range(1,m+1):                         
31   x[i] = x[i–1] + h                     
32                                  
33 w[0]= alpha   # setting initial condition           
34                                  
35 #Call the Euler midpoint method function        
36                                  
37 eulermid(x, w, h)                       
38                                  
39 # ----------------- Printing Solutions -----------------           
40 print("Node       x[i]           w[i]         Exact Sol         Relative Error")          
41 for i in range(0,m+1):                        
42   sol = fexact(x[i])                    
43   err = abs(sol–w[i]) / abs(sol)                   
44                                  
45   print(i,"\t","%.2f" %x[i],"\t","%.7f" %w[i],"\t","%.7f" %sol,"\t","%.8f" %err)  
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Output Console: 

Node      x[i]      w[i]         Exact Sol         Relative Error 

0   0.00   0.5000000   0.5000000   0.00000000 

1   0.10   0.7560000   0.7696076   0.01768118 

2   0.20   1.1796800   1.2157520   0.02967053 

3   0.30   1.8611264   1.9350950   0.03822479 

4   0.40   2.9336671   3.0718388   0.04498015 

5   0.50   4.5946273   4.8411081   0.05091413 

6   0.60   7.1360484   7.5638308   0.05655632 

7   0.70   10.9901516   11.7187755   0.06217577 

8   0.80   16.7966243   18.0201808   0.06789923 

9   0.90   25.5022040   27.5335655   0.07377764 

10   1.00   38.5080619   41.8484969   0.07982210 

 

Question 20: Write down an algorithm (pseudo code) to solve a first-order ODE using the RK method of order 

2 (also known as the Modified or Improved Euler’s method). 

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏  and 𝑦(𝑎) = 𝛼  by approximating 𝑦 = 𝑦(𝑥)  at (𝑚 + 1) 

equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚, such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏, ℎ = (𝑏 − 𝑎)/𝑚  and 𝑦(𝑥𝑖) = 𝑦𝑖  

using the Modified Euler’s method of order 2: For 𝑖 = 1,2,3,⋯ ,𝑚 

𝐾1 = ℎ × 𝑓(𝑥𝑖−1, 𝑦𝑖−1)

𝐾2 = ℎ × 𝑓(𝑥𝑖 , 𝑦𝑖−1 + 𝐾1)

𝑦𝑖 = 𝑦𝑖−1 +
1

2
× [𝐾1 +𝐾2]

 

𝐈𝐍𝐏𝐔𝐓𝐒:  

{
 

 
𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way 

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑤(𝑥𝑖) 
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

 

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚 

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠
 

Step 1 Receive the inputs as stated above 

Step 2         Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎
Set 𝑥(𝑚) = 𝑏

 

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1  
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ      (Constructing interior mesh points, 𝑥𝑖  )  

 end for 
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Step 4        Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎        (Setting the initial condition) 

Step 5 for 𝑖 = 1, 2,⋯ ,𝑚 

𝑘1 = ℎ × 𝑓(𝑥(𝑖 − 1),𝑤(𝑖 − 1)) 

𝑘2 = ℎ × 𝑓(𝑥(𝑖), 𝑤(𝑖 − 1) + 𝑘1) 

𝑤(𝑖) = 𝑤(𝑖 − 1) +  0.5 × (𝑘1 + 𝑘2) 

 end for 

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]
𝑇  

STOP. 

Question 21: Write down a Python program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤ 1, with initial 

condition 𝑦(0) = 𝛼 = 1/2, using the RK method of order 2 (also known as the Modified or Improved Euler’s 

method). Computer the solution for 10 steps. At each step, compare the approximate solution with the exact 

solution, to be obtained by 𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+
13

16
𝑒4𝑥 , by finding the relative error between the two 

solutions. 

script_9.4: modified_euler_rk2.ipynb 

                                  

1 from numpy import *                    
2                                  
3 a = 0.0  # starting point of domain         
4 b = 1.0   # ending point of domain         
5 alpha = 0.5      # initial condition           
6 m = 10           # number of steps            
7                                  
8 def fval(x, y):                         
9   return 4 * y + 4 * x ** 2 + 3 * x              

10                                  
11 def fexact(x):                        
12   return –x ** 2 – 1.2 * x – (5.0 / 16.0) + (13.0 / 16.0) * exp(4 * x)    
13                                  
14 #----- User-defined function for the modified Euler method-----       
15                                  
16 def eulerimp(xa, wa, h):                       
17   for i in range(1,m+1):                     
18     fv = fval(xa[i – 1], wa[i – 1])               
19     wnext = wa[i – 1] + h * fv                
20     fvnext = fval(xa[i], wnext)                   
21     wa[i] = wa[i – 1] + h * (fv + fvnext) / 2.0              
22                                  
23 h = (b – a) / m                        
24 x = zeros(m+1)                       
25 w = zeros(m+1)                         
26                                  
27 x[0] = a                          
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28 x[m] = b                          
29 for i in range(1,m+1):                         
30   x[i] = x[i–1] + h                     
31                                  
32 w[0]= alpha   # setting initial condition           
33                                  
34 #Call the improved Euler (RK2) method function        
35                                  
36 eulerimp(x, w, h)                       
37                                  
38 # ----------------- Printing Solutions -----------------           
39 print("Node       x[i]        w[i]          Exact Sol         Relative Error")          
40 for i in range(0,m+1):                        
41   sol = fexact(x[i])                    
42   err = abs(sol–w[i]) / abs(sol)                   
43                                  
44   print(i,"\t","%.2f" %x[i],"\t","%.7f" %w[i],"\t","%.7f" %sol,"\t","%.8f" %err)  

Output Console: 

Node     x[i]          w[i]       Exact Sol         Relative Error 

0   0.00   0.5000000   0.5000000   0.00000000 

1   0.10   0.7570000   0.7696076   0.01638181 

2   0.20   1.1821600   1.2157520   0.02763064 

3   0.30   1.8657968   1.9350950   0.03581126 

4   0.40   2.9415793   3.0718388   0.04240443 

5   0.50   4.6073373   4.8411081   0.04828869 

6   0.60   7.1558592   7.5638308   0.05393716 

7   0.70   11.0204716   11.7187755   0.05958847 

8   0.80   16.8424980   18.0201808   0.06535355 

9   0.90   25.5710971   27.5335655   0.07127549 

10   1.00   38.6110237   41.8484969   0.07736176 

 

∎ 

Question 22: Write down an algorithm (pseudo code) to solve a first-order ODE using the RK method of order 

4. 

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏  and 𝑦(𝑎) = 𝛼  by approximating 𝑦 = 𝑦(𝑥)  at (𝑚 + 1) 

equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚, such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏, ℎ = (𝑏 − 𝑎)/𝑚  and 𝑦(𝑥𝑖) = 𝑦𝑖  

using the RK method of order 4: For 𝑖 = 1,2,3,⋯ ,𝑚 

𝐾1 = ℎ × 𝑓(𝑥𝑖−1, 𝑦𝑖−1)

𝐾2 = ℎ × 𝑓(𝑥𝑖−1 + 0.5ℎ, 𝑦𝑖−1 + 0.5𝐾1)

𝐾3 = ℎ × 𝑓(𝑥𝑖−1 + 0.5ℎ, 𝑦𝑖−1 + 0.5𝐾2)

𝐾4 = ℎ × 𝑓(𝑥𝑖 , 𝑦𝑖−1 + 𝐾3)

𝑦𝑖 = 𝑦𝑖−1 +
1

6
× [𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4]
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𝐈𝐍𝐏𝐔𝐓𝐒:  

{
 

 
𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way 

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑦(𝑥𝑖) 
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

 

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚 

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠
 

Step 1 Receive the inputs as stated above 

Step 2         Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎
Set 𝑥(𝑚) = 𝑏

 

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1  
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ     (Constructing interior mesh points, 𝑥𝑖  ) 

 end for 

Step 4        Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎        (Setting the initial condition) 

Step 5 for 𝑖 = 1, 2,⋯ ,𝑚 

𝑘1 = ℎ × 𝑓(𝑥(𝑖 − 1),𝑤(𝑖 − 1)) 

𝑘2 = ℎ × 𝑓(𝑥(𝑖 − 1) + 0.5 × ℎ,𝑤(𝑖 − 1) + 0.5 × 𝑘1) 

𝑘3 = ℎ × 𝑓(𝑥(𝑖 − 1) + 0.5 × ℎ,𝑤(𝑖 − 1) + 0.5 × 𝑘2) 

𝑘4 = ℎ × 𝑓(𝑥(𝑖), 𝑤(𝑖 − 1) + 𝑘3) 

𝑤(𝑖) = 𝑤(𝑖 − 1) + (𝑘1 + 2 × 𝑘2 + 2 × 𝑘3 + 𝑘4)/6 

 end for 

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]
𝑇  

STOP. 

Question 23: Write down a Python program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤ 1, with initial 

condition 𝑦(0) = 𝛼 = 1/2, using the RK method of order 4. Computer the solution for 10 steps. At each step, 

compare the approximate solution with the exact solution, to be obtained by 𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+
13

16
𝑒4𝑥 , 

by finding the relative error between the two solutions. 

script_9.5: RK4.ipynb 

                                  

1 from numpy import *                    
2                                  
3 a = 0.0  # starting point of domain         
4 b = 1.0   # ending point of domain         
5 alpha = 0.5      # initial condition           
6 m = 10           # number of steps            
7                                  
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8 def fval(x, y):                         
9   return 4 * y + 4 * x ** 2 + 3 * x              

10                                  
11 def fexact(x):                        
12   return –x ** 2 – 1.2 * x – (5.0 / 16.0) + (13.0 / 16.0) * exp(4 * x)    
13                                  
14 #----- User-defined function for the RK4 method-----       
15                                  
16 def rk4(x, w, h):                       
17   for i in range(1,m+1):                     
18     k1 = h * (fval(x[i – 1], w[i – 1]))               
19     k2 = h * (fval(x[i –1] + (h / 2.0), w[i – 1] + (k1 / 2.0)))       
20     k3 = h * (fval(x[i – 1] + (h / 2.0), w[i – 1] + (k2 / 2.0)))      
21     k4 = h * (fval(x[i], w[i – 1] + k3))      
22           
23     w[i] = w[i – 1] + (k1 + 2 * k2 + 2 * k3 + k4) / 6.0        
24                                  
25 h = (b – a) / m                        
26 x = zeros(m+1)                       
27 w = zeros(m+1)                         
28                                  
29 x[0] = a                          
30 x[m] = b                          
31 for i in range(1,m+1):                         
32   x[i] = x[i–1] + h                     
33                                  
34 w[0]= alpha   # setting initial condition           
35                                  
36 #Call the RK4 method function        
37                                  
38 rk4(x, w, h)                       
39                                  
40 # ----------------- Printing Solutions -----------------           
41 print("Node       x[i]        w[i]         Exact Sol         Relative Error")          
42 for i in range(0,m+1):                        
43   sol = fexact(x[i])                    
44   err = abs(sol–w[i]) / abs(sol)                   
45                                  
46   print(i,"\t","%.2f" %x[i],"\t","%.7f" %w[i],"\t","%.7f" %sol,"\t","%.8f" %err)  

Output Console: 

Node      x[i]       w[i]         Exact Sol         Relative Error 

0   0.00   0.5000000   0.5000000   0.00000000 

1   0.10   0.7645467   0.7696076   0.00657595 

2   0.20   1.2055637   1.2157520   0.00838021 

3   0.30   1.9196623   1.9350950   0.00797517 

4   0.40   3.0509602   3.0718388   0.00679678 

5   0.50   4.8144431   4.8411081   0.00550804 

6   0.60   7.5308119   7.5638308   0.00436537 

7   0.70   11.6784671   11.7187755   0.00343964 
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8   0.80   17.9710547   18.0201808   0.00272617 

9   0.90   27.4731440   27.5335655   0.00219447 

10   1.00   41.7727886   41.8484969   0.00180910 

 

Question 24: Write down an algorithm (pseudo code) to solve a first-order ODE using the Adams-Bashforth 

method of order 4. 

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏  and 𝑦(𝑎) = 𝛼  by approximating 𝑦 = 𝑦(𝑥)  at (𝑚 + 1) 

equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚,such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏, ℎ = (𝑏 − 𝑎)/𝑚  and 𝑦(𝑥𝑖) = 𝑦𝑖. 

Having 𝑦(𝑥0) = 𝛼0 , 𝑦(𝑥1) = 𝛼1 , 𝑦(𝑥2) = 𝛼2 , and 𝑦(𝑥3) = 𝛼3 , compute 𝑦𝑖  using the 4-step explicit Adams-

Bashforth method of order 4:  For 𝑖 = 4,5,6,⋯ ,𝑚 

𝑦𝑖 = 𝑦𝑖−1 +
ℎ

24
× [55𝑓(𝑥𝑖−1, 𝑦𝑖−1) − 59𝑓(𝑥𝑖−2, 𝑦𝑖−2) + 37𝑓(𝑥𝑖−3, 𝑦𝑖−3) − 9𝑓(𝑥𝑖−4, 𝑦𝑖−4)] 

𝐈𝐍𝐏𝐔𝐓𝐒:  

{
 

 
𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way 

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑤(𝑥𝑖) 
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

 

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚 

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠
 

Step 1 Receive the inputs as stated above 

Step 2         Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎
Set 𝑥(𝑚) = 𝑏

 

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1  
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ     (Constructing interior mesh points, 𝑥𝑖  ) 

 end for 

Step 4            Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎        (Setting the initial condition) 

Step 5         Obtain or compute (using some other basic method for ODEs) the following: 

 𝑤(1) = 𝑎𝑙𝑝ℎ𝑎1 

 𝑤(2) = 𝑎𝑙𝑝ℎ𝑎2 

 𝑤(3) = 𝑎𝑙𝑝ℎ𝑎3 

Step 5 for 𝑖 = 4, 5, 6,⋯ ,𝑚 

𝑓𝑣1 = 𝑓(𝑥(𝑖 − 1),𝑤(𝑖 − 1)) (Computing the value 𝑓(𝑥𝑖−1, 𝑦𝑖−1)) 

𝑓𝑣2 = 𝑓(𝑥(𝑖 − 2),𝑤(𝑖 − 2)) (Computing the value 𝑓(𝑥𝑖−2, 𝑦𝑖−2)) 

𝑓𝑣3 = 𝑓(𝑥(𝑖 − 3),𝑤(𝑖 − 3)) (Computing the value 𝑓(𝑥𝑖−3, 𝑦𝑖−3)) 
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𝑓𝑣4 = 𝑓(𝑥(𝑖 − 4),𝑤(𝑖 − 4)) (Computing the value 𝑓(𝑥𝑖−4, 𝑦𝑖−4)) 

𝑤(𝑖) = 𝑤(𝑖 − 1) + (
ℎ

24
) × (55𝑓𝑣1 − 59𝑓𝑣2 + 37𝑓𝑣3 − 9𝑓𝑣4) 

 

 end for 

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]
𝑇 

STOP. 

 

Question 25: Write down a Python program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤ 1, with initial 

condition 𝑦(0) = 𝛼 = 1/2, using the Adams-Bashforth method of order 4. Compute the solution for 10 steps. 

For computing the approximate solution at the first three steps, use the RK4 method. At each step, compare 

the approximate solution with the exact solution, to be obtained by 𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+
13

16
𝑒4𝑥 , by finding 

the relative error between the two solutions. 

 

script_9.6: adam_bashforth.ipynb 

                                  

1 from numpy import *                    
2                                  
3 a = 0.0  # starting point of domain         
4 b = 1.0   # ending point of domain         
5 alpha = 0.5      # initial condition           
6 m = 10           # number of steps            
7                                  
8 def fval(x, y):                         
9   return 4 * y + 4 * x ** 2 + 3 * x              

10                                  
11 def fexact(x):                        
12   return –x ** 2 – 1.2 * x – (5.0 / 16.0) + (13.0 / 16.0) * exp(4 * x)    
13                                  
14 #----- User-defined function for the adam bashforth method-----        
15                                  
16 def adamsb4(x, w, h):                        
17   for i in range(4, m + 1):                  
18     k1 = fval(x[i – 1], w[i – 1])                   
19     k2 = fval(x[i – 2], w[i – 2])                   
20     k3 = fval(x[i – 3], w[i – 3])                   
21     k4 = fval(x[i – 4], w[i – 4])                  
22                                  
23     w[i] = w[i – 1] + (h / 24.0) * (55 * k1 – 59 * k2 + 37 * k3 – 9 * k4)      
24                                  
25 #----- User-defined function for the RK4 method-----       
26                                  
27 def rk4(x, w, h):                       
28   for i in range(1,4):                     
29     k1 = h * (fval(x[i – 1], w[i – 1]))               
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30     k2 = h * (fval(x[i – 1] + (h / 2.0), w[i – 1] + (k1 / 2.0)))       
31     k3 = h * (fval(x[i – 1] + (h / 2.0), w[i – 1] + (k2 / 2.0)))      
32     k4 = h * (fval(x[i], w[i – 1] + k3))      
33           
34     w[i] = w[i – 1] + (k1 + 2 * k2 + 2 * k3 + k4) / 6.0        
35                                  
36 h = (b – a) / m                        
37 x = zeros(m+1)                       
38 w = zeros(m+1)                         
39                                  
40 x[0] = a                          
41 x[m] = b                          
42 for i in range(1,m+1):                         
43   x[i] = x[i–1] + h                     
44                                  
45 w[0]= alpha   # setting initial condition           
46                                  
47 # Using RK4 as initial steps                   
48                                  
49 rk4(x, w, h)                      
50                                  
51 #Call the adam bashforth function        
51                                  
52 adamsb4(x, w, h)                       
53                                  
54 # ----------------- Printing Solutions -----------------           
55 print("Node       x[i]        w[i]         Exact Sol         Relative Error")          
56 for i in range(0,m+1):                        
57   sol = fexact(x[i])                    
58   err = abs(sol – w[i]) / abs(sol)                   
59                                  
60   print(i,"\t","%.2f" %x[i],"\t","%.7f" %w[i],"\t","%.7f" %sol,"\t","%.8f" %err)  

 

Output Console: 

Node     x[i]        w[i]         Exact Sol         Relative Error 

0   0.00   0.5000000   0.5000000   0.00000000 

1   0.10   0.7645467   0.7696076   0.00657595 

2   0.20   1.2055637   1.2157520   0.00838021 

3   0.30   1.9196623   1.9350950   0.00797517 

4   0.40   3.0446855   3.0718388   0.00883945 

5   0.50   4.7930616   4.8411081   0.00992469 

6   0.60   7.4820511   7.5638308   0.01081194 

7   0.70   11.5813609   11.7187755   0.01172602 

8   0.80   17.7896098   18.0201808   0.01279515 

9   0.90   27.1477196   27.5335655   0.01401365 

10   1.00   41.2058778   41.8484969   0.01535585 
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Question 26: Write down an algorithm (pseudo code) to solve a first-order ODE using the Adams-Bashforth-

Moulton method of order 4. 

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏  and 𝑦(𝑎) = 𝛼  by approximating 𝑦 = 𝑦(𝑥)  at (𝑚 + 1) 

equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚,such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏, ℎ = (𝑏 − 𝑎)/𝑚  and 𝑦(𝑥𝑖) = 𝑦𝑖. 

Having 𝑦(𝑥0) = 𝛼0, 𝑦(𝑥1) = 𝛼1, 𝑦(𝑥2) = 𝛼2, and 𝑦(𝑥3) = 𝛼3, compute 𝑦𝑖  using  

(1) the 4-step explicit Adams-Bashforth method of order 4 as the predictor:  

𝑦𝑖 = 𝑦𝑖−1 +
ℎ

24
× [55𝑓(𝑥𝑖−1, 𝑦𝑖−1) − 59𝑓(𝑥𝑖−2, 𝑦𝑖−2) + 37𝑓(𝑥𝑖−3, 𝑦𝑖−3) − 9𝑓(𝑥𝑖−4, 𝑦𝑖−4)] 

 (2) the 3-step implicit Adams-Moulton method of order 4 as the corrector: 

𝑦𝑖 = 𝑦𝑖−1 +
ℎ

24
× [9𝑓(𝑥𝑖 , 𝑦𝑖) + 19𝑓(𝑥𝑖−1, 𝑦𝑖−1) − 5𝑓(𝑥𝑖−2, 𝑦𝑖−2) + 𝑓(𝑥𝑖−3, 𝑦𝑖−3)] 

for 𝑖 = 4, 5, 6,⋯ ,𝑚. 

𝐈𝐍𝐏𝐔𝐓𝐒:  

{
 

 
𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way 

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑦(𝑥𝑖) 
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

 

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚 

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠
 

Step 1 Receive the inputs as stated above 

Step 2         Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎
Set 𝑥(𝑚) = 𝑏

 

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1  
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ     (Constructing interior mesh points, 𝑥𝑖  ) 

 end for 

Step 4            Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎        (Setting the initial condition) 

Step 5         Obtain or compute (using some other basic method for ODEs) the following: 

 𝑤(1) = 𝑎𝑙𝑝ℎ𝑎1 

 𝑤(2) = 𝑎𝑙𝑝ℎ𝑎2 

 𝑤(3) = 𝑎𝑙𝑝ℎ𝑎3 

Step 5 for 𝑖 = 4, 5, 6,⋯ ,𝑚 

𝑓𝑣1 = 𝑓(𝑥(𝑖 − 1),𝑤(𝑖 − 1)) (Computing the value 𝑓(𝑥𝑖−1, 𝑦𝑖−1)) 

𝑓𝑣2 = 𝑓(𝑥(𝑖 − 2),𝑤(𝑖 − 2)) (Computing the value 𝑓(𝑥𝑖−2, 𝑦𝑖−2)) 
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𝑓𝑣3 = 𝑓(𝑥(𝑖 − 3),𝑤(𝑖 − 3)) (Computing the value 𝑓(𝑥𝑖−3, 𝑦𝑖−3)) 

𝑓𝑣4 = 𝑓(𝑥(𝑖 − 4),𝑤(𝑖 − 4)) (Computing the value 𝑓(𝑥𝑖−4, 𝑦𝑖−4)) 

𝑤(𝑖) = 𝑤(𝑖 − 1) + (
ℎ

24
) × (55𝑓𝑣1 − 59𝑓𝑣2 + 37𝑓𝑣3 − 9𝑓𝑣4) 

 

𝑓𝑣 = 𝑓(𝑥(𝑖), 𝑤(𝑖)) (Computing the value 𝑓(𝑥𝑖−4, 𝑦𝑖−4)) 

𝑤(𝑖) = 𝑤(𝑖 − 1) + (
ℎ

24
) × (9𝑓𝑣 + 19𝑓𝑣1 − 5𝑓𝑣2 + 𝑓𝑣3) 

 

 end for 

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]
𝑇 

STOP. 

Question 27: Write down a Python program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤ 1, with initial 

condition 𝑦(0) = 𝛼 = 1/2, using the Adams-Bashforth-Moulton method of order 4. Compute the solution for 

10 steps. For computing the approximate solution at the first three steps, use the RK4 method. At each step, 

compare the approximate solution with the exact solution, to be obtained by 𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+
13

16
𝑒4𝑥 , 

by finding the relative error between the two solutions. 

script_9.8: adam_bashforth_molten.ipynb 

                                  

1 from numpy import *                    
2                                  
3 a = 0.0  # starting point of domain         
4 b = 1.0   # ending point of domain         
5 alpha = 0.5      # initial condition           
6 m = 10           # number of steps            
7                                  
8 def fval(x, y):                         
9   return 4 * y + 4 * x ** 2 + 3 * x              

10                                  
11 def fexact(x):                        
12   return –x ** 2 – 1.2 * x – (5.0 / 16.0) + (13.0 / 16.0) * exp(4 * x)    
13                                  
14 #----- User-defined function for the adam bashforth molten method-----        
15                                  
16 def adamsb4m3(x, w, h):                        
17   for i in range(4, m + 1):                  
18     fv1 = fval(x[i – 1], w[i – 1])                   
19     fv2 = fval(x[i – 2], w[i – 2])                   
20     fv3 = fval(x[i – 3], w[i – 3])                   
21     fv4 = fval(x[i – 4], w[i – 4])                  
22                                  
23     w[i] = w[i – 1] + (h / 24.0) * (55 * fv1 – 59 * fv2 + 37 * fv3 – 9 * fv4)   
24     fv = fval(x[i], w[i])   
25     w[i] = w[i – 1] + (h / 24.0) * (9 * fv + 19 * fv1 – 5 * fv2 + fv3)   
26                                  
27 #----- User-defined function for the RK4 method-----       
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28                                  
29 def rk4(x, w, h):                       
30   for i in range(1,4):                     
31     k1 = h * (fval(x[i – 1], w[i – 1]))               
32     k2 = h * (fval(x[i – 1] + (h / 2.0), w[i – 1] + (k1 / 2.0)))       
33     k3 = h * (fval(x[i – 1] + (h / 2.0), w[i – 1] + (k2 / 2.0)))      
34     k4 = h * (fval(x[i], w[i – 1] + k3))      
35           
36     w[i] = w[i – 1] + (k1 + 2 * k2 + 2 * k3 + k4) / 6.0        
37                                  
38 h = (b – a) / m                        
39 x = zeros(m+1)                       
40 w = zeros(m+1)                         
41                                  
42 x[0] = a                          
43 x[m] = b                          
44 for i in range(1,m+1):                         
45   x[i] = x[i–1] + h                     
46                                  
47 w[0]= alpha   # setting initial condition           
48                                  
49 # Using RK4 as initial steps                   
50                                  
51 rk4(x, w, h)                      
51                                  
52 #Call the adam bashforth moulten function        
53                                  
54 adamsb4m3(x, w, h)                       
55                                  
56 # ----------------- Printing Solutions -----------------           
57 print("Node       x[i]        w[i]         Exact Sol         Relative Error")          
58 for i in range(0,m+1):                        
59   sol = fexact(x[i])                    
60   err = abs(sol – w[i]) / abs(sol)                   
61                                  
62   print(i,"\t","%.2f" %x[i],"\t","%.7f" %w[i],"\t","%.7f" %sol,"\t","%.8f" %err)  

 
Output Console: 

Node      x[i]        w[i]         Exact Sol         Relative Error 

0   0.00   0.5000000   0.5000000   0.00000000 

1   0.10   0.7645467   0.7696076   0.00657595 

2   0.20   1.2055637   1.2157520   0.00838021 

3   0.30   1.9196623   1.9350950   0.00797517 

4   0.40   3.0508703   3.0718388   0.00682605 

5   0.50   4.8141708   4.8411081   0.00556428 

6   0.60   7.5302111   7.5638308   0.00444480 

7   0.70   11.6772868   11.7187755   0.00354036 

8   0.80   17.9688762   18.0201808   0.00284706 

9   0.90   27.4692778   27.5335655   0.00233489 

10   1.00   41.7661082   41.8484969   0.00196874 
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Question 28: Write a Python program to solve the following system of two ODEs for the functions 𝑦1 = 𝑦1(𝑥) 

and 𝑦2 = 𝑦2(𝑥), where 𝑥 ∈ [0,1]: 

𝑦1
′ = 𝑦1𝑦2 − 2 

𝑦2
′ = 2𝑦1 − 𝑦2

3 

With initial conditions: 

𝑦1(0) = 2.0 

𝑦2(0) = 0.3 

Use the RK4 method of order 4 for 5 steps. 

For 5 steps the domain is discretized as 

ℎ =
𝑏 − 𝑎

𝑚
=
1.0 − 0.0

5
= 0.2 

𝑥0 = 0,   𝑥1 = 0.2, 𝑥2 = 0.4, 𝑥3 = 0.6, 𝑥4 = 0.8, 𝑥5 = 1.0. 

According to the initial conditions: 

𝑤10 = 𝑦10 = 𝑦1(𝑥0) = 𝑦1(0) = 2.0 

𝑤20 = 𝑦20 = 𝑦2(𝑥0) = 𝑦2(0) = 0.3 

The problem is to find approximations 𝑤1𝑖  to 𝑦1𝑖 = 𝑦1(𝑥𝑖) and 𝑤2𝑖  to 𝑦2𝑖 = 𝑦2(𝑥𝑖), for 𝑖 = 1,2,3,4,5. 

The Python program for the solution is as follows. 

 

script_9.9: ode_system2.ipynb 

                                  

1 from numpy import *                    
2                                  
3 a = 0.0  # starting point of domain         
4 b = 1.0   # ending point of domain         
5 alpha1 = 2.0    # initial condition           
6 alpha2 = 0.3               
7 m = 5           # number of steps            
8                                  
9 def f1(x, y1, y2):                         

10   return y1 * y2 – 2              
11                                  
12 def f2(x, y1, y2):                        
13   return 2 * y1 – y2 ** 3    
14                                  
15 # Define the RK4 solver for the ODE system of two equations        
16                                  
17 def rk4system2(x, w1, w2, h):                    
18   for i in range(1, m + 1):                  
19     k11 = h * f1(x[i –1], w1[i – 1], w2[i – 1])            
20     k21 = h * f2(x[i – 1], w1[i – 1], w2[i – 1])            
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21                                  
22     k12 = h * f1(x[i – 1] + 0.5 * h, w1[i – 1] + 0.5 * k11, w2[i – 1] + 0.5 * k21)   

23     k22 = h * f2(x[i – 1] + 0.5 * h, w1[i – 1] + 0.5 * k11, w2[i –1] + 0.5 * k21)   
24                                  
25     k13 = h * f1(x[i – 1] + 0.5 * h, w1[i – 1] + 0.5 * k12, w2[i – 1] + 0.5 * 

k22) 
    

26     k23 = h * f2(x[i – 1] + 0.5 * h, w1[i – 1] + 0.5 * k12, w2[i – 1] + 0.5 * 
k22) 

    

27                                  
28     k14 = h * f1(x[i – 1] + h, w1[i – 1] + k13, w2[i – 1] + k23)     
29     k24 = h * f2(x[i – 1] + h, w1[i – 1] + k13, w2[i – 1] + k23)     
30                                  
31     w1[i] = w1[i – 1] + (k11 + 2 * k12 + 2 * k13 + k14) / 6.0      
32     w2[i] = w2[i – 1] + (k21 + 2 * k22 + 2 * k23 + k24) / 6.0      
33                                  
34 h = (b – a) / m                        
35 x = zeros(m+1)                       
36 w1 = zeros(m+1)                         
37 w2 = zeros(m+1)                         
38 w1[0] = alpha1   # setting initial condition           
39 w2[0] = alpha2              
40                                  
41 x[0] = a                          
42 x[m] = b                           
43                                  
44 for i in range(1, m):                         
45   x[i] = x[i – 1] + h                        
46                                  
48 # Call the RK4 solver                   
49                                  
50 rk4system2(x, w1, w2, h)                      
51                                  
52 # ----------------- Printing Solutions -----------------           
53 print("Node       x[i]        w1[i]         w2[i]")          
54 for i in range(0,m+1):                        
55   print(i,"\t","%.2f" %x[i],"\t","%.7f" %w1[i],"\t","%.7f" % w2[i])  

 

Output Console: 

Node       x[i]        w1[i]         w2[i] 

0   0.00   2.0000000   0.3000000 

1   0.20   1.8513219   0.9855220 

2   0.40   1.9007946   1.3648472 

3   0.60   2.0806503   1.5257072 

4   0.80   2.3825142   1.6230648 

5   1.00   2.8538285   1.7239291 

 
∎ 
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Question 29: Write a Python program to solve the following system of three ODEs for the functions 𝑦1 =

𝑦1(𝑥), 𝑦2 = 𝑦2(𝑥), and 𝑦3 = 𝑦3(𝑥), where 𝑥 ∈ [0,1]: 

𝑦1
′ = 𝑦1 + 3𝑦2 − 3𝑦3 + 𝑒

−𝑥 

𝑦2
′ = 2𝑦2 + 𝑦3 − 3𝑒

−𝑥 

𝑦3
′ = 𝑦1 + 2𝑦2 + 𝑒

−𝑥  

With initial conditions: 

𝑦1(0) = 2.5 

𝑦2(0) = −1.5 

𝑦3(0) = −1.0 

Use the RK4 method of order 4 for 10 steps. 

For 10 steps, the domain is discretized as 

ℎ =
𝑏 − 𝑎

𝑚
=
1.0 − 0.0

10
= 0.1 

𝑥0 = 0, 𝑥1 = 0.1, 𝑥2 = 0.2, 𝑥3 = 0.3, 𝑥4 = 0.4, 𝑥5 = 0.5, 𝑥6 = 0.6, 𝑥7 = 0.7, 𝑥8 = 0.8, 𝑥9 = 0.9, 𝑥10 = 1.0. 

According to the initial conditions: 

𝑤10 = 𝑦10 = 𝑦1(𝑥0) = 𝑦1(0) = 2.5 

𝑤20 = 𝑦20 = 𝑦2(𝑥0) = 𝑦2(0) = −1.5 

𝑤30 = 𝑦30 = 𝑦3(𝑥0) = 𝑦3(0) = −1.0 

The problem is to find approximations 𝑤1𝑖  to 𝑦1𝑖 = 𝑦1(𝑥𝑖), 𝑤2𝑖  to 𝑦2𝑖 = 𝑦2(𝑥𝑖), and 𝑤3𝑖  to 𝑦3𝑖 = 𝑦3(𝑥𝑖), for 𝑖 =

1,2,⋯ , 10. 

The Python program for the solution is as follows. 

script_9.10: ode_system3.ipynb 

                                  

1 from numpy import *                    
2                                  
3 a = 0.0  # starting point of domain         
4 b = 1.0   # ending point of domain         
5 alpha1 = 2.5    # initial condition           
6 alpha2 = –1.5               
7 alpha3 = –1.0               
8 m = 5           # number of steps            
9                                  

10 def f1(x, y1, y2, y3):                         
11   return y1 + 3 * y2 – 3 * y3 + exp(–x)              
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12                                  
13 def f2(x, y1, y2, y3):                        
14   return 2 * y2 + y3 – 3 * exp(–x)    
15                                  
16 def f3(x, y1, y2, y3):                      
17   return y1 + 2 * y2 + exp(–x)                  
18                                  
19 # Define the RK4 solver for the ODE system        
20                                  
21 def rk4system3(x, w1, w2, w3, h):                    
22   for i in range(1, m + 1):                  
23     k11 = h * f1(x[i–1], w1[i–1], w2[i–1], w3[i–1])            
24     k21 = h * f2(x[i–1], w1[i–1], w2[i–1], w3[i–1])            
25     k31 = h * f3(x[i–1], w1[i–1], w2[i–1], w3[i–1])            
26                                  
27     k12 = h * f1(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k11, w2[i–1] + 0.5 * k21,  

w3[i-1] + 0.5 * k31) 
  

28     k22 = h * f2(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k11, w2[i–1] + 0.5 * k21,  

w3[i-1] + 0.5 * k31) 

  

29     k32 = h * f3(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k11, w2[i–1] + 0.5 * k21, 
 w3[i-1] + 0.5 * k31) 

  

30                                  
31     k13 = h * f1(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k12, w2[i–1] + 0.5 * 

k22, w3[i–1] + 0.5 * k32) 

    

32     k23 = h * f2(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k12, w2[iv1] + 0.5 * k22, 
w3[i–1] + 0.5 * k32) 

    

33     k33 = h * f3(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k12, w2[i–1] + 0.5 * 
k22, w3[i–1] + 0.5 * k32) 

    

34                                  
35     k14 = h * f1(x[i–1] + h, w1[i–1] + k13, w2[i–1] + k23, w3[i–1] + k33)     
36     k24 = h * f2(x[i–1] + h, w1[i–1] + k13, w2[i–1] + k23, w3[i–1] + k33)     
37     k34 = h * f3(x[i–1] + h, w1[i–1] + k13, w2[i–1] + k23, w3[i–1] + k33)     
38                                  
39     w1[i] = w1[i–1] + (k11 + 2 * k12 + 2 * k13 + k14) / 6.0      
40     w2[i] = w2[i–1] + (k21 + 2 * k22 + 2 * k23 + k24) / 6.0      
41     w3[i] = w3[i–1] + (k31 + 2 * k32 + 2 * k33 + k34) / 6.0       
42                                  
43 h = (b – a) / m                        
44 x = linspace(a, b, m+1)                       
45 w1 = zeros(m+1)                         
46 w2 = zeros(m+1)                         
47 w3 = zeros(m+1)                         
48 w1[0] = alpha1   # setting initial condition           
49 w2[0] = alpha2              
50 w3[0] = alpha3              
51                                  
52 # Call the RK4 solver                   
53                                  
54 rk4system3(x, w1, w2, w3, h)                      
55                                  
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56 # ----------------- Printing Solutions -----------------           
57 print("Node       x[i]        w1[i]         w2[i]        w3[i]")          
58 for i in range(0,m+1):                        
59   print(i,"\t","%.2f" %x[i],"\t","%.7f" %w1[i],"\t","%.7f" % w2[i],"\t","%.8f" % w3[i])  

 

Output Console: 

Node       x[i]        w1[i]         w2[i]          w3[i] 

0   0.00   2.5000000   -1.5000000   -1.00000000 

1   0.20   2.4526244   -3.1668789   -1.22125420 

2   0.40   1.4332465   -5.6843198   -2.39814695 

3   0.60   -0.7132915   -9.7983813   -5.20827423 

4   0.80   -4.2612434   -16.8302490   -10.77417722 

5   1.00   -9.7413880   -29.1043858   -21.00695957 

 

Question 30: Write a Python program to find the numerical solution of the ODE, 𝑥𝑦′′ − 𝑦′ + 8𝑥3𝑦3 = 0 with 

initial condition 𝑦(1) = 0.5 and 𝑦′(1) = −0.5 for 𝑦(1.1). Consider the step size of ℎ = 0.1, thus only step is 

required. i.e., 𝑚 = 1. Use the exact solution, 𝑦 = 1 (1 + 𝑥2)⁄ , to find the error in the numerical solution. 

For the solution, consider 

𝑦′ = 𝑧  

Then, the given ODE becomes 

𝑧′ =
(𝑧 − 8𝑥3𝑦3)

𝑥
 

Thus, the second-order IVP is essentially converted to the problem of a first-order system of ODEs of 

comprising the two equations subject to the initial conditions: 

𝑤10 = 𝑦0 = 𝑦(𝑥0) = 𝑦(1) = 0.5 

𝑤20 = 𝑧0 = 𝑧(𝑥0) = 𝑧(1) = −0.5 

The problem is to find approximations 𝑤11 to 𝑦1 = 𝑦(𝑥1) and 𝑤21 to 𝑧1 = 𝑧(𝑥1). 

The Python program for the solution is as follows. 

 

script_9.11: ode_order2.ipynb 

                                  

1 from numpy import *                    
2                                  
3 a = 1.0  # starting point of domain         
4 b = 1.1   # ending point of domain         
5 alpha1 = 0.5    # initial condition           
6 alpha2 = –0.5               
7 m = 5           # number of steps            
8                                  
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9 def f1(x, y1, y2):                         
10   return y2               
11                                  
12 def f2(x, y1, y2):                        
13   return (y2 - 8 * x * x * x * y1 * y1 * y1) / x    
14                                  
15 # Define the RK4 solver for the ODE system of two equations        
16                                  
17 def rk4system2(x, w1, w2, h):                    
18   for i in range(1, m + 1):                  
19     k11 = h * f1(x[i – 1], w1[i – 1], w2[i – 1])            
20     k21 = h * f2(x[i –1], w1[i – 1], w2[i – 1])            
21                                  
22     k12 = h * f1(x[i – 1] + 0.5 * h, w1[i – 1] + 0.5 * k11, w2[i – 1] + 0.5 * k21)   

23     k22 = h * f2(x[i – 1] + 0.5 * h, w1[i – 1] + 0.5 * k11, w2[i – 1] + 0.5 * k21)   
24                                  
25     k13 = h * f1(x[i – 1] + 0.5 * h, w1[i – 1] + 0.5 * k12, w2[i – 1] + 0.5 * 

k22) 

    

26     k23 = h * f2(x[i – 1] + 0.5 * h, w1[i – 1] + 0.5 * k12, w2[i – 1] + 0.5 * 
k22) 

    

27                                  
28     k14 = h * f1(x[i – 1] + h, w1[i – 1] + k13, w2[i – 1] + k23)     
29     k24 = h * f2(x[i – 1] + h, w1[i – 1] + k13, w2[i – 1] + k23)     
30                                  
31     w1[i] = w1[i – 1] + (k11 + 2 * k12 + 2 * k13 + k14) / 6.0      
32     w2[i] = w2[i – 1] + (k21 + 2 * k22 + 2 * k23 + k24) / 6.0      
33                                  
34 h = (b – a) / m                        
35 x = zeros(m+1)                       
36 w1 = zeros(m+1)                         
37 w2 = zeros(m+1)                         
38 w1[0] = alpha1   # setting initial condition           
39 w2[0] = alpha2              
40                                  
41 x[0] = a                          
42 x[m] = b                           
43                                  
44 for i in range(1, m):                         
45   x[i] = x[i – 1] + h                        
46                                  
48 # Call the RK4 solver                   
49                                  
50 rk4system2(x, w1, w2, h)                      
51                                  
52 # ----------------- Printing Solutions -----------------           
53 print("Node       x[i]        w1[i]         w2[i]")          
54 for i in range(0,m+1):                        
55   print(i,"\t","%.2f" %x[i],"\t","%.7f" %w1[i],"\t","%.7f" % w2[i])  
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Output Console: 

Node       x[i]        w1[i]         w2[i] 

0   1.00   0.5000000   -0.5000000 

1   1.02   0.4897001   -0.5299800 

2   1.04   0.4788016   -0.5598408 

3   1.06   0.4673080   -0.5894651 

4   1.08   0.4552253   -0.6187399 

5   1.10   0.4425615   -0.6475576 

 

  

∎ 

Question 31: Solve the ODE 𝑦′′′ = −𝑦′′ + 3𝑦′ + 3𝑦  for 𝑦 = 𝑦(𝑥)  in 𝑥 ∈ [0,2]  with the initial conditions: 

𝑦(0) = 2.0, 𝑦′(0) = −1.0, and 𝑦′′(0) = 8.0. Solve it for 10 steps. 

Given the equation, 

𝑦′′′ = −𝑦′′ + 3𝑦′ + 3𝑦       − − −(1) 

For 𝑦 = 𝑦(𝑥) in 𝑥 ∈ [0,2] with the initial conditions: 

𝑦(0) = 2.0 

𝑦′(0) = −1.0 

𝑦′′(0) = 8.0 

consider 

𝑦′ = 𝑧1 − − −(2)  

𝑦′′ = 𝑧1
′ = 𝑧2 −− −(3) 

Then, the given third-order Eq. (1) becomes 

𝑧2
′ = −𝑧2 + 3𝑧1 + 3𝑦 − − −(4) 

Thus, the third-order IVP is essentially converted to the problem of a first-order system of ODEs of comprising 

the three equations (2) - (4) subject to the initial conditions: 

𝑦(0) = 2.0 

𝑧1(0) = −1.0 

𝑧2(0) = 8.0 

For 10 steps, the domain is discretized as 

ℎ =
𝑏 − 𝑎

𝑚
=

2.0 − 0.0

10
= 0.2 

𝑥0 = 0, 𝑥1 = 0.2, 𝑥2 = 0.4, 𝑥3 = 0.6, 𝑥4 = 0.8, 𝑥5 = 1.0, 𝑥6 = 1.2, 𝑥7 = 1.4, 𝑥8 = 1.6, 𝑥9 = 1.8, 𝑥10 = 2.0. 

According to the initial conditions: 

𝑤10 = 𝑦0 = 𝑦(𝑥0) = 𝑦(0) = 2.0 
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𝑤20 = 𝑧10 = 𝑧1(𝑥0) = 𝑧1(0) = −1.0 

𝑤30 = 𝑧20 = 𝑧2(𝑥0) = 𝑧2(0) = 8.0 

The problem is to find approximations 𝑤1𝑖  to 𝑦𝑖 = 𝑦(𝑥𝑖), 𝑤2𝑖  to 𝑧1𝑖 = 𝑧1(𝑥𝑖), and 𝑤3𝑖  to 𝑧2𝑖 = 𝑧2(𝑥𝑖), for 𝑖 =

1,2,⋯ , 10. 

The Python program for the solution is as follows. 

script_9.12: ode_order3.ipynb 

                                  

1 from numpy import *                    
2                                  
3 a = 0.0  # starting point of domain         
4 b = 2.0   # ending point of domain         
5 alpha1 = 2.0    # initial condition           
6 alpha2 = –1.0               
7 alpha3 = 8.0               
8 m = 5           # number of steps            
9                                  

10 def f1(x, y, z1, z2):                         
11   return z1              
12                                  
13 def f2(x, y, z1, z2):                        
14   return z2    
15                                  
16 def f3(x, y, z1, z2):                      
17   return –z2 + 3 * z1 + 3 * y                  
18                                  
19 # Define the RK4 solver for the ODE system        
20                                  
21 def rk4system3(x, w1, w2, w3, h):                    
22   for i in range(1, m + 1):                  
23     k11 = h * f1(x[i–1], w1[i–1], w2[i–1], w3[i–1])            
24     k21 = h * f2(x[i–1], w1[i–1], w2[i–1], w3[i–1])            
25     k31 = h * f3(x[i–1], w1[i–1], w2[i–1], w3[i–1])            
26                                  
27     k12 = h * f1(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k11, w2[i–1] + 0.5 * k21,  

w3[i-1] + 0.5 * k31) 
  

28     k22 = h * f2(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k11, w2[i–1] + 0.5 * k21,  
w3[i-1] + 0.5 * k31) 

  

29     k32 = h * f3(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k11, w2[i–1] + 0.5 * k21, 
 w3[i–1] + 0.5 * k31) 

  

30                                  
31     k13 = h * f1(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k12, w2[i–1] + 0.5 * 

k22, w3[i–1] + 0.5 * k32) 

    

32     k23 = h * f2(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k12, w2[i–1] + 0.5 * 
k22, w3[i–1] + 0.5 * k32) 
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33     k33 = h * f3(x[i–1] + 0.5 * h, w1[i–1] + 0.5 * k12, w2[i–1] + 0.5 * 
k22, w3[i–1] + 0.5 * k32) 

    

34                                  
35     k14 = h * f1(x[i–1] + h, w1[i–1] + k13, w2[i–1] + k23, w3[i–1] + k33)     
36     k24 = h * f2(x[i–1] + h, w1[i–1] + k13, w2[i–1] + k23, w3[i–1] + k33)     
37     k34 = h * f3(x[i–1] + h, w1[i–1] + k13, w2[i–1] + k23, w3[i–1] + k33)     
38                                  
39     w1[i] = w1[i–1] + (k11 + 2 * k12 + 2 * k13 + k14) / 6.0      
40     w2[i] = w2[i–1] + (k21 + 2 * k22 + 2 * k23 + k24) / 6.0      
41     w3[i] = w3[i–1] + (k31 + 2 * k32 + 2 * k33 + k34) / 6.0       
42                                  
43 h = (b – a) / m                        
44 x = linspace(a, b, m+1)                       
45 w1 = zeros(m+1)                         
46 w2 = zeros(m+1)                         
47 w3 = zeros(m+1)                         
48 w1[0] = alpha1   # setting initial condition           
49 w2[0] = alpha2              
50 w3[0] = alpha3              
51                                  
52 # Call the RK4 solver                   
53                                  
54 rk4system3(x, w1, w2, w3, h)                      
55                                  
56 # ----------------- Printing Solutions -----------------           
57 print("Node       x[i]        w1[i]         w2[i]        w3[i]")          
58 for i in range(0,m+1):                        
59   print(i,"\t","%.2f" %x[i],"\t","%.7f" %w1[i],"\t","%.7f" % w2[i],"\t","%.8f" % w3[i])  

 

Output Console: 

Node     x[i]        w1[i]          w2[i]            w3[i] 

0   0.00   2.0000000   -1.0000000   8.00000000 

1   0.40   2.2144000   2.0592000   7.98400000 

2   0.80   3.7553715   5.9235814   12.16498688 

3   1.20   7.3178564   12.5912247   22.55617331 

4   1.60   14.6281541   25.4339096   44.28844810 

5   2.00   29.2965237   50.8850897   88.16040310 

 

∎ 

Question 32: Write down an algorithm (pseudo code)  to solve a second-order linear ODE (BVP)  with 

Dirichlet boundary condition using the finite difference method of second-order accuracy. The algorithm 

should follow the Gauss-Seidel approach to solve the linear system resulted after discretization of the model 

equation. 

Algorithm: To solve 𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′) = 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 + 𝑟(𝑥) , for 𝑎 ≤ 𝑥 ≤ 𝑏  subject to the Dirichlet 

boundary conditions: 𝑦(𝑎) = 𝛼  and 𝑦(𝑏) = 𝛽  by approximating 𝑦 = 𝑦(𝑥)  at (𝑚 + 2)  equispaced nodes 
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𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚, 𝑥𝑚+1 , such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 < 𝑥𝑚+1 = 𝑏 , ℎ = (𝑏 − 𝑎)/𝑚   and 𝑦(𝑥𝑖) = 𝑦𝑖 

using the finite difference method based on the central difference of second-order accuracy. 

𝐈𝐍𝐏𝐔𝐓𝐒:  

{
 
 
 

 
 
 
𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of interior nodes in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the boundary condition 𝑦(𝑎)

𝑏𝑒𝑒𝑡𝑎: a real value as the boundary condition 𝑦(𝑏)

𝑁: an integer as the maximum number of iterations
𝑇𝑂𝐿: a real value as the error tolerance
Definitions of the functions 𝑝(𝑥), 𝑞(𝑥), and 𝑟(𝑥) in an appropriate way 

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑍 = [𝑧0, 𝑧1, ⋯ , 𝑧𝑚, 𝑧𝑚+1]

𝑇: a real valued vector as the approximate values of 𝑦(𝑥𝑖) 
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚, 𝑥𝑚+1

 

Auxiliary Variables:

{
 
 
 
 

 
 
 
 
ℎ: a real value as the step length in 𝑥 direction: ℎ = (𝑏 − 𝑎)/(𝑚 + 1) 

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚,𝑚 + 1: a real valued vector to represent 𝑥𝑖𝑠

𝑍𝑃 = [𝑧𝑝0, 𝑧𝑝1, ⋯ , 𝑧𝑝𝑚, 𝑧𝑝𝑚+1]
𝑇: a real valued vector to keep a copy of 𝑍

𝑒𝑟𝑟: a real number to hold the value of error norm in each iteration
𝐵 = [𝑏0, 𝑏1, ⋯ , 𝑏𝑚]

𝑇: a real valued vector to hold right hand side constants

𝐷 = [𝑑0, 𝑑1, ⋯ , 𝑑𝑚]
𝑇: a real valued vector to hold diagonal entries

𝑈 = [𝑢0, 𝑢1, ⋯ , 𝑢𝑚]
𝑇: a real valued vector to hold upper diagonal entries

𝐿 = [𝑙0, 𝑙1, ⋯ , 𝑙𝑚]
𝑇: a real valued vector to hold lower diagonal entries

 

Step 1 Receive the inputs as stated above 

Step 2         Set ℎ = (𝑏 − 𝑎)/(𝑚 + 1)

Set 𝑥(0) = 𝑎
Set 𝑥(𝑚 + 1) = 𝑏

 

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚  
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ     (Constructing interior mesh points, 𝑥𝑖  ) 

 end for 

Step 4 (Applying the boundary conditions)      
 Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎 
 Set 𝑤(𝑚 + 1) = 𝑏𝑒𝑒𝑡𝑎 

Step 5       (Setting the initial conditions on interior nodes)  
 for 𝑖 = 1, 2,⋯ ,𝑚  

Set 𝑤(𝑖) = 0     (Constructing interior mesh points, 𝑥𝑖  ) 

 end for 

Step 6   for 𝑖 = 1, 2,⋯ ,𝑚 

  Set  𝐵(𝑖) = −ℎ × ℎ × 𝑟(𝑥(𝑖));  end for 

 for 𝑖 = 1, 2,⋯ ,𝑚 

  Set  𝐷(𝑖) = 2 + ℎ × ℎ × 𝑞(𝑥(𝑖)) ;   end for 
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 for 𝑖 = 1, 2,⋯ ,𝑚 

  Set  𝑈(𝑖) = −1 + ℎ × 0.5 × 𝑝(𝑥(𝑖)) ;   end for 

 for 𝑖 = 1, 2,⋯ ,𝑚 

  Set  𝐿(𝑖) = −1 − ℎ × 0.5 × 𝑝(𝑥(𝑖)) ;   end for 

 

Step 7  for 𝑘 = 1, 2, 3,⋯ ,𝑁  perform steps 8-11 

  Step 8 

        for 𝑖 = 1, 2,⋯ ,𝑚 Set 𝑍𝑃(𝑖) = 𝑊 (keeping a copy of 𝑍 in 𝑍𝑃 for taking the norm) 

Step 9   

                for 𝑖 = 1, 2,⋯ ,𝑚                (compute the components of solution vector 𝑍) 

𝑤(𝑖) =
𝐵(𝑖) − 𝐿(𝑖) × 𝑤(𝑖 − 1) − 𝑈(𝑖) × 𝑤(𝑖 + 1)

𝐷(𝑖)
 

end for 

Step 10  Compute   𝑒𝑟𝑟 = ‖𝑊 − 𝑍𝑃‖ 

            (or 𝑒𝑟𝑟 = ‖𝑋 − 𝑋𝑃‖/‖𝑋‖)  Here ‖∙‖ is any suitable norm.  

Step 11  

if (𝑒𝑟𝑟 < 𝑇𝑂𝐿 )then

Exit/Break the loop 
}

This means that the consecutive 
approximations are nearly the same
Therefore, stop iterations.

. 

 end for loop of Step 7  (Go to Step 8) 

Step 12 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ ,𝑤𝑚]
𝑇  ;    STOP. 

Question 33: Write a Python program that uses a second-order accurate Finite Difference method to solve 

the following boundary value problem: 

𝑦′′ = 𝑦′ + 2𝑦 + cos(𝑥) , for 𝑦 = 𝑦(𝑥), where 0 ≤ 𝑥 ≤
𝜋

2
 

subject to the following Dirichlet boundary conditions: 𝑦(0) = −0.3 and 𝑦 (
𝜋

2
) = −0.1. 

For domain discretization, take step sizes as ℎ = ∆𝑥 =
𝜋

8
 

To form the computational domain, the physical domain [0,
𝜋

2
] is discretized by considering that it consists of 

a number of equispaced discrete points or nodes, 𝑥𝑖 , for 𝑖 = 0, 1, 2,⋯ ,𝑚 + 1. For the given problem, 

Number of interior nodes = 𝑚 = 3 

𝑝(𝑥) = 1 

𝑞(𝑥) = 2 

𝑟(𝑥) = cos(𝑥) 
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The target is to obtain the approximations 𝑤𝑖  to the function values 𝑦𝑖 = 𝑦(𝑥𝑖) at the interior nodes 𝑥𝑖 , for 𝑖 =

1, 2, 3. The values of the solution function are known at 𝑥0 and 𝑥4 due to Dirichlet boundary conditions: 

𝑤0 = 𝑦(𝑥0) = −0.3 

𝑤4 = 𝑦(𝑥4) = −0.1 

A Python program that uses the Gauss-Seidel approach for the stated solution is as follows. 

script_9.13:finite_difference_2nd.ipynb 

                                  

1 from numpy import *                    
2                                  
3 a = 0.0  # starting point of domain         
4 b = pi / 2   # ending point of domain         
5 alpha = –0.3               
6 beta = –0.1               
7 N = 200               
8 m = 3          # number of steps            
9 TOL = 1e-7                     

10                                  
11 def p(x):                         
12   return 1.0              
13                                  
14 def q(x):                        
15   return 2.0    
16                                  
17 def r(x):                      
18   return cos(x)                  
19                                  
20 # Define the efficient Gauss-Seidel method        
21                                  
22 def egs(z, B, D, U, L, h):                    
23   for k in range(1, N + 1):                  
24     zp = copy(z)            
25                                  
26     for i in range(1, m + 1):               
27       z[i] = (B[i] – L[i] * z[i – 1] – U[i] * z[i + 1]) / D[i]      
28     print(f"{k:4}: z= {z[0]:.2f} ", end=" ")            
29                                  
30     for i in range(1, m + 1):                
31       print(f"{z[i]:.8f} ", end=" ")           
32     print(f"{z[m+1]:.2f} ")                 
33                                  
34     err = sqrt(sum((z[1:m+1] – zp[1:m+1])**2 / z[1:m+1]**2))       
35                                  
36     if err < TOL:                  
37       break                      
38                                  
39 h = (b – a) / (m+1)                        
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40 x = linspace(a, b, m+2)                       
41 z = zeros(m + 2)                         
42 zp = zeros(m + 2)                         
43 B = zeros(m + 1)                         
44 D = zeros(m + 1)              
45 U = zeros(m + 1)              
46 L = zeros(m + 1)              
47 x[0] = a              
48 x[m+1] = b              
49                                  
50 for i in range(1, m + 1):                     
51   x[i] = x[i – 1] + h                    

   print(f"\tnodes {x[i]:.8f}")                    
52                                  
53 z[0] = alpha                     
54 z[m+1] = beta                           
55                                  
56 for i in range(1, m + 1):                     
57   B[i] = –h**2 * r(x[i])                    
58                                  
59 for i in range(1, m + 1):                      
60   D[i] = 2 + h**2 * q(x[i])                   
61                                  
62 for i in range(1, m + 1):                     
63   U[i] = –1.0 + 0.5 * h * p(x[i])                    
64                                  
65 for i in range(1, m + 1):                       
66   L[i] = –1.0 - 0.5 * h * p(x[i])                   
67                                  
68 # ----------------- Printing Solutions -----------------           
69 print(f"{0:4}: z= {z[0]:.2f} ", end=" ")          
70 for i in range(1, m + 1):                        
71   print(f"{z[i]:.2f} ", end=" ")  
72 print(f"{z[m+1]:.2f} ") 
73  
74 # Call theGauss seidel function 
75  
76 egs(z, B, D, U, L, h) 

 

Output Console: 

nodes 0.39269908 

nodes 0.78539816 

nodes 1.17809725 

   0: z= -0.30   0.00              0.00     0.00       -0.10  

   1: z= -0.30  -0.21719513  -0.15979987  -0.14319552  -0.10  

   2: z= -0.30  -0.27282754  -0.23848337  -0.18397352  -0.10  

   3: z= -0.30  -0.30022025  -0.26687611  -0.19868816  -0.10  

   4: z= -0.30  -0.31010484  -0.27712156  -0.20399790  -0.10  



Numerical Solution of Ordinary Differential Equations (ODEs) 153 

 

 
 

   5: z= -0.30  -0.31367167  -0.28081860  -0.20591391  -0.10  

   6: z= -0.30  -0.31495875  -0.28215267  -0.20660530  -0.10  

   7: z= -0.30  -0.31542319  -0.28263407  -0.20685478  -0.10  

   8: z= -0.30  -0.31559078  -0.28280778  -0.20694481  -0.10  

   9: z= -0.30  -0.31565126  -0.28287046  -0.20697729  -0.10  

  10: z= -0.30  -0.31567308  -0.28289308  -0.20698902  -0.10  

  11: z= -0.30  -0.31568095  -0.28290124  -0.20699325  -0.10  

  12: z= -0.30  -0.31568380  -0.28290419  -0.20699477  -0.10  

  13: z= -0.30  -0.31568482  -0.28290525  -0.20699532  -0.10  

  14: z= -0.30  -0.31568519  -0.28290563  -0.20699552  -0.10  

  15: z= -0.30  -0.31568532  -0.28290577  -0.20699559  -0.10  

  16: z= -0.30  -0.31568537  -0.28290582  -0.20699562  -0.10  

  17: z= -0.30  -0.31568539  -0.28290584  -0.20699563  -0.10  

 

 

Chapter Summary 

• The numerical solution of an ODE is not a definition of 𝑦 = 𝑦(𝑥). The numerical solution of 

the ODE is a set of numbers 𝑤𝑖  that are approximations to the function values 𝑦(𝑥𝑖) at 

some pre-specified discrete values 𝑥𝑖 ∈ [𝑎, 𝑏]. That is, 𝑤𝑖 ≅ 𝑦𝑖 = 𝑦(𝑥𝑖). 

• To solve an initial-value problem consisting of a single first-order ODE in 𝑦 = 𝑦(𝑥) for 𝑎 ≤

𝑥 ≤ 𝑏  and an initial-value 𝑦(𝑎) = 𝛼 , first the domain [𝑎, 𝑏]  is discretized by selecting 

(𝑚 + 1)  equispaced nodes 𝑥0 , 𝑥1 , 𝑥2 ,  ⋯ , 𝑥𝑚  in [𝑎, 𝑏]  such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ <

𝑥𝑚 = 𝑏 , and ℎ = (𝑏 − 𝑎)/𝑚 . Then, approximations 𝑤𝑖  to the values 𝑦𝑖 = 𝑦(𝑥𝑖)  for 𝑖 =

1,2,⋯ ,𝑚 are obtained with 𝑤0=𝑦(𝑎). For simplicity, 𝑦(𝑥𝑖) is denoted by 𝑦𝑖 . 

• There is a wide variety of methods for finding numerical solutions of the ODEs involved in 

initial value problems (IVPs) and boundary value problems (BVPs). 

• Methods for IVPs include single step methods and multi-step methods, each category 

having explicit and implicit methods. A hybrid method, i.e., predictor-corrector method, 

involves a combination of explicit and implicit formulas. 

• Methods for BVPs are so versatile and involve much richer mathematical constructs. 

• The accuracy of the approximate solution can be improved either by using a larger number 

of steps (a smaller step size), or by using a better numerical method. 

• The prime characteristics (or considerations) associated with a finite difference scheme to 

determine its quality include 
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➢ Stability 

➢ Local Truncation Error 

➢ Consistency (Compatibility) 

➢ Discretization Error 

➢ Convergence 

∎∎∎ 

 

 

Chapter Exercises 

Exercise 01: Find the numerical solution of the ODE, 𝑦′ = 3 − 3𝑦 − 𝑒−6𝑥, for 0 ≤ 𝑥 ≤ 2, with initial condition 

𝑦(0) = 1.0. Consider the step size of 0.5. Use the exact solution, 𝑦(𝑥) =
1

3
(𝑒−6𝑥 − 𝑒−3𝑥 + 3), to find the error 

in the numerical solution. 

Exercise 02: Find the numerical solution of the ODE, 𝑦′ = 1 + (𝑥 − 𝑦)2, for 2 ≤ 𝑥 ≤ 3, with initial condition 

𝑦(2) = 1.0. Consider the step size of 0.5. Use the exact solution, 𝑦(𝑥) = 𝑥 + 1 (1 − 𝑥)⁄ , to find the error in the 

numerical solution. 

Exercise 03: Find the numerical solution of the ODE, 𝑦′ = 2 + (𝑥 − 𝑦)2, for 2 ≤ 𝑥 ≤ 3, with initial condition 

𝑦(2) = 1.5. Consider the step size of 0.5. Use the exact solution, 𝑦(𝑥) = 𝑥 − tan(−𝑥 + 2.463), to find the  

Exercise 04: Find the numerical solution of the ODE, 𝑦′ = (1 + 𝑥) (1 + 𝑦)⁄ , for 0 ≤ 𝑥 ≤ 1 , with initial 

condition 𝑦(0) = 2.0. Consider the step size of 0.5. Use the exact solution, 𝑦(𝑥) = √𝑥2 + 2𝑥 + 9 − 1, to find 

the error in the numerical solution. 

Exercise 05: For the functions 𝑦1 = 𝑦1(𝑥) and 𝑦2 = 𝑦2(𝑥), where 𝑥 ∈ [0,1], solve the following system of two 

ODEs:  

𝑦1
′ = 𝑦1𝑦2 − 2 

𝑦2
′ = 2𝑦1 − 𝑦2

3 

With initial conditions: 

𝑦1(0) = 2.0 

𝑦2(0) = 0.3 

Use the RK4 method of order 4 for 5 steps. 
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HINT: For 5 steps the domain is discretized as 

ℎ =
𝑏 − 𝑎

𝑚
=

1.0 − 0.0

5
= 0.2 

𝑥0 = 0, 𝑥1 = 0.2, 𝑥2 = 0.4, 𝑥3 = 0.6, 𝑥4 = 0.8, 𝑥5 = 1.0. 

According to the initial conditions: 

𝑤10 = 𝑦10 = 𝑦1(𝑥0) = 𝑦1(0) = 2.0 

𝑤20 = 𝑦20 = 𝑦2(𝑥0) = 𝑦2(0) = 0.3 

The problem is to find approximations 𝑤1𝑖  to 𝑦1𝑖 = 𝑦1(𝑥𝑖) and 𝑤2𝑖  to 𝑦2𝑖 = 𝑦2(𝑥𝑖), for 𝑖 = 1,2,3,4,5.  

Exercise 06: For the functions 𝑦1 = 𝑦1(𝑥), 𝑦2 = 𝑦2(𝑥), and 𝑦3 = 𝑦3(𝑥), where 𝑥 ∈ [0,1], solve the following 

system of three ODEs: 

𝑦1
′ = 𝑦1 + 3𝑦2 − 3𝑦3 + 𝑒

−𝑥  

𝑦2
′ = 2𝑦2 + 𝑦3 − 3𝑒

−𝑥 

𝑦3
′ = 𝑦1 + 2𝑦2 + 𝑒

−𝑥 

with initial conditions: 

𝑦1(0) = 2.5 

𝑦2(0) = −1.5 

𝑦3(0) = −1.0 

Use the RK4 method of order 4 for 10 steps. 

HINT: For 10 steps, the domain is discretized as 

ℎ =
𝑏 − 𝑎

𝑚
=

1.0 − 0.0

10
= 0.1 

𝑥0 = 0, 𝑥1 = 0.1, 𝑥2 = 0.2, 𝑥3 = 0.3, 𝑥4 = 0.4, 𝑥5 = 0.5, 𝑥6 = 0.6, 𝑥7 = 0.7, 𝑥8 = 0.8, 𝑥9 = 0.9, 𝑥10 = 1.0. 

According to the initial conditions: 

𝑤10 = 𝑦10 = 𝑦1(𝑥0) = 𝑦1(0) = 2.5 

𝑤20 = 𝑦20 = 𝑦2(𝑥0) = 𝑦2(0) = −1.5 

𝑤30 = 𝑦30 = 𝑦3(𝑥0) = 𝑦3(0) = −1.0 

The problem is to find approximations 𝑤1𝑖  to 𝑦1𝑖 = 𝑦1(𝑥𝑖), 𝑤2𝑖  to 𝑦2𝑖 = 𝑦2(𝑥𝑖), and 𝑤3𝑖  to 𝑦3𝑖 = 𝑦3(𝑥𝑖), for 𝑖 =

1,2,⋯ , 10.   

Exercise 07: Find the numerical solution of the IVP, 𝑦′′ − 8𝑦′ + 7𝑦 = 16𝑒−𝑥  for 0 ≤ 𝑥 ≤ 1 , with initial 

condition 𝑦(0) = 4.0 and 𝑦′(0) = 4.0. Also find 𝑦(1.1). Consider the step size of 0.1. Use the exact solution, 

𝑦 = (1 3⁄ )(𝑒7𝑥 + 8𝑒𝑥 + 3𝑒−𝑥), to find the error in the numerical solution. 

HINT: Given the equation, 

𝑦′′ − 8𝑦′ + 7𝑦 = 16𝑒−𝑥             − − −(1) 
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For the solution, consider 

𝑦′ = 𝑧   − − −(2)  

Then, the given second-order Eq. (1) becomes 

𝑧′ = 4𝑧 − 3𝑦 + 7𝑒−𝑥                   − − −(3) 

Thus, the second-order IVP is essentially converted to the problem of a first-order system of ODEs of 

comprising the two equations (2) and (3) subject to the initial conditions: 

𝑦(0) = 3.0 

𝑧(0) = 3.0 

For 10 steps, the domain is discretized as 

ℎ =
𝑏 − 𝑎

𝑚
=

1.0 − 0.0

10
= 0.1 

𝑥0 = 0, 𝑥1 = 0.1, 𝑥2 = 0.2, 𝑥3 = 0.3, 𝑥4 = 0.4, 𝑥5 = 0.5, 𝑥6 = 0.6, 𝑥7 = 0.7, 𝑥8 = 0.8, 𝑥9 = 0.9, 𝑥10 = 1.0. 

According to the initial conditions: 

𝑤10 = 𝑦0 = 𝑦(𝑥0) = 𝑦(0) = 3.0 

𝑤20 = 𝑧0 = 𝑧(𝑥0) = 𝑧(0) = 3.0 

The problem is to find approximations 𝑤1𝑖  to 𝑦𝑖 = 𝑦𝑖(𝑥𝑖) and 𝑤2𝑖  to 𝑧𝑖 = 𝑧(𝑥𝑖), for 𝑖 = 1,2,⋯ , 10. 

Exercise 08: Solve the ODE 𝑦′′ = 4𝑦′ − 3𝑦 + 7𝑒−𝑥 for 𝑦 = 𝑦(𝑥) in 𝑥 ∈ [0,1] with the initial conditions: 𝑦(0) =

3.0 and 𝑦′(0) = 3.0. Solve it for 10 steps. 

Exercise 09: Find the numerical solution of the BVP, 𝑦′′ − 9𝑦′ + 𝑦 = 𝑥 for 0 ≤ 𝑥 ≤ 1, with initial condition 

𝑦(0) = 0.0 and 𝑦′(1) = 6.0. Consider the step size of 0.1. 

Exercise 10: Find the numerical solution of the ODE, 𝑥2𝑦′′ + 3𝑥𝑦′ + 3𝑦 = 0, with initial condition 𝑦(1) = 1 

and 𝑦′(1) = −5  for 𝑦(1.1). The exact solution is, 𝑦 =
1

𝑥
(cos(√2 ln 𝑥) + (

1

𝑥2
− 5) sin(√2 ln 𝑥)). 

Exercise 11: Find the numerical solution of the ODE, 𝑦′′ − 6𝑦′ + 9𝑦 = 𝑥2𝑒3𝑥 , with initial condition 𝑦(0) = 2 

and 𝑦′(0) = 6  for 𝑦(1.1). The exact solution is, 𝑦 = 2𝑒3𝑥 +
1

12
𝑥4𝑒3𝑥 . 

Exercise 12: Solve the ODE 𝑦′′′ = −𝑦′′ + 3𝑦′ + 3𝑦  for 𝑦 = 𝑦(𝑥)  in 𝑥 ∈ [0,2]  with the initial conditions: 

𝑦(0) = 2.0, 𝑦′(0) = −1.0, and 𝑦′′(0) = 8.0. Solve it for 10 steps. 

Exercise 13: Using a second-order accurate Finite Difference method, solve the following BVP: 

𝑦′′ = 9𝑦′ − 𝑦 + 𝑥, for 𝑦 = 𝑦(𝑥), where 0 ≤ 𝑥 ≤ 1  

subject to the following Dirichlet boundary conditions: 𝑦(0) = 0 and 𝑦(1) = 6. 

For domain discretization, take step sizes as ℎ = ∆𝑥 = 0.25. 

Exercise 14: Using a second-order accurate Finite Difference method, solve the following BVP: 

𝑦′′ = −5𝑦′ − 8𝑦 + 𝑥2, for 𝑦 = 𝑦(𝑥), where 1 ≤ 𝑥 ≤ 2  

subject to the following Dirichlet boundary conditions: 𝑦(1) = 0 and 𝑦(2) = 24. For domain discretization, 

take step sizes as ℎ = ∆𝑥 = 0.25. 

∎∎∎ 
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Chapter 10 

Introduction to SciPy 
 

 

SciPy (Scientific Python) is an open-source library in Python that is used for solving mathematical, 

scientific, engineering, and technical problems. It allows users to manipulate the data and visualize 

the data using a wide range of high-level Python commands. SciPy stands for scientific Python and 

it is built on the Python NumPy extension. It contains varieties of sub-packages that help to solve 

the most common issue related to scientific computing. Though NumPy provides a number of 

functions that can help to resolve linear algebra, Fourier transforms, integration, etc., the SciPy 

module in Python is a fully-featured version of these functions and many more. Most data science 

features are available in SciPy rather than NumPy. The SciPy library supports integration, gradient 

optimization, special functions, ordinary differential equation solvers, parallel programming tools, 

and many more. We can say that SciPy implementation exists in every complex numerical 

computation. 

Following are some useful sub-packages of SciPy. 

scipy.io for File I/O  

This SciPy sub-package contains modules, classes and functions to read data from and write data 

to various file formats sch as MATLAB files, unformatted Fortran files wave sound files, etc. 

import numpy as np 

from scipy import io as sio 

array = np.ones((2,2)) 

#store data in example.mat file 

sio.savemat("example.mat", { "ar" : array}) 

#get data from example.mat file 

data = sio.loadmat("example.mat") 
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data[ "ar"] 

Output: 

array([1., 1.] , [1. , 1.]]) 

 

scipy.special for Special Functions  

SciPy special functions include Cubic Root, Exponential, Log sum Exponential, Permutation and 

Combination, Lambert, Bessel, Hypergeometric functions, etc. 

Cube Root Function 

from scipy.special import cbrt 

cb = cbrt(27) 

print(cb) 

Output: 

3.0 

Exponential Function 

from scipy.special import exp10 

exp = exp10([1,10]) 

print(exp) 

Output: 

[1.e+01 1.e+10] 

Permutations and Combinations 

from scipy.special import comb 

from scipy.special import perm 

com = comb(5,3) 
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per = perm(5,3) 

print("Combination = " , com) 

print("permutation =" , per) 

Output: 

Combination = 10.0 

Permutation = 60.0 

  

 Bessel Function 

import scipy.special as special 

import matplotlib.pyplot as plt 

import numpy as np 

x = np.linspace(1,50,10,0) 

jn1 = special.jn(2,x) 

plt.title("Bessel function first kind order") 

plt.plot(x,jn1) 

Output: 
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scipy.linalg for Linear Algebra  

It includes the basic functions to find the inverse, determinant of a matrix and to solve Eigenvalue 

problems, Decompositions, Matrix functions, etc. 

Finding the inverse and determinant 

import numpy as np 

from scipy import linalg 

A = np.array([[5,2] , [3,6]]) 

B = linalg.inv(A) 

C = linalg.det("determinant = " , A) 

Print(B)  

Print(C) 

Output: 

[[ 0.25    -0.08333333] 

 [-0.125    0.20833333]] 

Determinant = 24.0 

Eigenvalues and Eigenvector 

import numpy as np 

from scipy import linalg 

A = np.array([[5,2] , [3,6]]) 

Eg_val , Eg_vect = linalg.eig(A) 

print("Eigen value = " , Eg_val)  

print("Eigen vector = " , Eg_vect) 

Output: 

Eigen value = [3.+0.j 8.+0.j] 

Eigen vector = [[-0.7071067 -0.554700] 

 [ 0.70710678 -0.83205029]] 
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scipy.interpolate for Interpolation  

It includes spline functions and classes 1-D and multidimensional interpolation classes, Lagrange 

and Taylor polynomial interpolators. 

import numpy as np 

from scipy import interpolate 

import matplotlib.pyplot as plt 

x = np.linspace(0,5,10) 

y = np.cos(x**2/3+5) 

plt.scatter(x,y, c = 'r') 

plt .show() 

Output: 

 

scipy.integrate for Numerical Integration  

It includes functions to solve single integration, double, triple, multiple Gaussian quadrate, 

Trapezoidal, and Simpson’s rules. 

Single Integration 

from scipy import integrate 
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f = lambda x: x**3 

a = 0 

b = 1 

integration = integrate.quad(f,0,1) 

print(integration) 

Output: 

(0.25, 2.7755575615628914e-15) 

Double Integration 

from scipy import integrate 

from math import sqrt 

f = lambda x , y : 64*x*y 

#lower limit of second integral 

p = lambda x: 0 

#upper limit of first integral 

q = lambda y : sqrt(1 – 2*y**2) 

#double integration 

integration = integrate.dblquad(f,0,2/4,p,q) 

print(integration) 

 

Output: 

(3.0, 9.657432734515774e-14) 

scipy.optimize  for Optimization  

It provides a function for minimizing and maximizing objective functions. It also solvers for non-

linear problems, linear programming, root findings, and curve fitting. 

from scipy import optimize 

import matplotlib.pyplot as plt  
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import numpy as np 

def f(x): 

     return -np.sin(x) 

x = np.linspace(0,5,10,0) 

start = 3 

optimize.fmin(f,start) 

plt.plot(x , f(x)) 

plt.scatter(optimized, f(optimized)) 

plt.legend(['Function -sin(x) ' , 'Starting point' , 'Optimized 

minimum']) 

Output: 

 

scipy.stats for Statistical functions  

This sub-module of SciPy is having a large number of probability distributions and a growing 

library of statistical functions. 

Uniform Distribution 

from scipy.stats import uniform 



Preliminary Concepts in Numerical Analysis 164 

 

a = np.array([8,7,5,3,2]) 

print(uniform.cdf(a, loc = 5 , scale = 3)) 

Output: 

[1.     0.66666667 0.     0.   0.   ] 

 

∎∎∎ 
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