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Goals

• Use ConvNPs to model daily BC AOD over Europe from limited observations

• Minimise uncertainty in the predictive function by proposing new sensor placements

 Data

• Ground truth: CAMS reanalysis of atmospheric composition[2]

• Context: Off-grid samples of BC AOD, gridded wind, auxiliary space-time coordinate variables

• Target: Gridded daily-average BC AOD

• Tasks: BC AOD observations provided at random points (training) or at existing stations (evaluation)

• The Aeronet network’s 296 stations in Europe[3] serve as initial sensor locations

The ConvNP models and the sensor placement experiments are implemented using DeepSensor[4] 

− an open-source Python package for modelling environmental data with neural processes 
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Discussion

• ConvNPs learn to model the BC AOD field from limited observations

• Informative sensor placements are obtained by leveraging the ConvNPs’ probabilistic predictions 

• Higher-resolution “ground truth” might be needed to better capture AOD spatial variability and uncertainty

Next steps

• Test the Gaussian ConvNP variant, which models the output distribution jointly and incorporates spatial covariance

• Fine-tune the models using real sensor data[5] from Aeronet

• Incorporate cloud cover and measurement availability considerations in the sensor placement experiments
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Convolutional Neural Processes

Context datasets 𝐶

ConvNPs meta-learn a mapping from context data 𝐶 = {𝑥𝑖
𝑐

, 𝑦𝑖
(𝑐)

}𝑖
𝑁𝑐  and target inputs 𝑥(𝑡) to Gaussian predictions over target outputs 𝑦(𝑡)

Training: Minimise negative log-likelihood of true 𝑦(𝑡) under the predicted Gaussian from limited randomly sampled context observations 

Introduction

• Black carbon (BC) aerosols

• Strong warming effect due to radiation absorption
• High uncertainty due to lack of global-scale observations

• The Aeronet network of ground-based sensors

• Primary source of aerosol absorption optical depth (AAOD) measurements
• But spatially sparse and temporally intermittent

 Research Questions

→How to model BC AOD from sparse observations? 

→Where to place new sensors to maximise informativeness?

• Convolutional Neural Processes (ConvNPs)
• Learn to map from heterogeneous context sets to probabilistic predictions
• Use in active learning context to evaluate optimal observation locations[1]
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• Flexible 
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neural network

• Extracts feature 
representation of 
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Sensor Placement Experiments

Multi-objective Pareto optimisation

• In a real-world scenario, must trade off expected informativeness and practical costs of 

potential sensor locations

• Consider the cost of missed AOD measurements due to cloud cover 

• Find Pareto-efficient solutions, where informativeness cannot be improved without 

worsening the costs and vice versa

Active learning for sensor placement

• Acquisition function evaluates the search space for the expected information gain of a new observation

• Greedy algorithm averages the function over several tasks and proposes next optimal placement

• High correlation of 
MeanStddev with Oracle 
version validates it as 
informativeness criterion

Farthest distance heuristic

ContextDist
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average model uncertainty
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