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Introduction

* Black carbon (BC) aerosols

« Use in active learning context to evaluate optimal observation locations!t!

Data and implementation

Goals

e Strong warming effect due to radiation absorption e Use ConvNPs to model daily BC AOD over Europe from limited observations
* High uncertainty due to lack of global-scale observations e Minimise uncertainty in the predictive function by proposing new sensor placements
* The Aeronet network of ground-based sensors Data
* Primary §ource of aerosol absorptlo.n optlc-al depth (AAOD) measurements e Ground truth: CAMS reanalysis of atmospheric compositiont?
* But spatially sparse and temporally intermittent
e Context: Off-grid samples of BC AOD, gridded wind, auxiliary space-time coordinate variables
a Research Questions A e Target: Gridded daily-average BC AOD
- How to model BC AOD from sparse observations? e Tasks: BC AOD observations provided at random points (training) or at existing stations (evaluation)
- Where to place new sensors to maximise informativeness? e The Aeronet network’s 296 stations in Europe!3! serve as initial sensor locations
N /
* Convolutional Neural Processes (ConvNPs) The ConvNP models and the sensor placement experiments are implemented using DeepSensor!*]
* Learn to map from heterogeneous context sets to probabilistic predictions — an open-source Python package for modelling environmental data with neural processes

Convolutional Neural Processes

ConvNPs meta-learn a mapping from context data C = {xi(c), yi(c)}livc and target inputs x(t) to Gaussian predictions over target outputs y(t)
Training: Minimise negative log-likelihood of true y(t) under the predicted Gaussian from limited randomly sampled context observations
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Sensor Placement Experiments

Active learning for sensor placement
* Acquisition function evaluates the search space for the expected information gain of a new observation

* Greedy algorithm averages the function over several tasks and proposes next optimal placement
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Multi-objective Pareto optimisation
* In areal-world scenario, must trade off expected informativeness and practical costs of

potential sensor locations

 Consider the c

* Find Pareto-efficient solutions, where informativeness cannot be improved without

worsening the

ost of missed AOD measurements due to cloud cover

costs and vice versa
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e ConvNPs learn to model the BC AOD field from limited observations

e Informative sensor placements are obtained by leveraging the ConvNPs’ probabilistic predictions

e Higher-resolution “ground truth” might be needed to better capture AOD spatial variability and uncertainty

Next steps

e Fine-tune the models using real sensor datal®! from Aeronet

e Incorporate cloud cover and measurement availability considerations in the sensor placement experiments

e Test the Gaussian ConvNP variant, which models the output distribution jointly and incorporates spatial covariance
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