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ABSTRACT

Extreme short-duration rainfall can cause devastating flooding that puts lives, infrastructure, and natural

ecosystems at risk. It is therefore essential to understand how this type of extreme rainfall will change in a

warmer world. A significant barrier to answering this question is the lack of sub-daily rainfall data available at

the global scale. To this end, a global sub-daily rainfall dataset based on gauged observations has been col-

lated. The dataset is highly variable in its spatial coverage, record length, completeness and, in its raw form,

quality. This presents significant difficulties formany types of analyses. The dataset currently comprises 23 687

gauges with an average record length of 13 years. Apart from a few exceptions, the earliest records begin in the

1950s. The Global Sub-Daily Rainfall Dataset (GSDR) has wide applications, including improving our un-

derstanding of the nature and drivers of sub-daily rainfall extremes, improving and validating of high-

resolution climate models, and developing a high-resolution gridded sub-daily rainfall dataset of indices.

1. Introduction

One of the most important questions in climate

change research is how the intensity, frequency, and

duration of extreme rainfall will change with global

warming. This question must be approached in several

ways, as extreme rainfall occurs over different spatial

and temporal scales and has multiple drivers, and needs

to be answered on a global scale. Recent work has fo-

cused on analyzing global-scale trends in time series of

land-based precipitation extremes that occur on daily

time scales. For example, Westra et al. (2013) showed

that close to two-thirds of stations across the world dis-

played increasing trends in annual maximum rainfall

while Groisman et al. (2005) found an increasing prob-

ability of intense precipitation events (e.g., the fre-

quency of very heavy precipitation or the upper 0.3% of

daily precipitation events) for many extratropical

regions. Other work has characterized global daily

rainfall extremes via a series of indices that have pro-

vided useful information for climate modelers and hy-

drologists (e.g., Frich et al. 2002; Alexander et al. 2006;

Donat et al. 2013a). While observed long-term (.40 yr)

globally consistent daily rainfall datasets do not yet ex-

ist, the work on indices has facilitated the study of long-

term changes of rainfall extremes using good-quality

station data covering large parts of the world (Donat

et al. 2013b).

Research is now turning to the sub-daily scale (1–6 h)

to further our understanding of the nature and drivers of

intense rainfall as sub-daily precipitation extremes cause

flash floods and can trigger landslides, which result in

damage to infrastructure, lives, homes, and ecosystems

(Georgakakos 1986; Marchi et al. 2010; Archer and

Fowler 2018; Barbero et al. 2019). Such extremes are

relatively poorly understood; we do not fully understand

the processes that cause extreme precipitation or its

inherent intermittency properties (Trenberth et al.

2017) or variability under the current climate. An in-

creasing number of regional studies have explored the

relationship between sub-daily rainfall extremes and

coincident temperature [e.g., Hardwick Jones et al.
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(2010) for Australia; see commentary by Lenderink and

Fowler (2017)]. These have found that hourly extremes

may scale at a higher rate than that expected (and

observed) for daily extremes—higher than Clausius–

Clapeyron scaling [;6.5% (8C)21] [for the Netherlands:

Lenderink et al. (2017) and Lenderink and van

Meijgaard 2008; for the Netherlands and Hong Kong:

Lenderink et al. (2011); for Austria: Formayer and Fritz

(2017)]. Studies have also used longer records to look for

trends or changes in hourly rainfall but these have ten-

ded to be over relatively small scales with the exception

of some national-scale studies (e.g., Sen Roy 2009;

Westra and Sisson 2011; Barbero et al. 2017; Guerreiro

et al. 2018; Sen Roy and Rouault 2013). Previous studies

have used different methodologies and have shown in-

consistent changes, although most point to a general

increase in intensity [Westra et al. 2014; see Hartfield

et al. (2017) for a graphical summary]. However, high-

resolution modeling studies have shown us that it is

unlikely that extreme hourly precipitation intensities

can simply be extrapolated from scaling relationships

associated with warming due to the influence of atmo-

spheric moisture, dynamical feedback to increased la-

tent heat release, and changes in atmospheric circulation

on larger scales (Lenderink and Fowler 2017; Chan et al.

2016; Bao et al. 2017; Prein et al. 2017; Wang et al. 2017;

Barbero et al. 2018).

State-of-the-art research on extreme precipitation

therefore currently uses either quasi-global/continental-

scale data at a daily time step or regional (country)-scale

sub-daily data. Widely used daily datasets include the

E-OBS gauge dataset for Europe (Klein Tank et al.

2002), a dataset of climate variables that contains 10 584

gauges and is updated regularly (http://www.ecad.eu/).

The NOAA Global Historical Climatology Network

(GHCN)-Daily dataset is popular and large, with over

100 000 stations (Menne et al. 2016). The Global Pre-

cipitation Climatology Centre (GPCC) have a near-real-

time gridded daily precipitation product using over 7000

rain gauge stations (Schamm et al. 2014). The Asian

Precipitation–Highly-Resolved Observational Data In-

tegration Toward Evaluation (APHRODITE) daily

gridded precipitation dataset uses around 12 000 gauges;

however, this project has now ended and the dataset is

not updated (Yatagai et al. 2012).

Other quasi-global data products exist that are not

based on gauged observations, including daily satellite

datasets like Tropical Rainfall Measuring Mission

(TRMM)/TRMM Multisatellite Precipitation Analysis

(TMPA; Huffman et al. 2007) and their higher-

resolution replacement, Global Precipitation Measure-

ment (GPM), which records precipitation and other

variables every 3 h (Hou et al. 2014). Multi-Source

Weighted-Ensemble Precipitation (MSWEP; Beck

et al. 2017a) is a 3-h 0.258 global gridded precipitation

dataset from 1979 to 2014, based on merged gauged,

satellite, and reanalysis data products. Some quasi-

global satellite precipitation datasets developed re-

cently provide measurements at the 3-hourly scale and

even at hourly and half-hourly scales, but have short

record lengths, often starting later than 1998, including

TRMM (Huffman et al. 2007; Trenberth et al. 2017),

Precipitation Estimation from Remotely Sensed Infor-

mation Using Artificial Neural Networks (PERSIANN;

Hsu et al. 1997), Climate Prediction Center morphing

technique (CMORPH; Joyce et al. 2004), Global Sat-

ellite Mapping of Precipitation (GSMaP; Kubota et al.

2007), and GPM (Hou et al. 2014). Radar and merged

rainfall measurements are good supplements for gauge

observations; however, they are measuring different

things. Gauges measure the weight or volume of rainfall

directly whereas satellite and radar infer rainfall rates

based on the interaction of signals with hydrometeors.

These indirect measurements then depend on algo-

rithms to convert them to precipitation rates and are

subject to a range of uncertainties (see Beck et al. 2017b;

Michaelides et al. 2009; Krajewski et al. 2010; Thorndahl

et al. 2017). These data products are limited in their

usefulness by systematic biases and are yet to be fully

validated by sub-daily observations, as no global sub-

daily gauge dataset exists. In particular, these datasets

need to be validated for precipitation extremes.

The largest current dataset of sub-daily rainfall gauges

is the Integrated Surface Database (ISD; Smith et al.

2011). The database includes over 35000 stations world-

wide, with over 14000 ‘‘active’’ stations updated daily.

The ISD includes numerous meteorological parameters

including precipitation amounts for various time periods.

However, the actual rainfall data contained within it is

very limited. Only ;8000 stations report hourly rainfall

and many of these are extremely short records with large

amounts of missing data (as we demonstrate in section 4)

and have not yet been subject to quality control or tests of

homogeneity. Althoughmany countries collect such data,

most do not (see Table A1 in appendix A). There is no

single repository for sub-daily rainfall data and, until now,

there has been no concerted effort to create such a da-

tabase. Thorne et al. (2017) call for a comprehensive

global set of data holdings that integrate across essential

climate variables and time scales and outline the steps

that need to be taken to make this happen. Zhang et al.

(2017) state that progress in understanding the changes in

sub-daily rainfall extremes has been limited due to the

lack of availability of sub-daily rainfall data, and call for

efforts to be made to create a global sub-daily rainfall

dataset, which would have wide applications in hydrology
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and for the validation of the emerging generation of very

high-resolution convection-permitting climate models

and remote sensing data. Further, coupled with model

simulations it would facilitate improved understanding of

how an important component of the global climate system

will respond (and is already responding) to atmospheric

warming, and whether there are dangerous or important

thresholds in terms of changes to precipitation extremes.

To address this need, we have identified and collated

sub-daily rainfall data from across the globe to form

the Global Sub-Daily Rainfall Dataset (GSDR) as

part of the INTENSE project (Blenkinsop et al. 2018;

https://research.ncl.ac.uk/intense/), in conjunction with

the World Climate Research Programme (WCRP)’s

Grand Challenge on Weather and Climate Extremes

(https://www.wcrp-climate.org/grand-challenges/gc-

extreme-events) and the Global Water and Energy Ex-

changes Project (GEWEX) Science Questions (https://

www.gewex.org/about/science/gewex-science-questions).

The ‘‘Intelligent use of climate models for adaptation

to non-stationary hydrological extremes’’ (INTENSE)

project is a European Research Council–funded project

to lead a community effort into the collection and analysis

of sub-daily precipitation data, building on the ISD and

model outputs. This paper outlines the gauge data we

have collected so far for the GSDR, providing details of

spatial coverage, record duration, and completeness in an

ongoing process to form the first comprehensive global

sub-daily rainfall dataset.

2. Data collection

a. Data availability

While many international efforts have already strug-

gled to make long-term daily rainfall records widely

accessible, the situation for sub-daily data is even more

challenging (Zhang et al. 2011; Zwiers et al. 2013;

Alexander 2016). As such, this work represents the co-

operation and support of over 100 meteorological of-

fices, environmental agencies, and researchers. The ISD

(Smith et al. 2011) forms the foundation of this dataset

and through collaboration we were able to collect ad-

ditional data free of charge (for academic research

purposes) from the countries listed in Table A2 in

appendix A. Data were typically obtained from the

National Hydrological and Meteorological Services

(NHMSs), but sometimes from their environment

agency. Some data were also provided by research

groups who have field campaigns in catchments and

were willing to share their data. However, because of the

requirements of license agreements some of the raw

data are currently not available outside of the project

partners (see Table A2). We aim to demonstrate the

value of this dataset and encourage data owners to feed

into a freely available version through ongoing work in

the INTENSE project.

Through our data collection efforts we have found

that sub-daily rainfall is often available in more recent

years, given the advancement of rain gauges and elec-

tronic recording devices/telemetry. Short records of sub-

daily rainfall are available from many countries, but

longer records, particularly useful for the assessment of

trends and variability, are much harder to access.

Data collection is still ongoing, and we have identified

additional sub-daily rainfall datasets for Spain, the

Philippines, New Zealand, a few stations in Kenya,

Tuvalu, the Caribbean, South Africa, Colombia, Fiji,

Israel, India, Denmark, Slovenia, Iran, Bangladesh,

Russia, Hungary, Czechia, China, Uruguay, Vanuatu,

Hong Kong, Mexico, Poland, and Vietnam. Additional

data across the world has also recently become available

from the U.S. Air Force, which will also be collected.

Work is ongoing to collect these data and add them to

the database. Data collection is, however, a very time-

consuming exercise and the dataset presented in this

paper represents the efforts of a very small team

building a network of contacts and as such, more rainfall

data are certainly available than described here. Data

policy remains a large constraint on developing this

dataset further. While many countries are moving to-

ward an open data policy, many still restrict access to

data or charge very large sums of money for access.

These policies are understandable but hinder scientific

progress on answering global-scale questions.

b. Data formats

As data were collected frommany different sources, it

is unsurprising that the datasets obtained were in dif-

ferent formats. Data were mainly provided as ASCII

files (.txt or .csv), but sometimes as a database (Micro-

soft Access) or in netCDF format. Each of the national

datasets was also submitted in a different structure

(matrix of days and hours, time series) or files were often

split by month, year, or some other time aggregation.

Sometimes all stations were included in one file or each

station might be a separate file. The data were also

accessed in several different ways. Data holders would

either send the information directly, or provide a link

to a web interface, FTP, or WSDL service. This high-

lights the need for consistent standards and formats

across national agencies to facilitate easier collaboration

for global scale analyses, as well as the necessity for in-

ternational initiatives, such as the Copernicus Climate

Change Service (https://climate.copernicus.eu), to ar-

chive andmaintain such datasets, as called for by Thorne

et al. (2017). For consistency, we converted all the data
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to the same format before use, which records the data

at a 1-h time step.

When processing the data there were many differ-

ences. First, data were obtained at different time steps:

typically 1 h but also 1min, 5min, 10min, 15min, 30min,

3 h, and 6h. Almost all data were provided at 1-h or finer

resolution and so only these data are presented here,

although 6-h data were also collected for Bermuda (1

station), Brazil (297 stations), and Canada (72 stations).

Data at 3- and 6-h resolution are also available from the

ISD but the quality is highly variable (for 3-h data there

are 2130 stations with more than one wet hour in the

record and for 6-h data there are 5675 stations fulfilling

the same criterion). Furthermore, we are aware of

changes in measurement precision for some countries

that create inhomogeneities in the time series [e.g., the

United States (Barbero et al. 2017) andUnitedKingdom

(Kendon et al. 2018)]. Second, some formats differenti-

ated between zero rainfall and no data, while others did

not, which can lead to ambiguity about whether the

gauge was working or not at a particular time. Third,

data were provided with varying levels of quality control

information, some with very detailed metadata of up to

20 quality-control codes while others had none.

A particular characteristic to note is the precision of

measurement as this has an impact on the analysis of the

data. Typically this was 0.1 or 0.2mm from tipping-

bucket rain gauge (TBR) records. However, reported

resolutions range from 0.001mm (from interpolated

pluviograph records in Australia), to 0.1 in. (2.54mm) in

the United States. Such differences in resolution create

problems when comparing rainfall statistics between

countries, for example, when comparing wet or dry

hours globally or for fitting extreme value distributions.

However, it is possible to overcome this limitation (to a

certain extent) by converting the data of the finer reso-

lution to a coarser and common resolution following

previous studies (Groisman et al. 2012).

3. Dataset characteristics

a. Number and distribution of gauges

At the time of writing, hourly data have been col-

lected for 23 687 stations, with 15 331 of these stations

from non-ISD sources. This is almost double the number

of stations with rainfall data available in the ISD. These

gauges cover 200 territories, 38 of which were collected

by this project (territories are defined by the In-

ternational Organization for Standardization alpha-2

codes1). A total of 452 of these stations are coincident,

located within 100m of each other: 134 of these are

potentially duplicate gauges from the ISD dataset while

the remainder seem to be genuinely collocated gauges.

Gauge density is highly variable: Singapore has the

highest density network of 33 stations over an area of

563 km2, and Switzerland and the United Kingdom also

have very high network densities.

b. Length of records, gauges per year

Table 1 shows that 22% of stations have records lon-

ger than 30 years. These longer records are suitable for

looking at changes in rainfall over time, such as trend

analysis and the influence of natural variability. How-

ever, shorter records (e.g., 56%have records longer than

10 years) are still useful for other analyses, such as the

assessment of sub-daily precipitation climatology, in-

cluding extremes and seasonal and diurnal variability,

and for applications including the validation of remotely

sensed rainfall products. Figure 1 shows the number of

gauges recording hourly rainfall for each year; the ear-

liest record begins in 1911 and is located in Hobart,

Tasmania. Very few gauges have records longer than 60

years (Table 1). The U.S. gauges commence in 1950 and

form one of the most complete datasets. The majority of

other records begin after 1990. It should be noted that

the record lengths discussed here are those of available

digitized data. It is possible that longer datasets exist but

only as paper records. Initiatives such as International

Atmospheric Circulation Reconstructions over the

Earth (ACRE) aim to rescue this data to expand and

extend existing datasets (Allan et al. 2011). Some na-

tional records show a network density increase over the

years but a decline in more recent years. An example is

the United Kingdom, where resources are being spent

on radar measurements instead. Figure 1 similarly

shows a global decrease of gauges in recent years, which

TABLE 1. Station record lengths (number of hours between the

first and last values in the record) and real record length [record

length 3 (1 2 fraction of missing data)] for the entire GSDR

dataset (ISD 1 other), the subset of data from the ISD, and the

subset of data collected in addition to the ISD (other).

Years

Number of stations

(record length)

Number of stations (real

record length)

GSDR ISD Other GSDR ISD Other

.60 1382 104 1278 171 16 155

.50 2018 115 1903 1057 49 1008

.40 3018 291 2727 2061 164 1897

.30 5160 332 4828 4052 224 3828

.20 7841 912 6929 6163 284 5879

.10 13 291 2957 10 334 10 227 831 9396

.1 21 109 6781 14 328 16 230 2150 14 080

#1 2578 1575 1003 7457 6206 1251

1 https://www.iso.org/obp/ui/#search.
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may arise partly from a data collection artifact since we

have not yet requested updates from datasets collected

at the beginning of the project in 2015.

c. Completeness of records

Records can be long (Fig. 2) but some contain a large

percentage of missing data at an hourly time step (see

Table 2 and Fig. 3). This again affects the usability of the

data. Table 1 and Fig. 2 show the real record length

[record length 3 (1 2 fraction of missing data)] of the

gauges in GSDR. Approximately 7% of stations have

complete records and;39% have records with less than

10% missing data, while almost a quarter (;23%) of

stations have over 90% missing data, making them

practically unusable. Approximately 17% of stations

have real record lengths of over 30 years, making these

potentially the most useful for a range of analyses and

applications. Figure 4 shows that the United States, Ja-

pan, and Australia have the greatest number of stations

available with .30 years of data.

d. Format and availability of GSDR

GSDR is stored in a flat file system. Each gauge is

stored as an individual text file in a compressed folder

FIG. 1. Data availability in the GSDR, in terms of the number of

gauges with hourly data for each year so far. A gauge is counted

even if there is only a single rainfall record in a given year.

FIG. 2. Real record length [record length3 (1 2 fraction of missing data)] of stations in the

GSDR. Record length refers to the period between the first and last recorded values. Conti-

nental/regional maps can be found in appendix B.

TABLE 2. Percentage of missing data for all rain gauges for the

entire GSDR dataset (ISD 1 other), the subset of data from the

ISD, and the subset of data collected in addition to the ISD (other).

Percentage of

missing data

Number of stations

GSDR ISD Other

0 1621 959 662

,10 9335 1476 7859

,20 12 887 1768 11 119

,30 14 712 1990 12 722

,40 15 563 2163 13 400

,50 16 206 2339 13 867

,60 16 727 2569 14 158

,70 17 244 2815 14 429

,80 17 538 2977 14 561

,90 18 164 3470 14 694
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organized by country. The files contain station metadata

including station ID, country, original station details,

origin of the data, latitude, longitude, elevation, record

start and end dates, the number of hours in the record,

and the percentage of missing data, as well as the orig-

inal time step, time zone, and units of the data. The

rainfall data are then recorded as a complete time series

from the recorded start date with missing values in-

cluded as 2999. Some of the dataset is currently only

accessible to the INTENSE team and project partners

but some is open access (see Table A2).

4. Conclusions

To address one of the objectives of the WCRP Grand

Challenge on Extremes, we have compiled a global sub-

daily precipitation dataset and describe the hourly data

in this paper. This dataset is highly variable in global

coverage, record length, real record length, and the ex-

tent to which it has been assessed for quality. The data

quality and quantity should match that required by the

analysis or application being undertaken. Short, in-

complete records may still have value for some appli-

cations (e.g., to validate satellite or radar observations)

and may be used for some types of analyses (e.g., to

determine the diurnal cycle of rainfall) or may be pooled

for temperature scaling and extreme value analysis.

Long records are, however, essential to allow the de-

tection of changes in rainfall extremes (e.g., Kendon

et al. 2018). Future work will build on the methods ap-

plied to U.K. hourly rainfall data (Blenkinsop et al.

2017; Lewis et al. 2018) to develop a standard method-

ology for quality controlling this Global Sub-Daily

Rainfall (GSDR) dataset from multiple sources and

for different climatic regimes to ensure the data are of

high quality. The code for this will be made available to

help ensure minimum standards of quality can be pro-

vided across data providers. Data collection is ongo-

ing and further contributions to the dataset are very

welcome.

FIG. 3. Percentage of missing data for each station in theGSDR.Continental/regionalmaps can

be found in appendix B.

FIG. 4. The number of stations with.30 years of data by country

available in the GSDR. The countries are represented by the In-

ternational Organization for Standardization alpha-2 codes.2

2 https://www.iso.org/obp/ui/#search.
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The dataset presented here provides a platform for

future development by the larger scientific community

and policy makers. In particular, it should be supported

and maintained by a global organization, preferably an

NHMS, with efforts made to ensure that data licenses

make the raw data itself available to researchers in the

future, to further scientific understanding. This would

align with the goals outlined in Thorne et al. (2017) to

harmonize surface meteorological holdings across es-

sential climate variables and time scales, and in time be

open and free from usage restrictions. Work toward

such a goal is underway within the Copernicus Climate

Change Service framework (https://climate.copernicus.eu/

global-land-and-marine-observations-database). INTENSE

will endeavor to provide as much support with this as

possible and are taking steps to find a suitable organiza-

tion to continue the work of this project. This highlights a

wider problem that needs to be addressed with regard to

the maintenance of datasets that are developed by spe-

cific funding. In the meantime, future work from the

INTENSE project will produce indices of extreme sub-

daily rainfall, similar to those already available at daily

time scales, such as the Expert Team on Climate

Change Detection and Indices (ETCCDI) Climate

Change Indices (Zhang et al. 2011; Donat et al. 2013a).

These will be made freely available to the academic

community through the CLIMDEX (www.climdex.

org) platform. INTENSE is also working closely with

the convection-permitting model community to provide

a set of climatemodel relevant evaluationmetrics at sub-

daily scales.

The GSDR provides a new, invaluable resource to

Earth scientists, as expanding the availability of global

sub-daily precipitation data will improve our capacity to

address significant research questions associated with

variability and trends in intense rainfall and its associated

impacts. Furthermore, coupled with information derived

from the new generation of convection-permitting climate

models (e.g., Kendon et al. 2014, 2017), such data provide

the potential to increase our understanding of how large-

scale dynamics interact with local-scale thermodynamics

(Pfahl et al. 2017) as drivers of intense rainfall in a

changing climate.

5. Data availability

The subset of GSDR that can bemade freely available

(marked as ‘‘open’’ in Table A2) will shortly be hosted

by the Global Precipitation Climatology Centre at

Deutsche Wetterdienst and available through the Co-

pernicus Climate Change Service Climate Data Store.

Until then, the data can be obtained from the authors.
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APPENDIX A

Data Sources

Table A1 summarizes the sources and availability of

data from countries that were contacted by the INTENSE

project. Table A2 focuses on those countries where sub-

daily rainfall data were available and collected by the

INTENSE project.
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TABLE A1. Known data availability of countries contacted by INTENSE. The ‘‘exists’’ column indicates the known existence of sub-daily

rainfall data. NR indicates that the country was contacted but we received no response.

Country/region

Number of

gauges Source Exists (access)

Included

in dataset Notes

Antigua and

Barbuda

1 — Yes (open) No 6 h only

Australia 2019 Bureau of Meteorology (BOM) Yes (restricted) Yes

Austria 4 Zentralanstalt für Meteorologie und Geodynamik

(ZAMG)

Yes (restricted) No

Bahamas — — NR No

Bangladesh — Bangladesh Meteorological Department (BMD) Yes (restricted) No

Belgium 85 Wallonia, Flanders Yes (open) Yes

Bermuda 1 Bermuda Weather Service Yes (restricted) No

Brazil 33 Instituto Nacional de Meteorologia (INMET), Agência

Nacional de Águas (ANA)

Yes (restricted) Yes

California 27 California Met Office Yes (restricted) No

Canada 77 Environment and Climate Change Canada Yes (restricted) No 6 h only

Caribbean — Caribbean Institute for Meteorology and Hydrology

(CIMH)

NR No

China — — Yes (restricted) No Will

participate

but not

release

data

Colombia — National University of Colombia, Medellín
(UNALMED), National Center for Atmospheric

Research (NCAR)

Yes (restricted) No

Cook Islands — — NR No

Costa Rica 9 ICE Yes Yes

Czech Republic — Faculty of Environmental Sciences, �Ceská Zem�ed�elská
Univerzita (FZP)

Yes (restricted) No Will

participate

but not

release

data

Denmark — Danish Meteorological Institute (DMI) Yes (restricted) No Prohibitive

cost

Dominica 2 Dominica Met Office Yes (restricted) No

Ecuador — Instituto Nacional de Meteorología e Hidrología
(INAMHI)

NR No

El Salvador — — Yes (restricted) No

Fiji 2 Ministry of Infrastructure and

transport

Yes (restricted) No

Finland 7 Finnish Meteorological Institute (FMI) Yes (open) Yes

France 54 Météo-France Yes (restricted) Yes

Germany 1027 Deutscher Wetterdienst (DWD) Yes (open) Yes

Guyana — — NR No

Haiti — — NR No

Hungary — Országos Meteorológiai Szolgálat (OMSZ) Yes (restricted) No Will

participate

but not

release

data

India — India Meteorological Department (IMD) Yes (restricted) No

Iran — — NR No

Ireland 12 Met Éireann Yes (restricted) Yes

ISD 8356 (useful) Integrated Surface Database (ISD) Yes (open) Yes
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TABLE A1. (Continued)

Country/region

Number of

gauges Source Exists (access)

Included

in dataset Notes

Israel — Israel Meteorological Service (IMS) NR No

Italy 197 Basilicata, Sicily, Renalto, Trento, Liguria Yes (open) Yes

Japan 1793 Japan Meteorological Agency Automated

Meteorological Data Acquisition System

(AMeDAS), Hokudai University

Yes (open) Yes

Kenya — Kenya Met Office NR No

Kiribati — — NR No

Malaysia 206 Malaysian Meteorological Agency, Department of

Irrigation and Drainage

Yes (restricted) Yes

Mexico — Comisión Nacional del Agua (CONAGUA) NR No

New Caledonia

Wallis Futuna

10 Météo-France Yes (restricted) No

New Zealand — National Institute of Water and Atmospheric Research

(NIWA)

Yes (restricted) No

Niue — — NR No

Norway 159 Norwegian Met Office Yes (open) Yes

Panama 14 Panama Canal Authority (ACP), Department of

Hydrometeorology of ETESA (hidromet)

Yes (restricted) Yes

Philippines — — NR No

PNG — — NR No

Portugal 100 Sistema Nacional de Informação de Recursos Hídricos
(SNIRH), Instituto Português doMar e da Atmosfera

(IPMA)

Yes (SNIRH

open; IPMA

restricted)

Yes

Russia — Meteo Russia NR No

SE Asia — Atmospheric Circulation Reconstructions over the

Earth (ACRE)

Yes (restricted) No Daily only

Singapore 40 National Environment Agency (NEA) Yes (restricted) Yes

Slovenia 1 Slovenian Environment Agency (ARSO) Yes (restricted) No Prohibitive

cost

South Africa — South African Weather Service (Weather SA) Yes (restricted) No

Spain 219 Meteorological Service of Catalonia (AWS) Yes (restricted) Yes

Suriname — — NR No

Sweden 131 Swedish Meteorological and Hydrological Institute

(SMHI)

Yes (open) No

Switzerland 270 Meteo Swiss Yes (restricted) Yes

The Netherlands 22 Koninklijk Nederlands Meteorologisch Instituut

(KNMI)

Yes (restricted) No

Tonga — Tonga Met Office NR No

Trinidad and

Tobago

2 Trinidad and Tobago Met Office Yes (restricted) No

Tuvalu — — NR No

United Kingdom 1903 Met Office, Environment Agency (EA), Scottish

Environment Protection Agency (SEPA), Natural

Resources Wales (NRW)

Yes (restricted) Yes

Uruguay — Met Office NR No

United States 6309 National Oceanic and Atmospheric Administration

(NOAA), California Irrigation Management

Information System (CIMIS), United States

Department of Agriculture (USDA)

Yes (open) Yes

Vanuatu — Meteo Vanuatu No No
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TABLE A2. Sub-daily rainfall data collected by INTENSE.

Row labels Number of stations Access Data source

Australia 2019 Restricted BOM (1-min Automatic Weather Station

data and 5-min pluviograph data)

Belgium 85 Open Service Publique de Wallonia

Costa Rica 10 Restricted Geophysical Research Center at the

University of Costa Rica (CIGEFI),

San José, Costa Rica; Tropical

Agricultural Research and Higher

Education Center (CATIE), Turrialba,

Costa Rica; Organization for Tropical

Studies (OTS), San José, Costa Rica

Finland 7 Open FMI

France 17 Restricted Météo-France
Germany 1027 Open DWD

Ireland 27 Restricted Met Éireann
Italy 197 Restricted Meteo Trentino, Servizio Informativo

Agrometeorologico Siciliano,

Autonome Provinz Bozen–Südtirol
Japan 1793 Open Japan Meteorological Agency

Malaysia 206 Restricted Malaysian Department of Irrigation and

Drainage

ISD 8356 Open Integrated Surface Database

Norway 159 Open Meteorologisk Institutt

Panama 14 Restricted ACP

Portugal 100 Open SNIRH, IPMA

Singapore 40 Restricted PUB Singapore’s National Water Agency

Spain 219 Restricted Servei Meteorologic de Catalunya

Switzerland 270 Restricted Meteo Swiss

United Kingdom 1903 Restricted Met Office, EA, SEPA, Natural

Resources Wales

United States 6309 Open National Centers for Environmental

Information
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APPENDIX B

Continental Maps

Figures B1–B4 indicate the real record length for

stations in Australia, the United States, Europe, and

Southeast Asia, respectively. Figures B5–B8 show the

percentage of missing data for the stations in these

regions.

FIG. B3. As in Fig. B1, but for Europe.

FIG. B2. As in Fig. B1, but for the United States.

FIG. B1. Real record length [record length 3 (1 2 fraction of

missing data)] of stations for Australia. Record length refers to the

period between the first and last recorded values.
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FIG. B5. Percentage of missing data for each station in Australia.

FIG. B4. As in Fig. B1, but for Southeast Asia.

FIG. B6. As in Fig. B5, but for the United States.
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