ISSN: 2181-3337 | SCIENTISTS.UZ INTERNATIONAL SCIENTIFIC JOURNAL SCIENCE AND INNOVATION ISSUE DEDICATED TO THE 80TH ANNIVERSARY OF THE ACADEMY OF SCIENCES OF THE REPUBLIC OF UZBEKISTAN

ОПРЕДЕЛЕНИЕ БАКТЕРИАЛЬНОГО РАЗЛОЖЕНИЯ ПЕСТИЦИДА ЦИПЕРМЕТРИН

¹Косимов Диёрбек, ²Зайнитдинова Людмила, ³Мавжудова Азиза, ⁴Эргашев Рустамбек

 1,2,3,4 Институт микробиологии АН РУз

https://doi.org/10.5281/zenodo.8366633

Аннотация. В этой статье был изучен процесс бактериального разложения пестицида циперметрин. Выделены 9 бактериальных изолятов, среди них отобран один изолят, который накапливал высокую биомассу на среде с пестицидом. Данная бактерия была идентифицирована на основе метода Малди-Тоф как Ochrobactrum intermedium. Исследования по бактериальному разложению циперметрина проводились на стерильных почвах в течение месяца. Полученные результаты показали, что эта бактерия полностью разлагала исходнык концентрации циперметрина (20 мг/кг и 40 мг/кг почвы).

Ключевые слова: Ochrobactrum intermedium, микроорганизмы, разложение, циперметрин, пестицид.

Abstract. In this article, the process of bacterial degradation of the pesticide cypermethrin was studied. 9 bacterial isolates were identified, among them one isolate was selected, which accumulated a high biomass in pesticide media. This bacterium was identified based on the Maldi-Toph method which belongs to the species Ochrobactrum intermedium. Studies on bacterial degradation of cypermethrin were carried out in sterile soils for a month. The results obtained showed that this bacterium completely decomposed the initial concentrations of cypermethrin (20 mg/kg and 40 mg/kg soil).

Keywords: Ochrobactrum intermedium, bakteria, degradation, cypermethrin, pesticide.

Введение. Серьезной экологической проблемой является загрязнение сельскохозяйственных почв пестицидами. Несмотря на то, что в последнее время стали в большинстве случаев применять новые поколения пестицидов, которые менее токсичны и разлагаются быстрее, проблема остается открытой.

Одним их пестицидов нового поколения является циперметрин – синтетический пиретроидный инсектицид. Пиретроиды представляют собой инсектициды широкого спектра действия [1]. Чрезмерное и широкие использование [2] пиретроидов подавляют функционирование канала хлорид-иона у бактерий, управляемого гамма-аминомасляной кислотой (ГАМК) [3]. Бактерии и грибы обладают большим потенциалом биоразложения широкого спектра пиретроидов [4]. Циперметрин является перитроидом II типа [1], впервые он синтезирован в 1974 году [5]. В сравнении с перитроидами І типа, циперметрин содержит цианогруппу, именно эта группа усиливает их инсектицидные свойства [6]. Он используется в сельском и личных приусадебных хозяйствах для борьбы вредными насекомыми, а также в практике медицинской, санитарной и бытовой дезинсекции для борьбы с вредными и синантропными насекомыми, в том числе для борьбы с муравьями и тараканами [7]. Интенсивное использование циперметрина может вызвать экологический ущерб и неблагоприятное воздействие на здоровье человека и окружающую среду [8]. Самым эффективным способом уменьшить количество ксенобиотиков, в том числе и циперметрина, на данный момент является микробная деградация [9]. Есть данные, что некоторые микроорганизмы, относящиеся к pp. Pseudomonas [10], Micrococcus [11], Serratia [12], Streptomyces [7] и Ochrobactrum [9] разлагают циперметрин.

INTERNATIONAL SCIENTIFIC JOURNAL SCIENCE AND INNOVATION ISSUE DEDICATED TO THE 80TH ANNIVERSARY OF THE ACADEMY OF SCIENCES OF THE REPUBLIC OF UZBEKISTAN

Материалы и методы. *Характеристика почв:* в работе использовалась сероземная почва фермерского поля, на котором в течение многих лет проводили обработку пестицидами. Образцы почв отбирались с глубины около 0-15 см. Предварительно образцы почвы очищали от крупных включений, просеивали через сито из нержавеющей стали диаметром 2 мм и высушивали в лабораторных условиях.

Образцы и реактивы. Стандарт циперметрина (чистота 97%), ацетон хроматографической чистоты и все другие использованные химические вещества и реагенты были чистыми аналитическими и коммерчески доступными. В работе использовался рН-метр Mettler toledo.

Питательные среды. Для выращивания микроорганизмов использовали МПА, МПБ, Минеральную солевую среду (MSM) (рН 6,8-7,0), содержащую (г/л): K_2HPO_4 -1,5; KH_2PO_4 -0,5; NaCl 0,5; (NH_4) $_2SO_4$ - 0,5; $MgSO_4$ ·7 H_2O - 0,2 и 1 мл раствора микроэлементов. Раствор микроэлементов состоял из (г/л): H_3BO_3 − 5,0; Na_2MoO_4 x $2H_2O$ −5,0; $MnSO_4$ x $4H_2O$ − 3,0; KI − 0.5; NaBr − 0.5; $ZnSO_4$ x $7H_2O$ − 0.2; $Al_2(SO_4)$ 3 x $18H_2O$ − 0.3.

Хроматографическое определение. Исследование было выполнено на газовом хроматографе Agilent 8890B с испарителями с делением и без деления потока, который использовался вместе с ГХ-МС Agilent серии 5977B в режимах SIM, SCAN и ионизации электронным ударом (ЭУ).

Результаты и их обсуждение. В процессе исследований были выделены более 9 изолятов, способных к росту на среде с (10 мг/кг почвы) циперметрина. Методом постепенного увеличения концентрации для дальнейших исследований был отобран один чистый изолят который способен расти при концентрации циперметрина до 40 мг/кг почвы. В лабораторных условиях изучены морфолого-культуральные и физиолого-биохимические свойства (рисунок 1).

Рисунок 1. Рост на среде МСМ с циперметрином (1) и Грамм окрашивание суточной культуры (2) (ув. х1000)

А также проведен анализ Малди-Тоф который показал, что данный штамм относятся к виду *Ochrobactrum intermedium*.

Биоразложение пестицидов в почве. В процессе биодеградации пестицидов микроорганизмы-деструкторы используют субстрат в качестве единственного источника энергии. Благодаря биохимическому потенциалу микроорганизмов исходная молекула пестицида расщепляется до более простых соединений. Лабораторные эксперименты по биоразложению циперметрина поводились в течение 30 суток на стерильных почвах с добавлением штамма Ocrobactrum intermedium. Для поддержания влажности (60%) каждые 3-4 сутки образцы испытуемых почв орошались стерильной дистиллированной водой. Почвенные пробы отбирались на 0, 10, 20, 30 сутки для хроматографического анализа (рисунок 2).

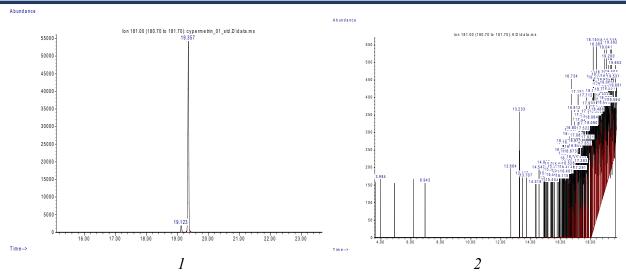
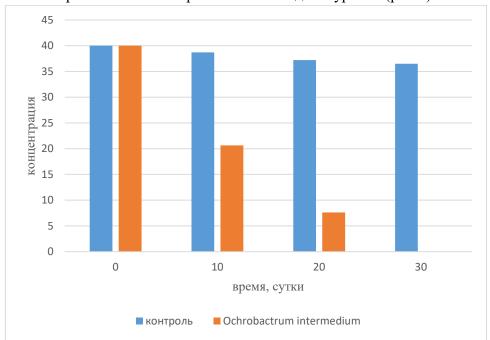



Рисунок 2. 1 – Хроматограммы циперметрина; а – исходная; б – через 30 дней Результаты хроматографических анализов показывают, что концентрация пестицида в опытных вариантах со временем снижается и на 30 сутки падает до 0, тогда, как в контрольном варианте остается практически на одном уровне (рис.3).

Рисунок 3. Динамика разложения циперметрина штаммом Ochrobactrum intermedium

Результаты лабораторных исследований по биоразложению циперметрина (до 40 мг/кг почвы) показали, что отобранный нами бактериальный штамм полностью разлагает этот пестицид. Эти данные свидетельствуют, что в дальнейшем можно использовать штамм *Ochrobactrum intermedium* для биоремедиации почв, загрязненных пестицидом циперметрин.

Заключение. Загрязнение почв пестицидами, помимо вреда для человека и окружающей среды, также приводит к ухудшению жизнедеятельности почвенных микроорганизмов, что значительно снижает способность почв к самоочищению за счет функционирования природных культур. В то же время, биодеградация пестицидов микроорганизмами представляет собой наиболее дешевый, эффективный и экологически

INTERNATIONAL SCIENTIFIC JOURNAL SCIENCE AND INNOVATION ISSUE DEDICATED TO THE 80TH ANNIVERSARY OF THE ACADEMY OF SCIENCES OF THE REPUBLIC OF UZBEKISTAN

чистый способ удаления токсичных загрязнителей из окружающей среды [13, 14]. Известно также, что для некоторых микроорганизмов пестициды, а также продукты их распада являются смертельно опасными, тогда как другие обладают уникальной способностью использовать пестициды в качестве единого источника углерода. Поиск и выделение таких микроорганизмов является сложным, но важным для ремедиации способом. В результате наших исследований получен активный штамм микроорганизмов, который способен за короткий период полностью разрушать такой пестицид, как циперметрин. Это открывает большие перспективы для использования данных микроорганизмов в целях биоремедиации почв, загрязненных пестицидами.

REFERENCES

- 1. Bhatt P, Huang Y, Zhan H and Chen S (2019) Insight into Microbial Applications for the Biodegradation of Pyrethroid Insecticides. Front. Microbiol. 10: 1778.doi: 10.3389/fmicb.2019.01778.
- 2. Kuivila, K. M., Hladik, M. L., Ingersoll, C. G., Kemble, N.E., Moran, P.W., Calhoun, D. L., et al. (2012). Occurrence and potential sources of pyrethroid insecticides in stream sediments from seven U.S. metropolitan areas. Environ. Sci. Technol. 46, 4297–4303. doi: 10.1021/es20448.
- 3. Bradberry, S. M., Cage, S. A., Proudfoot, A. T., and Vale, J. A. (2005). Poisoning due to pyrethroids. Toxicol. Rev. 24, 93–106. doi: 10.2165/00139709-200524020-00003.
- 4. Xu, H., Li, W., Schilmiller, A. L., Eekelen, H. V., de Vos, R. C. H., de Vos, R. C. H., et al. (2019). Pyrethric acid of natural pyrethrin insecticide: complete pathway elucidation and reconstitution in Nicotiana benthamiana. New Phytol. 223, 751–765. doi: 10.1111/nph.15821.
- 5. R. Balagurunathan et al /International Journal of ChemTech Research, 2018,11 (05): 509-520.
- 6. Proudfoot, A. T. (2005). Poisoning due to pyrethrins. Toxicol. Rev. 24, 107–113. doi: 10.2165/00139709-200524020-00003.
- 7. Lin Q., Chen, S., Hu, Yang, L., Li, H. 2011. Biodegradation of cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge. Int. J. Environ Sci. Tech. 8: 45–56.
- 8. Pascual, J.A., Peris, S.J. 1992. Effects of forest spraying with two application rates of cypermethrin on food supply and on breeding success of the blue tit (Parus caeruleus). Environ. Toxicol. Chem. 11(9): 1271–1280. http://dx.doi.org/10.1002/etc. 5620110907.
- 9. Indratin, et al Degradation of Cypermethrin by Indigenous Bacteria from Contaminated Soil Makara Journal of Science, 23/4 (2019, 210-216 doi: 10.7454/mss. v23i4.7998.
- 10. Jilani, S., Khan, M.A. 2006. Biodegradation of cypermethrin by Pseudomonas in a batch activated sludge process. Int. J. Environ. Sci. Technol. 3:371–380.
- 11. Tallur, P.N., Megadi, V.B., Ninnekar, H.Z. 2008. Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 19: 77–82. http://dx.doi.org/10.1007/s10532-007-9116-8.
- 12. Zhang, C., Jia, L., Wang, S.H., Qu, J., Xu, L.L., Shi, H.H., Yan, Y.C. 2010. Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity. Bioresource Technol. 101: 3423–3429.
- 13. Singh BK (2009) Organophosphorus-degrading bacteria: Ecology and industrial applications. Nature Rev Microbiol 7: 156–163.

ISSN: 2181-3337 | SCIENTISTS.UZ INTERNATIONAL SCIENTIFIC JOURNAL SCIENCE AND INNOVATION ISSUE DEDICATED TO THE 80TH ANNIVERSARY OF THE ACADEMY OF SCIENCES OF THE REPUBLIC OF UZBEKISTAN

14.	Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 168: 400–405.