
  

Abstract—Pilots of modern combat aircrafts are exposed to 

the devastating effects of high acceleration forces. The pilots’ 

ability to perform tasks under these extreme flight conditions 

must be examined. For the purpose of pilot training, a centrifuge 

flight simulator for pilot training is designed as a 3DoF 

manipulator with rotational axes. Through rotations about these 

axes, acceleration forces that act on the aircraft pilots are 

simulated. The centrifuge flight simulator must achieve velocity, 

acceleration and acceleration rates (jerks) of the pilot through 

rotation of its arm. A constant increase/decrease in the 

acceleration force acting on a pilot is required according to 

specifications. To prevent the abrupt change in the arm angular 

velocity before and after the desired linear change in the 

acceleration force, smoothing of the acceleration force profile 

through arm motion is necessary. The roll and pitch angles (the 

angles of the second and the third link) and the arm angular 

velocity define the orthogonal components of the resultant vector 

of the acceleration force that are experienced by the simulator 

pilot. The determination the arm angular velocity and angular 

acceleration profiles and the roll and pitch angles needed for 

achieving the desired acceleration force components of the 

centrifuge flight simulator is presented in this paper.  

 

Index Terms—Centrifuge flight simulator, Acceleration force 

profile, Roll and pitch angles 

I. INTRODUCTION 

Modern thrust-vectored jet aircraft have the capability of 

developing multi-axis accelerations, especially during the 

performance of "super-manoeuvres" [1-3]. These "agile" 

aircraft are capable of unconventional flight with high angles 

of attack, high agile motions with thrust-vectored propulsion 

in all 3 aircraft axes, rotations around those axes and 

acceleration forces of up to G = 9 g (g is Earth’s acceleration), 

with acceleration rates (jerk) of up to dG/dt = 9 g/s [4,5]. The 

connection between the jerk and the movements of the human 

body is shown in [6–10]. Hence, the destructive effects of the 

high acceleration forces and the rapid changes of these forces 

on the pilot’s physiology and the ability to perform tasks 

under these flight conditions must be tested. A human 

centrifuge is used for the reliable generation of high G onset 

and offset rates and high levels of sustained G, to test the 

reactions and the tolerances of the pilots. Within aerospace 

engineering, an acceleration force G=a/g, 2 2 2 1 2( g )= + +n ta a a  

is the magnitude of the total acceleration acting on the pilot. It 
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correlates with total inertial effects experienced by the 

simulator pilot; an is normal, and at is tangential acceleration. 

G force is dimensionless, but, it is typically expressed in unit 

of “g.” Thus, an acceleration a of, for example, 98.1 m/s2 is 

given with G = 10 g. 

The centrifuge (Fig. 1) has the form of a three degree-of-

freedom (3DoF) manipulator with rotational axes, where the 

pilot’s head (or chest for some of the training) is considered to 

be the end-effector [11,12,13]. The arm rotation around the 

vertical (planetary) axis is the main motion that achieves the 

desired acceleration force. The centrifuge flight simulator 

(CFS) must achieve velocity, acceleration and jerk of the pilot 

through suitable rotations of the centrifuge arm about this 

axis. The arm carries a gimballed gondola system, with two 

rotational axes providing pitch and roll capabilities. The roll 

axis lies in the plane of the arm rotation, perpendicular to the 

main rotational axis, i.e., in the x-axis direction. The pitch (y) 

axis is perpendicular to the roll axis. A similar centrifuge, 

driven by three hydraulic actuators, is described in [15]. In 

[16,17], another realisation of the centrifuge is described. Its 

second axis is perpendicular to the first axis and is along the 

horizontal line when the centrifuge is in a neutral position. 

The task of the roll and pitch axes is to direct the acceleration 

force into the desired direction. It is considered that the pilot’s 

head (chest) is placed in the intersection of the gondola’s roll 

and pitch axes. In this way, the centrifuge produces the 

transverse Gx, lateral Gy and longitudinal Gz acceleration 

forces and the roll ˆx , pitch ˆ y  and yaw ˆ z  angular 

velocities to simulate the aircraft’s acceleration forces and 

angular velocities. Fig. 2 shows these acceleration force G 

components. The three main axes of the coordinate frame 

attached to the human body are: the x axis, which extends 

from the face to the back, the y axis, which extends from the 

pilot’s right to the pilot’s left side, and the z axis, which 

extends from the head to the pelvis. 

 

 

Fig. 1. Centrifuge with 3 degrees of freedom. 
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The presented CFS is aimed not only at improving +Gz 

tolerance but also at the combined Gy/Gz and Gx/Gz exposure. 

Multi-axis sustained accelerations can either enhance or 

reduce the +Gz tolerance of the pilot, depending on the 

direction of the net gravitoinertial force. Gy acceleration in 

conjunction with Gz acceleration can enhance G tolerance. Gx 

acceleration in addition to Gz acceleration can reduce the G 

tolerance [3]. 

 

 
 

Fig. 2. The transverse, lateral and longitudinal acceleration force components 

Gx, Gy and Gz, which act on the pilot in the simulator. 

 

Although the centrifuge is capable of generating 

acceleration forces of up to 15 g for materials testing 

purposes, forces that are less than or equal to 9 g are used for 

pilot training. 

Reference [13] shows a control algorithm which includes a 

simulation of the inertial loads that were exerted on the pilot 

during flight. This approach allows for virtual centrifuge 

prototyping and analysis of the interaction between the engine 

control, the simulation of inertial forces acting on the pilot 

and the structure of the centrifuge. A similar algorithm for a 

spatial disorientation trainer is presented in [14]. A virtual 

simulator of the CFS, used for testing and verification of 

presented control algorithms, is described in [18]. 

 The calculation of the acceleration forces that act on the 

pilot in the gondola and required link angles for the second 

and the third axis of the centrifuge is given in Section II. 

Calculation of the angular acceleration of the centrifuge arm 

1q , the smoothing of acceleration force G profile and the 

control algorithm of the centrifuge movement are given in 

Section III. Verification of the results obtained using the 

proposed control algorithm is presented in Section IV. Finally, 

concluding remarks are given in Section V. 

II. ACCELERATION FORCE COMPONENTS AND ROLL AND PITCH 

LINK ANGLES 

A. Forward kinematics of the centrifuge 

The coordinate frames for the centrifuge links are depicted 

on Fig. 3. The base is denoted by 0, the arm by 1 (arm length 

a1=8 m), the roll ring by 2 and the gondola by 3. The arm 

rotation angle is denoted by q1=, the roll ring rotation angle 

by q2= and the gondola rotation angle (pitch) by q3=. The 

roll axis rotation range is ±180 and the pitch axis rotation 

range is ±360. The centrifuge base coordinates are denoted 

by x0y0z0, the arm coordinates by x1y1z1 (link 1), the roll ring 

coordinates by x2y2z2 (link 2), the gondola coordinates by 

x3y3z3 (link 3) and the pilot coordinates by xyz. Here, x3=x, 

y3=y and z3=z. The homogenous transformation matrices 

(HTM) for the relation between the centrifuge link coordinate 

frames are as follows: 
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Herein the convenient shorthand notation, sin( )i iq s= , 

cos( )=i iq c , i=1,2,3 is used. The forward kinematics that is 

related to the robot geometry is used to calculate the position 

and orientation of the links and end-effector (in this case, the 

pilot’s head/chest) with respect to the centrifuge variables q1, 

q2 and q3. It is determined from the following matrices: 

 

 
 
Fig. 3. Coordinate frames of the 3-axis centrifuge links. 
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(3) 

 

B. Calculation of the simulator pilot acceleration force 

components 

Fig. 4 shows coordinate frames, angles, angular velocities 

and acceleration forces of the centrifuge. 

 The linear acceleration experienced by the simulator pilot 

at the intersection point of the roll and pitch axes is: 

   
2 2

1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 0    = = = = + −    v v v
TT

x y zv v v a s c c s (4) 
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Fig. 4. Coordinate frames, angles, angular velocities and acceleration forces 

of the centrifuge. 

 

Based on (4) for q1=0 and adding the gravitational 

acceleration g, the orthogonal components Gn, Gt and Gv for 

the normal (radial), tangential and vertical acceleration force 

G components, respectively, that are experienced by the 

simulator pilot are the following: 

 

 

2

0 1 1

0 1 1

0

1

1





−       
      = = − = −      
      − − −      

x n n

y t t

z v

G a a g G

G a a g G
g

G g G
                  

(5) 

 

The link angles q2= and q3= and the angular velocity 
1q  of 

the arm define the orthogonal components Gx, Gy and Gz of 

the resultant vector G that are experienced by the simulator 

pilot. Based on (3) and (5), the resultant vector G is: 

 

    1

3 0 0 0

T T

x y z x y zG G G G G G−= =G D
              

(6) 

 3 0 2 2 0 3( )x x yG s G s c G c= + −
                          

(7) 

 0 2 2y xG G c s=− +
                                    

(8) 

 3 0 2 2 0 3( )z x yG c G s c G s= + +
                          

(9) 

 

Matrix D3 in (6) is the rotational matrix part of (3). Angles 

q1=, q2= and q3= and their derivatives define the roll, 

pitch and yaw angular velocities of ̂x , ̂y
 
and ̂z , which 

are experienced by the simulator pilot; they are given as 

follows (for q1=0): 

 

 

2 3 1 2 3
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3 3 3 1 2

2 3 1 2 3
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              (10) 

 

C. Calculation of the centrifuge roll and pitch angles 

The centrifuge roll angle is calculated by (8), which uses 

the given lateral force Gy, in the following way: 

 

 2 2 1 2 2
2 0 0atan 2( (1 ) ,1 )= = + − + −x y y x yq G G G G G         (11) 

 

If 0yG  and 2 1yG  , then 
2 2q q = + . The roll angle can be 

calculated only if 2 2
0 1+ x yG G .

 
Otherwise, it is not possible to 

achieve the given lateral force Gy. For Gy=0, (11) yields: 

 

 2 0atan2( ,1)xq G= =                           (12) 

 

 Equations (7) and (9) show that it is not possible to 

achieve both of the given Gx and Gz forces, even when they 

are in the allowed ranges. As a result, the centrifuge pitch 

angle is calculated by (7), using the given transverse force
 
Gx, 

or by (9), using the given longitudinal Gz force. Equation (7) 

yields: 

 

 
2 2 2 1 2 2 2

3 0 0atan2( ( ) , )y x y x xq G b G b G G b G= = + + − −       (13) 

 

where 0 2 2xb G s c= + . If 
2 2 2

0y xb G G+  , then it is not possible to 

achieve the given transverse force Gx. For Gx=0, (12) yields: 

 

 3 0atan 2( , )yq G b= =                          (14) 

 

Equation (9) yields the following: 

 

 2 2 2 1 2 2 2

3 0 0 0atan2( ( ) , )y z y z z yq G d G b G G G G= = − + − −      (15) 

 

If 0zG   and 2 2
0z yG G , then is 3 3q q = − . If 2 2 2

0+ y zb G G , then 

it is not possible to achieve the given longitudinal Gz force. 

Basic pilot training implies that Gz=G (Gx=0 and Gy=0). As a 

result, the roll and pitch angles are given by (12) and (14). 

III. THE CONTROL ALGORITHM OF THE CENTRIFUGE 

MOVEMENT 

A. Calculation of the arm angular acceleration 
1q  

 Equation (5) gives the resulting acceleration force that is 

experienced by the simulator pilot at the intersection point of 

the roll and pitch axes (herein q1=0 for simplicity, because G 

does not depend on the position of the CFS arm) as a function 

of the angular velocity and acceleration of the centrifuge arm, 

which is: 

 

2 2 2 1 2
0 0 0

2 2 2 1 2 2 4 2 2 1 2
1 1 1

( )

1 1
( g ) [ ( ) g ]

g g

= + +

= + + = + +

x y z

n t

G G G G

a a a q q

        

(16)

 

 

According to the requirement that the increase in the 

acceleration force G should be constant and equal to nd, the 

following is valid:
 

= ddG dt n , which yields 

2 4 2 2 1 2
1 1 1([ ( ) g ] ) g+ + = dd a q q n dt . If we assign the resulting 
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acceleration with a = G g, then the previous equation will be: 

 

 
2 4 2 2 1 2
1 1 1([ ( ) g ] ) g= + + = dda d a q q n dt                (17) 

 

The previous differential equation does not have a solution in 

closed form.  

In each interpolation period, the robot controller 

determines a constant angular velocity of each motor link. An 

interpolation period of t=0.005 s is adopted here. During this 

period, the servo system of the controller compares (every 

0.001 s) the given and achieved motor rotor positions and 

corrects rotor angular velocities with the aim of keeping them 

constant within this period. Based on these observations, an 

approximated solution from (17) using a discretisation 

technique is obtained in the following manner. Differential 

equation (17) is solved for each interpolation period t. For 

the desired rate of change of acceleration g  = da t n , the 

acceleration a will first be calculated on the basis of this 

acceleration in the previous interpolation period, aprev, in the 

following way: 

 

 = +preva a a , g = da n t
                   

(18) 

 

If we assign the
 
angular velocity of the centrifuge arm in the 

previous
 
interpolation period with 1prevq , we obtain:

 

 

 1 1 1= + prevq q q t       
                     

(19) 

 

If we substitute 1q , calculated in this manner, into the 

equation 2 2 4 2 2 2
1 1 1 1 g= + +a a q a q  and neglect the terms with t3 

and t4, the following equation for calculating the centrifuge 

arm acceleration is obtained:  
 

 

 

3 1 2
1

1 2 2
1

2

1 6

−  +
=

+ 

prev

prev

q t d
q

q t
                       

(20) 

 2 2 2 2 2 6 2 4
1 1 1 1(1 6 )( g ) 2= +  − −  −prev prev prevd q t a a q t q  

 

The previous equation is valid for the movement that has a 

positive acceleration onset. For the movement that has a 

negative acceleration onset, the discriminant d is mostly 

negative, which means that this equation cannot be used 

directly. In that case, a simple solution is used, in which the 

values of 1q  for the positive acceleration onset n of the same 

magnitude are reversed. Solving (17) for every interpolation 

period in the form of Jacobi elliptic integrals gives less precise 

solution [19]. 

B. Smoothing the acceleration force G profile 

While a normal acceleration 2
1 1=na a q  and gravity g act 

all of the time during the centrifuge movement, the tangential 

acceleration 1 1=ta a q  does not act during the movement that 

has a constant load G. The transition from a varying to a 

constant acceleration causes an abrupt increase in 1q , while 

the transition from a constant to a varying acceleration causes 

the abrupt decrease in 1q . The abrupt change in 1q  causes an 

abrupt change in q2 (which can be seen from (11) and (12)) 

and a very large value of 1q , which causes an abrupt change 

in q3; these relationships can be seen from (13) and (14). To 

prevent the abrupt change in 1q , it is adopted that before and 

after the given linear change in G, i.e., acceleration a, there is 

a period of smoothing of the acceleration curve. The change in 

the acceleration has three different stages. Within the first 

period, smoothing is performed in such a way that the 

acceleration onset n changes linearly from 0 to a given value 

(jounce, or snap – the rate of change of the jerk with respect to 

time). Afterward, there is a period in which there is a constant 

acceleration rate. Within the third period, smoothing is 

performed in such a way that the acceleration onset n changes 

linearly to zero (snap). Thereafter, the total acceleration 

change is denoted by ae - as, where as is the initial value of the 

acceleration, and ae is the desired acceleration value. The 

percentage of the linear acceleration change part to the total 

acceleration change is denoted by cac. This part varies 

depending on the size of the absolute value of ae - as. Here, 

cac=0.12 for abs(ae - as)<1.59 g, and cac=0.8 for abs(ae - 

as)>10.59 g. If 1.59 g<abs(ae - as)<10.59 g, then cac changes 

linearly from 0.12 to 0.8. Within the smoothing algorithm, it 

is necessary to determine the following parameters: Na, which 

is the number of interpolation periods in the starting or ending 

stage of the G load change; Nc, which is the number of 

interpolation periods for nd=const; n, which is the desired 

acceleration rate of change after discretisation of (17) and 

ignoring the terms with t3 and t4; and n, which is the 

increase/decrease of n in one interpolation period at the 

starting or ending stage of the acceleration change. If we 

assign sign(ae - as)=1 if a increases and sign(ae - as)=-1 if a 

decreases, then these parameters will be calculated in the 

following way: 

 

 ( ) ( )= − c ac e s dN c a a n g t
                      

(21) 

 ( ) [( ) ( ) ( ) ] 1= − −  − − −a e s e s d e s cN sign a a a a n g t sign a a N

 

(22) 

  = d an n N
                                

(23) 

 
( ) ( ) ( 1)

(2 )

− − − + + 
=

+ 

e s e s a c d

a c

sign a a a a N N n g t
n

N N g t
       

(24) 

 

Even though the acceleration profile is smoothed, in 

transitions from a varying to a constant acceleration a (i.e., G 

and the angular velocity 1q  of the centrifuge arm), in the first 

interpolation period after the transition, a small tangential 

acceleration appears. This appearance affects the acceleration 

load G, which has already been achieved. To nullify these 

effects, it is necessary to make a small correction in the 

angular velocity 1q , which gives a new angular acceleration 
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1 1 1( )= − prevq q q t  of axis 1. The motor of this axis can 

achieve a desired angular velocity 1q  in one interpolation 

period. However, with regard that angle 3q , depends on 1q , 

(13) and (14), there could be an abrupt pitch rotation of the 

cockpit. To avoid this rotation, an algorithm is developed that 

yields a smooth approach to the given G load. 

C. Control algorithm 

First, Nc, Na, n and n are calculated with (21), (22), (23) 

and (24), respectively. Then, the centrifuge kinematic 

parameters are calculated in three phases. For the positive 

acceleration onset in the first phase, the onset of the centrifuge 

inertial force (jerk =a/t) increases linearly from zero to the 

programmed value. In the second phase, this force increases 

linearly (n=const), and in the third stage, the onset of this 

force decreases linearly from the programmed value to zero. 

In the first and third phases, smoothing of the acceleration 

force profile is performed. For the deceleration motion, the 

smoothing is performed vice versa. These three phases of the 

centrifuge control algorithm are shown below. 

First phase. 

for i=1 to Na { 

= + n n n , ( )= +  = + − prev prev e sa a a a sign a a n g t ; 

Step 1. Calculation of 1q  by (20) for the positive 

acceleration onset or the reading of the array 

1 1( [2 ])= − + −a cq array q N N i  for the negative 

acceleration onset; 

Step 2. Calculation of the desired and maximal possible 

value of 1q  and the modified values of 1q  and 1q  

(out of the scope of this paper); 

Step 3. Calculation of 2q  by (11) or (12) and 3q
 
by (13) or 

(14), and ( )= − i i iprevq q q t , ( )= − i i iprevq q q t , i =2,3; 

Step 4. Calculation of the desired and maximal possible 

values of 2q  and 3q , and the corrected values for 2q , 2q , 

3q  and 3q  (out of the scope of this paper); 

i iprev iq q q t= +  ,
 i iprev iq q q t= +  , iprev iq q= , iprev iq q= , 

i =1, 2, 3. } 

Second phase.  

 for i=1 to Nc { 

( )= +  = + − prev prev e sa a a a sign a a n g t ; 

Calculating 1q  by (20) for the positive acceleration onset 

or reading the array  1 1( [ ])= − + −a cq series q N N i
 
for the 

negative acceleration onset; The remainder of this phase is 

the same as in the first phase.} 

Third phase. 

 for i=1 to Na { 

    = − n n n , ( )= +  = + − prev prev e sa a a a sign a a n g t ; 

Calculation of 1q  by (20) for the positive acceleration 

onset or reading of the array 1 1( [ ])= − −aq series q N i  for the 

negative acceleration onset; 

The remainder of this phase is the same as in the first 

phase. Steps 2, 3 and 4 are the same as in the first phase.} 

IV. RESULTS: VERIFICATION FOR THE PROPOSED CONTROL 

ALGORITHM 

The proposed control algorithm for the CFS motion was 

tested on the off-line programming system of the robot 

controller developed at the Lola Institute. Gz, Gx and Gy 

acceleration force profiles are provided by this programming 

system. Lola-Industrial Robot Language (L-IRL) is here 

extended with the GMOVE instruction and the additional 

parameters that are required for the centrifuge motion 

programming. The centrifuge movement control algorithm, 

presented above, is also added.  

 

 
 

Fig. 5. Kinematic and dynamic parameters of the CFS motion of the program 

test 1: а) Gr =G, b) Gx, c) Gy, d) Gz [g], e) q2=, f), q3=  [] g) 1 1 = q , h) 

2 2 = q ,  i) 3 3 = q [s-1],  j) 1 1 = q ,  k) 2 2 = q ,  l) 3 3 = q [ s-2]. 

 

Fig. 5 shows kinematic and dynamic parameters for an 

example of the centrifuge motion program. The masses, the 

mass centre coordinates and the principal moments of inertia 

about the link centres of mass in the link coordinate systems 

are given in the Appendix of this paper. In the commanded 

movement the desired transverse Gx and lateral Gy 

acceleration force components are equal to zero (G=Gz), and 

from a comparison of Figures 5a) and 5d) it can be concluded 

that this request is achieved. Herein, Figures 5 а), 5 b), 5 c) 

and 5 d) show G, Gx, Gy and Gz, respectively. It is shown that 

the centrifuge can achieve the mean growth of the acceleration 
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load of dG = 9 g/s in the period of constant acceleration 

change (cac) from the lower baseline level of G = 1.41 g to the 

upper baseline level of G = 15 g. The greatest absolute 

difference between the programmed and realised Gz change is 

0.216 g. During the programmed motion, the deviation of Gx 

was between 0.38 and -0.5 g. There was no deviation in Gy. 

Based on that we can conclude that the calculation of the roll 

and pitch angles and presented control algorithm given in 

Section III are correct. After achieving G = 15 g, CMS 

sustains that acceleration force 0.7 s, and then decrease it with 

the offset of dG = -9 g/s till G = 1.41 g. Figures 5 a) and 5 d) 

depict the remainder of the program.  

Figures 5 e) and 5 f) show the angles q2= and q3=, 

which are obtained with the algorithm presented in subsection 

4.4. Here, q2 is between 0 and 86.2°, and q3 is between 43.6 

and -57.3°. 

Figures 5 g), 5 h) and 5 i) show 1q , 2q  and 3q . It can be 

observed that the presented algorithm limits the values for 

these velocities:
 1q  is not larger than 4.28 s-1, 2q  is between 

1.47 and -1.35 s-1, and 3q  is between 3.98 and -3.98 s-1. 

Figures 5 j), 5 k) and 5 l) show 1q , 2q  and 3q . These 

values are also limited: 1q  is between 3.27 and -3.11 s-2, 2q  is 

between 9.88 and -9.4, and 3q  is between 52.1 and -52.1 s-2.  

V. CONCLUSIONS 

In this paper, a new centrifuge motion simulator for pilot 

training has been presented. This device is modelled as a 

manipulator that has three rotational axes. The centrifuge 

produces the desired transverse Gx, the lateral Gy and the 

longitudinal Gz acceleration forces and the roll, ̂x , pitch, ̂y  

and yaw, ̂z  angular velocities, which simulate the 

acceleration forces and angular velocities that are 

accomplished by state-of-the-art aircraft. 

The algorithm which generates the constant increase in the 

acceleration force acting on a pilot is given in this paper. To 

prevent the abrupt change in the arm angular velocity before 

and after the desired linear change in the acceleration force, 

smoothing of the acceleration force profile through arm 

motion is performed. The calculation of the roll and pitch 

angles of the gondola which have to direct the acceleration 

force into the desired direction is given as well. 

APPENDIX 

The masses, the mass centre coordinates and the principal 

moments of inertia about the link centres of mass in the link 

coordinate systems are: m1=45500, m2=1139, m3=566 and 

m4=250 kg,  1̂ 8.344 0.782 0.002= − −r
Tcm ,  2ˆ 0. 0. 0.004= −r

Tcm , 

 3̂ 0. 0. 0.064=r
Tcm and  4ˆ 0.5 0.005 0.55= −r

Tcm , 1
ˆ 91905=xI , 

1
ˆ 219978=yI , 1

ˆ 243913=zI , 2
ˆ 3243=xI , 2

ˆ 1365=yI , 2
ˆ 2010=zI , 

3
ˆ 666=xI , 3

ˆ 217=yI , 3
ˆ 650=zI , 4

ˆ 47=xI , 4
ˆ 61=yI , 

4
ˆ 46=zI  kgm2. The subscript 4 denotes here the external load. 
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