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Abstract

Computational approaches are practical when investigating putative peroxiso-
mal proteins and for sub-peroxisomal protein localisation in unknown protein
sequences. Nowadays, advancements in computational methods and Machine
Learning (ML) can be used to fasten the discovery of novel peroxisomal pro-
teins and can be combined with more established computational methodologies.
In this chapter, we explain and list some of the most used tools and method-
ologies for novel peroxisomal protein detection and localisation.

Introduction

Advancements in organelle-specific research are possible also thanks to use case-
specific tools such as for sub-peroxisomal and sub-mitochondrial protein local-
isation [IH5]. These tools, nowadays easily accessible and user-friendly, allow
researchers to perform fast and accurate screening while looking for new per-
oxisomal and mitochondrial proteins [IH5]. Alternatively, general methods for
protein sequence localisation can be handy if re-adapted for specific use cases
61 11].
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For example, a general peroxisomal protein search from a given set of FASTA
sequences can start by detecting the predicted subcellular localisation using
DeepLoc-2.0 [6]. After filtering for predicted peroxisomal protein, a researcher
can either look for known Peroxisomal Targeting Signals (PTSs) to further filter
the dataset [3], or retrieve a list of candidates for future analysis or experimental
validations [12].

PTSs are consensus motifs found in many peroxisomal proteins. Specific
receptors recognise a PTS and bind to a region of the peroxisomal protein
[13]. The known PTSs are: 1) PTS1. The PTS1 receptor is encoded by the
PEX5 gene [14] is defined as the final dodecamer with a focus on the terminal
tripeptide [I5]; 2) PTS2. It is an N-terminal targeting signal and its recep-
tor is encoded by the PEXT7 gene (a co-receptor is also involved in the per-
oxisomal import) [16]; 3) mPTS. It is a cis-acting targeting signal specific for
peroxisomal membrane proteins. Its mechanism is still poorly understood [I7].
The algorithms defined in Schiilter et al. (2009) [3] can detect these differ-
ent PTSs, and the PTS1 can now be easily and accurately detected also on
https://organelx.hpc.rug.nl/fasta/compute_in_pts, as described in recent works
[1, 5].

In this chapter, we list a number of practical tools accompanied by specific
use cases and a workflow on how to perform a complete peroxisomal protein lo-
calisation search. The workflow presented here is supported by a service bundle
and a practical study example [I8].

Materials

Use case-specific tools

o PeroxisomeDB. The PEROXISOME DATABASE (PeroxisomeDB) organ-
ise and integrates curated information about peroxisomes. That includes
genes, proteins, molecular functions, metabolic pathways and their related
disorders [3]. Related prediction tools are also available at
http://www.peroxisomedb.org/. In the scope of this chapter, we report
three main tools for different PTSs detection: 1) PTS1 binding sites; 2)
PTS2 binding sites; 3) Pex19BS binding sites. All the three programs
rely on multiple sequence alignments where the input sequence or the in-
put BLOCK is aligned with a predefined BLOCK that contains a specific
category of proteins (e.g. proteins containing PTS1).

e In-Pero. A computational pipeline that discriminates between matrix and
membrane proteins [I]. In-Pero relies on a Support Vector Machine clas-
sifier trained on the statistical representation of protein sequences ob-
tained by combining two deep-learning embeddings (UniRep + SecVec)
[19,20]. In-Pero can be executed locally following the instruction available
at https://github.com/MarcoAnteghini/In-Pero| or on the dedicated web
server available at https://organelx.hpc.rug.nl/fasta/compute_in_pero.
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e In-Mito. A computational pipeline that allows classifying the four sub-
mitochondrial compartments: matrix, internal-membrane, inter-membrane
space and external membrane [I]. In-Mito relies on a Support Vector
Machine classifier trained on the statistical representation of protein se-
quences obtained by combining two deep-learning embeddings (UniRep +
SecVec) [19, 20]. In-Mito can run locally following the instruction avail-
able at |https://github.com/MarcoAnteghini/In-Mito| or on the dedicated
web server available at
https://organelx.hpc.rug.nl/fasta/compute_in_mito.

e DeepMito. A computational method for predicting sub-mitochondrial lo-
calisation based on a convolutional neural network architecture [2]. Given
an input protein, DeepMito can discriminate the four sub-mitochondrial
compartments: matrix, internal-membrane, inter-membrane space and ex-
ternal membrane. DeepMito is available at
http://busca.biocomp.unibo.it/deepmito/.

General tools for subcellular localisation and transmem-
brane detection

e TMHMMZ2.0 and DeepTMHMM. TMHMM?2.0 is a membrane protein topol-
ogy prediction method based on a hidden Markov model (HMM) []]. It
predicts transmembrane helices and discriminates between soluble and
membrane proteins. The tool is available at
https://services.healthtech.dtu.dk/service.php? TMHMM-2.0.
DeepTMHMM is a novel version of the TMHMM predictor. It is the most
complete and currently the best-performing method for the membrane
protein topology prediction [21]. The model encodes the primary amino
acid sequence by a pre-trained language model and decodes the topol-
ogy by a state-space model to produce topology and type predictions.
DeepTMHMM is available at https://dtu.biolib.com/DeepTMHMM.

e Phobius. Combined transmembrane topology and signal peptide predic-
tor [II]. The predictor relies on a HMM that models the different se-
quence regions of a signal peptide and the different regions of a transmem-
brane protein in a series of interconnected states. Phobius is available at
https://phobius.sbe.su.se/

e DeepLoc-2.0 [6]. Multi-localization prediction tool based on a pre-trained
protein language model that uses a three-stage deep learning approach for
sequence classification. 1) The feature representation for each amino acid
in the sequence is generated. 2) Attention-based pooling stage produces a
single representation for the whole sequence. 3) the prediction stage uses
a classifier to output the subcellular labels. DeepLoc-2.0 is available at
https://services.healthtech.dtu.dk/service.php?DeepLoc-2.0

e PSORT. A computer program that predic protein localisation sites in cells
and its last version is WoLF PSORT[7]. WoLF PSORT converts protein
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amino acid sequences into numerical localisation features; based on sorting
signals, amino acid composition and functional motifs. A k-nearest neigh-
bour classifier is used for the final prediction. The webserver is available
at |https://psort.hgc.jp/

e TargetP-2.0. Deep Learning method to identify N-terminal sorting sig-
nals, which direct proteins to the secretory pathway, mitochondria, and
chloroplasts or other plastids [I0]. The method relies on Bi-directional Re-
current Neural Networks (BiRNN) with Long short-term memory (LSTM)
cells and a multi-attention mechanism [22]. TargetP-2.0 is available at
https://services.healthtech.dtu.dk/service.php?TargetP-2.0.

Methods

Peroxisomal protein candidates detection

The workflow for a typical analysis represented as a service bundle is vis-
ible in Figure [I| and also available (with functional links for each tool) at
https://tess.elixir-europe.org/workflows/peroxisomal-candidates-detection. For
an accurate analysis, it is recommended to first look for known PTSs when
available and then proceed with further filtering steps. After the PTS detec-
tion, we can investigate the presence of transmembrane regions in the aminoacid
sequence and filter the results according to the detected PTS. In particular, we
can exclude membrane proteins while checking for PTS1 or PTS2. Afterwards,
if stringent filtering is required, it is recommended to analyse the candidates
with other subcellular localisation tools (see the ‘General tools for subcellu-
lar localisation and transmembrane detection’ section) and remove the proteins
with unexpected predicted localisation.

Alternatively, we can start our analysis directly from the subcellular lo-
calisation prediction and then run the predicted peroxisomal proteins with a
sub-peroxisomal classification tool that does not consider PTS motifs [I]. As
reported in Figure [} after the subcellular localisation prediction, if we obtain
mitochondrial proteins, it is possible to either run DeepMito or In-Mito, while
we can execute In-Pero for the peroxisomal proteins [T, 2]. These tools dis-
criminate the sub-organelle compartments, which are 4 in case of mitochondria
(matrix, internal-membrane, inter-membrane space, external membrane) and 2
in case of peroxisomes (matrix, membrane) [1 2].

As a final step for further validation, selected sequences can be screened for
conservation of the potential PTS1/PTS2 using BLAST (the last version while
writing this chapter is BLAST+ 2.13.0) [23] 24] .

An example of a complete pipeline was performed in the recent work of
Kamoshita et al. (2022) [18]. For simplicity we report here a summarised
computational pipeline: 1) The Danio rerio proteome was downloaded from
UniProt (https://www.uniprot.org/)) [25] and screened for proteins carrying a
PTS1 at the very C-terminus matching the consensus motif [ASCNPHTG]-
[RKHQNSLI]-[LMIVF]; 2) Among 46,848 proteins, 2,638 proteins matching the
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Figure 1: Workflow and Service Bundle of a standard peroxisomal and mi-
tochondrial protein localisation analysis. The workflow starts with the initial
dataset containing protein sequences in FASTA format. The starting point is
the root of the graph ‘Protein sequences’. Each node represents a step of the
analysis. Its associated tools are visible on the left of the node. The workflow
converges in the final node ‘Candidate protein sequences’, where candidate pro-
tein sequences are selected for future analyses or experimental validation.

pattern were identified and filtered for non membrane proteins with TMHMM
Server v. 2.02 [8] (1966 protein left); 3) The 1,966 protein sequences were
further analysed with WoLF PSORT (Package Command Line Version 0.2) [7]
and entries with Endoplasmic Reticulum as possible subcellular localisation were
removed (1,171 sequences left); 4) The identified proteins were further analysed
by PTS1 predictor algorithms [3] and sequences which produced no hit with the
“metazoa” or “general” modus of the software were removed (371 proteins left);
5) Finally, the obtained entries were manually curated, integrating information
from Zebrafish specific datasets and considered for experimental validation.

Protein sequence embeddings for subcellular and sub-peroxisomal
protein localisation

Notes:

1. Most of the tools presented in this chapter are designed for Eukary-
otes. Some of them can be used for prokaryotic organisms as well (e.g.
DeepTMHMM [21]). Note that peroxisomes are only present in Eukary-
otes. We advise the user to check the specifications of each tool in the
original web server or paper.



2. In this chapter, we list some of the available tools for mitochondrial pro-
tein detection. Important components of the organelle division machinery
present a dual localisation (peroxisomal and mitochondrial). Moreover,
both organelles have proven to be in continuous interplay [26]. For an
accurate peroxisomal protein localisation search, it is advised to look into
mitochondrial localisation too.
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