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Abstract
This article shows that the vanishing covariant divergence of the energy-momentum tensor of matter is a conservation
law. In addition, it is pointed out why energy-momentum pseudo-tensors of the gravitational field cannot represent the
energy density of the gravitational field, but, apart from a factor, is described by the Einstein tensor. The necessarily
existing conservation law of total energy, momentum and stress in general relativity is derived, thereby solving the
cosmological constant problem as well as that of dark energy and dark matter. In Newton’s theory of gravitation, it is the
modified Poisson equation that approximately meets the requirement of conservation of total energy. A simple but fairly
accurate model, consistent with observations, is presented, solving the modified Poisson equation to fit the calculated
rotation curves to the observed speeds in spiral galaxies being composed of several components: the central region of
the bulge, the bulge, the disk and dark matter, the latter of which is exactly described by this model.
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1. Matter tensor
By definition, the energy-momentum tensor of matter,

𝑇 𝜇𝜈 = 𝑇
𝜇𝜈

(pf ) + 𝑇
𝜇𝜈

(em) + . . . , (1)

also called the energy-momentum tensor or simply the matter
tensor, consists of all kinds of matter-energy, but does not
comprise the energy of the gravitational field [1, 2]. Herein,

𝑇
𝜇𝜈

(pf ) =
(
𝜚 + 𝑃

𝑐2

)
𝑢𝜇𝑢𝜈 + 𝑃𝑔𝜇𝜈 (2)

is the energy-momentum tensor of a perfect fluid and

𝑇
𝜇𝜈

(em) =
1
𝜇0

(
𝐹𝜇𝛼𝐹𝜈

𝛼 − 1
4
𝑔𝜇𝜈𝐹𝛼𝛽𝐹

𝛼𝛽

)
(3)

is the energy-momentum tensor of the electromagnetic field [3].

https://sites.google.com/site/pjsciencea/


Energy Conservation in General Relativity and Flat Rotation Curves of Spiral Galaxies — 21/27

In special relativity, i.e. in an inertial frame as well as in
a local inertial frame, the vanishing partial divergence of the
matter tensor,

𝜕𝜈𝑇
𝜇𝜈 = 0 , (4)

demonstrates that the sum of all kinds of matter-energy are
conserved [1, 4]. However, Landau and Lifshitz state in § 96
of Ref. [2] regarding the vanishing covariant divergence of the
matter tensor, i.e. Eq. (96.1),

𝑇 𝑘
𝑖; 𝑘 =

1√−𝑔
𝜕 (𝑇 𝑘

𝑖

√−𝑔)
𝜕𝑥𝑘

− 1
2
𝜕𝑔𝑘𝑙
𝜕𝑥𝑖

𝑇 𝑘𝑙 = 0 , (5)

that “in this form, however, this equation does not generally
express any conservation law whatever. Because the integral∫

𝑇 𝑘
𝑖

√−𝑔 𝑑𝑆𝑘 (6)

is conserved only if the condition

𝜕 (√−𝑔 𝑇 𝑘
𝑖
)

𝜕𝑥𝑘
= 0 (7)

is fulfilled, and not (96.1).” Corresponding arguments can
also be found on page 27 of Ref. [3] and in § 126 of Ref. [5].

In contrast, to paraphrase Lavenda in Sec. 3.2 of Ref. [6],
Eq. (7) is not covariant and therefore in general not a condition
for a conservation law, so that the latter in general is not
represented by the integral (6).

In Eq. (20.31) of Ref. [1], Fließbach has applied the
principle of covariance on the vanishing partial divergence of
the matter tensor in a local inertial frame,

𝜕𝜈𝑇
𝜇𝜈 = 0 −→ ∇𝜈𝑇

𝜇𝜈 = 0 , (8)

representing a conservation law.
By performing an infinitesimal transformation of the dy-

namical variables in the change of the matter action given by
Eq. (12.2.2),

𝛿𝐼𝑀 =
1
2

∫
𝑑4𝑥

√︁
𝑔(𝑥) 𝑇 𝜇𝜈 (𝑥) 𝛿𝑔𝜇𝜈 (𝑥) , (9)

Weinberg proves in Sec. 12.3 of Ref. [7] that the vanishing
covariant divergence of the matter tensor (5) represents a
conservation law. He emphasizes that “the energy-momentum
tensor defined by Eq. (12.2.2) is conserved (in the covariant
sense) if and only if the matter action is a scalar. Also, with 𝐼𝑀
a scalar, (12.2.2) shows immediately that 𝑇 𝜇𝜈 is a symmetric
tensor, so this definition of the energy-momentum tensor has
all the properties for which one could wish. This proof, that
general covariance implies energy-momentum conservation,
has an exact analog in the proof that gauge invariance implies
charge conservation.”

Therefore, one must conclude that a conservation law
in general relativity is formed by a tensor, the covariant
divergence of which vanishes [8]. Hence, the matter tensor

is conserved in general relativity contrary to the wording
of Landau and Lifshitz in § 96 of Ref. [2] that “in this
form, however, this equation does not generally express any
conservation law whatever.” But they actually relate this
statement to conservation of total energy by adding that “this
is related to the fact that in a gravitational field the four-
momentum of the matter alone must not be conserved, but
rather the four-momentum of matter plus gravitational field;
the latter is not included in the expression for 𝑇 𝑘

𝑖
.” This is

also why total energy equals matter-energy plus energy of the
gravitational field.

2. Completed field equations
Straumann states in Sec. 3.4 of Ref. [3] that “a general con-
servation law for energy and momentum does not exist in GR.
This has been disturbing to many people, but one simply has
to get used to this fact. There is no ‘energy-momentum tensor
for the gravitational field’. Independently of any formal argu-
ments, Einstein’s equivalence principle tells us directly that
there is no way to localize the energy of the gravitational field:
The ‘gravitational field’ (the connection 𝛤𝜇

𝛼𝛽
) can be locally

transformed away. But if there is no field, there is locally no
energy and no momentum.” Corresponding arguments can
also be found in §20.4 of Ref. [4].

In Newton’s theory of gravitation, the energy density of
the gravitational field amounts to

𝜀gf (r) = − [∇Φ(r)]2

8𝜋𝐺
. (10)

However, in the Poisson equation,

ΔΦ(r) = 4𝜋𝐺𝜚(r) , (11)

there does not appear the energy density of the gravitational
field, but only the mass distribution on the right-hand side as
a source of gravitation. The Poisson equation (11) is only an
approximation of general relativity in the limit of weak gravi-
tational fields. However, all kinds of energy have to be taken
into account to satisfy the requirements of a precise theory of
gravitation. Not only for this reason the energy-momentum
tensor of the gravitational field must appear in Einstein’s field
equations, but also to satisfy the correspondence principle
because of the existence and the localizability of the energy
density of the gravitational field in Newton’s theory of gravi-
tation [8], see Eq. (10). Moreover, our universe would be a
chaos if there were no conservation of total energy.

By introducing the energy-momentum tensor of the gravi-
tational field,

𝐴𝑖𝑚 = −𝜅−1𝐺𝑖𝑚 , (12)

where 𝜅 = 8𝜋𝐺/𝑐4 and 𝐺𝑖𝑚 is the Einstein tensor, Einstein’s
field equations

𝐺𝑖𝑚 = 𝜅𝑇𝑖𝑚 (13)
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can be rearranged to get Levi-Civita’s field equations,

𝑇𝑖𝑚 + 𝐴𝑖𝑚 = 0 , (14)

the latter of which have been criticized by Einstein in §6 of
Ref. [9]. He rightly objects that “in (14) the components
of the total energy vanish everywhere. The equations (14),
for example, do not exclude the possibility . . . that a mate-
rial system dissolves into just nothing without leaving any
trace. Because the total energy in (14) . . . is zero from the
beginning: the conservation of this energy value does not
demand the continued existence of the system in any form.”
However, this physical shortcoming can be remedied by a
simple modification: One just needs to introduce the non-zero
total energy-momentum tensor 𝐿𝑖𝑚 on the right-hand side of
Eq. (14), so that the completed Levi-Civita field equations
read [8]

𝑇𝑖𝑚 + 𝐴𝑖𝑚 = 𝐿𝑖𝑚 . (15)

This modification highlights that Einstein’s field equations (13)
must be incomplete and moreover violate the conservation law
of total energy. Nonetheless, they can be utilized as a good
approximation in cases where the total energy-momentum
tensor 𝐿𝑖𝑚 does not play a significant role.

According to Lovelock’s theorem – see e.g. Sec. 3.2.2 in
Ref. [3], in particular Theorem 3.1 and Eq. (3.51) – Einstein’s
field equations in their maximum possible modified form read

𝐺𝑖𝑚 = 𝜅𝑇𝑖𝑚 − Λ𝑔𝑖𝑚 , (16)

which are Einstein’s field equations with the cosmological
constant Λ. They can be rearranged to get the completed
Levi-Civita field equations (15), where

𝐿𝑖𝑚 = 𝜅−1Λ𝑔𝑖𝑚 . (17)

2.1 Cosmological constant
By replacing the cosmological constant Λ with a universal
constant 𝜆 in Eq. (16) and then taking the trace gives

𝜅𝑇 + 𝑅 = 4𝜆 , (18)

which can be differentiated to obtain

𝜕

𝜕𝑥𝑘
(𝜅𝑇 + 𝑅) = 0 . (19)

The general solution to these differential equations reads

𝜅𝑇 + 𝑅 = 4Λ , (20)

which equals to the trace of Eq. (16), where Λ, in contrast
to 𝜆, is a constant of integration and is therefore a parameter
and no universal constant [10] reflecting the fact that different
gravitational systems hold different total energy densities [8].
Thus, there exists a different metric 𝑑𝑠2 with a different non-
zero Λ for each gravitational system. This finding solves the
cosmological constant problem and is not in conflict with

Lovelock’s theorem. However, it is questionable whether the
term “cosmological constant” is still appropriate, but one has
got used to this designation.

The value of the cosmological constant Λ regarding the
metric 𝑑𝑠2 of each gravitational system has to be determined by
observations because it is initially unknown. The cosmological
constant Λ regarding the metric 𝑑𝑠2 of our solar system must
be tiny, otherwise the computed angle of the perihelion shift
of Mercury would not match the observed one. Moreover, the
cosmological constant Λ has no effect on the angle of light
deflection.

With these new findings, Einstein’s condition for empti-
ness, 𝐺𝑖𝑚 = 0, is outdated and must now read

𝐺𝑖𝑚 = −Λ𝑔𝑖𝑚 (21)

to satisfy the requirement of conservation of total energy.
In fact, “empty” space-time is not really empty because it
consists of the energy of the gravitational field, which is why
it is more appropriate to designate it matter-free instead of
“empty” space-time. In matter-free space-time, 𝑇𝑖𝑚 = 0 and
consequently in this case, the total energy density equals the
energy density of the gravitational field.

Relating the cosmological constant to the energy density
of the vacuum leads to a huge mismatch between its theoretical
and observed value, giving rise to the cosmological constant
problem. It is important to classify general relativity as a
classical and not as a quantum theory. Hence, the cosmological
constant must not be related to the energy density of the
vacuum, since the latter only occurs in a quantum theory.
Apart from a factor, the cosmological constant corresponds to
a scalar curvature of space-time,

Λ =
𝑅

4
, (22)

which can be easily recognized from Eq. (20) in matter-free
space-time.

The modified Poisson equation,

ΔΦ(r) = 4𝜋𝐺𝜚(r) − Λ𝑐2 , (23)

that is obtained from Einstein’s field equations with the cosmo-
logical constant (16) in the limit of weak gravitational fields,
approximately meets the requirement of conservation of total
energy in Newton’s theory of gravitation in contrast to Eq. (11).
Nonetheless, the latter can be utilized as a good approximation
in cases where the cosmological constant Λ does not play a
significant role.

2.2 Energy-momentum tensor of the gravitational field
The field equations (15) are a tensor equation that must com-
prise the energy density of the gravitational field in form of
a tensor, which applies to Eq. (12). Additionally, this tensor
has the unit of measurement of an energy density required to
represent a tensor of any kind of energy.
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The component

𝑔00 = −
(
1 + 2Φ

𝑐2

)
(24)

of the metric tensor of the Schwarzschild metric comprises
the Newtonian gravitational potential

Φ(𝑟) = −𝐺𝑀
𝑟

, (25)

which is why the metric tensor 𝑔𝑖𝑚 is a quantity that has to
be assigned to the gravitational field and hence to its energy
density. It is of great importance to recognize that in the
mixed-tensor representation of the field equations (15),

𝑇 𝑘
𝑖 + 𝐴𝑘

𝑖 =𝐿𝑘
𝑖 , (26a)

𝐴𝑘
𝑖 = − 𝜅−1𝐺𝑘

𝑖 , (26b)
𝐿𝑘
𝑖 = 𝜅−1Λ 𝛿𝑘𝑖 , (26c)

all metric tensors and their first two derivatives therein appear
only in the Einstein tensor 𝐺𝑘

𝑖
, so that solely the tensor 𝐴𝑘

𝑖
is

eligible for representing the energy density of the gravitational
field [8]. The energy-momentum tensor of the gravitational
field (26b) comprises terms with Christoffel symbols squared.
This is in conformance with Newton’s theory of gravitation,
in which the analogous expression [∇Φ(r)]2 occurs in the
energy density of the gravitational field (10).

The vanishing of the covariant divergence of the matter
tensor, 𝑇 𝑘

𝑖; 𝑘 = 0, means that the matter tensor is conserved in
general relativity. Accordingly, the vanishing of the covariant
divergence of the energy-momentum tensor of the gravitational
field, 𝐴𝑘

𝑖; 𝑘 = 0, means that the energy-momentum tensor of the
gravitational field is conserved. Consequently, matter-energy
is not converted into energy of the gravitational field and vice
versa.

The energy-momentum tensor of the gravitational field
given by Eq. (26b) does not vanish in a local inertial frame, be-
cause it contains non-vanishing terms with second derivatives
of the metric tensor, otherwise the total energy-momentum
tensor shown in Eq. (26c) would vanish [8]. In this regard,
Einstein rightly objects in §6 of Ref. [9] that “the conservation
of this energy value does not demand the continued existence
of the system in any form.” Consequently, there would be no
free fall because then “a material system dissolves into just
nothing without leaving any trace.” In fact, this finding rules
out the statement of Straumann in Sec. 3.4 of Ref. [3] that “if
there is no field, there is locally no energy and no momentum”
and that of Misner, Thorne and Wheeler in §20.4 of Ref. [4]
that “no local gravitational field means no ‘local gravitational
energy-momentum’.”

This is also the reason why energy-momentum pseudo-
tensors of the gravitational field cannot describe the energy
density of the gravitational field, because they are no tensors
as they vanish in a local inertial frame. Nevertheless, they
are used to represent the energy density of the gravitational
field and to form a “conservation law”. Misner, Thorne

and Wheeler justifiably state in §20.4 of Ref. [4] regarding
energy-momentum pseudo-tensors of the gravitational field
that “there is no unique formula for it, but a multitude of
quite distinct formulas. The two cited are only two among an
infinity.” However, contrary to their statements in §20.4 of
Ref. [4], Eq. (26b) demonstrates the necessarily existing unique
formula for local gravitational energy-momentum. Thereby, it
is localizable and neither in conflict with nor forbidden by the
equivalence principle.

In contrast to Newton’s theory of gravitation, in general
relativity, the energy of the gravitational field is stored as
curvature of space-time, which is why it is not equivalent
to the gravitational potential energy that, apart from a sign,
equals the gravitational binding energy [8].

3. Conservation law of total energy
The total energy-momentum tensor (26c) is conserved, which
is why its covariant divergence vanishes,

𝐿𝑘
𝑖; 𝑘 = ∇𝑘 (𝑇 𝑘

𝑖 + 𝐴𝑘
𝑖 ) = 0 . (27)

By taking advantage of the special property of the Kronecker
tensor,

𝛿𝑘𝑖; 𝑘 = 𝛿𝑘𝑖, 𝑘 = 0 , (28)

this conservation law of total energy can be simplified,

𝐿𝑘
𝑖; 𝑘 = 𝐿𝑘

𝑖, 𝑘 =
𝜕 (𝑇 𝑘

𝑖
+ 𝐴𝑘

𝑖
)

𝜕𝑥𝑘
= 0 . (29)

One can go even further and take the derivative instead of the
divergence because

𝛿𝑘𝑖; 𝑗 = 𝛿
𝑘
𝑖, 𝑗 = 0 . (30)

Thus, not only the divergences but also the derivatives vanish,
so that

𝐿𝑘
𝑖; 𝑗 = 𝐿

𝑘
𝑖, 𝑗 =

𝜕 (𝑇 𝑘
𝑖
+ 𝐴𝑘

𝑖
)

𝜕𝑥 𝑗
= 0 , (31)

which shows the conservation law of total energy, momentum
and stress in general relativity in its differential form [8].

One can consider a closed region with volume 𝑉 . The
volume integration over 𝐿𝑘

𝑖, 0 in Eq. (31) results in

𝜕

𝜕𝑡

∫
𝑉

𝑑𝑉 𝐿𝑘
𝑖 =

𝜕

𝜕𝑡

∫
𝑉

𝑑𝑉 (𝑇 𝑘
𝑖 + 𝐴𝑘

𝑖 ) = 0 , (32)

whereby the conserved total energy, momentum and stress
within the closed region with volume 𝑉 are given by

𝐸 𝑘
𝑖 = 𝜅−1Λ𝑉𝛿𝑘𝑖 =

∫
𝑉

𝑑𝑉 𝐿𝑘
𝑖 =

∫
𝑉

𝑑𝑉 (𝑇 𝑘
𝑖 +𝐴𝑘

𝑖 ) = constant ,

(33)

which can only be obtained in the mixed-tensor representa-
tion [8].
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4. Dark energy and dark matter
The cosmological constant regarding the Friedmann-Lemaı̂tre-
Robertson-Walker metric of the universe is proportional to its
total energy density,

𝐿0
0 = 𝜅−1Λ 𝛿0

0 . (34)

This explains the phenomenon of dark energy [8]. The cosmos
is expanding at an accelerated rate, since its Λ > 0, so
also 𝐿0

0 > 0.
In Newton’s theory of gravitation, the energy density of

the gravitational field in matter-free space outside of a star
is always negative, 𝜀gf < 0, see Eq. (10). Consequently
in general relativity, the energy density of the gravitational
field in matter-free space-time regarding the metric 𝑑𝑠2 of a
star must be negative as well, i.e. 𝐴0

0 < 0, so that by using
Eqs. (26a) and (26c) one easily recognizes that Λ < 0, which
explains the phenomenon of dark matter [8].

Either the “mass” density of dark matter,

𝜚dm =
Λ

𝜅𝑐2 (Λ < 0) , (35)

or that of dark energy,

𝜚de =
Λ

𝜅𝑐2 (Λ > 0) , (36)

is homogeneously distributed in space-time regarding the
metric 𝑑𝑠2 of the respective gravitational systems. Because
Eq. (22) applies in matter-free space-time, apart from a factor,
the “mass” density of dark matter in fact is nothing else than a
constant, negative scalar curvature of space-time, while that
of dark energy is nothing else than a constant, positive scalar
curvature of space-time which both arise due to conservation
of total energy regarding the metric 𝑑𝑠2 of the respective
gravitational systems [8]. But also very faint baryonic matter
and, if present, exotic particles contribute to dark matter,
however are taken into account in the matter tensor.

5. Model of spiral galaxies
In this section, a simple but fairly accurate model, consistent
with observations, is presented, solving the modified Poisson
equation (23) to fit the calculated rotation curves to the ob-
served speeds in spiral galaxies being composed of several
components [11, 12]: the central region of the bulge (bh), the
bulge (b), the disk (d) and dark matter (dm). The gravitational
potential of a spiral galaxy can be subdivided into the part of
baryonic and that of dark matter,

Φ(𝑟) = Φbar (𝑟) +Φdm (𝑟) . (37)

The centripetal acceleration on a test particle is given by

𝑔(𝑟) = 𝜕Φ

𝜕𝑟
= 𝑔bar (𝑟) + 𝑔dm (𝑟) , (38)

from which the radial acceleration relation

𝑔 = 𝑔(𝑔bar) (39)

can be determined. The squared circular speed of a test particle
is obtained by

𝑣2 (𝑟) = 𝑟 𝜕Φ
𝜕𝑟

= 𝑣2
bar (𝑟) + 𝑣2

dm (𝑟) , (40)

the square root of which is the computed rotation curve, that can
be fitted to the 𝑛 observed speeds 𝑣obs (𝑟𝑖) and their respective
uncertainties 𝜎𝑣obs (𝑟𝑖) by using the method of weighted least
squares [13],

𝜒2 =

𝑛∑︁
𝑖=1

[
𝑣obs (𝑟𝑖) − 𝑣(𝑟𝑖)

𝜎𝑣obs (𝑟𝑖)

]2
, (41a)

𝜕𝜒2

𝜕𝑀bh
=
𝜕𝜒2

𝜕𝑀b
=
𝜕𝜒2

𝜕𝑀d
=
𝜕𝜒2

𝜕𝑅b
=
𝜕𝜒2

𝜕𝑅d
=
𝜕𝜒2

𝜕Λ
= 0 ,

(41b)

where the quantities according to which differentiation is made
are the model parameters that are specified below.

5.1 Baryonic matter components
The baryonic mass 𝑀bh in the central region of the bulge is
considered to be point-like and probably containing a super-
massive black hole (bh). The baryonic matter in the bulge is
considered to be exponentially and isotropically distributed,

𝜚b (𝑟) = 𝜚0 exp
(
− 𝑟

𝑅b

)
, (42)

where 𝜚0 is the central mass density of the bulge and 𝑅b is the
bulge scale length. The mass of the exponential bulge inside
the sphere with radius 𝑟 is given by

𝑀𝜚 (𝑟) = 4𝜋
∫ 𝑟

0
𝑑𝑟 ′ 𝑟 ′2𝜚b (𝑟 ′)

= 𝑀b

[
1 − exp

(
− 𝑟

𝑅b

) (
1 + 𝑟

𝑅b
+ 𝑟2

2𝑅2
b

)]
,

(43)

where

𝑀b = 8𝜋𝜚0𝑅
3
b (44)

is the total baryonic mass of the bulge. The disk of a spiral
galaxy can considered to be infinitesimally thin showing an
exponentially mass distribution of baryonic matter [14, 15],
so that its surface mass distribution is given by

Σ(𝑟) = Σ0 exp
(
− 𝑟

𝑅d

)
, (45)

where Σ0 is the central surface mass density of the disk and 𝑅d
is the disk scale length. The baryonic mass of the disk inside
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the radius 𝑟 amounts to [15]

𝑀Σ (𝑟) = 2𝜋
∫ 𝑟

0
𝑑𝑟 ′ 𝑟 ′Σ(𝑟 ′)

= 𝑀d

[
1 − exp

(
− 𝑟

𝑅d

) (
1 + 𝑟

𝑅d

)]
, (46)

where

𝑀d = 2𝜋Σ0𝑅
2
d (47)

is the total baryonic mass of the disk. Hence, the total baryonic
mass of the spiral galaxy amounts to

𝑀bar = 𝑀bh + 𝑀b + 𝑀d . (48)

The gravitational potential in the disk of a spiral galaxy
generated by baryonic matter is composed of those ones of the
respective baryonic matter components [11, 12, 14, 15],

Φbar (𝑟) = Φbh (𝑟) +Φb (𝑟) +Φd (𝑟) , (49)

where

Φbh (𝑟) = −𝐺𝑀bh
𝑟

, (50a)

Φb (𝑟) = −𝐺𝑀𝜚

𝑟
− 4𝜋𝐺

∫ ∞

𝑟

𝑑𝑟 ′ 𝑟 ′𝜚b (𝑟 ′)

= −𝐺𝑀𝜚

𝑟
− 4𝜋𝐺𝜚b𝑅

2
b

(
1 + 𝑟

𝑅b

)
, (50b)

Φd (𝑟) = −𝜋𝐺Σ0𝑟 [𝐼0 (𝑦)𝐾1 (𝑦) − 𝐼1 (𝑦)𝐾0 (𝑦)] (50c)

and

𝑦 =
𝑟

2𝑅d
. (51)

At this point it should be noted that Eq. (50c) is only valid in
the galactic disk. The centripetal acceleration on a test particle
in the disk caused by baryonic matter is obtained by

𝑔bar (𝑟) = 𝜕Φbar
𝜕𝑟

. (52)

The corresponding squared circular speed amounts to

𝑣2
bar (𝑟) = 𝑟

𝜕Φbar
𝜕𝑟

= 𝑣2
bh (𝑟) + 𝑣2

b (𝑟) + 𝑣2
d (𝑟) , (53)

where the contributions from the respective components of a
spiral galaxy read [11, 14, 15]

𝑣2
bh (𝑟) = 𝑟

𝜕Φbh
𝜕𝑟

=
𝐺𝑀bh
𝑟

, (54a)

𝑣2
b (𝑟) = 𝑟

𝜕Φb
𝜕𝑟

=
𝐺𝑀𝜚

𝑟
, (54b)

𝑣2
d (𝑟) = 𝑟

𝜕Φd
𝜕𝑟

=4𝜋𝐺Σ0𝑅d𝑦
2

× [𝐼0 (𝑦)𝐾0 (𝑦) − 𝐼1 (𝑦)𝐾1 (𝑦)] .
(54c)

5.2 Dark matter component
From the contribution of dark matter in the modified Poisson
equation (23),

ΔΦdm =
1
𝑟

𝜕2 (𝑟Φdm)
𝜕𝑟2 = −Λ𝑐2 = −8𝜋𝐺𝜚dm , (55)

the gravitational potential generated by dark matter is ob-
tained [12]

Φdm (𝑟) = −Λ𝑐2𝑟2

6
= −4

3
𝜋𝐺𝑟2𝜚dm = −𝐺𝑀dm

𝑟
, (56)

where

𝑀dm (𝑟) = Λ𝑐2𝑟3

6𝐺
=

4
3
𝜋𝑟3𝜚dm ≤ 0 (57)

is the amount of dark matter inside the sphere with radius 𝑟.
The centripetal acceleration on a test particle caused by dark
matter is given by

𝑔dm (𝑟) = 𝜕Φdm
𝜕𝑟

= −Λ𝑐2𝑟

3
= −8

3
𝜋𝐺𝑟 𝜚dm = −2𝐺𝑀dm

𝑟2 .

(58)

The corresponding squared circular speed amounts to

𝑣2
dm (𝑟) = 𝑟

𝜕Φdm
𝜕𝑟

= −Λ𝑐2𝑟2

3
= −8

3
𝜋𝐺𝑟2𝜚dm = −2𝐺𝑀dm

𝑟
.

(59)

6. Results and discussion
In Fig. 1, the calculated rotation curves are shown which
have been fitted to the H I/H𝛼 observational data of a few
spiral galaxies from SPARC [16] using the model shown in
Sec. 5, while refraining from utilizing the mass models of
Ref. [16]. The reason for this is that the latter have been
established by using the data of the surface photometry from
SPARC which has been made at just one wavelength, namely
at 3.6 microns in the infrared portion of the electromagnetic
spectrum. However, it is well-known that spiral galaxies
become bluer with increasing distances from the galactic
center [17]. This means that matter in the outer regions, which
rather emits at shorter wavelengths, may not be detected to the
same extent at 3.6 microns as in the central region of a spiral
galaxy. Not only for this reason, the author utilizes the model
given in Sec. 5, but also because therein the exact formulas of
the dark matter component are demonstrated which is not in
case of the mass models of Ref. [16].

For the computations of the model in Sec. 5, the author
has made use of the spreadsheet program “LibreOffice Calc”
and its included tool “Solver” by specifying reasonable search
intervals for the six model parameters for solving Eqs. (41).
The computed rotation curves fit the observed speeds remark-
ably well, see Fig. 1. Flat and even increasing rotation curves
can be described by the simple model in Sec. 5. The values
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of the fitted model parameters of the spiral galaxies under
consideration as well as their total baryonic mass are given
in Tab. 1. These results differ from those listed in Tab. 1 of
Ref. [12], because in contrast to the present work, the method
of unweighted least squares has been used in Ref. [12].

7. Conclusions and outlook
The vanishing covariant divergence of the matter tensor demon-
strates that the matter tensor is conserved in general relativity.
The conserved energy-momentum tensor of the gravitational
field is given by Eq. (26b). Einstein’s field equations with the
cosmological constantΛ as a parameter satisfy the requirement
of conservation of total energy, momentum and stress.

The rotation curves of spiral galaxies can be described
remarkably well by using the model in Sec. (5) comprising
the exact formulas for the dark matter component and solv-
ing the modified Poisson equation (23), the latter of which
approximately meets the requirement of conservation of total
energy in Newton’s theory of gravitation. Each spiral galaxy
has different model parameters, so that there is a lot of work
to do in future, because there are many spiral galaxies the
computed rotation curves have to be fitted to.

An extension of general relativity is the Einstein-Cartan
theory which takes torsion and spin into consideration [18].
This causes a repulsive gravitational interaction within mat-
ter preventing the formation of singularities and thereby ex-
plaining the inflation of the early universe. However, the
Einstein-Cartan theory only plays a significant role at huge
mass densities, while in matter-free space-time, there is no dif-
ference between Einstein-Cartan theory and general relativity.
The cosmological term has to be taken into account to satisfy
the requirement of conservation of total energy, momentum
and stress in the Einstein-Cartan theory.
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[12] S. B. Rüster, Parana J. Sci. Educ., Vol. 8, No. 8, 2022,
pp. 30–42.

[13] P. R. Bevington and D. K. Robinson, Data Reduction
and Error Analysis for the Physical Sciences, 3rd edition,
McGraw-Hill, New York, 2003.

[14] K. C. Freeman, ApJ, Vol. 160, 1970, pp. 811–830.
[15] J. Binney and S. Tremaine, Galactic Dynamics, Princeton

Series in Astrophysics, Princeton University Press, Prince-
ton, 1987.

[16] F. Lelli, S. S. McGaugh and J. M. Schombert, AJ,
Vol. 152:157, No. 6, 2016.
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in die Astronomie und Astrophysik, 7. Auflage, Springer,
Berlin, 2002, S. 429.

[18] A. Trautman, Einstein-Cartan Theory, Encyclopedia of
Mathematical Physics, edited by J.-P. Françoise, G. L. Naber
and Tsou S. T., Vol. 2, Elsevier, Oxford, 2006, pp. 189–195.



Energy Conservation in General Relativity and Flat Rotation Curves of Spiral Galaxies — 27/27

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

300

NGC 1090

NGC 3198

NGC 6503

NGC 7814

𝑟/kpc

𝑣
(𝑟)

/(
km

/s
)

Figure 1. The observed speeds in a few spiral galaxies from SPARC are shown by marks with error bars. The fitted rotation
curves are depicted by the respective solid lines. The fitted model parameters of the spiral galaxies and their respective
total baryonic masses are listed in Tab. 1.

Table 1. This table lists the fitted model parameters of the spiral galaxies considered in Fig. 1 and their respective total baryonic
masses.

spiral 𝑀bh 𝑀b 𝑀d 𝑀bar 𝑅b 𝑅d Λ

galaxy (109 M⊙) (109 M⊙) (109 M⊙) (109 M⊙) (kpc) (kpc) (10−48 m−2)

NGC 1090 0.0 37.3107 72.2153 109.526 2.1227 7.3978 −0.3301
NGC 3198 0.0726 44.5548 67.5261 112.1534 2.5049 9.6868 −0.1905
NGC 6503 0.2867 11.6626 42.2537 54.203 0.8919 7.663 −0.1511
NGC 7814 4.0504 17.2821 74.4207 95.7532 0.3088 3.4627 −2.0907


	Matter tensor
	Completed field equations
	Cosmological constant
	Energy-momentum tensor of the gravitational field

	Conservation law of total energy
	Dark energy and dark matter
	Model of spiral galaxies
	Baryonic matter components
	Dark matter component

	Results and discussion
	Conclusions and outlook
	Acknowledgments
	References

