

The Eventful Lives of Galaxy Clusters: from Violent Proto-Clusters to Present-day Monsters

**

Rhea-Silvia Remus

Galaxy Cluster @ $z \approx 0$

Rhea-Silvia Remus

Galaxy Cluster @ z ≈ 0.3-0.4

Cluster Abell 2744 Estimated $M_{tot} = 2 \times 10^{15} M_{\odot}$

Cluster MCS J0416.1–2403 Estimated $M_{tot} = 1.1 \times 10^{15} M_{\odot}$

Image credit: NASA, ESA, and M. Montes (University of New South Wales, Sydney, Australia)

Rhea-Silvia Remus

Galaxy Cluster @ $z \approx 1$

Cluster MOO J1142+1527 Estimated $M_{tot} = 1 \times 10^{15} M_{\odot}$

Image credit: NASA/JPL-Caltech/Gemini/CARMA

Rhea-Silvia Remus

Galaxy Cluster @ $z \approx 2$

DiMascolo+2023

Spiderweb Protocluster Estimated $M_{tot} \approx 4 \times 10^{13} M_{\odot}$

Rhea-Silvia Remus

Protoclusters @ $z \approx 4.2$

Rhea-Silvia Remus

Galaxy Cluster @ $z \approx 6$

 $\begin{array}{l} \mbox{Protocluster z66OD} \\ \mbox{Estimated } M_{tot} \approx 3 \times 10^{14} \ M_{\odot} \end{array} \end{array}$

Credit: NAOJ/Harikane+2019

Rhea-Silvia Remus

Protocluster @ $z \approx 7.88$

Behind Cluster Abell 2744 Estimated $M_{tot} = 4 \times 10^{11} M_{\odot}$

Morishita et al., 2023; image credit: ESA/NASA/STScI/CSA

Rhea-Silvia Remus

How do we bring them together?

Cosmological Simulations

Rhea-Silvia Remus

Rhea-Silvia Remus

Rhea-Silvia Remus

Rhea-Silvia Remus

Rhea-Silvia Remus

Rhea-Silvia Remus

Rhea-Silvia Remus

Rhea-Silvia Remus

Rhea-Silvia Remus

Rhea-Silvia Remus

Rhea-Silvia Remus

Simulations: Size vs Resolution

Rhea-Silvia Remus

Currently Available Large Volume Cosmological Simulations

Magneticum Box2b-Simulation:	
640 Mpc/h,	
$m_{DM} (M_{\odot}/h) = 6.9 \cdot 10^8$	Dolag+2016
MilleniumTNG-Simulation:	
500 Mpc/h,	
$m_{DM} (M_{\odot}/h) = 1.7 \cdot 10^8$	Pakmor+2022
Millenium-Simulation:	
500 Mpc/h,	
$m_{DM} (M_{\odot}/h) = 8.10^8$	Springel+2005
Bahamas-Simulation:	
400 Mpc/h,	
$m_{DM} (M_{\odot}/h) = 3.85 \cdot 10^9$ M	1cCarthy+2017
TNG300:	
300 Mpc/h,	
$m_{DM} (M_{\odot}/h) = 6 \cdot 10^7$	Springel+2018

Different selection criteria:

- Most massive M_{vir}
- Most massive M_{BCG}
- Richest N_{gal}
- Most starforming

Rhea-Silvia Remus

Different selection criteria:

- Most massive M_{vir}
- Most massive M_{BCG}
- Richest N_{gal}
- Most starforming

Rhea-Silvia Remus

Different selection criteria:

- Most massive M_{vir}
- Most massive M_{BCG}
- Richest N_{gal}
- Most starforming

Rhea-Silvia Remus

Different selection criteria:

- Most massive M_{vir}
- Most massive M_{BCG}
- Richest N_{gal}
- Most starforming

Rhea-Silvia Remus

Different selection criteria:

- Most massive M_{vir}
- Most massive M_{BCG}
- Richest N_{gal}
- Most starforming

Rhea-Silvia Remus

Example Comparison

Rhea-Silvia Remus

Shade: Magneticum Most Massive at each redshift, Remus+2023 Striped: Millenium prediction, Chiang+2013

Rhea-Silvia Remus

Colored lines: Tracked Protoclusters

Shade: Magneticum Most Massive at each redshift, Remus+2023 Striped: Millenium prediction, Chiang+2013

Rhea-Silvia Remus

Protoclusters: Most Star Forming

Shade: Magneticum Most Massive at each redshift Striped: Millenium prediction, Chiang et al., 2013

Rhea-Silvia Remus

Protoclusters: Highest Total Mass

Shade: Magneticum Most Massive at each redshift Striped: Millenium prediction, Chiang et al., 2013

Rhea-Silvia Remus

Protoclusters: Most Massive BCG

Shade: Magneticum Most Massive at each redshift Striped: Millenium prediction, Chiang et al., 2013

Rhea-Silvia Remus

Protoclusters: Richest Cluster

Shade: Magneticum Most Massive at each redshift Striped: Millenium prediction, Chiang et al., 2013

Rhea-Silvia Remus

Neither total mass nor BCG mass or star formation rate at z=4.3 are a good measure of what to become.

Not All Protoclusters become actual clusters at z=0! (see also Kimmig et al, 2023)

Best indicator: Number of galaxies

Rhea-Silvia Remus

Remember: Modes in Cosmological Simulations

Rhea-Silvia Remus

Remember: Modes in Cosmological Simulations

Rhea-Silvia Remus

Remember: Modes in Cosmological Simulations

Rhea-Silvia Remus

Protocluster: Map the Web

Number Member Galaxies ≙ Cosmic Web Tracing

 $R_{vir} @ z = 4.3$ $R_{vir} @ z = 0$ Remus et al., 2023

Rhea-Silvia Remus

Protocluster Late Assembly

Rhea-Silvia Remus

Protocluster Late Assembly

Rhea-Silvia Remus

Local Universe Simulation: Initial conditions constrained by observations of the local flow field (Tully+2013), method by Sorce+2017

CLONES Simulations: Local Universe Simulations Sorce+2018

SLOW Simulations: Local Universe Box Simulation (Dolag+2023)

Rhea-Silvia Remus

Protocluster: Going Local – COMA cluster

Rhea-Silvia Remus

Rhea-Silvia Remus

Rhea-Silvia Remus

Rhea-Silvia Remus

Rhea-Silvia Remus

Protocluster: How High can we Go?

Rhea-Silvia Remus

Protocluster: How High can we Go?

Rhea-Silvia Remus

Protocluster for Cosmology

First Structures, Paris, 04.09.2023

0.04

0.4

0.05

C15

C14

C13

C12

C6 C5

C4 C3

C2

C1

0.65 0.75 0.85

Rhea-Silvia Remus

Galaxies in Protocluster: BCG Formation

Rhea-Silvia Remus

Protocluster Quenched Fractions

See also talks by Veronica Strazzullo, Florian Sarron, and Alan McConachie, but also by Syeda Lammim Ahad for simulation approaches and Devontae Baxter for Modelling

Rhea-Silvia Remus

Protocluster Quenched Fractions

See also talks by Veronica Strazzullo, Florian Sarron, and Alan McConachie, but also by Syeda Lammim Ahad for simulation approaches and Devontae Baxter for Modelling

Quenched Galaxy in a Group at z=4.5 (Kakimoto+2023): 1 out of 5 (4) galaxies quenched, expected group mass about $M_{group} = 10^{13} M_{\odot}$

First Structures, Paris, 04.09.2023

Rhea-Silvia Remus

What still is a problem?

First Structures, Paris, 04.09.2023

Rhea-Silvia Remus

What still is a problem?

Remus et al., 2023

Rhea-Silvia Remus

What still is a problem?

Remus et al., 2023

Rhea-Silvia Remus

(Proto)-Cluster Evolution – a Summary

- Connecting Protoclusters to present-day clusters is **not a linear mapping**.
 - Only about 25% of protoclusters are massive clusters at z=0!
 - About 10% never even reach a mass of $10^{14} M_{\odot}$
- From our local massive clusters, none would be found to be a protocluster at z>4. Coma, for example, would be a MW-like galaxy.
- Neither mass nor star formation properties of protoclusters are good measure of what to become, but the number of galaxies is – cosmic web tracing! The larger the observed area, the better.
- Global galaxy properties of protoclusters are reproduced successfully by simulations (gas mass, stellar mass, kinematics of gas and stars, phase-space properties, metallicities and enrichment of the halo).
- Onset of environmental quenching starts at about z=4, but only efficient below z=1.5
- Star-formation receipt are assuming continuous star formation

Star- and Gasmass work, but extreme star formation rates are not captured! Star formation is more bursty than predicted by simulations.

Protocluster in Magneticum: Mass Function

Rhea-Silvia Remus

Protocluster in Magneticum: Rotation

Remus et al., 2023

Rhea-Silvia Remus