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Abstract. A framework that utilizes audio information for recognition
of activities of daily living (ADLs) in the context of a health monitoring
environment is presented in this chapter. We propose integrating a Rasp-
berry PI single-board PC that is used both as an audio acquisition and
analysis unit. So Raspberry PI captures audio samples from the attached
microphone device and executes a set of real-time feature extraction and
classification procedures, in order to provide continuous and online audio
event recognition to the end user. Furthermore, a practical workflow is
presented, that helps the technicians that setup the device to perform
a fast, user-friendly and robust tuning and calibration procedure. As a
result, the technician is capable of “training” the device without any
need for prior knowledge of machine learning techniques. The proposed
system has been evaluated against a particular scenario that is rather im-
portant in the context of any healthcare monitoring system for the elder:
In particular, we have focused on the ”bathroom scenario” according to
which, a Raspberry PI device equipped with a single microphone is used
to monitor bathroom activity on a 24/7 basis in a privacy-aware manner,
since no audio data is stored or transmitted. The presented experimental
results prove that the proposed framework can be successfully used for
audio event recognition tasks.

Keywords: audio analysis, activities of daily living, health monitoring,
remote monitoring, audio sensors, raspberryPI, audio event recognition

1 INTRODUCTION

Although fully autonomous artificial intelligence is actively researched and ad-
vanced, the current state of the art (and at the level of maturity required for
commodity electronics) has machine learning methods rely on delicate training
and configuration sessions in order to adapt to different environments. When
embedding machine learning methods in commodity electronics this is typically
worked around by uploading the signal and receiving analysis results from remote
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centralized services. Recent examples include voice-operated personal assistant
applications and companion, toy, and “pet” applications.

This model, however, suffers from its obvious privacy implications. These
implications are further exacerbated in the telemedicine domain for two rea-
sons: the data collected by the remote service is not only more sensitive, but
the users might also not be able to make informed decisions or might not be
offered reasonable alternatives. Home monitoring for the elderly is a prime ex-
ample: the increase in life expectancy and in the need for long-term care creates
a pressure to seek alternatives to institutional healthcare for the aged popu-
lation. Advancements in robotics and automation and in artificial intelligence
and intelligent monitoring are explored as a way to prolong independent living
at home while providing guarantees of safety and adequate medical monitor-
ing ([Barger et al., 2005], [Hagler et al., 2010], [MOTS et al., 2002]). The users
of such solutions, however, might be suffering from mild cognitive impairment
or be unable to afford conventional monitoring, which makes ethically ques-
tionable any consent they provide to upload and analyse raw content of their
activities of daily living (ADL) in order to extract medical monitoring infor-
mation. Several methods have been used to detect activities of daily living in
real home environments, focusing on elderly population ([Vacher et al., 2013],
[Vacher et al., 2010], [Costa et al., 2009], [Botia et al., 2012]) and a wide range
of modalities.

In this paper, we present an audio analysis system (Section 2) that explores
the integration of the audio sensor and the processing unit as Raspberry PI1

device. Such a unit is able to execute signal processing and machine learning
algorithms in order to eliminate the need to provide raw content: the only in-
formation that leaves the confines of the integrated unit is an abstract ADL
log. Although such information still needs to be managed in full accordance to
guidelines pertaining private data, the level of obtrusiveness is greatly reduced
by the assurance that no unwarranted analysis or recording can conceivably be
done.

Our system is designed to satisfy two key requirements: that the analysis
algorithms are computationally efficient so that they can be implemented for the
Raspberry PI device; and that they can be tuned and configured for different
acoustic environments by technicians without machine learning expertise. In
order to evaluate the proposed approach on these requirements, we motivate and
present a use case based on bathroom usage (Section 3) and draw conclusions
(Section 3).

2 PROPOSED METHOD

2.1 Overall architecture

The main part of the whole system is a microphone-equipped Raspberry PI
single-board PC that is used for all data acquisition and processing. Its small-

1 Please cf. https://www.raspberrypi.org

https://www.raspberrypi.org
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Fig. 1. The Raspberry PI Device

Fig. 2. Mqtt-based messaging communication

form factor, low energy consumption and low overall cost make it ideal for in-
stalling it in any room/area we want to monitor and its processing power is
enough for running our algorithms in real time. In our experiments we used a
Raspberry PI model B with a Wolfson audio card.

Communication to/from the PC is made using the MQTT machine-to-machine
communication protocol. MQTT is a lightweight messaging protocol that im-
plements the brokered publish/subscribe pattern, created widely used in IoT
applications. Without going into technical details, the main idea is that when
connected to a specified MQTT broker, various machines/applications can send
messages under a certain topic and others can listen to these when ”subscribed”
to these topics. In our use case, it is used both for sending commands to the
Raspberry PI (for example to start/stop recording) and for remotely receiving
the processing results.

For this purpose, two MQTT clients were implemented: The first is installed
in the Raspberry PI and is subscribed to a ”command” topic in order to receive
requests for collecting training data, building audio classes models and finally
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/cmd/recording/start 
{event: 'shower'}

Android application

Raspberry Pi

broker

shower/recording001.wav

/cmd/recording/stop

/response/recordings 
{events: [ 
  { name: 'shower',   
    time: '30s'}, 
  { name: 'activity', 
    time: '90s'}, 
  { name: 'flush',
    time: '20s'}, ...
]}

/cmd/classifier/create
{ events: [
  'shower', 
  'flush', 
  'silence', 
  'tap' ],
  name: 'test_02'
}

shower/recording001.wav
shower/recording002.wav

....

....

flush/recording001.wav
flush/recording002.wav
flush/recording003.wav

pyAudioAnalysis
SVM classifier

/response/classifiers 
[ { name: 'test_01', 
    events: ['shower', 
             'silence', 
             'activity'] },
  { name: 'test_02', 
    events: ['shower', 'tap', 
             'silence', 
             'flush'] } ]

Fig. 3. From left to right: User initiates an event recording and the corresponding file
is created. When user stops, a response is returned with information about the events
recorded so far. When a reasonable amount of data is gathered, an SVM classifier for
the desired events can be created using the pyAudioAnalysis library. In this case, the
response contains information about the classifiers available for future use. Reproduced
from [?]

use them for real-time classification. The second one is bundled in an Android
application and is used for sending remotely the corresponding commands and
listening to the classification results. The system is designed with ease of use
in mind and the only set-up needed is connecting the two clients to the same
broker. By having a dedicated broker this step can be performed automatically,
making the whole system plug-and-play.

2.2 System Calibration

Once setup, the system has to go through a training phase in order to be used
for real-life scenarios. This includes recording, feature extraction, manual anno-
tation of the recorded events and classifier tuning / training. Figure 3 shows
the proposed calibration procedure. During this phase, the various events are
recorded using the Android application as a remote controller of the Raspberry
PI device that makes the actual recording and further processing. An audio file
is created on user’s demand and the user/technician is informed about the cat-
egories and durations of already recorded data. He then provides the current
recording’s label (e.g. ”door bell”).

When a reasonably large amount of data is gathered (typically about 1-2
minutes of recordings for each category), the technician uses the mobile appli-
cation to trigger the training process (that is also executed on the Raspberry PI
device). After this process, the Raspberry PI is ready to monitor and recognize
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sound in the ”learned” environment. This conceptual sequence of steps for the
calibration procedure is also visualized in Figure 4.

Fig. 4. MQTT-based calibration procedure

2.3 Audio event recognition

Audio features In total, 34 audio features are extracted on a short-term basis.
This process results in a sequence of 34-dimensional short-term feature vec-
tors. In addition, the processing of the feature sequence on a mid-term basis is
adopted. According to that the audio signal is first divided into mid-term win-
dows (segments). For each segment, the short-term processing stage is carried
out and the feature sequence from each mid-term segment, is used for com-
puting feature statistics (e.g. the average value of the ZCR). Therefore, each
mid-term segment is represented by a set of statistics. In this Section we provide
a brief description of the adopted audio features. For detailed description the
reader can refer to the related bibliography [Giannakopoulos and Pikrakis, 2014]
[Theodoridis and Koutroumbas, 2008], [Hyoung-Gook et al., 2005]. The time-domain
features (features 1 - 3) are directly extracted from the raw signal samples, while
the frequency-domain features (features 4-34, apart from the MFCCs) are based
on the magnitude of the Discrete Fourier Transform (DFT). The cepstral do-
main (e.g. used by the MFCCs) results after applying the Inverse DFT on the
logarithmic spectrum. The complete list of features is presented in Table 1.

Classification As described in Section 2.3, the feature extraction process leads
to a 68-dimensional feature vector for each 1-second audio segment, i.e. 2 statis-
tics x 34 short-term features. Each unknown audio segment of fixed size (1
second in our case) is therefore represented by a 68-D feature vector. Each of
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Table 1. Adopted short-term audio features

Index Name Description

1 Zero Crossing
Rate

Rate of sign-changes of the frame

2 Energy Sum of squares of the signal values, normalized by frame
length

3 Entropy of En-
ergy

Entropy of sub-frames’ normalized energies. A measure
of abrupt changes

4 Spectral Cen-
troid

Spectrum’s center of gravity

5 Spectral Spread Spectrum’s second central moment of the spectrum
6 Spectral Entropy Entropy of the normalized spectral energies for a set of

sub-frames
7 Spectral Flux Squared difference between the normalized magnitudes

of the spectra of the two successive frames
8 Spectral Rolloff The frequency below which 90% of the magnitude dis-

tribution of the spectrum is concentrated.
9-21 MFCCs Mel Frequency Cepstral Coefficients: a cepstral represen-

tation with mel-scaled frequency bands
22-33 Chroma Vector A 12-element representation of the spectral energy in 12

equal-tempered pitch classes of western-type music
34 Chroma Devia-

tion
Standard deviation of the 12 chroma coefficients.

these samples is classified using a Support Vector Machine with probabilistic
output. We have selected to use probabilistic SVMs [Platt, 1999] due to their
ability to generalize well especially in high dimensional classification problems
[Chapelle et al., 1999]. The model is trained using a cross-validation procedure
to select the optimal SVM parameter, namely the soft margin parameter C.

Audio analysis implementation Audio feature extraction and classification
has been implemented using the pyAudioAnalysis library [Giannakopoulos, 15 ].
This is an open-source Python library that implements a wide range of audio
analysis functionalities and can be used in several applications. Using pyAu-
dioAnalysis one can classify an unknown audio segment to a set of predefined
classes, segment an audio recording and classify homogeneous segments, remove
silence areas from a speech recording, estimate the emotion of a speech segment,
extract audio thumbnails from a music track, etc. In this work, pyAudioAnalysis
has been used to extract audio features, to train the classification models and
to perform cross validation experimentation in order to extract the respective
performance measures. pyAudioAnalysis achieves 2× realtime performance on
the Raspberry devices, which validates its usage in the context of the particular
setup.
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3 BATHROOM USE CASE AND EVALUATION

3.1 Use case and motivation

As discussed in the introduction, the motivating use case for our approach is
medical monitoring. Specifically, we base our evaluation setup on allowing elderly
people with mild cognitive impairment to maintain an independent life, at their
own home, for longer than what is safely possible today.

In order to have a guideline about what information is used by medical doc-
tors to assess such conditions, we use the interRAI Long-Term Care Facilities
Assessment System (interRAI LTCF). interRAI LTCF enables comprehensive,
standardized evaluation of the needs, strengths, and preferences of persons re-
ceiving care. interRAI has been analysed previously in order to identify assess-
ment items, such as mood and ADL logs, that can be automatically recognized
and are useful to medical personnel [RADIO Project, 2015]. Among the assess-
ment items listed, we identified those regarding bathroom use as being closest to
our concept: these items can be extracted by processing very sensitive content,
and being able to provide guarantees about the management and processing of
this content would have significant impact on the acceptance of any relevant
solution by users.

In this context, we have recorded and manually annotated sounds from bath-
room usage. In particular, the following audio classes are trained and evaluated
by the proposed methodology:

– Silence - no sound

– Flushing water

– Shower

– Tap water

– Other activities

Note that the selected audio events are location-specific and therefore the
adopted calibration workflow can be used during the installation phase, as de-
scribed in Section 2.2.

3.2 Dataset

In order to train and evaluate the proposed event recognition methodology, we
have recorded and manually annotated (using the mobile app described earlier
in the paper) an audio dataset. The total duration of the dataset is almost 1
hour. The audio recordings and the respective ground truth is openly available at
https://iit.demokritos.gr/~tyianak/bathroomScenarioEventsNew.zip

Two different bathroom locations have been used for recording / annotation.
This gives us the opportunity to evaluate the performance of the proposed clas-
sification method when the respective models have been trained in a different
setup. In particular, the complete dataset consists of the following parts:

https://iit.demokritos.gr/~tyianak/bathroomScenarioEventsNew.zip
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– A large training dataset of more than 400 audio segments to be used for
the scenario of the ”static” training, according to which, the classifiers are
trained beforehand. Note that this subset only consists of audio segments as
it is only used for training.

– A subset of 4 audio (continuous) recordings and respective ground-truth
annotations. The total duration of this set is 7 minutes. This dataset is used
both for training and testing

3.3 Experimental Evaluation

Performance Measures Let CM be the confusion matrix, i.e. a Nc×Nc matrix
(Nc is the total number of audio classes), whose rows and columns refer to the
true (ground truth) and predicted class labels of the dataset, respectively. In
other words, each element, CM(i, j), stands for the number of samples of class i
that were assigned to class j by the adopted classification method. The diagonal
of the confusion matrix captures the correct classification decisions (i = j). CM
is normalized row-wise, in order to discard the information that is related to the
size of each class:

CMn(i, j) =
CM(i, j)∑Nc

n=1 CM(i, n)
(1)

Obviously, after the normalization process, the elements of each row sum to
unity.

Three useful performance measures are then extracted from the confusion
matrix. The first is the overall accuracy, Acc, of the classifier, which is defined
as the fraction of samples of the dataset that have been correctly classified:

Acc =

∑Nc

m=1 CM(m,m)∑Nc

m=1

∑Nc

n=1 CM(m,n)
(2)

Apart from the overall accuracy, we have adopted two class-specific measures
that describe how well the classification algorithm performs on each class. The
first of these measures is the class recall, Re(i), which is defined as the proportion
of data with true class label i that were correctly assigned to class i:

Re(i) =
CM(i, i)∑Nc

m=1 CM(i,m)
(3)

where
∑Nc

m=1 CM(i,m) is the total number of samples that are known to
belong to class i. In addition, we use the class precision (Pr(i)), i.e. the fraction
of samples that were correctly classified to class i if we take into account the
total number of samples that were classified to that class:

Pr(i) =
CM(i, i)∑Nc

m=1 CM(m, i)
(4)
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Table 2. 1st experimental setup: Single-recording training: Row-wise normalized con-
fusion matrix, recall precision and F1 measures. Overall F1 measure: 68.1%

Confusion Matrix (%)

Predicted
True ⇓ Shower Flush Tap Silence Activity

Shower 89.4 1.8 3.0 0.1 5.8
Flush 7.2 70.7 0.4 2.1 19.6
Tap 5.7 4.0 85.8 0.8 3.6

Silence 1.4 4.0 0.0 58.0 36.5
Activity 13.0 11.6 2.6 31.2 41.6

Performance Measurements (%, per class)

Recall: 89.4 70.7 85.8 58.0 41.6
Precision: 76.6 76.8 93.5 62.9 38.8

F1: 82.5 73.6 89.5 60.3 40.2

Finally, the F1-measure is also computed, which is the harmonic mean of the
precision and recall values:

F1(i) =
2Re(i)Pr(i)

Pr(i) + Re(i)
(5)

Results Two categories of experiments have been conducted:

– 1st experimental setup: This is the proposed setup, according to which one
or more sequences (i.e. the recordings of the second subset of the dataset de-
scribed in Section 3.2) are used to train the classifiers, through the presented
mobile interface. The rest of the recordings is used for evaluation.

– 2nd experimental setup: This setup is used for comparison. The idea here
is to adopt a ”static” model trained from irrelevant data, i.e. segments that
have not been recorded and annotated through the mobile interface.

Table 2 shows the (row-wise normalized) confusion matrix and the respective
precision, recall and F1 measures for each audio class and for the 1st experimental
setup. This is the result of the evaluation process when only one recording is used
during the training phase.

These results correspond to the most realistic and less demanding (in terms
of calibration-training time). In addition, Table 3 demonstrates the ability of
the classifiers to adopt to more data, if they can be available. In particular, 3
shows the same performance measures if a ”leave one out” process is used in the
evaluation process, using the described dataset. That is, if three whole recordings
are used for each training phase. Results indicate an almost 5% performance
boosting. However, using three recordings instead of one means a 300% increase
in the calibration time to be carried out by the technicians.

Finally, in Table 4 we present the comparison of the performances of the two
experimental setups. The second experimental setup (i.e. the one based on large
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Table 3. 1st experimental setup: Three-recording training: Row-wise normalized con-
fusion matrix, recall precision and F1 measures. Overall F1 measure: 73.8%

Confusion Matrix (%)

Predicted
True ⇓ Shower Flush Tap Silence Activity

Shower 85.6 1.6 2.6 0.2 10.0
Flush 5.7 86.5 0.0 1.5 6.3
Tap 5.2 3.7 85.5 0.7 4.9

Silence 0.1 3.4 0.0 72.5 24.0
Activity 5.8 9.7 1.5 29.0 53.9

Performance Measurements (%, per class)

Recall 85.6 86.5 85.5 72.5 53.9
Precision 83.6 82.5 95.4 69.8 54.4

F1: 84.6 84.5 90.2 71.1 54.2

pre-trained audio datasets) has been evaluated for three different classification
approaches, namely: Hidden Markov Models, Convolutional Neural Nets and
Support Vector Machines. On the other hand, only SVMs are used for the pro-
posed approach (i.e. the 1st experimental setup), since it would not make sense
to use the other two approaches which, by nature, require more training data.
The results prove that, indeed, using location-specific audio data for training
the models leads to better classification performance, compared to pretrained
models, even if much larger datasets have been used.

Experimental Setup Method Performance F1

1st
1 train 68

N-1 train 74

2nd
HMM 57
CNN 59
SVM 58

Table 4. Performance results for both experimental setups. It is obvious that, regard-
less of the classification method, using a ”static” model that has been trained using
external data leads to poor classification performance.

4 CONCLUSIONS

This paper has presented an architectural approach that employs a Raspberry
PI device both as an audio acquisition and analysis unit, in the context of a
health monitoring system. The overall goal of such system is to detect and rec-
ognize Activities of Daily Living (ADLs) in real living environments of elderly



XI

people. Both real-time audio feature extraction and classification methods have
been implemented and integrated on the device. Apart from the audio analyt-
ics procedures implemented on Raspberry PI, we propose a workflow for a fast
and easy-to-use calibration procedure. According to this, the implemented clas-
sifiers are actually trainned in the particular home’s sound conditions, through
a series of simple calibration steps, executed through an Android application,
handled by the technician that installs the device. In that way, no requirements
for knowledge on machine learning are needed.

Experimental evaluation has demonstrated a 70% classification performance
even if a single recording (1 to 1.5 minute long) is used in the training process.
In addition, experimental evaluation has shown that there is an actual need for a
fast and easy retraining procedure. The complete software that was used for the
experiments can be found in the project’s Git repository 2 under an open-source
license.

The proposed system architecture satisfies three vital requirements.

– First, by using computationally efficient algorithms, we manage to cover the
needs of data acquisition and processing using only a low-spec’ed Raspberry
PI device, while achieving a 2×realtime performance. This validates the sys-
tem’s suitability in the context of a low-cost health monitoring setup as it
does not require a workstation or a PC (e.g. [Chen et al., 2005]), but a single
Raspberry PI that serves both as an acquisition and an analysis module. In
particular, the total cost of both the acquisition and analysis modules is less
than 100$.

– In addition, the system achieves a satisfactory classification performance,
given (a) the low-end hardware used and (b) the lack of demand for big train-
ing data. Although our method does not outperform (in terms of overall clas-
sification accuracy) other similar methods for ADL recognition in the context
of a smart home environment, the significant differences in terms of overall
cost and easiness of setup, can make the proposed approach preferable for
real house applications. For instance, the approach in [Vuegen et al., 2013]
achieves a 85% classification accuracy in a ADL recognition task, however
the acquisition scenario requires multiple microphone sensors and therefore
much higher cost.

– The setup procedure (i.e. configuration and calibration of the overall system)
for different acoustic environments and target events can be performed by
technicians without machine learning expertise. The need for a fast and easy
procedure for training the audio classifiers, without any prior knowledge
for machine learning methods has been met and the effectiveness of the
procedure has been validated through experimental results.

Our ongoing and future research work focuses on the following directions:

– Extend the calibration procedure so that it also takes into account a ”base
dataset”, i.e. an initial classification scheme that is tuned in the context of
the annotation process and not re-trained from scratch.

2 https://bitbucket.org/radioprojectanalysis/ict4awe2016

https://bitbucket.org/radioprojectanalysis/ict4awe2016
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– Use long-term temporal knowledge to smooth the results of the classifier,
based on prior knowledge regarding the events.
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