
Technical Report

VICKEY: Mining Conditional Keys on RDF

datasets

Danai Symeonidou1, Luis Galárraga2, Nathalie Pernelle3,
Fatiha Säıs3, Fabian Suchanek4

1INRA, France 2Aalborg University, Denmark
3LRI, France 4Télécom ParisTech, France

Abstract

A conditional key is a key constraint that holds under certain circum-
stances – such as “the given name and the family name uniquely identify
the members of the European parliament”. In this paper, we show how
such keys can be mined automatically on large knowledge bases (KBs).
For this, we combine techniques from key mining with techniques from
rule mining. We show that our method can scale to KBs of millions of
facts. We also show that the conditional keys we mine can improve the
quality of entity linking by up to 47 percentage points.

1 Introduction

Recent years have seen the rise of large knowledge bases (KBs), such as
YAGO [24], Wikidata [27], and DBpedia [16] on the academic side, and the
Google Knowledge Graph [6] or Microsoft’s Satori graph on the commercial
side. These KBs contain millions of entities (such as people, places, or organi-
zations), and millions of facts about them. This knowledge is typically expressed
in RDF [28], i.e., as triples of the form 〈Obama, presidentOf ,USA〉. Some KBs
provide an ontology, which describes the vocabulary (the classes and properties)
for the RDF facts. The ontologies can also declare logical axioms on the data.
We focus here on one particular type of axioms: key constraints. A key con-
straint specifies that no two distinct entities can share a certain set of properties
(e.g., no two people share given name, family name, and birthdate). Key con-
straints are used for applications such as knowledge base fusion [7], knowledge
base enrichment [19] and data linking [1, 21, 8].

When KBs are huge (with millions of triples and hundreds or thousands of
properties) it is not feasible to specify the keys manually. Therefore, several
approaches [25, 18, 2] have been developed to automatically discover the keys
from RDF data. However, these works have also shown that for several datasets,
there are no or only few keys that are valid in the entire dataset. This is the
reason why we aim to mine conditional keys in this paper, i.e., keys that are
valid in only a part of the data.

A conditional key is an axiom saying that under particular conditions, no
two distinct entities can have the same values on a particular set of properties.

1

For example, we can say that at a German university, no two professors can
advise the same doctoral student. The situation might be different at a French
or American university – hence the key is “conditional” to German universities.
This distinguishes conditional keys from classical keys, which hold under all
circumstances. Thus, conditional keys can express constraints even in cases
to which classical keys are blind. Hence, conditional keys are strictly more
expressive than classical keys.

Conditional keys have many applications in the context of KBs. A first
use is the debugging of the data. If, e.g., we find a German doctoral student
with two advisors, we can flag this case for human review or for additional
sourcing. In this way, we can spot potential errors and clean up the data – all
while focusing our effort on cases that are likely to be problematic. A second
application is the detection of duplicates. If we find two professors in Germany
with a similar name who have the same student, then this can be a signal that
the two professors are just one person. This can then help removing duplicates,
and consolidating the data. Again, we expect conditional keys to find more of
such matching opportunities than classical keys. A third use is the linking of
data. Given two KBs with different identifiers for the same person, we can use
the fact that two professors advise the same student as a signal for matching
them. In this way, we can link the KBs, and thus allow queries that span two
sources. Finally, conditional keys carry value in themselves. For example, when
we compare national policies, it is interesting to know that France allows several
advisors, while Germany does not.

Mining conditional keys automatically from the data is a challenging en-
deavor, for several reasons. First, KBs contain only binary relations, which
means that keys can potentially span a dozen relationships. This distinguishes
our scenario from key mining in relational databases [22, 13], which are relation-
centric. Second, KBs are usually incomplete [20]. If a student at a German
university has only one advisor in the KB, she could still have several in real
life. Thus, any approach that automatically mines conditional keys risks being
misled. Finally, the challenge is scale: Today’s KBs contain millions of state-
ments. This means that there are billions of possible conditions and property
combinations that could define a conditional key. In the example, professors
could be distinguished by their doctoral students, but also by their given and
family name or by their discipline and birthdate. These key constraints could
hold only for German professors, only for Danish ones, only for professors at
a certain university in Mexico, or only for professors born in a certain city in
Iowa. This huge search space is one of the main reasons why there is today no
approach that could mine conditional keys on KBs.

Our idea is to combine techniques from key mining [25] with techniques
from rule mining [12]. Rule mining is concerned with finding dependencies in
the data, such as “If a person is born in a city that is located in a country,
then usually the person has the citizenship of that country”. We show that this
technique can be exploited to mine the conditions under which a key could hold.
More precisely, our contributions are as follows:

• We develop an algorithm that can mine conditional keys efficiently.

• We show that our method scales gracefully to KBs of millions of facts.

• We show that the use of our conditional keys improves the F1 measure of

2

KB linking by up to 47 percentage points over the use of classical keys.

The rest of this paper is structured as follows. We discuss related work in
Section 2, and introduce preliminaries in Section 3. In Section 4 we present our
approach. Section 5 showcases our experiments, before Section 6 concludes.

2 Related Work

Several approaches have been developed to discover integrity constraints (ICs)
in relational databases or semantic (RDF) data. Some are focused on functional
dependencies, others are more specific and aim at finding keys. In the following,
we summarize the most relevant work in this area, both for relational data and
for RDF data.

Relational Data. A functional dependency (FD) is a relationship between
two sets of attributes, such that the values of the first set identify uniquely the
values of the second. For instance, given a relation with zipcodes and cities, the
city is unambiguously determined by the zipcode. A key is a particular type of
FD, where the second set of attributes is a unique identifier for the record in
the database. Hence, approaches that can mine FDs [14, 31, 15, 3, 30] can in
principle also mine keys.

Some approaches have focused on more expressive ICs such as conditional
functional dependencies (CFDs). A CFD expresses a functional dependency
that holds on a subset of tuples satisfying a given pattern or condition [9, 4].
The problem of CFD discovery was first addressed in [4]. This approach dis-
covers minimal CFDs using a strategy inspired by the level-wise schema driven
approach TANE [14], designed to discover functional dependencies. Such an
approach can detect that when two customers are in the UK (country code 44),
the zipcode uniquely determines the city.

Other works focus on Denial Constraints (DCs). A DC is a universally
quantified conjunctive expression in first-order logic that states that all its pred-
icates cannot be true at the same time. An example is “among members of the
same university the salary of a post-doc cannot be greater than the salary of a
professor”, ¬(Professor(x) ∧ Postdoc(y) ∧ univ(x, z) ∧ univ(y, z) ∧ salary(x) <
salary(y)). The work of [5] proposes a general algorithm to discover DCs from
a relational database. The authors have also shown that some of the discovered
DCs express composite key constraints. In this approach the discovered DCs can
exploit constants and numerical built-in operators (as in salary(x) < salary(y)).

These approaches cannot be applied directly to RDF data, for several rea-
sons. First, key discovery in databases is geared towards relations that contain
one single value for each subject. RDF relations, in contrast, can contain one
or several values for the same subject. Second, relational databases operate un-
der the Closed World Assumption (CWA), i.e., they assume that the database
is complete. RDF, in contrast, operates under the Open World Assumption
(OWA), i.e., unknown assertions are not necessarily false. In practice, RDF
KBs are highly incomplete. Finally, RDF data usually comes with an ontology,
which specifies additional semantic constraints that have to be taken into ac-
count. For all of these reasons, keys have been defined differently for databases
and for RDF data [29]: A database key fires when two entities share all values
for each property. An RDF key, in contrast, fires as soon as two entities share
at least one value for each property.

3

RDF Data. Several approaches have been proposed to mine keys on RDF
data [2, 23, 18, 26, 25]. Some of these approaches discover keys only under the
Closed World Assumption, i.e., if all the property values are known for each
instance [2, 23]. In such approaches, sets of property values can be efficiently
compared since only equal sets of property values will lead to an identity link.
Other approaches [18, 25] aim at discovering keys even if not all property values
are known. To avoid scanning the entire dataset, these approaches discover first
the maximal non-keys and then derive the keys from this set. However, none of
these approaches [2, 23, 18, 26, 25] can mine conditional keys.

One way to mine conditional keys would be to resort to logical rule mining.
For example, the conditional key that the firstname (fn) and the lastname (ln)
uniquely identify people who live in Paris (li) can be expressed as the rule:

li(x,Paris) ∧ li(y,Paris) ∧ fn(x, f) ∧ fn(y, f) ∧ ln(x, l) ∧ ln(y, l)⇒ equals(x, y)

Thus, conditional keys could be found by mining rules of this type. The AMIE
system [12, 11] can learn logical rules on RDF KBs that contain millions of
triples. The system scales to rules with up to four atoms. However, even
relatively simple conditional keys can easily contain five or more atoms, as the
example shows. This leads to an exponential increase of the search space that
current rule mining approaches cannot handle. Besides, a generic rule mining
approach cannot benefit from prunings and optimizations that are specific to
the problem of key mining. We show indeed in our experiments that AMIE
cannot mine conditional keys efficiently.

3 Preliminaries

3.1 Datasets and Keys

Datasets. We consider in this paper RDF1 knowledge bases. RDF is a W3C
recommendation [28] that has become the de facto data model to represent
semantic data. This data model is based on a set I of instances (such as
France, the research institute INRA, or a person identified as p1), a set L of
literals (such as strings and numbers), a set P of properties (such as firstName
or nationality), and a set C of class names (such as country or researcher).
A fact is a triple of a subject s ∈ C ∪ I, a predicate p ∈ P, and an object
o ∈ C ∪ I ∪ L, which we write as p(s, o). Examples are gender(p1, male) or
firstName(p1, “Claude”). Every instance is typically associated to one or more
classes by the type property (as in type(p1, researcher)), and these classes can
be arranged in a hierarchy by the subclassOf property. We assume that every
instance of a class is also explicitly stored as an instance of all superclasses. A
set of such facts is called a knowledge base (KB).

Given a KB K, a dataset for a class c of K is the set of all facts that have
an instance of c as subject or object. Facts p(x, y) that have the instance as the
object are rewritten as p−1(y, x), where p−1 is a name for the inverse relationship
of p, so that the instances of c appear always as subjects.

Definition 1. (Dataset) The dataset of a class c in a knowledge base K is the
set {p(x, y) ∈ K : type(x, c) ∈ K} ∪ {p−1(x, y) : type(x, c) ∈ K ∧ p(y, x) ∈ K}.

1Resource Description Framework

4

FN LN Gender Lab Nat
p1 Claude Dupont Female Paris-Sud France
p2 Claude Dupont Male Paris-Sud Belgium
p3 Juan Rodŕıguez Male INRA Spain
p4 Juan Salvez Male INRA Spain
p5 Anna Papadopoulou Female INRA Greece
p6 Pavlos Georgiou Male Paris-Sud Greece
p7 Marie Legendre Female INRA France

Table 1: Example dataset

Table 1 shows an example dataset about researchers p1, ..., p7, who each have the
properties firstName (FN), lastName (LN), gender, lab, and nationality (Nat).
When a dataset D is given, we write p(x, y) to mean p(x, y) ∈ D.

Keys. A key for a dataset is a set of properties that uniquely identifies every
subject.

Definition 2. (Key) A (classical) key for a dataset D is a set
of properties p1, ..., pn of D, such that for all subjects x, y of D,
(
∧

i=1...n ∃ ui : pi(x, ui) ∧ pi(y, ui))⇒ x = y.

This definition of keys is used in the ontology language OWL2 [29]. In our
example, the property set {lastName, gender} is a key. Every superset of a
key is a key as well. This is easy to see: Once {lastName, gender} uniquely
identifies all researchers, the addition of the nationality to the key will only
further distinguish the subjects. Therefore we are mainly interested in minimal
keys, i.e., keys where the removal of any of the properties produces a set that
is no longer a key, i.e, a non-key.

Definition 3. (Maximal non-key) A maximal non-key for a dataset D is a
set of properties P of D that is not a key, so that the addition of any property
makes P a key.

In our example, {firstName, lastName, laboratory} is a maximal non-key, be-
cause adding any other property makes the set a key.

SAKey approach for key discovery. One challenge in the context of
KBs is to discover keys automatically in the data. This is a difficult endeavor,
because KBs can be very large, and all different combinations of properties
have to be checked for their quality of being a key. To check a combination of
properties, a naive algorithm has to compare all subjects of the dataset to all
other subjects – which is prohibitively expensive. SAKey2[25] is an algorithm
for key discovery that avoids this complexity. Instead of directly finding keys,
SAKey first finds maximal non-keys. This is more efficient, because to verify
that a set of properties is a non-key, it suffices to find two subjects that share
the properties. SAKey starts with property combinations that contain only
a single property, and incrementally adds more and more properties until it
arrives at maximal non-keys. When it has found all non-keys, all other property
combinations must be keys – which is what SAKey outputs.

2Scalable Almost Key discovery

5

3.2 Conditional Keys

In our example in Table 1, there exist two researchers with the last name
“Dupont”, therefore the property lastName is not a key in this dataset. The
combination {firstName, lastName} is also not a key, since there are two re-
searchers with the same first and last names. However, when we restrict our
set of researchers to those working at INRA, the property lastName identifies
researchers uniquely. In contrast, this is not true for the researchers in Paris-
Sud. Thus, {lastName, lab} is not a key in general. We say that lastName is a
conditional key for people working at INRA. More formally:

Definition 4. (Condition) For a given dataset D, a condition is a pair of
a property p of D and an object o of D, written p = o. A condition cd with
property p and object o holds for a subject x, written cd(x), if p(x, o).

In our example, lab = INRA is a condition, and it holds for p4, because
lab(p4, INRA).

Definition 5. (Conditional key) A conditional key for a dataset D is a
non-empty set of conditions {cd1, ..., cdn} and a non-empty set of properties
{p1, ..., pm} of D (disjoint from the properties in the conditions), such that for
all subjects x, y:∧
i=1..n

(cdi(x) ∧ cdi(y)) ∧
∧

i=1..m

(∃ ui : pi(x, ui) ∧ pi(y, ui))⇒ x = y

Definition 6. (Minimal conditional key) A conditional key with conditions
CD and properties P is minimal, if the removal of a condition, the removal of a
property, or the transfer of a property p from CD to P (with the corresponding
removal of the condition), all result in something that is not a conditional key.

In our example, lastName is a conditional key with condition nationality =
Spanish ∧ lab = INRA, but this conditional key is not minimal, because there
exists a simpler version of the key with fewer conditions, namely nationality =
Spanish. In the same vein, {lastName} with the condition gender=male is not
a minimal conditional key, because {lastName, gender} is a key.

Definition 7. (Support of a conditional key). The support of a conditional
key with properties {p1, ..., pn} and conditions {cd1, ..., cdm} for a dataset D is
the number of subjects x such that

∧
i=1..n ∃ui : pi(x, ui) and

∧
i=1..m cdi(x).

The support is an absolute number. A proportional version of the support,
which we call the coverage, measures the ratio of subjects in the dataset identi-
fied by the conditional key. In our example, the support of the key {lastName}
under the condition lab=INRA is 4, and the coverage is 4

7 = 0.57 since there
are 7 subjects in the dataset.

Relation to OWL. Conditional keys can also be defined in the ontology
language OWL2 [29]. This is because OWL2 allows defining keys not just
on atomic classes (such as researcher), but also on more complex class ex-
pressions. We can, e.g., define the class “Researchers who work at INRA” as
c = Researcher u ∃lab.{INRA}. Then {lastName} is a key on the dataset of c
according to Definition 2.

6

4 Mining Conditional Keys

We now present our approach to automatically discover conditional keys in
RDF datasets. The discovery of simple keys alone already requires checking a
large number of property combinations (of which there are 2|P| in total, where
P is the set of properties). Discovering conditional keys is even more complex,
since the search space is in the order of O(|V||P|), where V is the set of objects
in the dataset. Our algorithm can discover conditional keys efficiently in spite
of this large search space. Our method takes as input a dataset D and a thresh-
old θ for the minimal support of the discovered keys. We proceed in three phases:

Discovery of non-keys. Instead of exploring the whole set of combina-
tions of properties, we focus our search on those combinations that are not keys.

Generation of Conditional Key Graphs. The non-keys from the pre-
vious phase are used to generate candidate keys, which we store in conditional
key graphs.

Mining of Conditional Key Graphs. The conditional key graphs are
then mined for minimal conditional keys.

We will now explain these phases in detail.

4.1 Discovery of non-keys

The naive method to mine conditional keys explores all possible combinations
of properties and conditions in the input KB and verifies whether they fulfill
Definition 5. Such an approach is infeasible on large datasets. Our main idea
(the key insight, so to speak) is the following:

Lemma 1. (Conditional Keys and Non-Keys) Given a minimal condi-
tional key for a dataset D with properties P and conditions {p1 = o1, ..., pn =
on}, the set of properties P ∪ {p1, ..., pn} must be a non-key for D.

This follows from Definition 6. In our example from Table 1, {firstName}
is a minimal conditional key with condition gender=Female, and {gender, first-
Name} is a non-key.

Thus, if we want to mine the complete set of minimal conditional keys, it
suffices to consider only the property combinations given by non-keys. Since
maximal non-keys are super-sets of all other non-keys (Definition 3), it is suf-
ficient to explore only property combinations given by maximal non-keys. The
maximal non-keys in the input dataset can be mined efficiently with the SAKey
algorithm [25] (Section 3.1). Thus, we concentrate in the following on mining
the conditional keys from these maximal non-keys.

As a running example, consider again the dataset in Table 1. It contains
two maximal non-keys: {firstName, lastName, lab} and {firstName, gender, lab,
nationality}.

7

Figure 1: Example of a conditional key graph with P k = {firstName, lab,
nationality}, P c ={gender}, cond = {gender = Female}.

4.2 Generation of Conditional Key Graphs

Our method for discovering conditional keys from non-keys relies on a data struc-
ture that we call conditional key graph. Such a graph is a tuple 〈P k, P c, cond , G〉
with the following components:

• P k and P c are disjoint sets of properties, called key properties and condi-
tion properties, respectively.

• cond is a set of conditions (Definition 4) on P c.

• G is a directed graph. Each node v is associated to a set v.p ⊆ P k and to
a boolean flag v.explore. There is a directed edge from u to v if u.p ⊂ v.p
and |u.p| = |v.p| − 1.

As an example, Figure 1 shows a conditional key graph with P k =
{firstName, lab,nationality}, P c = {gender}, and cond ={gender=Female}.

We construct the initial conditional key graphs with Algorithm 1. This
algorithm takes as input the dataset, the support threshold, and the non-keys
discovered in Section 4.1. We first construct all possible conditions p = a that
combine a property p from the non-keys with an instance or literal a from the
dataset (Lines 2-3). Conditions with support less than θ are not considered
(Line 4). We then look at all non-keys N in which p appears (Line 5). The
conditional key graph for the condition p = a will contain as nodes all subsets
of N \ {p} (Lines 6-8) except the empty set (Line 9).

As an example, let us consider again the dataset of Table 1 and its two
maximal non-keys {firstName, lastName, lab} and {firstName, gender, lab, na-
tionality}. Figure 1 depicts the conditional key graph associated to the condition
gender = Female constructed by Algorithm 1.

Lemma 2. (Graph Construction) If Algorithm 1 is given a dataset D, a
complete set of maximal non-keys N for D and a support threshold θ, then for
each conditional key of D with a single condition and with at least support θ,
there is a graph in the output that contains the key condition and a node with
the key properties.

Lemma 2 follows from the fact that Algorithm 1 (a) iterates over all conditions
p = o with a least support θ and (b) considers all the possible subsets of
properties 2N\{p} with N ∈ N (except for ∅). From Lemma 1 we recall that for

8

Algorithm 1: ConstructGraphs

Input: dataset D, min. support θ, set of non-keys N
Output: set of conditional key graphs G

1 G ← ∅
2 for p ∈

⋃
N∈N N do

3 for a ∈ I ∪ L such that ∃x : p(x, a) ∈ D do
4 if number of x with p(x, a) is at least θ then
5 V ← ∅
6 for N ∈ N where p ∈ N do
7 V ← V ∪ 2N\{p}

8 V ← V \ ∅
9 E ← {u, v ∈ V : u.p ⊂ v.p ∧ |u.p| = |v.p| − 1}

10 P k =
⋃

v∈V v.p
11 P c = {p}
12 cond = {p = a}
13 G ← G ∪ {〈P k, P c, cond, (V,E)〉}

14 return G

any conditional key with properties P and condition p = o, the set of properties
P ∪ {p} must be a non-key. Thus, from the completeness of our set of maximal
non-keys, it follows that our graph contains in its nodes all possible keys with
support higher than θ for a given condition p = o.

4.3 Mining of Conditional Key Graphs

Mining conditional keys. Algorithm 2 takes as input a dataset, a support
threshold, and the set of conditional key graphs constructed in the previous
phase. All these conditional key graphs have conditions of size 1 (see Algo-
rithm 1). The algorithm proceeds in batches, looking first at the graphs with
condition size 1, then size 2, etc. (Lines 2-3). For each batch, it mines the con-
ditional keys (Line 7). The graphs in one batch are then post-processed (Line 8)
to give rise to new graphs with conditions of larger size. The algorithm iterates
until all sizes are processed (Line 5).

Mining a conditional key graph. Let us now discuss how one conditional
key graph can be mined for keys (Line 7 in Algorithm 2). This task is done by
Algorithm 3. This algorithm takes as input a dataset, the support threshold,
a conditional key graph, and the set of conditional keys found so far. The
algorithm proceeds in levels, looking first at the nodes that contain one property,
then two properties, etc. For each level, we consider every node cand . If the node
is still marked for exploration (Line 3), we construct a candidate conditional key,
with the input conditions as condition part, and the properties in cand .p as the
key part (Line 4). We then verify if the candidate key (a) meets the definition
of a conditional key and (b) is minimal with respect to the other keys that have
already been mined (Lines 5-6). If that is the case, the conditional key is added
to the ouput (Line 7). If the key is a minimal key, then any extension of the
key with more properties in the key part must be non-minimal and can safely
be abandoned. Likewise, if the support of the candidate key is below the given

9

Algorithm 2: ConditionalKeyDiscovery

Input: dataset D, minimum support θ, set of conditional key graphs G
Output: set of minimal conditional keys CKs

1 CKs ← ∅
2 for size = 1 to ∞ do
3 G′ ← {g ∈ G : |g.cond | = size}
4 if G′ = ∅ then
5 return CKs

6 for 〈P k, P c, cond , G〉 ∈ G′ do
7 CKs ← CKs ∪MineGraph(D, θ, 〈P k, P c, cond , G〉,CKs)

8 G ← newConditions(size,G, θ,D)

Figure 2: Keys of size 1 explored for the condition gender = Female.

threshold, so are its refinements. In both cases, we can prune the node and all
descendants (Lines 8-11).

As an example, let us consider again the data from Table 1, with the condi-
tion gender=Female and the maximal non-key {firstName, gender, lab, nation-
ality}. The corresponding conditional key graph after scanning the first level is
shown in Figure 2. Nodes with the explore flag set to false are greyed out. At
the end of this step, only the property firstName is discovered as a key, since
first names are unique among female researchers. It follows that nodes contain-
ing this property in the next levels of the graph define non-minimal keys. They
are therefore discarded for further exploration (the explore flag is set to false).
The search for conditional keys is then applied to the nodes on levels 2 and 3,
for which the explore flag is still true.

Lemma 3. (Graph Mining) Given a conditional key graph 〈P k, P c, cond , G〉
for a dataset D and a threshold θ, Algorithm 3 will ensure that the result set
CKs contains all minimal conditional keys for the condition set cond whose key
properties are given by one of the nodes in G, and whose support is at least θ.

This lemma holds because Algorithm 3 traverses all nodes in the conditional
key graph, and checks each of them for being a conditional key. It excludes only
(a) those nodes whose ancestors already had a support smaller than θ, in which
case the node itself must also have a support smaller than θ, and (b) the nodes
that lead to non-minimal keys.

Merging conditions. Let us now look at the process of generating more

10

Algorithm 3: MineGraph

Input: dataset D, minimum support θ,
conditional key graph 〈P k, P c, cond , G = (V,E)〉,
set of conditional keys found so far CKs
Output: modified CKs

1 for level = 1 to maxv∈V |v.p| do
2 for cand ∈ V where |cand.p| = level do
3 if cand .explore then
4 ck ← 〈cond , cand .p〉
5 isKey ← ck is a minimal key w.r.t CKs
6 if isKey ∧ support(ck,D) ≥ θ then
7 CKs = CKs ∪ {ck}
8 if isKey ∨ support(ck,D) < θ then
9 cand.explore ← false

10 for child ∈ descendants(cand,G) do
11 child .explore ← false

12 return CKs

Figure 3: Example of a merged graph with condition {gender = Female, lab =
INRA}.

11

complex conditions (Line 8 in Algorithm 2). This work is done by Algorithm 4.
It takes as input a set of conditional key graphs, a support threshold, a dataset,
and a size parameter. It looks at all conditional key graphs that have a condition
set of the given size (Lines 2-3). For each of them, it constructs a clone (Line
4). It then adds one more condition to the condition set of the clone. This new
condition consists of a property and a constant (Definition 4). The property is
taken from a node of size 1 having its explore flag still set to true (Lines 5-6).
The constant is taken from the constants that appear with that property in the
conditional key graphs of size 1 (Line 10). If the new combined condition has a
support that is large enough (Line 11), the conditional key graph of the singleton
condition is merged with the clone and added to the output set (Line 12).

The merge operation between two conditional key graphs
〈P k

1 , P
c
1 , cond1, (V1, E1)〉 and 〈P k

2 , P
c
2 , cond2, (V2, E2)〉 with P c

1 ∩ P c
2 = ∅,

produces a new conditional graph 〈P k, P c, cond , (V,E)〉 with:

• P k = P k
1 ∩ P k

2 and P c = P c
1 ∪ P c

2 .

• cond = cond1 ∪ cond2

• V = {〈v.p, v.explore〉 : ∃v1 ∈ V1, v2 ∈ V2 : v1.p = v2.p =
v.p ∧ v.explore = (v1.explore ∧ v2.explore)}

• E = {u, v ∈ V : u.p ⊂ v.p ∧ |u.p| = |v.p| − 1}

Algorithm 4: newConditions

Input: size of condition set size
set of conditional key graphs G
support threshold θ, dataset D
Output: modified set of conditional key graphs G

1 G1 ← {g ∈ G : |g .cond | = 1}
2 Gsize ← {g ∈ G : |g .cond | = size}
3 for g ∈ Gsize do
4 g ← clone(g)
5 for v ∈ g.V where |g.V.p| = 1 do
6 if v.explore then
7 v.explore ← false
8 for v′ ∈ g.descendants(v) do
9 v′.explore ← false

10 for g1 ∈ G1 where g1.P
c = v.p do

11 if support(g.cond ∧ g1 .cond ,D) ≥ θ then
12 G ← G ∪merge(g, g1)

13 return G

As an example, Figure 3 shows the conditional graph with the set of conditions
{gender = Female, lab = INRA} produced by Algorithm 4 from the conditional
graphs with conditions gender = Female and lab = INRA. This graph is a
clone of the graph with the condition gender = Female. A node is marked to
be explored only if it was marked to be explored in both of the original graphs.

12

Lemma 4. (New Conditions) Given a dataset D, a set of conditional key
graphs G, a size parameter size, and a threshold θ, Algorithm 4 produces all
conditional key graphs that contain condition sets of size size+1. Each of those
graphs contains all the conditional keys for the given condition.

We can prove Lemma 4 by induction. For size = 0, Lemma 2 guarantees
that Algorithm 4 starts with all conditional key graphs for conditions of size 1.
For size > 0, we need to show that (a) Algorithm 4 generates all conditional
key graphs of size size + 1 and (b) each of these graphs contains all minimal
conditional keys for their condition.

We start by showing (b), that is, the merge operation between
two conditional key graphs G1 = 〈P k

1 , P
c
1 , cond1, (V1, E1)〉 and G2 =

〈P k
2 , P

c
2 , cond2, (V2, E2)〉 does not skip any minimal conditional key for the new

condition. There are only two ways a node can be excluded from exploration
in the merge operation: (1) the node is explicitly marked for non-exploration
and (2) the node does not occur in one of the conditional key graphs. Case (1)
occurs when the corresponding nodes are below the support threshold θ or they
define non-minimal keys. In Case (2), the claim follows from the fact that if a
node v is not contained in one of the graphs (e.g., v 6∈ V1), then v.p ∪ P c

1 must
be a key, i.e., it is not contained in any maximal non-key. This rationale applies
analogously if v 6∈ V2.

To show (a) we need to prove that our conditions are complete and cor-
rect. To show completeness we observe that Algorithm 4 builds conditions with
|cond | = size + 1 based on the complete set of conditions with |cond | = size
and |cond | = 1. From the monotonicity of support, it follows that all condi-
tions with |cond| = size + 1 with support greater than θ can be computed from
these sets. To show correctness we note that for each graph with condition
cond = {p1 = o1, . . . , psize = osize} and key properties P k, Algorithm 4 will
merge the graph with all conditions of the form psize = osize where psize ∈ P k

(conditions of size 1, Line 5). This will produce graphs with conditions of the
form {p1 = o1, . . . , psize−1 = osize−1, psize = osize} with key part P k \ {psize}
with support greater than θ. (a) follows from Lemma 1, since we have just
transferred a property from the key part to the condition part.

Theorem 1. (Conditional Key Discovery) Given a dataset D, a set of
conditional key graphs G, and a threshold θ, Algorithm 2 produces all conditional
keys whose properties are a subset of the properties of any node in any graph
in G, whose conditions are built from conditions or properties in G, and whose
support is at least θ.

This theorem follows from the fact that Algorithm 2 calls Algorithm 3 for all
sizes between 1 and the maximal number of property combinations. Observa-
tion 3 makes sure that all possible graphs are generated. Observation 4 ensures
that all possible combinations of conditions are treated.

Corollary 1. (Conditional Key Mining) Our method for conditional key
mining is complete and correct.

The correctness follows from the fact that Algorithm 3 adds a new key if
and only if it is a key (Line 5). The completeness follows from Observation 1
and Theorem 1.

13

Class Triples Instances #Properties #NKs VICKEY AMIE #CKs

Actor 74.0k 5.9k 133 244 8.83m > 1d 401
Album 831.3k 89.0k 106 93 1.83h 7.82h 295
Book 262.6k 30.1k 117 132 14.44h > 1d 411
City 921.5k 19.3k 283 1329 > 2d > 2d > 93
Film 839.3k 89.2k 172 232 1.80h 4.86h 184
Mountain 133.3k 16.5k 140 78 3.51m > 1d 257
Museum 14.4k 2.1k 123 29 1.46s 11.77s 51
Organisation 4.01M 191.3k 776 4624 37.53h > 2d 25
Scientist 559.7k 19.7k 186 443 33.53m > 1d 575
University 191.4k 10.9k 238 409 12.45h > 1d 805

Table 2: Performance of VICKEY vs AMIE on different DBpedia classes

4.4 Implementation

Our method, VICKEY, is implemented in Java 7. The conditional key graphs
have large condition sets and large associated graphs. Therefore, we do not
store the graphs in memory, but rather generate them on the fly when they
are accessed. Furthermore, we parallelized the algorithm as follows: the set
of input non-keys is split into batches containing up to 50 (potentially non-
distinct) properties. The batches are then scheduled to threads in the system,
each one running Algorithms 1 and 2. This may lead to mining the same non-
key multiple times, and therefore we perform a de-duplication before reporting
the final results.

5 Experiments

We conduct two rounds of experiments to evaluate VICKEY. In the first round,
we evaluate the performance of VICKEY and compare it with a conditional key
mining approach based on AMIE [11, 12]. In the second round, we show how
conditional keys can improve the quality of the entity linking task between two
KBs.

For the first round of experiments, we use the version of DBpedia released
in October 20153. We use the instance information and the mapping-based
properties. In the second round of experiments, we use the conditional keys
found in the first round to link instances between DBpedia and YAGO34. Since
the notion of a key is associated to a class, we test VICKEY on a set of 10
classes, covering different domains such as people, organisations, and locations.
We construct one dataset per class (Definition 1). Our experiments are run on
a server with an AMD Opteron 6376 Processor (2.40GHz), 8 cores, and 128GB
of RAM.

5.1 VICKEY Runtime

Setting. We evaluate the performance of VICKEY by comparing it with a
generic rule mining approach, AMIE [11, 12]. Given an input KB and a thresh-
old on support, AMIE mines Horn rules of the form B1 ∧ · · · ∧Bn ⇒ H, like:

hasChild(x, y) ∧ isCitizenOf (x, z)⇒ isCitizenOf (y, z)

3http://wiki.dbpedia.org/Downloads2015-10
4http://yago-knowledge.org

14

We adapted AMIE to mine rules of the form:

Pc ∧ Pk ⇒ x = y

In this expression, Pc =
∧

1..n pci(x,Ai) ∧ pci(y,Ai) corresponds to the condi-
tion part of a key expression, and Pk =

∧
1..m pki(x, ui) ∧ pki(y, ui) corresponds

to the key part. Both AMIE and VICKEY take as input a set of maximal non-
keys. These non-keys are obtained from the input dataset using SAKey [25].
Like VICKEY, our adapted variant of AMIE uses the non-keys to restrict the
search space by pruning the combinations of properties that do not occur in the
non-keys. Unlike VICKEY, AMIE searches exhaustively for all rules that de-
fine conditional keys in the input dataset, regardless of their minimality. AMIE
therefore requires a post-processing phase where all non-minimal conditional
keys are removed. Both AMIE and VICKEY are run with a coverage threshold
of 1% on a set of 10 DBpedia classes. We set the confidence threshold of AMIE
to 100%, so that VICKEY and the modified AMIE mine exactly the same set
of conditional keys for a given dataset.

Results. Our results are shown in Table 2. The first three columns show
some statistics about the testing datasets, followed by the number of discov-
ered non-keys (NKs), the runtimes of both VICKEY and AMIE and finally the
number of obtained conditional keys (CKs). We observe that a generic rule
mining solution cannot handle most of the input datasets in less than 1 day.
VICKEY, in contrast, runs on the smaller datasets Actor, Mountain, Museum
and Scientist in less than 1 hour. For other datasets such as University and
Book, VICKEY takes more than 12 hours to mine its conditional keys. In
those cases, the system is confronted with a much larger search space, due to
a large number of long non-keys (with more than 20 properties). To see why
this matters, recall that for each subset of properties co-occuring in a non-key,
the search space includes all the combinations of properties in that subset. This
number can be prohibitively large for long non-keys. For example, if we consider
a non-key with n properties, the graph for a condition on one of the properties
will have in the worst case a connected component with n − 1 levels, where
each level i has

(
n−1
i

)
nodes. Furthermore, this number of combinations has to

be explored for each possible condition on the chosen property. Nevertheless,
VICKEY can deal with such a large search space by materializing the combina-
tions levelwise. In addition, VICKEY applies the minimality criterion to avoid
combinations of properties that are over-specifications of minimal conditional
keys. A generic rule mining solution like AMIE cannot count on such optimiza-
tions. For example, for the class Album, AMIE explores more than 12.3k rules
(including intermediate rules), where 6.4k rules correspond to potential con-
ditional keys, while VICKEY explores only 4.1k candidates. This shows that
VICKEY’s strategy indeed prunes the search space much more effectively.

For the class city, VICKEY takes more than two days. This is because
every person who ever lived in this city has to be checked for being potentially a
condition. In fact, 192 of the 283 properties of the city dataset are such inverse
properties. If we restrict these relations to the ones that appear in YAGO (as
we do in the next section), the mining terminates in less than 15 minutes.

15

Class #Properties #Ks #NKs #CKs
Actor 16 93 22 748
Album 5 1 2 5864
Book 7 5 2 538
City 17 178 43 5282
Film 9 14 13 26750
Mountain 5 3 2 775
Museum 7 14 5 80
Organisation 17 149 3 9737
Scientist 10 22 8 407
University 9 5 5 449

Table 3: Statistics about linked classes

5.2 Conditional keys for entity linking

Setting. We also conducted an extrinsic evaluation, where we show that the
conditional keys mined by VICKEY improve the performance of entity linking.
This is the task of discovering sameAs links between the entities of one KB to
the equivalent entities in another KB – under the assumption that both KBs use
the same relationships. There are numerous methods for entity linking. Many
of them use keys [21, 17], because if some combination of properties is a key,
and if an entity in one KB shares these properties with an entity in the other
KB, then the two entities must be the same. In our experiment, we show that
if the set of keys is augmented with conditional keys, the performance of the
entity linking improves.

We wish to emphasize that we are not interested in solving the task of entity
linking per se. Rather, we are interested in showing that conditional keys can
improve the performance of any method that uses keys for entity linking.

Entity linking. As knowledge bases, we chose DBpedia and YAGO3, be-
cause there is a gold standard available for the entity links on the YAGO Web
page. We use the same set of classes as for the runtime experiments. We first
align the properties of these classes using the ROSA approach [10], and cor-
rect the mappings manually. We then rewrite the properties of YAGO using its
DBpedia counterparts. The entity linking can be done with the keys mined on
DBpedia or with the keys mined on YAGO. We conducted both experiments,
and obtained very similar results. Hence, we report here only the former. We
run SAKey [25] and VICKEY on DBpedia to find standard and conditional
keys, respectively. Table 3 shows the number of common properties, the num-
ber of keys (Ks), non-keys (NKs) and conditional keys (CKs) in each DBpedia
class. Among others, VICKEY finds that motto is a key for universities in Italy
and some other countries – but not in all countries; that wasCreatedInYear is a
key for films by certain actors – but not all actors; and that the name is a key
for organizations in certain places – but not all places.

To link the datasets, we use the simple algorithm employed in [25]: For each
key, we iterate over the entities in DBpedia that have the key properties. If
there is an entity in YAGO that has the same values for these properties, we
link the two. For conditional keys, we proceed in the same way, but also check
whether the conditions of the key are fulfilled in both datasets.

16

Class Recall % Precision % F1 %

Actor Ks 27.43 99.93 43.05
CKs 57.49 99.63 72.91
Ks+CKs 60.42 99.81 75.27

Album Ks 0.01 100.00 0.03
CKs 15.00 99.39 26.07
Ks+CKs 15.01 99.39 26.08

Book Ks 3.49 100.00 6.75
CKs 11.31 99.31 20.31
Ks+CKs 13.33 99.75 23.51

City Ks 61.06 99.98 75.82
CKs 82.55 99.45 90.21
Ks+CKs 84.70 99.93 91.69

Film Ks 4.06 99.96 7.80
CKs 38.17 96.57 54.72
Ks+CKs 38.62 97.69 55.35

Mountain Ks 0.22 100.00 0.44
CKs 28.59 99.39 44.41
K+CKs 28.70 99.39 44.54

Museum Ks 12.05 100.00 21.51
CKs 24.86 100.00 39.82
Ks+CKs 30.85 100.00 47.16

Organisation Ks 1.10 100.00 2.17
CKs 13.97 98.42 24.46
K+CKs 14.24 98.63 24.88

Scientist Ks 5.78 98.04 10.92
CKs 16.69 99.93 28.60
Ks+CKs 19.34 99.41 32.37

University Ks 8.93 99.87 16.39
CKs 22.03 99.14 36.04
Ks+CKs 25.03 99.55 40.00

Table 4: Linking results for YAGO and DBpedia.

Results. Table 4 shows the precision, recall and F1 measure of the entity
linking task using a) classic keys, b) conditional keys and c) both types of keys.
We first observe that the precision is always over 98%. Conversely, the recall is
low in some cases. This happens mainly due to our simple linking method, which
uses a strict string equality, and also due to the incompleteness of the data in
both YAGO and DBpedia. However, even with this simple method, the use of
conditional keys can lead to a significant increase in recall (e.g., from 4% to 38%
for the class Film) – with a negligible impact on precision. Furthermore, when
combining classic keys and conditional keys, the recall improves further, with
only minimal impact on precision. Overall, we observe an average increase of 21
percentage points in precision, and of 27.5 points in F1 when both standard keys
and conditional keys are used to link the data. The average drop in precision is
only 0.5%. This shows that conditional keys can significantly increase the recall
of entity linking, while reducing precision only marginally.

17

6 Conclusion

We have presented VICKEY, an approach to mine conditional keys on RDF
datasets. Mining keys is a hard problem due to the size of the search space –
and this search space is even larger for conditional keys. Our approach over-
comes this problem by restricting the search space to the non-keys found by
SAKey [25], and by pruning the search space smartly. This allows VICKEY to
mine minimal conditional keys in datasets of up to 4M triples. In an extrinsic
evaluation, we have shown that our conditional keys can increase the recall of
entity linking by up to 34 percentage points – with negligible impact on pre-
cision. The VICKEY system, as well as the datasets and the evaluations, are
publicly available at https://github.com/lgalarra/vickey/.

18

References

[1] M. Al-Bakri, M. Atencia, J. David, S. Lalande, and M. Rousset.
Uncertainty-sensitive reasoning for inferring sameas facts in linked data.
In ECAI, 2016.

[2] M. Atencia, J. David, and F. Scharffe. Keys and pseudo-keys detection for
web datasets cleansing and interlinking. In EKAW, 2012.

[3] J. Atoum, D. Bader, and A. Awajan. Mining functional dependency from
relational databases using equivalent classes and minimal cover. J. of Com-
puter Science, 2008.

[4] F. Chiang and R. J. Miller. Discovering data quality rules. In VLDB, 2008.

[5] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints. In
VLDB, 2013.

[6] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang. Knowledge vault: A web-scale
approach to probabilistic knowledge fusion. In KDD, 2014.

[7] X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy, S. Sun, and
W. Zhang. From data fusion to knowledge fusion. In VLDB, 2014.

[8] W. Fan, Z. Fan, C. Tian, and X. L. Dong. Keys for graphs. In VLDB,
2015.

[9] W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering conditional functional
dependencies. TKDE, 23(5), 2011.

[10] L. Galárraga, N. Preda, and F. Suchanek. Mining Rules to Align Knowledge
Bases. In AKBC workshop, 2013.

[11] L. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek. Fast rule mining
in ontological knowledge bases with AMIE+. VLDB J., 24(6), 2015.

[12] L. A. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek. AMIE: as-
sociation rule mining under incomplete evidence in ontological knowledge
bases. In WWW, 2013.

[13] A. Heise, Jorge-Arnulfo, Quiane-Ruiz, Z. Abedjan, A. Jentzsch, and
F. Naumann. Scalable discovery of unique column combinations. In VLDB,
2013.

[14] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. Tane: An effi-
cient algorithm for discovering functional and approximate dependencies.
Computer Journal, 42(2), 1999.

[15] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga. Cords: Auto-
matic discovery of correlations and soft functional dependencies. In SIG-
MOD, 2004.

19

[16] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes,
S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. DBpedia - a
large-scale, multilingual knowledge base extracted from wikipedia. Seman-
tic Web J., 6(2), 2015.

[17] A. Nikolov and E. Motta. Data linking: Capturing and utilising implicit
schema-level relations. In LOD workshop, 2010.

[18] N. Pernelle, F. Säıs, and D. Symeonidou. An automatic key discovery
approach for data linking. J. of Web Semantics, 23, 2013.

[19] N. Preda, G. Kasneci, F. M. Suchanek, T. Neumann, W. Yuan, and
G. Weikum. Active knowledge: dynamically enriching RDF knowledge
bases by web services. In SIGMOD, 2010.

[20] S. Razniewski, F. M. Suchanek, and W. Nutt. But What Do We Actually
Know? . In AKBC workshop, 2016.

[21] F. Säıs, N. Pernelle, and M. Rousset. Combining a logical and a numerical
method for data reconciliation. J. Data Semantics, 12, 2009.

[22] Y. Sismanis, P. Brown, P. J. Haas, and B. Reinwald. Gordian: efficient and
scalable discovery of composite keys. In VLDB, 2006.

[23] T. Soru, E. Marx, and A. N. Ngomo. ROCKER: A refinement operator for
key discovery. In WWW, 2015.

[24] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic
knowledge. In WWW, 2007.

[25] D. Symeonidou, V. Armant, N. Pernelle, and F. Säıs. SAKey: Scalable
Almost Key discovery in RDF data. In ISWC, 2014.

[26] D. Symeonidou, I. Sanchez, M. Croitoru, P. Neveu, N. Pernelle, F. Säıs,
A. Roland-Vialaret, P. Buche, A. Muljarto, and R. Schneider. Key dis-
covery for numerical data: Application to oenological practices. In ICCS,
2016.

[27] D. Vrandečić and M. Krötzsch. Wikidata: a free collaborative knowledge-
base. Comm. of the ACM, 57(10), 2014.

[28] Word Wide Web Consortium. RDF Primer, 2004.

[29] Word Wide Web Consortium. OWL 2 Web Ontology Language, 2012.

[30] C. Wyss, C. Giannella, and E. Robertson. Fastfds: A heuristic-driven,
depth-first algorithm for mining functional dependencies from relation in-
stances extended abstract. In Data Warehousing and Knowledge Discovery,
2001.

[31] H. Yao and H. J. Hamilton. Mining functional dependencies from data.
Data Mining and Knowledge Discovery, 16(2), 2008.

20

