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Abstract—Multiple sound source localization in reverberant
environments stands as one of the most difficult challenges for
many applications related to microphone array signal processing.
In this paper, we describe Perpendicular Cross-Spectra Fusion
(PCSF), a new Direction of Arrival (DOA) estimation algorithm
which utilizes an analytic formula for direction estimation in
the time-frequency (TF) domain. Inherent to this technique is
the presence of multiple direction estimation subsystems which
operate in parallel, producing a multiplicity of candidate DOAs
at each TF point. We define a metric of coherence, based on
the property of divergence of the different DOA estimators,
for assessing the reliability of different signal portions, so that
only TF bins with a high quality of directional information are
exploited for local DOA estimation. The resulting collection of
local DOAs is provided as input to a recently proposed histogram
processing approach which is based on matching pursuit. Results
based on simulation and real recordings illustrate the advantages
of PCSF compared to other DOA estimation techniques subjected
to the same histogram based processing, in the context of
real-time multiple source localization and counting; improved
performance in reverberant conditions and high tolerance to
diffuse and common mode noise.

Index Terms—Direction of arrival estimation, multiple source
localization, source counting, information fusion

EDICS: AUD-ASAP:Acoustic Sensor Array Processing

I. INTRODUCTION

RELYING on acoustic signals for estimating the Direction
of Arrival (DOA) of one or more sound sources is a

central process to many sensor array processing applications,
as for example in surveillance, source separation, speech
enhancement, teleconferencing and hearing aids. Over the
years, many different techniques have been proposed for
sound source localization, yet it is difficult to say that one
particular approach guarantees the best performance in all
cases. Different techniques may be more or less suitable than
others, in accordance to the characteristics of the radiating
sound sources (e.g., musical sources or speech sources), of the
environment (noisy, reverberant), of the sensor array geometry,
or in accordance to the limitations introduced by the available
computational resources.

Localizing multiple sound sources whose locations and
number may change arbitrarily in time has been efficiently
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tackled by techniques which exploit the property of disjoint-
ness of the sound sources in the time-frequency (TF) domain.
In several occasions this is fulfilled by the fact that the sources
are sparse in this domain, and that, as a consequence, one
source is dominant over the others in some time-frequency
windows or “zones”. A regularly adopted assumption in ac-
cordance to this principle is the so-called W-Disjoint Orthog-
onality (WDO) assumption [1], which states that in each TF
component, at most one source is active. As a consequence,
the DOA estimation problem can be written independently at
each TF component, and the resulting collection of estimated
local DOAs can be processed in terms of a histogram [2]–[5]
or by using a clustering approach [6], [7].

WDO is approximately satisfied by speech signals in ane-
choic environments, but not in reverberant conditions. Adopt-
ing a more relaxed assumption about the source disjointness
than WDO, a large number of techniques propose to collect
DOA information only from portions of the signal where
there is evidence that the overlap between different sound
sources is minimal. In this direction, Mohan et al in [8]
detects single source TF bins by observing the effective rank
of the time-averaged covariance matrix, an approach also
followed by the authors in [9], [10]. In a slightly different
manner, the authors in [11]–[13] propose the use of a single
source confidence measure which is defined across zones of
consecutive frequency bins. Finally, discarding of erroneous
local DOAs based on a measure of the consistency error
between the steering vector corresponding to the most likely
DOA and the actual measurement has been proposed in [14].

Although not treated as a separate case in many of the
previous works, robustness to noise and reverberation is an
important prerequisite for sound source localization. In order
to better handle these problems, the localization process can
be improved by incorporating an estimation of noise or re-
verberation at each TF point, as shown for example in [15].
On the other hand, onset detection and noise floor tracking
have been proposed as supplementary processes to assist the
selection of signal portions which are less contaminated by
noise and/or reverberation than others [9], [14].

Additional works addressing localization of multiple, simul-
taneous active sound sources are based on the well known
MUltiple SIgnal Classification (MUSIC) algorithm, with its
narrowband [16], [17] and wideband variations [18], [19]. Re-
cently, it was shown that MUSIC performance in diffuse noise
conditions may be improved by exploiting the symmetries in
particular types of array geometries, with the scope to denoise
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the spatial covariance matrix [20]. Similar to this work, the
technique proposed in this paper exploits symmetries of the
microphone array with the purpose to derive a second-order
statistical measure which is neutralized with respect to the
signature of diffuse isotropic noise. However, our approach
relies on a completely different way of exploiting the local
signal covariance matrix to that of MUSIC.

Other than accurate and efficient DOA estimation, an ex-
tremely important issue in sound source localization is estimat-
ing the number of active sources at each time instant, known
as source counting. Many methods in the literature propose
estimating the intrinsic dimension of the recorded data, i.e.,
for an acoustic problem, they perform source counting at each
time instant. Most of them are based on information theoretic
criteria (see [21] and the references within). In other methods,
the estimation of the number of sources is derived from a
large set of DOA estimates that need to be clustered. In
classification, some approaches to estimating both the clusters
and their number have been proposed (e.g., [22]), while several
solutions specially dedicated to DOAs have been tackled in
[23]–[26].

In this paper, the problem of multiple sound source localiza-
tion and counting is addressed using a novel DOA estimation
technique named Perpendicular Cross Spectra Fusion (PCSF).
PCSF operates on a smoothed – in time and frequency – ob-
servation of the local signal covariance matrix to establish an
analytic relation between two different cross-spectra terms and
the incident acoustic direction. Inherent to this technique is the
presence of multiple direction estimation subsystems which
operate in parallel, producing a multiplicity of candidate DOAs
at each TF point. We illustrate that the different subsystems are
complementary to one another and furthermore, their outputs
tend to diverge for signal portions conveying poor directional
information. We define a metric of coherence, based on the
property of divergence of the different DOA estimators, for
assessing the reliability of different signal portions, so that
only TF bins with a high directional information gain are
exploited for local DOA estimation. Ultimately, as the result
of fusion may be a void DOA, the proposed process may be
seen as an efficient TF point selection method with significant
potential to improve the performance of a multiple sound
source localization and counting system deployed on a planar
microphone array with a square canonical configuration.

While the proposed algorithm for constructing the local
collection of DOAs is essentially novel, the additional steps
required for completing the process are based on a recently
proposed method presented in [13]. Specifically, we apply a
matching pursuit-based approach to the histogram of DOA es-
timates, which allows for joint estimation of the sound sources’
number and their corresponding directions. The particular
method has demonstrated excellent performance in adverse
conditions, outperforming several other approaches, both in
terms of accuracy and computational complexity [13], [27].
In this paper it becomes useful as a common framework to
process the DOAs which are provided by the proposed method,
as well as those provided by other methods that we use for
comparison.

Additional value to this paper is given by the fact that the

previously described histogram processing method is evaluated
in the context of additional DOA estimation algorithms. In
particular, in the original paper [13], the authors used the
method of the Circular Integrated Cross Spectrum (CICS) [28]
in combination with the single source zone (SSZ) confidence
measure described in [11] to produce the required collection
of direction estimates. In comparison to this approach, we
illustrate that a DOA estimation algorithm based on Direc-
tional Audio Coding (DIRAC) [29] results to a competitive
performance and may even lead to improvements under certain
conditions, at least for the type of microphone array which
is considered here. In parallel, it is demonstrated that the
diffuseness estimation process inherent to a two-dimensional
implementation of DIRAC provides an efficient metric for
selecting reliable TF points for DOA estimation in 2D.

The structure of this paper is as follows; in Section II, we
present the basic principles and the requirements that need
to be fulfilled for the method to be applicable to the given
microphone array topology. In Section III, we describe four
additional state-of-the-art methods for DOA estimation with
the scope to use them for comparison with the proposed tech-
nique. The common framework for sound source localization
and counting using an available collection of local DOAs is
presented in Section IV, results based on simulated and real
data are presented in Section V and finally, we conclude in
Section VI.

II. PROPOSED METHOD

A. Assumptions and Notations

Throughout the rest of the paper, (·)∗, (·)T and (·)H denote
complex conjugation, transposition and Hermitian transposi-
tion respectively, while =[·] and <[·] denote the imaginary
and real part of a complex number. Signals are presented in
the TF domain with ω ∈ R denoting the angular frequency
and τ ∈ Z the time-frame index.

Consider a planar array of M sensors and let rm ∈ R2,
m = 1, ...,M denote the vector with the coordinates of each
sensor. Now, let x be a vector in R2 and lx = ‖x‖2 be its
length, with ‖·‖2 denoting the Euclidean norm. Considering
now all pairwise sensor combinations, ij, we define the set
Ω(x) = {ij : rj − ri = x} and let Nx = |Ω(x)| denote the
cardinality of that set. This set contains all sensor combina-
tions which form line segments that have the same direction
and length as x. In practice x is not arbitrarily chosen, but
in accordance to the array topology. Now let pm(τ, ω) denote
the signal received at the mth sensor at time τ and radial
frequency ω. Assuming that the set Ω(x) is not empty, we
define the complex cross-spectra relevant to x as

Φx(τ, ω) =
1

Nx
E{

∑
ij∈Ω(x)

pi(τ, ω)p∗j (τ, ω)}, (1)

where E{·} denotes expectation. It is easy to observe that if
there is a non-empty set Ω(x), then neither Ω(−x) is empty
and moreover, the property Φx(τ, ω) = Φ∗−x(τ, ω) holds.

The presented approach can be applied on two-dimensional
microphone arrays of specific geometry; it is required that
among all the line segments that connect any sensor pair, there
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Fig. 1. Coordinate system and vector notation.

are line segments which are perpendicular to one another and
have the same length. Based on the previous definitions, this
requirement can be expressed in terms of two sets Ω(x) and
Ω(y) such that x ⊥ y and lx = ly. A square microphone array
of four sensors represents the simplest configuration required
for deploying the method in its full extent, and it will be
the basic configuration which will be used to demonstrate the
technique in this paper. Additional requirements are that the
distance of the sound sources with respect to the center of the
array is large enough so that the far field assumption holds and
that the maximum frequency of analysis is within the limits
imposed by spatial aliasing.

B. Perpendicular Cross Spectra Difference Model

Assume now that the array receives a signal from a single
acoustic source at an unknown direction in the presence of
additive isotropic noise. Let s(τ, ω) be the source signal and s
be the unit norm vector pointing from the source to the center
of the sensor array (we remind that the far field assumption is
required to hold). The observed signal at the mth sensor can
be written as

pm(τ, ω) = s(τ, ω)dm(ω, θ) + hm(τ, ω), (2)

where dm(ω, θ) = e−jωδm is the transfer function for the
mth microphone with δm denoting the time of flight from
the source to that microphone and hm(τ, ω) is the noise
component at the same microphone. Now, assuming that the
previous requirements are fulfilled for two vectors x,y ∈ R2

such that x ⊥ y and lx = ly, we may derive a model for the
cross-spectra along x

Φx(τ, ω) = Φss(τ, ω)ejkx
T s + Ψlx(τ, ω), (3)

and along the perpendicular direction of y as

Φy(τ, ω) = Φss(τ, ω)ejky
T s + Ψly(τ, ω), (4)

where k = ω/c is the wavenumber with c denoting the speed
of sound, Φss(τ, ω) = E{s(τ, ω)s∗(τ, ω)} is the signal power
spectrum and Ψlx , Ψly are the diffuse noise components of
the cross-spectra. The subscript lx and ly are used here to
denote the well known fact that in an isotropic noise field, the
second-order statistics between two measurement points are
only dependent on the distance between the two points [30].

Fig. 2. Square sensor configuration in (a) and corresponding vectors in (b).
Maximum Robustness Axes and corresponding disambiguation criteria for
each one of the four estimators rising from the case of a square array in (c)

This means that the noise components are equal in both cross-
spectra terms since lx = ly. Of particular interest in this paper
is the Perpendicular Cross-Spectra Difference (PCSD) defined
as

∆Φx,y(τ, ω) = Φx(τ, ω)− Φy(τ, ω),

= Φss(τ, ω)(ejkx
T s − ejkyT s), (5)

which has the very interesting property that the isotropic noise
components vanish. Considering now that a spherical-isotropic
noise field represents well the second-order statistics of the
reverberant part of the sound signals in a reverberant environ-
ment [30], [31], we expect that a sound source localization
method relying on an approximation of PCSD should exhibit
increased robustness to reverberation, which is actually one of
the most valuable properties of the proposed method.

C. Relating the Measured PCSD to the DOA

In this subsection, we provide an analytical relation between
PCSD and the incident acoustic direction. While PCSD is
defined on a specific TF point, in what follows, we omit
the time-frame, τ , and frequency index, ω, for convenience.
Without loss of generality, we may assume that the x and
y vectors are parallel to the x and y axes of our coordinate
system, as shown in Figure 1. Let’s also symbolize with θ the
angle of the incident wave and let d = lx = ly be the length
of x and y respectively. We may then define a model of the
PCSD as a function of the incident angle as

∆Φx,y = Φss · (cos(kd cos(θ))− cos(kd sin(θ)))
+ jΦss · (sin(kd cos(θ))− sin(kd sin(θ))).

(6)
Consider now the ratio between the real and imaginary part
of Eq. (6); this may be expressed as

<{∆Φx,y}
={∆Φx,y} = cos(kd cos(θ))−cos(kd sin(θ))

sin(kd cos(θ))−sin(kd sin(θ))

= − tan(kd2 (cos(θ) + sin(θ)),
= − tan( kd√

2
sin(θ + π

4 )).

(7)
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Equation (7) relates the incident angle θ to the cross-spectra
terms Φx and Φy. We can thus exploit Eq. (7) in order to
derive a closed-form solution for the unknown angle θ based
on an estimation of Φx and Φy through Eq. (1). In practice,
some additional information and effort is required for reaching
this point because this operation involves inverse trigonometric
functions which are multivalued and highly nonlinear.

For the needs of DOA estimation, the first step required is
to define the auxiliary observation

zx,y =

√
2

kd
tan−1

(
<{∆Φ̂x,y}
={∆Φ̂x,y}

)
, (8)

where tan−1(·) is the inverse tangent function and ∆Φ̂x,y =
Φ̂x−Φ̂y involves the local observed cross-spectra along x and
y, obtained by averaging in the neighborhood of a particular
TF point. Observe now from Eq. (7) that the auxiliary ob-
servation defined in Eq. (8) can be associated to the incident
direction θ through

− sin(θ +
π

4
)← zx,y, (9)

which brings us one step closer to an estimation of θ. Now,
some issues need to be clarified because in practice, the
actual observations might not be consistent with respect to
the model. For example, when using the function tan−1(·),
most computer programs will return a solution q such that
q ∈ (−π/2, π/2), and depending on the value of

√
2

kd , the
auxiliary observation might not lie in the range [−1, 1] which
is meaningful to us according to Eq. (9). A simple way
for treating this problem is to completely disregard auxiliary
observations which are not within [−1, 1]. Furthermore, when
using tan−1(·) to derive a value q, we ignore the additional
solutions q + kπ, k ∈ Z, although these values may still lie
in the [−1, 1] range. The considered model actually dictates
that cases corresponding to k 6= 0 can be ignored as long as
the maximum frequency of investigation is not higher than
fA = c

2
√

2d
, which may be seen as an upper limit related to

spatial aliasing.
The auxiliary observation zx,y together with function

− sin(θ + π
4 ) in Eq. (9) define an ambiguous closed-form

solution to the unknown direction θ, the ambiguity resulting
from the fact that function sin−1(·) returns two possible angles
in [−π, π). Interestingly, an additional closed-form solution
may be constructed, if instead of the cross-spectra measure
Φ̂x [resp. Φ̂y] we employ Φ̂−x [resp. Φ̂−y]. We let the reader
verify that had we replaced x = [−1, 0] with its opposite one,
−x = [1, 0], to measure ∆Φ̂−x,y, we would end up with an
additional ambiguous closed-form solution of the form

sin(θ − π/4)← z−x,y, (10)

with the auxiliary observation in this case defined as

z−x,y =

√
2

kd
tan−1

(
<{∆Φ̂−x,y}
={∆Φ̂−x,y}

)
. (11)

As it is shown in the next subsection, the two systems
{x,y} and {−x,y} are not equivalent, and they lead to angle
estimators with very different properties.

Fig. 3. Theoretical relation between DOA and auxiliary observation for
system x,y (solid line) and system −x,y (dashed line) in (a). Error
sensitivity of any of the two estimators as a function of the actual value
of the auxiliary observation is shown in logarithmic scale in (b).

D. Behaviour of the Estimators

In this subsection, we illustrate that for each system {x,y},
a complementary ambiguous estimator based on {−x,y} (or
{x,−y}) can be constructed and moreover, the two estimators
have very different properties. Based on Eqs. (9) and (10), the
theoretical relation between the direction θ and the value of
the auxiliary variable can be seen for each one of the two
approaches in Figure 3. The plot in (a) reflects the ambiguity
associated with each one of the two angle estimation systems
as for each value of z ∈ (−1, 1) there are always two
possible angles θ. In principle, if we treat zx,y and z−x,y
as the independent variables, the unknown direction θ̂ can be
estimated as

θ̂i = sin−1
i (−zx,y)− π/4,

and
θ̂i = − sin−1

i (−z−x,y) + π/4,

(12)

for the first and second system respectively, with subscript
i ∈ {1, 2} here denoting that sin−1(·) is actually a multivalued
function. In the range [−π, π), two possible directions θ̂1 and
θ̂2 will rise for any of the two approaches, related through θ̂2 =
π/2− θ̂1 for {x,y} and through θ̂2 = −π/2− θ̂1 for {−x,y}.
It will be shown in the next subsection that this ambiguity may
be easily resolved by exploiting additional information from
the observed cross-spectra terms.

At this stage, it is worth performing a basic analysis in order
to quantify the reliability of each angle estimation system with
respect to the actual value of the auxiliary variable when using
Eqs. (9) and (10). We treat here θ as the dependent variable
considering that the auxiliary observation z is perturbed from
its actual values by zero-mean random errors. The sensitivity
of any of the two estimators in Eqs. (9) and (10) to these errors
can be quantified in terms of the derivative

d(sin−1(z))

dz
=

1√
1− z2

, − 1 ≤ z ≤ 1, (13)
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Ex,y E−x,y Eu,v E−u,v

MRA y = −x y = x x = 0 y = 0

Solution+ θ1 = asin(−zx,y)− π
4 θ1 = −asin(−z−x,y) + π

4 θ1 = asin(−zu,v)− π
2 θ1 = −asin(−z−u,v)

Solution- θ2 = −asin(−zx,y) + 3π
4 θ2 = asin(−z−x,y)− 3π

4 θ2 = −asin(−zu,v) + π
2 θ2 = asin(−z−u,v)− π

Disamb. crit. sign(={Φ̂u}) sign(={Φ̂v}) sign(={Φ̂y}) sign(={Φ̂x})

TABLE I
MAXIMUM ROBUSTNESS AXIS, SOLUTION AND DISAMBIGUATION CRITERIA FOR EACH ONE OF THE FOUR ESTIMATORS CORRESPONDING TO THE

SQUARE SENSOR ARRAY.

where the characteristic subscripts (·)x,y and (·)−x,y are here
removed for convenience. The error sensitivity as a function
of the actual value z is shown in logarithmic scale in Fig.
3(b), where it can be seen that a system is most reliable when
its auxiliary observation is close to 0. This basically reflects
nothing else than the fact that function sin−1(z) has the largest
gradient when z is close to ±1. Combining information from
both Figs. 3(a) and 3(b) indicates that Eq. (9) is completely
unreliable for estimating the impinging angle when the source
is at θ = 45o or at −135o, while at the same time, Eq.
(10) is least sensitive to errors at these angles. Vice-versa,
Eq. (10) is completely unreliable for estimating the direction
when the source is at θ = −45o or at 135o, angles for
which the first estimator shows maximum robustness. In this
sense, the line y = −x defines a Maximum Robustness
Axis (MRA) for system {x,y} while the line y = x is a
MRA for system {−x,y}. Extending these observations to
the entire angle range, the white regions in Fig. 3(a) indicate
the angular sectors where system {x,y} is more robust than
{−x,y}, while the gray regions indicate the angular sectors
where system {−x,y} is more robust than {x,y}. Observe
that in the gray [resp. white] regions |zx,y| < |z−x,y| [resp.
|z−x,y| < |zx,y|] holds.

E. Application With a Square Array

In this subsection, we adapt the presented methodology to
the case of a planar array comprised of four sensors placed
at the vertices of a square, as shown in Fig. 2(a). Letting d
be the side length of the square, the particular configuration
allows the definition of four vectors; x = [−d, 0], y = [0,−d],
u = [−d, d] and v = [−d,−d], all of which are shown in
Figure 2(b). The orientations of these vectors are such that
they allow us to construct four DOA estimation systems; the
pre-defined requirements are fulfilled in the sense that x ⊥ y,
lx = ly = d, and u ⊥ v, lu = lv =

√
2d hold. Along these

directions, we may define four cross-spectra terms

Φx = 0.5(E{p1p
∗
4 + p2p

∗
3}), (14)

Φy = 0.5(E{p2p
∗
1 + p3p

∗
4}), (15)

Φu = E{p1p
∗
3}, (16)

Φv = E{p2p
∗
4}, (17)

and use them to compose the two PCSDs ∆Φx,y and
∆Φu,v together with their mirror-symmetric ones ∆Φ−x,y
and ∆Φ−u,v. The link between the four auxiliary observations
zx,y, z−x,y, zu,v and z−u,v and their corresponding closed-
form solutions is shown in Table 1. While the lines y = −x
and y = x correspond once more to the MRAs of systems
{x,y} and {−x,y}, we now additionally have the lines y = 0

and x = 0 defining the MRAs of systems {u,v} and {−u,v}.
Furthermore, the Φx and Φy terms in Eqs. (14) and (15)
are averaged along two sensors pairs, which may potentially
result to some increased robustness for systems {x,y} and
{−x,y} as opposed to systems {u,v} and {−u,v}, whose
cross-spectra terms are calculated along single sensor pairs.

A problem that still needs to be resolved is the ambiguity
related to the sin−1(·) function. Assume, for example, that
the actual direction of the incident plane wave is at 5o, then
both 5o and 175o are possible solutions for system {−u,v}.
One straightforward way to decide which one is the true angle
would be to use acoustic beamformering, by observing for
which of the two possible directions the beamformer response
is greater. For the case of the square array however, we
propose another approach which is based on the observation
that the two possible solutions indicate flow of acoustic energy
along almost opposite directions (this is actually valid for
any estimator, as long as the incident angle is close to its
corresponding MRA). Due to this property, a straightforward
way to detect the correct direction is by observing the sign
of the cross-spectra term which is aligned with respect to the
MRA of each estimator. In this same example, =[Φ̂x] should
be positive [resp. negative] if 5o [resp. 175] is the true angle. In
fact, for the case of the square sensor array, we may associate
one disambiguation cross-spectra term to each system and use
its sign in order to disambiguate as shown in Fig. 2 and in the
third row of Table I. This approach exploits the well known
advantage that the imaginary parts of the cross-spectra terms
are immune to isotropic noise [30].

Using all the available systems, it is obvious that we may
obtain up to four different angle estimations at each TF point.
For system {−x,y} as an example, provided that |z−x,y| < 1,
the full process for finding a DOA according to Table I is

θ̂−x,y =

{
−asin(−z−x,y) + π/4, if sign(=[Φ̂v]) > 0

asin(−z−x,y)− 3π/4, if sign(=[Φ̂v]) < 0.
(18)

It should be noted that in Eq. (18), function asin(·) is different
from sin−1(·) in the sense that it returns only one solution in
[−π/2, π/2]. This convention implies that the final estimate
returned by each system will be a real number in (−π, π].

F. Property of Divergence of the Estimators

Following the analysis in Section II-D, it is interesting at this
point to observe certain facts associated with the ensemble of
the four DOA estimators rising from the case of a square array.
In Fig. 4 we illustrate the distribution of the candidate DOAs,
for each one of the four estimators, when the microphone
signals are spherical isotropic noise (top row) and spatially
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Fig. 4. Histogram with the candidate DOAs as obtained from for each one of
the four estimators rising from the case of the square array for spherical
isotropic noise (top row), spatially white noise (middle row) and single
acoustic source at −35o inside a reverberant room (bottom row).

white noise (middle row), while in the bottom row we illustrate
each estimator’s response for a single speech source at −35o at
noiseless conditions inside a reverberant room. The histograms
are obtained by accumulating all DOAs up to 4500 Hz. A first
thing to observe from the first two rows of Fig. 4 is that the
highest cardinality values appear at directions which coincide
with the MRA of each estimator. By first glance, this seems to
be a negative attribute, implying that the estimators are biased,
favouring the selection of certain angle regions than others.
Observe however that for each estimator, the DOAs tend to
concentrate at different parts of the x-axis, meaning that the
estimators responses diverge under noisy input. Intuitively, this
property can be linked to the case of an ensemble of classifiers,
where divergence is a important prerequisite for improving
classification and decision making in general [32], [33].

In contrast to the case of noisy input, observe that the candi-
date DOAs for three out of the four estimators concentrate near
the actual acoustic direction in the lower row of Fig. 4. In line
with the sensitivity analysis presented in Section II-D, it can
be visually verified that Ex,y exhibits the clearest cardinality
peak at −35o as the actual acoustic source direction is close
to the MRA of this estimator. On the contrary, system E−x,y
induces large errors as the true DOA is at an angle which
is almost perpendicular to its corresponding MRA. Finally,
the majority of the local DOAs for systems Eu,v and E−u,v
also concentrate on the true angle. These observations dictate
that the estimators’ outputs are expected to diverge for signal
components lacking direction but at the same time, two or
three of the estimators’ outputs are expected to converge to
the true acoustic direction in the presence of a dominant
directional component. This contradiction is exploited in the
fusion process which is described in more detail below, by
using a metric of convergence for assessing the reliability of
different signal portions, so that only TF bins with a high
quality of directional information are exploited for local DOA
estimation.

G. DOA Fusion

Extending the analysis to array topologies with a minimum
of four sensors, in what follows we assume that we have a co-
incident sensor array generating J ≥ 4 PCSDs corresponding
to J unambiguous DOA estimation subsystems. It is obvious
that such a system generates a great redundancy of information
as it may produce up to J candidate DOAs at each TF point.
From all this quantity of information however, only a small
portion is required for inferring the sound source locations as
well as their activities along time.

Exploiting this redundancy, we define a fusion process
which operates on the collection of candidate DOAs to cal-
culate a consistency metric. Depending on this metric, we
decide whether to output a local DOA specific to the TF
point of analysis. We then collect local DOAs into groups of
consecutive frequency bins and apply an almost similar fusion
process on each group in order to estimate a group-specific
DOA, which represents the highest-level DOA information.

1) Angular Consistency Metric: Assume that we have a
set of NE ≥ 2 DOA estimations, Φ = {φ1, ..., φi, ..., φNE}
with φi ∈ [−π, π),∀i. We define the overall consistency of a
collection of estimates Φ as

C(Φ) =
1

NE

∣∣∣∣∣
NE∑
i=1

ejφi

∣∣∣∣∣ , (19)

and the pairwise consistency as

C̃(Φ) = max
i,j

1

2

∣∣ejφi + ejφj
∣∣ , i 6= j, i, j ∈ {1, ..., NE}.

(20)
It is easy to observe that C(Φ), C̃(Φ) ∈ [0, 1] and a value
close to 1 is obtained when the estimates converge to the
same direction. When NE = 2, the pairwise and the overall
consistency metrics are identical.

2) Candidate DOA Fusion: At each TF point, we calculate
the auxiliary variable zj , j = 1, ..., J where sub-index j is
arbitrarily associated to each one of the angle estimation sys-
tems under consideration. The auxiliary variables are ordered
in terms of their absolute value and the one with the largest
absolute value (and thus least reliable for DOA estimation
according to the analysis in Section II-D) is disregarded.
If among the remaining auxiliary variables there is any zj
for which |zj(τ, ω)| ≥ 1, then this is also disregarded, as
explained in Section II-C. Let Φz(τ, ω) denote the set with
the remaining auxiliary variables. The procedure to decide
whether a local DOA α(τ, ω) will be assigned to the particular
TF point or not is as follows (time-frequency index is omitted
for convenience);

1) If the cardinality of Φz is greater or equal to 2, then
proceed to the next step, otherwise, completely disregard
the particular TF point, assigning an empty local DOA
α = ∅

2) For each available auxiliary variable calculate the cor-
responding candidate DOA θ̂j = Ej(zj) and store these
DOAs in the set Φθ

3) Calculate the pairwise consistency metric using Eq. (20)
and let k, l be the index of the two direction estimates
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exhibiting the maximum pairwise consistency. Assign a
direction α to the particular TF point (or not) as

α =

{
∠(ejθk + ejθl), if C̃(Φθ) ≥ 1− εα
∅, otherwise

(21)

where εα << 1 is a predefined positive threshold.
This type of processing reflects the belief that TF points which
are contaminated with noise and/or reverberation will lead
to irrelevant candidate direction estimates, inevitably failing
the proposed consistency test. On the contrary, there will be
at least one case of strong pairwise agreement at TF points
characterized by a dominant directional part, and the average
of the two candidate DOAs in that pair is regarded as the DOA
specific to the particular TF point of analysis.

3) Local DOA Fusion: We have observed that, especially
for speech sources, the estimation accuracy can be signifi-
cantly improved by applying the previously defined selection
process based on angular coherence not only across different
candidate estimates obtained at the same TF point, but also
across different neighbour TF points. This condition is in
accordance with the belief that the dominance of a source
in the TF domain appears not on unique/isolated frequency
points but on a neighborhood of consecutive frequency bins
which we call “zones”. Assume that the nth zone comprises G
consecutive frequency bins, then by applying the previous step
in this zone we will end up with a collection of local DOAs
Θn = [α1, ..., αG′ ], with G′ ≤ G. The condition for assigning
a DOA to the particular zone is that we have G′ ≥ NZ entries
in the nth set and that the overall consistency metric of that
set is greater than a threshold. More specifically, this two step
process can be written as follows;

1) If the cardinality of set Θn is equal or greater to NZ go
to the next step, otherwise set β(τ, n) = ∅ and proceed
to the next zone

2) Assign a DOA to the nth zone based on the output of
the overall consistency metric as

β(τ, n) =

{
∠( 1

G′

∑G′

i=1 e
jαi), if C(Θn) ≥ 1− εβ

∅, otherwise
(22)

and proceed to the next zone.
Similar to Eq. (21), εβ stands for a predefined threshold

to decide upon the reliability of the specific zone. The zone
specific DOA β(τ, n) provides the highest-level of local DOA
information which is required for building the final histogram,
upon which multiple source localization and counting relies.
The entire procedure for DOA estimation is summarized in
Algorithm 1, with Kn denoting the set with the frequency
indices comprising the nth frequency zone.

To illustrate the efficiency of the proposed approach, we
have plotted the histogram with the resulting DOA collections,
before and after local DOA fusion, in Fig. 5(a) and (b)
respectively, for the case of three simultaneous speakers at
-115, 60 and 90 degrees inside a reverberant environment.
The histogram after candidate DOA fusion, is shown in Fig.
5(a). Applying local DOA fusion reduces the number of
available estimates but at the same time makes the peaks in
the histogram more easily identifiable, as it can be seen for
the two sources at 60 and 90 degrees in Fig. 5(b).
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Fig. 5. Histogram with the DOAs obtained from PCSF after candidate DOA
fusion in (a) and after local DOA fusion in (b). Histogram obtained for the
same conditions using DIRAC is shown in (c) and using CICS in (d). Results
are shown for a simulated reverberant environment of RT60 = 300 ms with
three simultaneous sources at -115, 60 and 90 degrees.

Algorithm 1 PCSF
Input: microphone signals: p(τ, ω)
Output: zone specific DOA collection: β(τ, n)
for τ = 1 to Nframes do

for n = 1 to Nzones do
Θn ← ∅
for ω ∈ Kn do

Φz ← ∅
Φ̂(τ, ω)←update cov matrix(Φ̂(τ−1, ω),p(τ, ω))
for j = 1 to J do
zj ←calculate auxiliary var(Φ̂(τ, ω), dj)
Φz ← Φz ∪ zj

end for
Φθ ←calculate candidate DOAs(Φz, Φ̂(τ, ω))
α(τ, ω)←candidate DOA fusion(Φθ, εα)
Θn ← Θn ∪ α(τ, ω)

end for
β(τ, n)←local DOA fusion(Θn, εβ , NZ)

end for
end for

III. ADDITIONAL METHODS FOR DOA
ESTIMATION

In order to compare our technique with other algorithms, we
describe four additional well-studied methods for DOA estima-
tion. Implemented in the TF domain, the selected algorithms,
together with PCSF, are subjected to the same histogram-
based framework for sound source localization and counting
in Section V.

A. DIRAC

Directional Audio Coding (DIRAC) is a very well known
technique for capturing and reproducing spatial audio events
[34]. DIRAC has been originally designed for B-format micro-
phone signals, which are suitable for 3D sound field analysis.
However, with some minor modifications, the method can
be easily adapted to planar microphone arrays, such as the
square microphone array previously described [29], [35]. In
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this paper, the method described in [35] is implemented in the
TF domain providing two kinds of parameters which are useful
for the scope of our investigation; a potential DOA θ̂(τ, ω) and
a two-dimensional approximation of the diffuseness Ψ(τ, ω). It
is reasonable to expect that portions of the signal characterized
by a small diffuseness value are less contaminated with noise
and/or reverberation than others. We thus propose to use the
diffuseness value as a metric for assessing the reliability of a
certain TF point.

Let Ψ(τ, ω) denote the diffuseness at a particular TF point
and θ̂(τ, ω) be the direction associated to that TF point, both
of which are provided by DIRAC. The process for assigning
a local DOA β(τ, ω) to that TF point reads

β(τ, ω) =

{
θ̂(τ, ω), Ψ(τ, ω) ≤ TΨ

∅, otherwise
(23)

where TΨ is set equal to 0.2 in this work. The local DOAs are
accumulated across multiple frequency points and time-frames
and processed in the form of the histogram using matching
pursuit as described in a following section.

B. CICS With SSZ Detection

A method for multiple sources DOA estimation was pre-
sented by the authors in [13]. It relies on the sparsity of audio
signals in the TF domain, by detecting areas in the TF domain
where only one source is active. Those areas are called single
source zones (SSZs) and their detection is accomplished via
the estimation of the average correlation coefficient between
all pairs of microphones comprising a uniform circular array.

A frequency domain single source DOA estimation method
is applied over the strongest TF bins of each detected SSZ,
which is based on the estimation of the circular integrated
cross spectrum (CICS) [28]. The CICS function is estimated
for every possible direction φ in the xy-plane and the index
of its highest value reveals the DOA of the active source at
the SSZ under consideration,

β(τ, ω) = arg max
0≤φ<2π

|CICS(ω)(φ)|, (24)

where ω belongs in a SSZ. In this paper, we have used non-
overlapping zones with band corners in the set {100, 200, 300,
400, 510, 630, 770, 920, 1080, 1270, 1480, 1720, 2000, 2340,
2680, 3020, 3360, 3700, 4040, 4380} in Hz. Furthermore,
the zone-specific correlation coefficient is averaged between
diagonal sensor pairs only, e.g., pairs {1, 3} and {2, 4} with
respect to the numbering of Fig. 2(a). When the correlation
coefficient exceeds the value of 0.8, a frequency zone is
considered to be a SSZ and a DOA specific to that zone is
calculated, otherwise the empty set is returned.

C. Circular Harmonics Beamforming

The next DOA estimation method that we intend to examine
was presented in [4] and relies on beamforming in the circular
harmonics domain at each TF bin, adopting the WDO assump-
tion [36] for the sparsity of the source signals. The estimated
DOA at each TF point is obtained as the angle where the

circular harmonics beamformer output power gets maximized,
i.e.,

β(τ, ω) = arg max
0≤φ<2π

|Y (ω, φ)|, (25)

where Y (ω, φ) is the output of the beamformer for a steering
direction φ. Similarly to the proposed and the aforementioned
methods, DOA estimates resulting from the Circular Harmonic
Beamforming (CHB) method at each TF point are collectively
processed in order to form a histogram, as explained in more
detail in the coming section.

D. MUSIC

MUSIC is the most well known subspace method for DOA
estimation and we employ this technique here by using the
rank-1 approximation presented in [15]. At each TF bin, we
calculate the pseudospectrum and we keep only the DOA
corresponding to the maximum value in order to build a
histogram, in the same spirit as in [37]. Similar to PCSF, we
have observed that DOA estimation performance improves by
operating on a temporally and spectrally averaged version of
the local signal covariance matrix. More details about how the
local covariance matrix is estimated at each TF point are given
in Section V.

IV. SOURCE LOCALIZATION AND COUNTING
ALGORITHM

We describe a common framework for joint localization
and counting of the sound sources based on the approach
proposed in [13]. The approach is based on the formation of
a histogram from all the DOA estimations in a block of L
consecutive time-frames. Let β(τ, κ) denote the DOA specific
to a particular time-frame τ and subband region or frequency
point, in general indexed here by κ. We note here that if
a selection method is used, β(τ, κ) may be the empty set,
meaning that the number of available DOAs at time τ may vary
significantly from one technique to the other. To formulate the
block-based estimation procedure, let the time-frame specific
collection B(τ) be constructed as

B(τ) = ∪κβ(τ, κ). (26)

We extend the collection, not only across many subband
regions or frequency bins, as Eq. (26) implies, but also across
multiple time-frames to construct the global DOA estimation
collection as

Γ(τ) = ∪τt=τ−L+1B(t), (27)

where L is an integer denoting the History Length (HL). Note
that Γ(τ) is updated at each time-frame, making it possible
to handle situations in which the sound sources’ number and
locations vary dynamically in time [13]. Accumulating the
DOAs at the current and the past time-frames may significantly
improve the accuracy of localization, reducing however the re-
sponsiveness of the method. Furthermore, this action requires
a period of L time-frames after the onset of the sound source
in order to reach to its full effect. Periods of time of 1 up to
L− 1 time-frames after the onset of the sound source will be
referred as “transition periods” from now on.



9

As shown in [13] and depicted in Fig. 5, the local DOAs are
expected to cluster smoothly around the true source directions,
while erroneous estimates due to noise and/or reverberation
will appear with a low cardinality in the histogram and
therefore will not severely affect the final decision. The natural
approach for jointly estimating the number Q and location of
the sound sources is to apply Matching Pursuit (MP) [38],
using source atoms modelled as smooth pulses centred at
different points on a grid of A possible angles. However, as
stated in [13], it is advantageous to consider a “narrow” source
atom for detecting the peak in the histogram and a “wide” atom
for removing the contribution of that source. The use of two
fixed atom widths in MP stands as an interesting alternative
to more sophisticated fitting approaches, such as those in [2],
[3], which rely on Expectation Maximization for estimating
not only the mean, but also the variance of the curve at each
local peak in the DOA histogram.

Let Bn = [bn1 , ...,b
n
A] and Bw = [bw1 , ...,b

w
A] denote the

A × A dictionaries with the narrow and wide source atoms
respectively and hτ be the A × 1 vector with the histogram
cardinality values ordered from 0 to 360 degrees, at time-
frame τ . This histogram is a smoothed version of the original
histogram which is constructed from the global collection
Γ(τ). Smoothing is simply achieved by convolving the original
histogram with a rectangular window of Nw degrees length.
Our source counting and DOA estimation algorithm in slightly
simpler in comparison to that proposed in [13] and proceeds
as follows:

1) Calculate the Euclidean norm of the histogram E0 =
‖hτ‖2, set ε0 to a very small value and set the loop
index q = 1

2) Form the product c = BnThτ,q
3) Let the elements of c be given by ci, find i∗ =

arg maxi ci
4) The DOA of this source is given by (i∗ − 1) × 360/A

degrees
5) Calculate the contribution of this source as

εq =
bni∗

Thτ,q

bni∗
Tbni∗

6) If εq
εq−1

< Tε or εq/E0 < γ go to step 10
7) Remove the contribution of this source as

hτ,q+1 = hτ,q − bwi∗ci∗

8) Increment q
9) If q ≤ QMAX go to step 2

10) Q̂τ = q − 1 and the corresponding DOAs are those
estimated in step 4

The main difference with the previously proposed algorithm
in [13] is that we account for one only threshold γ (rather than
QMAX such thresholds) and that we stop when there is a great
difference in the estimated contributions from one iteration to
the next one, based on the ratio εq

εq−1
and the corresponding

threshold Tε. Finally, an even simpler variant of this method
rises if bni = bwi ,∀i, corresponding to the case that a single
atom width is used for implementing MP.

V. EVALUATION AND DISCUSSION

Results are presented in terms of real and simulated data
using a uniform circular array of 4 omnidirectional sensors
and radius R = 0.02 m. The values of several parameters
were kept the same for both experiments based on simulated
and real data and were as follows; for the STFT we use a
squared Hanning window of 1024 samples length and a hop
size of 512 samples (50% overlap) at a sampling rate of 22050
Hz, while the maximum frequency of interest was set to 4500
Hz for all techniques. Similar to [13], we used a Blackman
sequence for constructing the source atoms required for MP;
their centres span −180o to 179o with a resolution of 1o. The
history length is set to L = 43 time-frames, corresponding
to a duration of 1 s and finally, the length of the rectangular
window used for smoothing the histograms was set equal to
Nw = 3o.

Cross-spectra terms required for PCSF and MUSIC are
exported from the observed covariance matrix Φ̂(τ, ω), which
is estimated by exploiting the observed data in several TF
bins instead of just one. In general, a spectrally smoothed
estimation of the cross-covariance matrix is obtained as

Φ̃(τ, ω) =

λ∑
i=−λ

wip(τ, ω + i)pH(τ, ω + i), (28)

where p(τ, ω) = [p1(τ, ω), ..., p4(τ, ω)]T represents the signal
at the microphones and λ = 1 with w−1 = w1 = 0.5 and
w0 = 1 for PCSF, while λ = 2 with w−2 = w2 = 0.25,
w−1 = w1 = 0.5 and w0 = 1 for MUSIC. Then, this matrix
is smoothed in time using the simple recursive formula

Φ̂(τ, ω) = (1− a)Φ̂(τ − 1, ω) + aΦ̃(τ, ω), (29)

with a = 0.7. For candidate DOA fusion with the proposed
technique we have used εα = 0.0038 while local DOA fusion
is implemented based on a segmentation of the spectrum from
150 to 4500 Hz into 57 bands of 75 Hz width and 50% overlap.
The process of Section II-G3 is applied with NZ = 2 and
εβ = 0.02.

It should be noted that different estimators in PCSF involve
different frequency limits with respect to spatial aliasing. In
particular, observe that lx = ly =

√
2R while lu = lv =

2R, corresponding to maximum frequencies of approximately
fA = 4.3 kHz and fA = 3.0 kHz respectively, according
to the analysis made in Section II-C. We have observed that
although the alias-free limit for estimators Eu,v and E−u,v
is well below the maximum frequency of analysis used in
the evaluation (4.5 kHz), this does not seem to cause serious
problems. We believe that this is a consequence of the overall
fusion process, which causes erroneous candidate DOAs to be
eliminated during the candidate and local DOA fusion steps.

A. Simulated Environment

Simulation results are presented for the case of a rectangular
room with dimensions of Lx × Ly × Lz = 5 × 6 × 3 m and
with the center of the circular array placed at [2.6 3.2 1.4] m.
For these simulations, the image source method of Allen and
Berkley [39] was implemented in Matlab using the toolbox
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provided in [40]. For the source signals we used recordings
of continuous speech from different subjects of 6 s duration
each. In each simulation the sound sources have approximately
equal power and the signal-to-noise ratio (SNR) is estimated
as the ratio of the power of the first speech signal to the power
of the noise signal at the first microphone.

Results reported in terms of DOA estimation performance
in the simulated environment are derived with the following
settings; in all cases, the sources are placed at a distance of 1.4
m from the center of the array and the number of sources Q
is assumed known, although Q can be estimated jointly with
the sound source locations using MP . This is done in order
to focus the comparison on source localization performance
solely (source counting results are presented at a later point).
For the case of Q = 1 speakers, we span all azimuth angles in
[−180, 180) with 50 equidistant steps. For Q > 1, 50 different
speaker placements are considered for each Q, where speakers
are randomly distributed along the azimuth plane with the
restriction that no speaker is closer than 20 degrees to another
speaker. As a metric of the DOA estimation performance,
we use the Mean Absolute Estimation Error (MAEE) which
measures the absolute difference between the true DOA and
the estimated DOA, in degrees, averaged over all sources,
orientations and time-frames of the source signals [13]. Results
are reported in terms of MAEE by excluding the transition
period, i.e., time-frames with index lower than L = 43.

The first results presented for the scope of this evaluation
intend to highlight the dependency of localization performance
on the atom width, but also the large differences charac-
terizing the performance of the DOA estimation techniques
under different acoustic conditions. Specifically, in Fig. 6, we
demonstrate the MAEE as a function of a single atom-width
(bni = bwi ,∀i ), for four different acoustic conditions; highly
reverberant environment with almost no noise in Fig. 6(a),
and lightly reverberant environment with substantial amount of
different types of noise; spherically isotropic noise [41] in Fig.
6(b), common mode noise in Fig. 6(c) and spatially white noise
in Fig. 6(d). In principle, spherical isotropic noise is a more
realistic model of acoustic noise in the case of a coincident
microphone array operating inside a reverberant environment
[30]. On the other hand, common mode noise type considers
the case of additive white noise which is identical to all
microphone channels. Apart from radio frequency interference
which can be the cause of this type of noise for audio
circuits [42], the particular noise model can be linked to
the case of a microphone array with a sound reproduction
unit (loudspeaker) embedded in it (e.g., Amazon Echo). As
the loudspeaker and the microphones are embedded inside
the same device, the acoustic paths from the loudspeaker
to the microphones are almost identical, which forces the
interference component to vary trivially from one microphone
to the other.

In all cases, results in Fig. 6 are shown for a scenario with 3
static speech sound sources. The simulations were performed
for spherical isotropic white noise of 30 dB SNR and RT60 =
400 ms in (a), spherical isotropic white noise of 5 dB SNR
and RT60 = 200 ms in (b), common mode noise of 5 dB SNR
and RT60 = 200 ms in (c) and spatially white noise of 5 dB
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Fig. 6. MAEE for each technique as a function of the length of the Blackman
sequence used for constructing the atoms for MP. Results are shown for three
speakers in a simulated environment of RT60 = 400 ms and SNR=30 dB
of isotropic noise in (a), RT60 = 200 ms and SNR=5 dB of isotropic noise
in (b), RT60 = 200 ms and SNR=5 dB of common mode noise in (c) and
RT60 = 200 ms and SNR=5 dB of spatially white noise in (d).

SNR and RT60 = 200 ms in (d).
Figure 6(a) reveals that for an atom width of 55 degrees,

PCSF may significantly improve sound source localization
performance in conditions of high reverberation and relatively
low noise, exhibiting twice as good score, in terms of MAEE,
in comparison to DIRAC and CICS. While not very different
in terms of performance, PCSF and DIRAC exhibit very good
tolerance to isotropic noise and common mode noise in Figs.
6(b) and (c). The robustness of DIRAC to common mode noise
can be understood from the fact that the method relies on the
sound pressure differences across microphone pairs, so that
a common component among the microphones is cancelled
out. Similarly, the common noise components are expected to
vanish in the same way that the isotropic noise component
vanishes for PCSD in Eq. (5). On the contrary, it can be
observed that common mode noise has a disastrous effect on
CICS as well as on MUSIC. Finally, from Fig. 6(d) it can be
observed that at 5 dB SNR of spatially white noise DIRAC,
CICS and MUSIC may potentially perform better than PCSF.

An additional conclusion derived from Fig. 6(a) is that
CHB and MUSIC provide poor performance in reverberant
conditions. Indeed, we have observed that with the given array,
both CHB and MUSIC give rise to very noisy histograms. To
a large degree, we believe this is a consequence of the strict
WDO assumption and the fact that the methods do not make
any TF point selection to extract directional information. An
additional reason for CHB is that, with the given sensor array
configuration, the method can only implement beamforming
based on first-order harmonics, which limits significantly the
method’s spatial resolution.

Further conclusions which may be drawn by Fig. 6 is the
fact that the atom width indeed severely affects the localization
error but the values that guarantee the best performance
for each technique are more or less consistent for different
amounts and types of noise. Finally, the graphs illustrate that
the atoms widths which maximize performance for PCSF are
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Fig. 7. MAEE for each technique at 30 dB SNR of spherical isotropic noise as
a function of the number of speakers for RT60 = 200 ms in (a), RT60 = 300
ms in (b), RT60 = 400 ms in (c) and RT60 = 500 ms in (d)

smaller than those for DIRAC and CICS. For the results that
follow, two atom widths are used for implementing MP, as
suggested in Section IV. The narrow and wide atom widths
are set to 40 and 60 degrees, respectively, for PCSF and
to 45 and 65 degrees, for DIRAC and CICS. These values
were empirically chosen, by taking into account both the
localization and counting performance, and were found to be
representative of the best that each technique can offer across
a wide range of RT60 values and number of sources.

An additional series of simulations was performed with the
goal to provide a more detailed comparison for the differ-
ent techniques in terms of localization performance across
different reverberation times and number of continuously
active static speakers. In order to achieve a better clarity
of presentation, CHB and MUSIC, which show the least
competitive performance among all techniques, are ignored in
this evaluation and results are shown for three techniques only,
namely PCSF, DIRAC and CICS. The MAEEs are calculated
at 30 dB SNR of spherical isotropic noise and plotted for
reverberation times ranging from RT60 = 200 to RT60 = 500
ms with a step of 100ms in Fig. 7. The graphs illustrate that
DIRAC may achieve slightly better performance than CICS at
high reverberation times. On the other hand, PCSF achieves
evidently better localization performance in comparison to
both DIRAC and CICS, a fact which becomes more prominent
as reverberation and number of acoustic sources increases. A
general cause for this improvement is that PCSF produces less
noisy histograms, making it easier to detect the sound source
locations. In Fig. 5(b), (c) and (d) we illustrate an example
of this qualitative difference in the histograms obtained with
PCSF, DIRAC and CICS respectively, for a representative
scenario of 3 simultaneous speakers at RT60 = 300 ms
(DOAs are accumulated across the entire duration of the sound
signals). As it will be shown later, this advantage is also
reflected in the source counting performance.
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Fig. 8. MAEE for two speakers inside a simulated environment as a function
of source separation angle. Results are shown at 10 dB SNR for RT60 = 200
ms in (a), RT60 = 400 ms in (b).

TABLE II
SOURCE COUNTING SUCCESS RATES FOR PCSF, DIRAC AND CICS AT

RT60=300 AND 500 MS.

Number of RT60

Sources (Q) 300 ms 500 ms
PCSF DIRAC CICS PCSF DIRAC CICS

γ = 0.018 γ = 0.056 γ = 0.076 γ = 0.032 γ = 0.065 γ = 0.082

1 100.0% 100% 99.0% 99.6% 98.0% 84.9%
2 97.4% 93.0% 88.7% 85.7% 83.5% 77.9%
3 90.6% 77.9% 78.3% 75.6% 68.0% 66.0%
4 80.0% 55.5% 46.8% 62.4% 45.9% 24.8%

In an additional set of simulations, we investigate the spatial
resolution of each method, i.e., how close two sources can be
in terms of angular distance while accurately estimating their
DOA. Fig. 8 shows the MAEE against the angular distance for
pairs of static, continuously active speakers at 10 dB SNR of
isotropic noise for RT60 = 200 ms in (a) and RT60 = 400 ms
in (b). While keeping the angular distance of the sources fixed,
the resulting MAEE values are averaged across 19 different
rotations, where each static source pair is rotated from its
initial setting from 0 to 180 degrees with a step of 10 degrees.
It can be seen that the proposed method achieves better spatial
resolution than DIRAC and CICS and this advantage is more
prominent in Fig. 8(b) where reverberation time is higher.
Furthermore, the localization performance drops rapidly for
separation angles less than 25 degrees, which can be seen as
a lower limit for localizing two closely spaced sound sources.

Up to this point, we have presented DOA estimation results
assuming that we know the exact number of sound sources that
contribute to the sound scene at each moment. In practice, this
information is not available and it should be inferred from the
data, as explained earlier in Section IV.

In Table II we present source counting results for the
simulated environments of RT60 =300 and 500 ms at 30
dB SNR of spherical isotropic noise. Results are presented
in terms of success rates, corresponding to the percentage of
time-frames correctly counting the number of sources, under
the assumption that the minimum possible number of active
sound sources is 1 and the maximum is 5. The acoustic
conditions for these simulations were exactly the same as the
ones used for DOA estimation in the previous subsection,
and the success rates were averaged across all 50 source
orientations and time-frames excluding the transition periods.
In order to make a fair comparison, we tuned the value of γ for
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each technique and each RT60 to the value that maximizes the
average success rate score for 1 up to 4 number of sources,
for a value of the parameter Tε common to all techniques
and equal to 0.15. As it can be seen in Table II, the source
counting performance varies from one technique to the other
in proportion to the localization performance, with PCSF
achieving a significant advantage compared to DIRAC and
CICS, especially for Q = 3 and 4 simultaneous sources.

B. Real Environment

Apart from simulations, we present results obtained from a
real environment, a typical office room with approximately the
same dimensions and placement of the microphone array as in
the simulations and with an RT60 approximately equal to 300
ms. For the recordings we used four Shure SM93 microphones
(omnidirectional) with a TASCAM US2000 8-channel USB
soundcard. The microphone locations were stabilized using
a red plastic circular case and the microphone array was
placed on top of a wooden circular table which was close
to the center of the room. In this experiment, we have derived
and used a wideband estimation of the signal energy at each
microphone in order to compensate for different microphone
gains, possibly introduced by the imperfect tuning of the gain
knobs on the microphone pre-amplifier. Although this was
found to improve performance for all three methods, it is
certainly far from saying that an accurate calibration of the
acquisition system was performed.

Data was produced by recording three male and three
female continuously active static speakers at a distance
of approximately 1.3 m from the center of the micro-
phone array. Each speaker was recorded at one or two dif-
ferent locations, covering 13 different locations uniformly
distributed along the azimuth plane and particularly at
±166,±139,±111,±83,±56,±28 and 0 degrees. As each
speaker was recorded separately, we were able to superimpose
different recordings in order to investigate cases with multiple
simultaneous speakers. We note that while the speakers were
at approximately the same distance, the signals resulting from
the different speakers exhibited a ±3 dB variation in their
powers, as expected for such a real life experiment. Finally, the
SNR at each recording was estimated at approximately 25 dB,
mostly caused by ventilation noise. Results with respect to the
DOA estimation performance are presented assuming a known
number of sources for Q = 1 up to 4 speakers as follows; for
Q = 1 the MAEE is averaged across all 13 different cases
while for Q > 1 we consider all the Q out of 13 combinations
that rise given the available locations, resulting to 78, 286 and
715 combinations for Q = 2, 3 and 4 sources respectively.
In all cases, the parameters involved for DOA estimation for
each technique were exactly the same as in the simulations.

The outcome of this experiment is shown in terms of
MAEE in Fig. 9 where it can be seen that PCSF has by
far better localization performance compared to DIRAC and
CICS. Furthermore, the relevant advantage in the performance
gained from PCSF, which in the simulations appears for higher
number of sources, now appears even for the case of a single
speaker.
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Fig. 9. Sound source localization in the real environment. MAEE as a function
of the number of speakers in (a) and estimated DOA as a function of time for
four different single active speaker locations for PCSF (blue), DIRAC (green),
CICS (red) and CHB (black) in (b). The true DOAs are at -28, -56, -83 and
-111 degrees.

As an attempt to explain the additional advantage that
PCSF seems to achieve when going from simulated to real
conditions, we have plotted in Fig. 9(b) the estimated DOA as
a function of time for each technique for four indicative single
speaker locations at -28, -56, -83 and -111 degrees. The graph
indicates strong systematic errors between the estimated and
the actual DOA, a fact that is not observed in the simulated
environment. More particularly, DOAs estimated with PCSF
deviate ±2 degrees with respect to the ground truth, while
for the other methods this deviation reaches ±5 degrees at
several time instants. We can think of two main reasons for
explaining these phenomena; 1) insufficient calibration and/or
minor differences in the magnitude and phase responses of
the input channels and 2) acoustic diffraction effects, caused
by the body of the plastic case where the microphones are
mounted on. Interestingly, PCSF seems to be tolerant to these
issues, producing DOA estimates which are much closer to
the ground truth. To our opinion, this is additional evidence
for the robustness of the proposed technique on certain types
of model mismatch, which can be attributed to the way that
different direction estimates are fused.

With respect to counting performance in the real envi-
ronment, results are presented for PCSF with γ = 0.018
in terms of a confusion matrix in Table III. Following the
DOA estimation performance, the counting results are also
very satisfactory, achieving a success rate equal to 94.3% and
87.8% for three and four number of sources respectively. As
an indication about the counting success rates of the other
techniques, the corresponding values where 71.6% and 43.8%
for DIRAC (γ = 0.050) and 64.6% and 43.7% for CICS
(γ = 0.068).

In Fig. 10 we present an example of joint DOA estimation
and counting, derived with PCSF, DIRAC and CICS inside the
real environment, for a scenario where the number of speakers
increases from one to four and then gradually decreases again
to one. For this experiment, the four speakers were located
at -85, -28, 0, and 140 degrees. The graph illustrates the
estimated DOA as a function of time (coloured lines), while
the actual locations and times of activation of each speaker
are represented by the gray lines. As it can be seen, PCSF
estimates correctly the DOAs and number of speakers at most



13

TABLE III
CONFUSION MATRIX OF COUNTING SUCCESS RATES FOR THE PROPOSED

METHOD IN THE REAL ENVIRONMENT

Q̂

1 2 3 4 5

Q

1 100% 0.0% 0.0% 0.0% 0.0%
2 4.3% 95.6% 0.1% 0.0% 0.0%
3 0.3% 4.8% 94.3% 0.5% 0.0%
4 0.1% 0.4% 10.7% 87.8% 1.0%
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Fig. 10. Estimated DOA of four static speakers in a real environment using
PCSF in (a), DIRAC in (b) and CICS in (c).

of the time-frames. On the other hand, the other two methods
fail to detect the correct number of sources at several time
instants or make erroneous DOA estimations. Particularly, at
certain time-frames, both CICS and DIRAC detect a sound
source at approximately −140o, although there was no sound
source there. This is caused by erroneous DOA estimations
appearing in the histograms of the two methods, a phenomenon
which is much less intense with PCSF. A final thing to
note from Fig. 10 is that the estimation of each source is
prolonged for some period of time after he/she stops talking
or respectively is delayed when he/she starts talking. This is
due to the block based decision used for processing all the
estimated directions, which requires 1 second of history in
order to construct the histogram upon which DOA estimation
and counting relies. For the same reason, short discontinuities
in the different speakers’ activities are smoothed out.

C. Real-time Implementation

Real-time implementation is very important for many ap-
plications involving sound source localization. An important
advantage of PCSF in comparison to other DOA estimation

techniques, such as CICS, MUSIC and CHB that rely on a
grid-search, is that the method establishes a closed-form solu-
tion between the DOA and the observed microphone signals.
While this has a very positive impact on the accuracy and the
complexity associated to direction estimation, the additional
steps required for candidate and local DOA fusion further
increase the complexity of the algorithm. With the square
microphone array as an example, this involves the fact that,
not one, but four different angle estimation systems operate in
parallel, and the fact that all pairwise angular distances need
to be calculated in order take a decision upon the candidate
DOA set.

We performed several tests using the data acquired in the
real environment and we observed that, implemented in Matlab
with an Intel Core i7 @3.4 GHz CPU, joint DOA estimation
and counting with the proposed method is characterized by
a real time factor (RTF) of 80 %, where RTF is defined
as the ratio of the computation time to the input duration.
Potentially, by optimizing the numerics and by using a lower
level programming language, such as C++, the computational
resources required for a real-time implementation may be
further reduced. Interestingly, the implemented versions of
DIRAC and CICS are evidently lighter processes, operating
at a RTF of approximately 40% and 60% respectively on
the same computer. Nevertheless, the increased computational
demand associated to PCSF is largely beshadowed by a
significant improvement in DOA estimation and counting
performance.

VI. CONCLUSION
PCSF operates on a smoothed – in time and in frequency –

observation of the local signal covariance matrix to establish
an analytic relation between two different cross-spectra terms
and the incident acoustic direction. Inherent to this technique
is the presence of multiple DOA estimation subsystems which
operate in parallel, producing a multiplicity of candidate DOAs
at each TF point. We have defined a metric of coherence,
based on the property of divergence of the different DOA
estimators, for assessing the reliability of different signal
portions, so that only TF bins with a high quality of directional
information are exploited for local DOA estimation. The final
set of local DOAs is provided as input to a recently proposed
histogram-based method which allows for joint estimation of
the number of sources and their locations. Tests performed
with a small sized square array revealed that the proposed
technique may achieve a significant improvement in terms of
source localization and counting performance, compared to
other state of the art techniques, with the relevant advantage
in performance increasing proportional to reverberation and
to the number of sound sources. Furthermore, the technique
shows good tolerance to spherical isotropic noise as well as
to common mode noise.

In our future plans, we intend to evaluate PCSF for the
case of an eight-sensor uniform circular array, using eight
parallel DOA estimation subsystems which come with this
particular array topology. Furthermore, it would be interesting
to extend the method for 3D DOA estimation and counting,
in conjunction with a properly designed microphone array.
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